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Abstract

In eukaryotes, gene expression is controlled by various transcription factors that bind to the
promoter regions. Transcription factors may act positively, negatively or not at all. Different
combinations of them may also activate or repress gene expression, and form regulatory networks
of transcription. Uncovering such regulatory networks is a central challenge in genomic biology.

In this study, we first defined a new kind of motifs in regulatory networks, transcriptional reg-
ulatory modules (TRMs), with the form factorset — geneset that emphasizes the transcriptional
role of the group of factors factorset on the group of genes geneset. Second, we developed an effi-
cient method based on a closed itemset mining technique for finding two most informative kinds of
TRMs, closed inf-TRMs and closed sup-TRMs, from factor DN A-binding sites and gene expression
profiles data. The set of all closed inf-TRMs and closed sup-TRMs is often orders of magnitude
smaller than the set of all TRMs but does not loss any information. When being applied to yeast
data, our method produced results that are more compact, concise and comprehensive than those
from previous studies to identify and interpret the transcriptional role of regulator combinations
on sets of genes.

Keywords: regulatory network, factor DNA-binding sites, gene expression profiles, association rule
mining, closed itemsets.
Availability: Supplementary files: http://www.jaist.ac.jp/ "h-pham/regulation.

1 Introduction

Genome sequences specify the gene expression programs that produce living cells, but how cells regu-
late such global gene expression programs is far from understood. Each cell is the product of specific
gene expression programs that involve direct or indirect interactions between DNAs and transcription
factors, which are in turn the products of gene expression in previous time course. Such genetic reg-
ulatory networks and mechanisms inside them have long been investigated. Traditionally, the studies
required labor-intensive and gene-specific work. Recently, with the complete genome sequences of
a number of organisms and the development of several high-throughput genomic technologies, such
studies have sifted to a new level, whole-genomic scale [3].

Many studies have attempted to construct genetic regulatory networks based on datasets derived
from the whole-genome methodologies. Such datasets are gene expression profiles and DNA-binding
locations of transcription factors. Some studies exploited either of them and have achieved various
levels of success [10, 9, 5]. The other [2] used both and they introduced the algorithm GRAM that
has had some advantages over previous ones.
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GRAM algorithm discovers gene modules that are a set of coexpressed genes to which the same set
of transcription factors binds. Roughly, the algorithm GRAM scans all subsets of factors (factorsets)
and sees the expression profiles of genes to which each factorset binds. If the expression profiles of
these genes are significantly similar, they would be confidently controlled by the factorset. However,
scanning all factorsets in the subset space is an infeasiable task. GRAM had some heuristic rules to
tackle this difficulty. But it does still overcomputation, and become infeasiable when the number of
factors, genes and interactions between them become large. The main reason is that it till works on
the space of all subsets of factors.

In this work, we first defined a new kind of motifs in regulatory networks, transcriptional regulatory
modules (TRMs) with the form r = factorset — geneset, where geneset is a set of genes to which
the group of factors factorset binds and controls their expression. This rule means that factorset
transcriptionally cis-regulates geneset. We introduced two most informative kinds of TRMs so called
closed inf-TRMs and closed sup-TRMs that both are biologically meaningful. Moreover, the set of
closed inf-TRMs and closed sup-TRMs is often orders of magnitude smaller than the set of all TRMs
but represents the same knowledge.

We then developed an efficient data mining method to discovering all closed inf-TRMs and closed
sup-TRMs from factor DN A-binding sites and gene expression profiles data. Our method is based on a
closed itemsets mining, a powerful technique in data mining for finding association rules among sets of
items from databases of transactions. The closed itemsets mining has a solid theoretical background (8]
and has been intensively studied and successfully applied in data mining [11, 4].

Our method has been applied to yeast data for finding closed sup-TRMs and closed inf-TRMs.
The analysis of result TRMs from our method reveals some regulatory modules found by previous
studies. Moreover, closed inf-TRMs and closed sup-TRMs with two appropriate measures support and
similar_ratio are more compact, concise and comprehensive to identify and interpret the transcriptional
role of combinations of regulators on sets of genes.

2 Mining frequent itemsets and closed itemsets

Frequent itemsets mining is the most important and demanding task in many data mining applica-
tions [1]. Let Z = {ai,...,ap} be a finite set of items and D be a finite set of transactions (the
dataset) where each transaction ¢ € D is a list of distinct items ¢ = {zy,...,zr},z; € Z. An ordered
sequence of n distinct items I = {ig,%1,...,i,}[i; € T is called an itemset of length n, or n-itemset.
The number of transactions in the dataset including an itemset I is defined as the support of I,
denoted by supp(I). Given a threshold MinSup, an itemset is said to be frequent if its support is
greater than or equal to MinSup, infrequent otherwise.

