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Abstract

In this paper, we propose a graph-based method to measure the similarity between chemi-
cal compounds described by 2D form. Our main idea is to measure the similarity between two
compounds based on edges, nodes, and connectivity of their common subgraphs. We applied the
proposed similarity measure in combination with a clustering method to more than eleven thousand
compounds in the chemical compound database KEGG/LIGAND and discovered that compound
clusters with highly similar structure compounds that share common names, take part in the same
pathways, and have the same requirement of enzymes in reactions. Furthermore, we discovered the
surprising sameness between pathway modules identified by clusters of similar structure compounds
and that identified by genomic contexts, namely, operon structures of enzyme genes.
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1 Introduction

Determining the degree of similarity between chemical compounds (molecules) plays an important role
in chemistry and, increasingly, biology, e.g. protein-ligand docking, database searching, the prediction
of biological activity, reaction site modelling, and the interpretation of molecular spectra. Among
molecule description methods, 2D description where each compound is presented as a graph of nodes
(atoms) and edges (bonds) can be adequate for most purposes in practice [1, 2]. Thus, most real-life
applications focus on this description.

The first approach to measure the similarity between molecules via the 2D structure description
is fingerprint-based comparison. In this approach, a molecule is considered as a bit-string, each bit
indicates the presence or absence of an atom or a predefined molecular substructure known as key
descriptor or finger [3]. The similarity between two molecules is then determined by comparing their
corresponding bit-strings [1, 2]. Also, the combination of numerical vector methods and fingerprint
methods has been used as mathematical extension of bit-comparison methods [4, 5, 6, 7]. Although
these methods are simple and easy in practical use, they contain some drawbacks in key descriptor
selections - the heart of these methods [8, 9].

In the second approach, the similarity between compounds is determined by comparing directly
their corresponding graphs. Current graph-based methods [10, 11, 12, 13, 14] measure the similarity
between two graphs either by the maximum common subgraphs (MCS) [10, 11, 12] or the maximum
common edge subgraphs (MCES) [13, 14]. The main drawback of these methods is that they measure
the similarity between two graphs only by calculating the size (either number of nodes or edges) of
their MCS or MCES regardless of its structure. However, in practice, both nodes and edges play
the same important roles in compound structures, and meaningful substructures are those that are
connected. In addition, since there are few types of atoms and bonds, MCS or MCES found are often
large. This would mislead the measuring of similarity between compounds as large MCS or MCES is
not guarantee of meaningful substructures. For instance, a large subgraph whose atoms are separated
is of little meaning while a smaller connected subgraph may be much meaningful.
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In this paper, we introduce an innovative graph-based similarity measure for compounds in 2D
description. Our key idea to overcome the drawbacks of the above mentioned graph-based methods
is to measure the similarity between two compounds presented by two graphs based on nodes, edges,
and the connectivity of their common subgraphs. To this end, we weigh each common connected
subgraph by its relations with the two whole graphs, which depend mainly on its nodes and edges.
Then we define the weight of a set of non-overlap connected common subgraphs (NOCCS) based on
the subgraphs’ weights, and normalized by the sizes of the two graphs. Subsequently, we define the
similarity between two graphs as the weight of the set of NOCCS whose weight is maximum.

2 Similarity measure

In the following part, we introduce our proposal similarity measure for two chemical compounds based
on the 2D description. First, we recall some definitions of graph theory [15] used in this paper. Then,
we describe our similarity measure and its properties in details.

2.1 Basic notions of graph theory

Definition 1 A graph is a 4-tuple G =< V,E, µ, ν > where V is a set of finite vertices, E ⊆ V × V

is the set of edges, µ : V → LV is a function assigning labels to the vertices and ν : E → LE is a
function assigning labels to the edges.

For convenience, we denote a graph as a node set and an edge set, G =< V,E >.

Definition 2 Graph G is called a connected graph if and only if there is at least one path between any
vertex pair, where a path is a list of vertices such that there is an edge between two adjacent vertices.

Definition 3 Given graph G =< V,E, µ, ν >, subgraph Gi =< Vi, Ei, µi, νi > of G is a graph where
Vi ⊆ V , Ei = E ∩ (Vi × Vi), and µi and νi are the restrictions of µ and ν to Vi and Ei.

µi(v) =

{

µ(v) if v ∈ Vi

undefined otherwise
νi(v) =

{

ν(v) if v ∈ Ei

undefined otherwise

Definition 4 Gi is called a common subgraph of G and G′ when Gi is a subgraph of both G and G′.

