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Abstract—In multiple-attrib ute decision making (MADM)
problems,oneoften needsto deal with decisioninformation with
uncertainty. During the last decade,Yang and Singh (1994)have
proposedand developedan evidential reasoning(ER) approach
to deal with suchMADM problems.Essentially, this approachis
basedon an evaluation analysismodel and the Dempster’s rule
of combination in the Dempster-Shafer theory of evidence.

In this paper, we re-analysethe ER approach explicitly in
terms of Dempster-Shafer theory, and then proposea general
schemeof attrib ute aggregation in MADM under uncertainty.
In the spirit of such a reanalysis,the previous ER algorithms
are reviewed and other two aggregation schemesare discussed.
Concerning the synthesisaxioms recentlyproposedby Yang and
Xu (2002)for which a rational aggregationprocessshould grant,
theoretical featuresof new aggregationschemesarealsoexplored
thoroughly. A numerical example traditionally examined in
published sourceson the ER approach is used to illustrate the
discussedtechniques.

I . INTRODUCTION

Practically, decisionmakersare often required to choose
betweenseveral alternativesor optionswhereeachoptionex-
hibits a rangeof attributesof botha quantitave andqualitative
nature.A decisionmay not be properly made without fully
takinginto accountall attributesconcerned[3], [9], [16], [22],
[28], [33]. In addition, in many MADM problems,one also
frequentlyneedsto dealwith decisionknowledgerepresented
in forms of both qualitative andquantitative informationwith
uncertainty.

So far, many attemptshave beenmade to integrate tech-
niquesfrom artificial intelligence(AI) andoperationalresearch
(OR) for handling uncertaininformation, e.g., [1], [4], [5],
[6], [10], [11], [15], [24], [27]. During the last decadeor
so, an evidential reasoning(ER) approachhasbeenproposed
and developed for MADA under uncertaintyin [28], [29],
[31], [32], [33]. Essentially, this approachis basedon an
evaluationanalysismodel [35] and the evidencecombination
rule of the Dempster-Shafer(D-S) theory[20] (which in turn
is one of the major techniquesfor dealing with uncertainty
in AI). The ER approachhas been applied to a range of
MADM problemsin engineeringandmanagement,including
motorcycle assessment[29], generalcargo ship design[18],
systemsafetyanalysisandsynthesis[23], retro-fit ferry design
[30] amongothers.
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Thekernelof theERapproachis anERalgorithmdeveloped
on the basis of a multi-attribute evaluation framework and
Dempster’s rule of combinationin D-S theory of evidence
[28]. Basically, thealgorithmmakesuseof Dempster’s rule of
combinationto aggregateattributesof a multi-level structure.
Due to a needof developingtheoreticallysoundmethodsand
tools for dealing with MADM problemsunder uncertainty,
recently, Yang and Xu [33] have proposeda systemof four
synthesisaxioms within the ER assessmentframework with
which a rational aggregation processneedsto satisfy. It has
alsobeenshown that the original ER algorithmonly satisfies
theseaxiomsapproximately. At the sametime, guidedby the
aim exactly, the authorshave proposeda new ER algorithm
that satisfiesall the synthesisaxiomsprecisely.

Interestinglyenough,the D-S theory of evidence on the
one handallows us to coarseor refine the databy changing
to a higher or lower level of granularity(or attribute in the
context of a multi-level structure)accompaniedwith a pow-
erful evidencecombinationrule. This is an essentialfeature
for multiple attribute assessmentsystemsbasedon a multi-
level structureof attributes.On the otherhand,oneof major
advantagesof the D-S theoryover conventionalprobability is
thatit providesa straightforwardway of quantifyingignorance
andis thereforea suitableframework for handlingincomplete
uncertaininformation.This is especiallyimportantanduseful
for dealingwith uncertainsubjective judgmentswhenmultiple
basic attributes (also called factors) need to be considered
simultaneously[28].

It is worth emphasizingthat the underlyingbasisof using
Dempster’s rule of combinationis the independentassumption
of information sourcesto be combined.However, in situa-
tions of multiple attribute assessmentbasedon a multi-level
structureof attributes,assumptionsregardingtheindependence
of attributes’ uncertainevaluationsmay not be appropriatein
general.Moreover, anotherimportantissueconcerningtherule
is that it may yield counterintuitive resultsespeciallywhen
a high conflict betweeninformationsourcesto be combined
arises.This problemof completelyignoringconflict causedby
a normalizationin Dempster’s rule wasoriginally pointedout
in [34]. Consequently, this hashighly motivatedresearchersto
proposea numberof othercombinationrules in the literature
to addressthe problem,e.g. [24], [26] (see[19] for a recent
survey).