There are basically two kinds of algorithms for finding frequent itemsets. The first is Apriori
algorithm [1] and its variants (see the work of Zaki and Hsiao [12] for overview). They use the
basic properties (Apriori properties) that all subsets of a frequent itemset are frequent and that all
supersets of an infrequent itemset are infrequent in order to prune elements of the space of itemsets.
These properties make it possible to effectively mine sparse datasets. However, with dense datasets,
which contain strongly related transactions, it becomes much harder to mine since only a few itemsets
can be pruned and the number of frequent itemsets grows very quickly while decreasing of MinSup
threshold. As a consequence, the mining task becomes rapidly intractable by these algorithms, which
try to extract all the frequent itemsets.

The second type of algorithms, which finds frequent closed itemsets, can avoid the above mentioned
problem. A closed itemset is described as a maximal set of items common to a set of transactions.
In other words, an itemset I is a closed itemset if there exists no itemset I’ such that I’ D I and
supp(I') = supp(I). For example, in the database D in Fig. 1, the itemset BCE is a closed itemset
since it is the maximal set of items common to the transactions {2,3,5}. It is called a frequent closed
itemset for MinSup = 2 as supp(BCE) = 3 > MinSup. The itemset BC is not a closed itemset
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Figure 1: Closed itemsets from a database of transactions

since it is not a maximal group of items common to some transactions: all transactions including
the items B and C' also include the item E. All closed itemsets of a dataset form a lattice that is
dually isomorphic to the Galois lattice [8]. In the figure, the lattice contains 8 closed itemsets. It is
much smaller than the complete space of itemsets, which in this case includes up to 32 (5 items: 2°)
itemsets. The exact definition of closed itemsets and their useful properties have been described in
the work of Pasquier et al. [8] and Zaki [11].

The set of closed itemsets is often much smaller than the set of all itemsets, but it presents exactly
the same knowledge in a more succinct way. From the set of closed itemsets it is straightforward to
derive both the identities and supports of all itemsets. Mining the frequent closed itemsets is thus
semantically equivalent to mining all frequent itemsets, but with the great advantage that frequent
closed itemsets are often orders of magnitude fewer than frequent ones. Using closed itemsets we
implicitly benefit from data correlations which strongly reduce problem complexity [11].

Many algorithms for finding frequent closed itemsets have been developed such as CHARM [12],
A-close [8], FPClose [4], etc. In our work, we used FPClose by Grahne and Zhu, implemented in C
language.

3 Definition of closed sup-TRMs and closed inf-TRMs

Our purpose is to discover groups of factors where each group (or factorset) binds to a set of genes
(geneset) and regulates their expression. In other words, we want to find all transcriptional regulatory
modules (TRMs) having a form factorset — geneset, where geneset is a set of genes that are bound
by factorset and similar in their expression profiles.

However, many TRMSs are not informative since we cannot infer the biological meaning from
them. For example, from the database of transcription factor binding sites in Fig 2 we cannot infer
that TF2TF4 — G1_G3_G8 means “T'F2_TF4 transcriptionally cys-regulates G1_G3_G8”, because
in addition to TF2 and TF4, there is another factor (TF5) binding to all G1,G3 and G8. In other
words, TF2_TF4 is not a maximal set of factors commonly binding to {G1, G3, G8}. A TRM
is informative only if its factorset is a maximal set of factors (i.e.,a closed factorset) commonly
binding to a set of genes. In this work, we focus only on informative TRMs, which have a form
closed_factorset — geneset (we will refer to this as closed TRM). As explained above, the set of
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Figure 2: Mining closed inf-TRMs and closed sup-TRMs

closed factorsets is much smaller than the set of all factorsets, so the search space for closed TRMs is
greatly reduced.

Moreover, we would like to find closed TRMs that emphasize the transcriptional role of their
closed_factorset. To do this, we can see the expression profiles of genes (geneset) that closed_factorset
binds to. If they are similar we believe that geneset is controlled by closed_factorset. Here, there are
two strategies to group genes into geneset of a closed TRM. First we can set geneset be the maximal
set of genes to which factors in closed_factorset commonly bind (we refer to it as sup_geneset and the
corresponding TRM as closed sup-TRM). Second we can set geneset be only genes bound exactly by
closed_factorset (we refer to it as inf_geneset and the corresponding TRM as closed inf-TRM). For
example, in Fig. 2 the maximal set of genes that the closed factorset TF2_TF4_TF'5 commonly binds to
is {G1,G3,G8}, therefore TF2. TF4 TF5 — G1_.G3_G8 is a closed sup-TRM. There are only 2 genes
(G3 and G8 that the exact closed factorset TF2_T F4_TF'5 binds to, therefore TF2. TFA TF5 — G3_G8
is a closed inf-TRM.