Definition 5 A set of subgraphs of G, Γ = {Gi =< Vi, Ei >: i = 1 . . .}, is called a set of NOCCS of
G, denoted by π(Γ, G), when the subgraphs are connected subgraphs of G and their node sets are not
overlapped.

π(Γ, G) ⇔ Gis are connected subgraphs, Vi ∩ Vj = ∅ ∀ i, j

2.2 Similarity measure method and properties

Denote G =< V,E, µ, ν > and G′ =< V ′, E′, µ′, ν ′ > the graphs presenting two compared chemical
structures. The similarity score between G and G′ is defined based on the weights of sets of NOCCS
of G and G′. The weight of each set is built on the weights of its member subgraphs, which depend
on the nodes and edges of the subgraphs.

Now, consider a subgraph Gi =< Vi, Ei > of graph G =< V,E >. For each node v of Vi, we define
its weight with respect to Gi and G, denoted τ(v,Gi, G), as the ratio between the number of edges
from v in Gi and that in G:

τ(v,Gi, G) =
|{v′ : (v, v′) ∈ Ei)}|

|{v′ : (v, v′) ∈ E)}|
(1)

The weight τ(v,Gi, G) is clearly proportional to the number of common edges between Gi and G
at node v. In other words, the more complete the structure of Gi at node v with respect to G, the
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greater τ(v,Gi, G). It is obvious that 0 ≤ τ(v,Gi, G) ≤ 1. The equality of the right side happens
when and only when all connected nodes of v in V belong to Vi.

The weight of subgraph Gi with respect to graph G is then defined as the sum of weights of nodes
in Vi, denoted by ρ(Gi, G),

ρ(Gi, G) =
∑

v∈Vi

τ(v,Gi, G) (2)

Theorem 1 For any set of non-overlap subgraphs Γ = {Gj =< Vj , Ej >: j = 1} of Gi, it holds true
that

∑

Gj

ρ(Gj , G) ≤ ρ(Gi, G)

The equality occurs when and only when Γ = {Gi =< Vi, Ei >}

The proof is given in Appendix.
Theorem 1 means that connected subgraphs are considered to be more important than unconnected

(separated) subgraphs. In fact, the weight of a subgraph is greater than total weights of any set of its
non-overlap subgraphs.

Denote Γ = {Gi =< Vi, Ei >: i = 1 . . .} a set of NOCCS of G and G′. Having introduced how to
determine the weight of a subgraph with respect to its super graph, we define the weight Γ, denoted
by δ(Γ), as the sum of products of weights of subgraphs Gis with respect to G and G′ divided by the
product of weights of G and G′ with respect to themselves.

δ(Γ) =

∑

Gi
(ρ(Gi, G) ρ(Gi, G

′))

ρ(G,G) ρ(G′, G′)

Since ρ(G,G) = |V | and ρ(G′, G′) = |V ′|, δ(Γ) can be rewritten as

δ(Γ) =

∑

(ρ(Gi, G) ρ(Gi, G
′))

|V ||V ′|

It implies that the weight of a set of NOCCS of G and G′ is defined based on its subgraphs and
normalized by the size of G and G′.

Now we are ready to introduce the similarity measure for two graphs representing two compounds.

Definition 6 The similarity between two graphs G and G′, denoted ψ(G,G′), is defined as the maxi-
mum weight of all possible sets of NOCCS of G and G′,

ψ(G,G′) = max
Γ

{δ(Γ) : π(Γ, G) and π(Γ, G′)}

Theorem 2 Let Γ = {G1, . . . , Gk} and Γ′ = {G′

1
, . . . , G′

k′} be two sets of NOCCS of G and G′. If
Gi ∈ Γ is a subgraph of G′

j ∈ Γ′ for i = 1 . . . k, then δ(Γ) ≤ δ(Γ′).

The proof is given in Appendix.
Theorem 2 means that when connected subgraph Gis are larger, the weight of Γ is greater.
Now we present the properties of the proposed similarity measure.

Propostion 1 For any pair of graphs (G,G′), the following properties hold true:

1. 0 ≤ ψ(G,G′) ≤ 1

2. ψ(G,G′) = ψ(G′, G)

3. ψ(G,G′) = 1 if and only if G and G′ are isomorphic graphs.

4. ψ(G,G′) = 0 if and only if G and G′ have no common connected subgraphs of the size larger
than 1.