In thispaperwe dealwith theattributeaggregationproblem
in theER approachto MADM underuncertaintydevelopedin,
e.g.,[28], [33]. FirstwereanalysisthepreviousERapproachin
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termsof D-S theoryso that the attribute aggregationproblem
in MADM� underuncertaintycan be generallyformulatedas
a problemof evidencecombination.Thenwe proposeseveral
new aggregation schemesand simultaneouslyexamine their
theoreticalfeatures.For the purposeof the presentpaper, we
take only qualitative attributes of an MADM problem with
uncertaintyinto account,thoughquantitave attributes would
be also includedin a similar way asconsideredin [28], [29].

To proceed,it is first necessaryto briefly recallbasicnotions
on the MADM problemwith uncertainty, the basicevaluation
framework andtheD-S theoryof evidence.This is undertaken
in Section II and followed in Section III by a discussion
of the ER approachto MADM under uncertaintyproposed
previously. SectionIV thenexploresthe attribute aggregation
problem detailedly, and Section V examines a motorcycle
performanceassessmentproblem taken from [33]. Finally,
SectionIV presentssomeconcludingremarks.

I I . BACKGROUND

A. ProblemDescription

This subsectiondescribesan MADM problem with un-
certainty through a tutorial example taken from [33]. As
mentionedabove, for thepurposeof thispaper, onlyqualitative
attributes of the problem are taken into account.For more
detailsthe readercould be referredto [28], [29].

To subjectively evaluatequalitative attributes(or features)
of alternatives(or options),a setof evaluationgradesmay be
firstly suppliedas follows�����	��

���
�������������
�����������
where

���
’s arecalledevaluationgradesto which the stateof

a qualitative attribute � may be evaluated.That is,
�

provides
a completeset of distinct standardsfor assessingqualitative
attributesin question.Although differentattributesmay have
differentsetsof evaluationgrades,for the sakeof simplicity,
in this paperwe assumethe sameset

�
for all attributesof

concern.Further, without lossof generality, it is assumedthat� ����

is preferredto

� �
.

Let us turn to a problemof motorcycle evaluation[7]. To
evaluatethe quality of the operation of a motorcycle, the set
of distinctevaluationgradesis definedby (1) at the top of the
page.

Becauseoperation is a general technical conceptand is
not easyto evaluatedirectly, it needsto be decomposedinto
detailedconceptssuchashandling, transmission, andbrakes.
Again, if a detailed concept is still too general to assess
directly, it may be further decomposedinto more detailed
concepts.For example,the conceptof brakesis measuredby
stoppingpower, braking stability, and feel at control, which
canprobablybe directly evaluatedby an expert andtherefore
referredto asbasicattributes(or basicfactors).

Generally, a qualitativeattribute � maybeevaluatedthrough
a hierarchicalstructureof its subattributes.For instance,the
hierarchyfor evaluationof the operation of a motorcycle is
depictedas in Fig. 1.

In evaluationof qualitative attributes, judgmentscould be
uncertain.For example,in the problemof evaluatingdifferent

typesof motorcycles, the following type of uncertainsubjec-
tive judgmentsfor the brakesof a motorcycle, say“Yamaha”,
was frequentlyused[7], [33]:

1) Its stoppingpower is averagewith a confidencedegree
of 0.3 and it is goodwith a confidencedegreeof 0.6.

2) Its brakingstability is goodwith a confidencedegreeof
1.

3) Its feel at control is evaluated to be good with a
confidencedegree of 0.5 and to be excellent with a
confidencedegreeof 0.5.

In the above statements,the confidencedegreesrepresent
theuncertaintyin theevaluation.Notethatthetotalconfidence
degreein eachstatementmay be smallerthan1 asthecaseof
thefirst statement.This maybedueto incompleteof available
information.

In a similar fashion,all basic attributes in questioncould
be evaluated.The problemnow is how to generatean overall
assessmentof the operation of a motorcycle by aggregating
the all uncertainjudgmentsof its basicattributesin a rational
way. The evidential reasoningapproachdeveloped in [28],
[29], [33] has provided a meansbasedon Dempster’s rule
of combinationfor dealingwith suchan aggregationproblem.

B. EvaluationAnalysisModel

The evaluation analysis model was proposedin [35] to
representuncertainsubjective judgments,suchas statements
specifiedin precedingsubsection,in a hierarchicalstructure
of attributes.