The reason for clarifying these two kinds of TRMs, closed sup-TRMs and closed inf-TRMs, is
that the expression of some genes may be significantly changed or may not at all when one or more
additional factors bind to their promoter. Closed inf-TRMs are useful to identify the transcriptional
role of their factorset without the impact from other factors, while closed sup-TRMs can include genes
that are bound by additional factors other than their factorset and these additional factors may have
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no transcriptional role. Furthermore, taking account both closed inf-TRMs and closed sup-TRMs is
also useful to identify the regulators of not only a group of genes, but also an individual gene.

We also defined two measures for a TRM r: support(r) and similar_ratio(r), where support(r)
is the number of genes in its geneset (inf_geneset with inf-TRM or sup_geneset with sup-TRM),
and similar_ratio(r) is the rate of genes in its geneset whose expression profiles are significantly
similar (see Section 4). Both support(r) and similar_ratio(r) are important evidences to infer if r
is a real transcriptional regulatory module or not, which emphasizes that factorset transcriptionally
cis-regulates geneset.

4 Mining closed sup-TRMs and closed inf-TRMs

Our method for mining closed sup-TRMs and closed inf-TRMs is based on the search on the space
of closed factorsets and consists of two phases. The first phase is to find the list (or lattice) of all
closed factorsets with supp greater than a threshold MinSup from the database of transcription factor
binding sites (Fig. 2). We generate a database of “transactions” where each transaction corresponds
to a gene and contains a list of transcription factors that bind to it. We then used a software library
(FPClose) provided by Grahne and Zhu [4] to find all closed factorsets with supp > MinSup in this
transaction database.

The second phase concerns how to choose genes included in the geneset of a TRM regulated by each
closed_factorset. As explained above, there are two ways that generate respectively a closed sup-TRM
and a closed inf-TRM. If we get geneset be the maximal set of genes to which the common factors in
the closed_factorset bind, we will produce a candidate closed sup-TRM with the support equal to the
number of these genes. If we get geneset be only genes to which factors in the closed_factorset and
only these factors bind, we will produce a candidate closed inf-TRM with the support equal to the
number of these genes. Our method takes account both kinds of TRMs (Fig 2). If genes in the geneset
of a candidate TRM have significantly similar expression profiles, the TRM r = closed_factorset —
geneset will be produced.

How can we determine if a group of genes has significantly similar expression profiles? Let F; =
(€11, €12, -, €1m), P2 = (€21, €22, .-, €2mm), -, B, = (€n1,€n2, -, €nm) be expression vectors of n genes E =
(Ev, Ey, .., E,) under m experiments (after standardized as described in Section 5); some e;; may be
null; we define E,yr = (a1,a2, ..,am) as the average expression profile (or the expression center) of the
group of these genes (a; = average;=1,.. n(eijle;; # null). The distance between a gene E; and the
average expression profile (expression center) is defined as follows:

distance(E;, Eqyy) = averagej=i,. m(|ei; — a;j| : €i; # null)

As in the work of Bar-Joseph et al. [2], we determine a suitable distance threshold T} to infer if the
expression profiles of genes in a k-geneset are significantly similar (P < 0.05) based on randomization
tests. Randomization tests have been extensively used in computational biology and provide good
results. We select at random k genes, compute E,,, for this set, and determine the distance d of the
5% closest genes that were not included in the random sampled set. This process is repeated many
times (it is actually performed as a pre-processing step, for different possible sizes of k), and we set
the threshold 7}, to be the median d obtained in these randomization tests.

Genes in the k-geneset of a TRM r are said to have significantly similar expression patterns (P <
0.05) if their expression vectors are all in the “sphere” centered at Eg,, with radius 7). Unfortunately,
most TRMs do not satisfy this condition due to experimental errors in the expression profiles as well
as in factor DNA-binding locations. Hence we introduce the algorithm REVISION (Table 1) to find
the subset of genes in k-geneset whose expression profiles are significantly similar. The idea of this
algorithm is to remove outliers (one outlier for each loop), recalculate the expression center, and set
new significantly similar threshold T}. After removing outliers, we have k'-geneset whose expression
profiles are significantly similar. We defined the similar_ratio of the TRM r as the ratio %’
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Table 1: REVISION algorithm

Input k-geneset;
T[2,...,n]: T[k] - threshold to infer k-geneset to be significantly similar (see the text);
Ei,...,Ey: E; = (ejj)j=1,..,m - expression profile;

Output  k'-geneset: subset of genes whose expression profiles are significantly similar.