The proof is given in Appendix.
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Procedure SimilarityComputing
In: G,G′

Out : Sim(G,G′)
Begin

Γ = ∅
repeat

cG = the largest connected common of (G,G′)
Γ = Γ + cG

G = G− cG,G′ = G′ − cG

until cG = ∅
return δ(Γ)

End

Figure 1: Algorithm for determining the similarity between two compounds

3 Experimental evaluation

To evaluate the usefulness of the proposed measure, we applied a clustering method to more than
eleven thousands compounds obtained from the KEGG database [16] using the similarity calculated
by our method. Then we performed several experiments to analyze the clusters of compounds: The
first ones are to analyze relations between clusters of compounds of the whole database with other
chemical information such as pathways, enzymes, etc. The second experiments are to analyze relations
between pathway modules identified by clusters of similar structure compounds and that identified by
genomic contexts, namely, operon structures of enzyme genes.

3.1 Methodology

Similarity determining Since finding the exact similarity between two compounds is an NP-hard
problem, we compute heuristically the similarity between two compounds. According to Propo-
sition 1, Theorem 1, and Theorem 2, larger connected common subgraphs have greater weights.
Thus, we designed an algorithm to find the similarity between two graphs by finding sequently
the largest common connected subgraph of the two graphs. The largest common connected sub-
graph is determined by a back tracking algorithm. Then the similarity between two compounds
is estimated by the weight of the set of found subgraphs (see Fig. 1). This algorithm is paral-
lelized to determine similarity of 11,149 compounds on 16 x 2GHz node PC-Clusters to speed
up the computation.

Clustering method Clustering methods can be divided into two main approaches: partitioning and
hierarchical. Since partitioning methods [17, 18] are not suitable for non-continuous data, we
chose a hierarchical-based clustering method to cluster compounds. Among hierarchical-based
clustering methods, we chose the method with the average complete linkage condition [19].

3.2 Clustering results analysis

3.2.1 Analysis on clustering results of the whole database

In this subsection, we analyze the clustering result of the whole database with the threshold similarity
degree of 0.5. We found 2629 clusters and 1261 of them contain a single compound.

We found that compounds in the same clusters are strongly alike in structures. For example,
for the five largest clusters, the common structure of each (see Fig. 2) is little different form its
original compounds. Also, compounds in the same cluster share common names that indicate common
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Table 1: Common formula, names, etc. of the five largest clusters
No. Size Common formula common

name
description of
member

KEGG pathways map numbers

C L AA BX second AtR P&NP
1 188 C22O17N6P3S CoA Coenzyme A 640, 650 62, 71,

120
280 632

2 115 rna Ribonucleotid 251,
252,
260, 450

970

3 98 C19O one cyclopenta[a]
phenanthrene

140, 150

4 82 C9O12P2 dp-, ose pyran, diphos-
phate, methyl
cyclopenta

51, 500,
520, 530

521 522

5 61 C6O benz containing ben-
zene ring

380 362,
632, 623

622

C: Carbon hydrate Metabolism; L: Lipid Metabolism; AA: Amino Acid Metabolism; BX: Biodegradation of Xenobiotics;
Second: Biosynthesis of Secondary Metabolites; AtR: Genetic Information Processing (Translation);P&NP: Biosynthesis of
Polyketides and Nonribosomal Peptides

Figure 2: Common structures of the five largest clusters

properties of the compounds. As an example, compounds in Cluster 1 have the common name CoA
(Coenzyme A), therefore possess the properties of Coenzyme A such as being required to metabolize
fat, carbohydrate and protein and convert them into energy at the cellular level, or being the initiation
of the body’s energy cycle.

With a deeper analysis of the relation between compound clusters and pathways, we found that
compound clusters highly associate with specific pathways in the KEGG database, e.g. Cluster 1 has
28 compounds taking part in Fatty acid biosynthesis (path 2)(map00062), Cluster 2 has 40 compounds
joining Aminoacyl-tRNA biosynthesis(map00970). In addition, it can be seen from Table 1 that each
cluster tends to associate with certain classes of pathways, e.g. compounds in Cluster 3 strongly as-
sociate with Lipid Metabolism(map00140, map00150), or compounds in Cluster 2 are assigned mainly
to Amino Acid Metabolism and Aminoacyl-tRNA biosynthesis of genetic information processing.

Moreover, compounds in the same clusters are found to share the same groups of enzymes work-
ing on specific radicals in compounds, accordingly catalyzing the reactions they join. For example,
compounds in cluster 2 use enzymes of EC 6.1.1 (Ligases Forming Aminoacyl-tRNA and Related
Compounds) which mainly catalyze reactions that rna compounds take part in. Other introduced
groups of enzymes also works on radicals that each cluster’s common structure carries ( Table 2).

In short, compounds in the same clusters not only share common structures and names but also
strongly associate with specific pathways, mainly metabolic pathways, and share common groups of
enzymes catalyzing their reactions.
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Table 2: Compound clusters with their main enzyme requirements in related reactions
Cluster ID EC number Fre. Functions

Cluster 1 EC 1.1 31 Acting on the CH-OH group of donors
EC 1.2 35 Acting on the aldehyde or oxo group of donors
EC 1.3 68 Acting on the CH-CH group of donors
EC 2.3 210 Acyltransferases

Cluster 2 EC 6.1.1 23 Ligases Forming Aminoacyl-tRNA and Related Compounds
Cluster 3 EC 1.1 21 Acting on the CH-OH group of donors

EC 1.14 18 Acting on paired donors, with incorporation or reduction of
molecular oxygen

Cluster 4 EC 1.1 18 Acting on the CH-OH group of donors
EC 2.4 203 Glycosyltransferases

Cluster 5 EC 1.14 27 Acting on paired donors, with incorporation or reduction of
molecular oxygen

3.2.2 Analysis on clustering results of pathway oriented databases

Clustering analysis of the whole database shows a tendency of similar structures to be assigned to
specific pathways. Thus, the clustering of compounds along the pathway maps provided by KEGG is
an important step in order to learn more about the metabolic pathways and predict possible operon
structures [12].

In this part, we analyze the result of clustering compounds and the correlation between compound
clusters and enzyme clusters within metabolic pathways. Due to space limit, we present the analysis
result on one pathway(pathway map00860) as an example. The analysis of other pathways can be
downloaded at www.jaist.ac.jp/q̃uang/chemical/PathwayAnalysis/

Clustering of compounds on pathways: The result of clustering similar compounds on the path-
way maps shows that there is a clear tendency of highly similar structure compounds to take up
adjacent positions in reaction steps of the maps. As a result, the pathway maps can be divided
into several parts depends on the chemical compounds achieved in each cluster. For example, the
clustering compounds on the pathway map00860 (Porphyrin and chlorophyll metabolism-Fig. 3)
identifies 5 noticeable compound clusters that are noted on the map as areas enclosed by thinner
line, named C1 to C5 accordingly.

Correlation of enzyme clusters and compound clusters on the pathways: To find out about
the relation between chemical information and genomic information, it is necessary to discover
the correlation of compound clusters and enzyme clusters on the metabolic pathways. The en-
zyme clusters are derived from the ortholog table [20, 21] which contain the information about
orthologous sets of enzyme genes. Analysis of the correlation between compound clusters and
enzyme clusters helps to predict possible operon-like structures in selected genomes [12].

The most surprising discovery we achieved when examining the pathway oriented clustering is
that in many cases, compound clusters and enzyme clusters almost completely overlap each
other on the pathway maps. For instance, in Fig. 3, the area of C3 overlap most of that of E1.
The intersection of compound clusters and enzyme clusters helps to point out the operon-like
structures, e.g., in the intersection of enzyme clusters with C4, the possible operon-like struc-
ture(such as in Pseudomonas aeruginosa) consists of E2.5.1.17 E6.3.5.10 E6.3.1.10 E2.7.1.156
E2.7.7.62 E2.7.8.26, and another operon-like structure (such as in Mycobacterium tuberculosis
H37Rv) consisting of E2.1.1.130 E1.14.13.83 E2.1.1.131 (CbiG) E2.1.1.133 is found within C3.
Other possible operon-like structures are shown in Table 3.
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Figure 3: Example of compound/enzyme clusters in pathway oriented

In brief, the clustering of compounds on pathway maps reveals the tendency of similar com-
pounds to take up adjacent steps of reactions on the pathways. Moreover, it shows that a set of
enzyme genes encoded in an operon often corresponds to a set of enzymes catalyzing successive
reaction steps (where compounds in the clusters are nodes) in a specific metabolic pathway. This
encourages the new way of discovering knowledge on genome by analyzing structural similarity
of chemical compounds.

4 Conclusion

In this paper we present an innovative similarity measure for 2D chemical structures. In our approach,
we measure the similarity between two compounds (two graphs) by using not only atoms (nodes) and
chemical bonds (edges) but also the connectivity of common substructures (common subgraphs).