1) do

2) E ver = expression_center(En, . .., Ey; //see the text
3) for i =1 to k d; = distance(Ei, Eyer); //see the text
4) J =mazi=,. . k(d;);

5) if (dj > Tk)

6) Report E; as an outlier;

7) remove E; from the list En, ..., Ey;

8)  while (d; > Ty)

9) Report Ey, ..., E} are significantly similar;

In summary, our method can discover the two most informative kinds of TRMs: closed sup-TRMs
and closed inf-TRMs. Support and similar_ratio measures of each TRM are important evidences to
infer if the TRM is a real transcriptional regulatory module or not.

5 Datasets

The data of factor DNA-binding sites is from the work of Lee et al. [7]. This data (updated December
5, 2003) presents profiles for location analysis experiments of 113 factors. A confidence value (p-value)
for each factor DNA-binding interaction is calculated by using an error model [7]. From this data, we
extracted a database of “transactions”, where each transaction has an unique gene identifier (geneid)
and contains a set of factors that binds to its promoter with the confidence less than a prespecified
threshold (0.001). We excluded all transactions that contain no factors. The number of remaining
transactions in the database is 2363 (equal to the number of yeast genes that were bound by at least
one of 113 transcriptional factors).

We used the ExpressDB from the work of Aach et al. [6] for gene expression data in our work. This
data included 17.5 million pieces of data reported by 11 studies with three different kinds of high-
throughput RNA assays and under 213 conditions. The data has been standardized as Estimated
Relative Abundances (ERAs). We then normalized ERAs in the interval [0,1] by a simple linear
transformation.

6 Results and discussions

Our method was applied on the yeast data of factor DNA-binding sites and ExpressDB (see Section 5).
It produced 405 candidate closed sup-TRMs and 157 candidate closed inf-TRMs with support greater
than 5. Among these candidates, there are 141 closed sup-TRMs and 40 closed inf-TRMs with
similar_ratio greater than 0.5 (see Files “sup.TRMs.htm” and “inf TRMs.htm” respectively. All files
mentioned in this section are available at “http://www.jaist.ac.jp/~h-pham/regulation”). There are
13 overlapped TRMs among them. Therefore we have 168 most informative TRMs in total. We
named each found TRM by its regulators (factorset). Table 2 shows an example of closed sup-TRM
regulated by factorset HAP2_ HAP3_HAPS5. It contains 5 genes, in which 4 genes have significantly
similar expression profile. The last one YHR051W (marked by a symbol x) was considered as an
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outlier.

Table 2: An example of closed sup-TRM

#module: 10
Regs: HAP2_HAP3_HAP5 Support: 5 Similar_ratio: 0.80

0.048 YPL207TW similarity to hypthetical proteins from A. fulgidus, M.thermoau totrophicum
and M. jannaschii

0.050 YLR220W involved in calcium regulation

0.053 YLLO2TW mitochondrial protein required for normal iron metabolism

0.059 YER174C member of the subfamily of yeast glutaredoxins (Grx3, GRX4, and Grx5)

x0.1056  YHRO51W cytochrome-c oxidase subunit VI

There are 13 TRMs (see File “overlapped_ TRMs.htm”) overlapped between closed inf-TRMs and
closed sup-TRMs. Taking account together both closed sup-TRMs and closed inf-TRMs will help
us to understand more exactly the transcriptional role of regulators. For example, Closed inf-TRM
No. 9 and Closed sup-TRM No. 10 both have the same factorset HAP2_HAP3_H AP5. The former
contains 4 genes Y PL20TW,Y LR220W,Y LLO27TW and Y ER174C to which the exact 3-factorset
HAP2_ HAP3_HAPS5 bind. All these 4 genes have significantly similar expression profiles. In the
latter, in addition to 4 above genes, it includes one more gene Y HR051W. However, this gene has
been considered as an outlier because its expression profile is different from that of the remaining genes
in the module. When looking at factors that bind to this gene, we found that, in addition to 3 factors
HAP2,HAP3 and HAPS5, there are 2 other factors HAP4 and ABF1 binding to it. Therefore,
we strongly believe that these two factors make Y HRO51W expressed so differently from the others.
This example proves that the distinction between two kinds of TRMs (sup-TRMs and inf-TRMs) is
necessary and useful to identify the transcriptional regulators of not only a group of genes but also an
individual gene.

27 remaining closed inf-TRMs are those not found in the list of closed sup-TRMs. This proves
that when one or more additional factors bind to a gene, its expression may be changed. For example,
in Closed inf-TRM No. 36 regulated by NRG1_.CIN5.Y AP6 (see File “inf TRMs.htm”), there are
only 6 genes that this 3-factorset binds exactly to, and all these 6 genes are significantly similar in
their expression profiles. But there are up to 24 genes that share these 3 factors (see Module 319 in
File “sup_.TRMs_revision.htm”), and their expression profiles are not similar any more. Because, in
addition to 3 above factors, there are some other factors that also bind to some genes in the module
and make them expressed so differently. Therefore closed inf-TRMs are useful to identify a group of
genes transcriptionally regulated by a group of factors by avoiding the impact from other factors.

Many TRMs (both closed sup-TRMs and closed inf-TRMs) found by our method include genes
whose function are related and consistent with the regulators’ known roles. For example, Closed sup-
TRM No. 30 regulated by HIR1_HIR?2 contains 7 genes, 6 of them have the function concerning
“histone”. Closed sup-TRM No. 98 and Closed inf-TRM No. 34 both regulated by the same factorset
PDR1_FHL1_RAP1, include genes with the function mainly concerning “ribosomal protein”, etc.
We used GO Term Finder tool (http://www.yeastgenome.org/help/goTermFinder.html) to search for
significant shared GO terms among a set of genes in each TRMs. 29 of 40 closed inf-TRMs and 81
of 141 closed sup-TRMs have significant ontology terms other than “biological process unknown”,
“molecular_function unknown” and “cellular_component unknown”. Therefore, TRMs found by our
method are biologically meaningful. They will be useful to infer the function of uncharacterized genes.

Our method identifies not only biologically related sets of genes, but also some factors that are
interacting to regulate the genes; for example, HAP2_HAP3_H AP5 (Module 10 in the list of closed
sup-TRMs), HAP2_HAP4 (Module 27), HAP2_HAP3 (Module 28), HIR1_HIR2 (Module 30),
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MBP1_.SWI14, SWI6_SWI4, and other interactions can be found in some modules. Some of these
interactions have been confirmed by previous studies (collected in Supplementary Table 4 by the work
of Bar-Joseph et al. [2]).

Of 168 TRMs, 26 are very similar to some gene modules previously found by GRAM in the work
of Bar-Joseph et al. [2], although their genes are not exactly same (see File “comparison.htm”). Some
TRMs are overlapped with gene modules from their work. There are some differences between our
method and GRAM. First, our method find candidate TRMs based on the search on the closed
factorset space that is much smaller than the space of all closed factorsets but does not loss any
information. Second, our method for discovering closed sup-TRMs and inf-TRMs that emphasize the
transcriptional role of regulators. This is the reason why TRMs generated by our method are different
from gene modules generated by GRAM [2]. For example, Gene Module No. 52 from the results of
GRAM regulated by FKH1_FK H?2 is not found by our method, because the factorset FKH1 FK H2
binds up to 13 genes and the expression profiles of these genes are very different (see Closed sup-TRM
No. 233 in File “sup_TRMs_ revision.htm” for the revision process of our method).

7 Conclusion and future work

In this paper, we first defined two relevant kinds of TRMs: closed inf-TRMs and closed sup-TRMs
that are compact, concise and comprehensive to identify and interprete transcriptional activity of
combinations of regulators. We then developed an efficient data mining method to discover closed
inf-TRMs and closed sup-TRMs from factor DNA-binding sites and gene expression data. Our method
is based on a closed itemset mining that has a solid theoretical background and takes account only
relevant combinations of factors.

Our method has been applied to yeast data to find transcriptional regulatory modules (TRMs).
The results are consistent with those previouly found by other methods. Moreover, TRMs found
by our method are more concise and comprehensive to identify and interprete transcriptional role
of regulators. In this work, we used the data of factor DNA-binding sites proved by Lee et al. [7],
which were harvested from a microarray method. Each gene-factor interaction was assigned with a
confidence value. In future work, we will apply our method to factor DNA-binding sites data that will
be computationally predicted (i.e., from the transfac database).
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