Experiments with clustering for more than eleven thousand compounds in database KEGG/LIGAND
discovered (revealed) clusters with highly similar structures compounds that share the same common
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Table 3: Possible operon-like structure from KEGG Pathway map00860
Cluster area Possible operon

Cluster 1 E4.1.1.37 E1.3.3.3
Cluster 2 E6.6.1.1 E2.1.1.11
Cluster 2 E1.3.1.33
Cluster 3 E2.1.1.130 E1.14.13.83 E2.1.1.131 (CbiG) E2.1.1.133 E2.1.1.152 E1.3.1.54 E2.1.1.132

(CbiD) E5.4.1.2 E6.3.5.9 E6.3.1.- E6.6.1.2
Cluster 3 E1.3.1.- E4.99.1.-
Cluster 4 E2.5.1.17 E6.3.5.10 E6.3.1.10 E2.7.1.156 E2.7.7.62 E2.7.8.26
Cluster 5 E3.1.3.73 E2.4.2.21

names, take part in the same pathways with the same requirement of enzymes in actions. Analysis
on clustering results of pathway oriented databases showed that clusters of compounds and clusters of
enzymes on the same pathway have a tight relation, and this encourages the new way of discovering
knowledge on genome by analyzing structural similarity of chemical compounds.
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Appendix

Proof of Theorem 1

•
∑

Gj
ρ(Gj , G) ≤ ρ(Gi, G)

Since Gjs are subgraphs of Gi, τ(v,Gj , G) ≤ τ(v,Gi, G) when v ∈ Vj .

Since Vjs are not overlapped,

∑

Gj

∑

v∈Vj

τ(v,Gj , G)) ≤
∑

Gj

∑

v∈Vj

τ(v,Gi, G)) ≤
∑

v∈Vi

τ(v,Gi, G) (3)

⇒
∑

Gj

ρ(Gj , G) ≤ ρ(Gi, G) � (4)
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•
∑

Gj
ρ(Gj , G) = ρ(Gi, G) ⇔ Γ = {Gi}

– ” ⇒ ” Since
∑

Gj

∑

vj∈Vj

τ(vj , Gj , G) ≤
∑

Gj

∑

vj∈Vj

τ(vj , Gi, G) ≤
∑

vi∈Vi

τ(vi, Gi, G),

⋃

Vj

= Vi, and τ(vj , Gj , G) = τ(vj , Gi, G) ∀vj ∈ Vi.

Thus Gj ≡ Gi or Γ = {Gi}

– ” ⇐ ” is obvious.

Proof of Theorem 2

According to 1, it is clear that for Gik(k = 1..) in Γ being subgraphs of G′

j in Γ′,

∑

k

ρ(Gik , G) ≤ ρ(G′

j , G),
∑

k

ρ(Gik , G
′) ≤ ρ(G′

j , G
′)

On the other hand, we have
∑

k

ρ(Gik , G)ρ(Gik , G
′) ≤

∑

k

ρ(Gik , G)
∑

k

ρ(Gik , G
′) ≤ ρ(G′

j , G)ρ(G′

j , G
′)

Consequently,

δ(Γ) =

∑

Gi
(ρ(Gi, G) ρ(Gi, G

′))

ρ(G,G) ρ(G′, G′)
≤

∑

G′

j
(ρ(G′

j , G) ρ(G′

j , G
′))

ρ(G,G) ρ(G′, G′)
= δ(Γ′) �

Proof of Proposition 2

1. From the definition in Equation 1, ρ(Gi, G) ≤ |Vi|.

Thus, for any common subgraph set Γ of (G,G′),

δ(Γ) ≤

∑

i(|Vi|)
2

|V | |V ′|

Meanwhile, since Gis are disjoint common subgraphs of (G,G′),
∑

i

|Vi| ≤ min(|V |, |V ′|).

Hence,

∑

i

|Vi|
2 ≤

(

∑

i

|Vi|

)

2

≤ min(|V |, |V ′|)2 ≤ |V ||V ′| (5)

This leads to ψ(G,G′) ≤ 1.

The left part of Property 1 can be obviously seen.

2. It is apparent that δ(Γ) is the same no matter (G,G′) or (G′, G). Thus, Property 2 is true.

3. ψ(G,G′) = 1 ⇔ the equality in inequality (5) happens. This is equivalent to |V | = |V ′|, |Γ| = 1,
and ρ(G1, G) = ρ(G1, G

′) = |V1| = |V |, which means G and G′ are isomorphic.

4. ψ(G,G′) = 0 is equivalent to ρ(Gi, G) = 0 and ρ(Gi, G
′) = 0 ∀Gi ∈ Γ. That means |Vi| = 1 for

all Gi, or G and G′ have no connected common subgraphs of the size larger than 1.