To begin with, let ussupposea simplehierarchicalstructure
consistingof two levels with a generalattribute, denotedby� , at the top level anda finite set � of its basicattributesat
the bottomlevel (graphically, shown in Fig. 2). Let� ���	� 
 ���
�������! ������
�"���!#$�
andassumethe weightsof basicattributesaregiven by % �&(' 
��
���
��� '  ���
����� ' #�)

, where
'  

is the relative weight of the*
th basic attribute (

�  
) with +-, '  ,/. . Attribute weights

essentiallyplay an importantrole in multi-attribute decision
models.Becausethe elicitation of weights can be difficult,
several methodshave beenproposedfor reducingthe burden
of the process[14].

y

e1 ei eN.... ....

Fig. 2. A two-level hierarchy

Given the following setof evaluationgrades���0�1��

�����
�������2���
���������3�
designedas distinct standardsfor assessingan attribute, then
an assessmentfor

�� 
of an alternative can be mathematically

representedin termsof the following distribution [33]4 & �! ) �0� & � � ��5 �76  )�879 � . ���
������:;��� for
*<� . ���
������= (2)
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Fig. 1. Evaluationhierarchyfor operation[33]

where
5F�76  

denotesa degree of belief satisfying
5G�H6  >I + ,

and J ��LK�
 5 �76  ,M. . An assessment
4 & �" )

is calledcomplete
(respectively, incomplete) if J ���K�
 5 �H6  N� . (respectively,J ��LK�
 5H�H6  PO . ).

For example,the threeassessments1.–3.givenin preceding
subsectioncan be representedin the form of distributions
definedby (2) as4 &

stoppingpower
) � � & � A � + �RQ ) � & � B � + �RS ) �4 &

braking stability
) � � & � B � . ) �4 &

feel at control
) � � & �TBU� + �RV ) � & �CD�� + �RV ) �

whereonly gradeswith nonzerodegreesof belief arelisted in
the distributions.

Let us denote
5 �

the degreeof belief to which the general
attribute � is assessedto the evaluation grade of

� �
. The

problem now is to generate
5 �

, for
9 � . ���
������: , by

combinatingtheassessmentsfor all associatedbasicattributes�  
(
*�� . ���
������= ) asgiven in (2). However, beforecontinuing

the discussion,it is necessaryto briefly review the basisof
D-S theoryof evidencein the next subsection.

C. Dempster-ShaferTheoryof Evidence

In D-S theory, a problemdomainis representedby a finite
set W of mutuallyexclusive andexhaustive hypotheses,called
frameof discernment[20]. In the standardprobabilityframe-
work, all elementsin W areassigneda probability. And when
the degree of supportfor an event is known, the remainder
of the supportis automaticallyassignedto the negationof the
event.On theotherhand,in D-S theorymassassignmentsare
carriedout for eventsasthey know, andcommittingsupportfor
aneventdoesnotnecessarilyimply thattheremainingsupport
is committed to its negation. Formally, a basic probability
assignment(BPA, for short) is a function XZY\[G]M^ _R+ � .�`
verifying X &ba ) � + � and cd$e ?�f X &hg ) � .
The quantity X &ig ) can be interpretedas a measureof the
belief that is committed exactly to

g
, given the available

evidence.A subset
gkj [l] with X &hg )nm + is called a focal

elementof X � A BPA X is calledto be vacuousif X & W ) � .
and X &hg ) � + for all

gko� W �
Two evidential functionsderived from the basicprobability

assignmentare the belief function p �!q and the plausibility
function r q , definedasp �!q &hg ) � cs	tKvuxw d X & p ) � and r q &hg ) � cu$y d tK s X & p )

The differencebetween X &ig ) and p �!q &hg ) is that whileX &ig ) is our belief committedto the subset
g

excluding any
of its propersubsets,p �!q &hg ) is our degreeof belief in

g
as

well asall of its subsets.Consequently, r q &hg ) representsthe
degree to which the evidencefails to refute

g
. Note that all

the threefunctionsare in an one-to-onecorrespondencewith
eachother.

Two usefuloperationsthatplay a centralrole in themanip-
ulationof belief functionsarediscountingandDempster’s rule
of combination[20]. The discountingoperationis usedwhen
a sourceof information provides a BPA X , but one knows
that this sourcehasprobability z of reliable.Then one may
adopt

& .|{}z ) as one’s discountrate, which resultsin a new
BPA X�~ definedbyX ~ &hg ) � z$X &ig ) � for any

g�� W (3)X ~ & W ) � & .|{-z )�� z�X & W ) (4)

Considernow two piecesof evidenceon the sameframe W
representedby two BPAs X 
 and X ? . Dempster’s rule of
combinationis thenusedto generatea new BPA, denotedby& X 
�� X ? ) (alsocalled the orthogonalsum of X 
 and X ? ),
definedas follows& X 
�� X ? ) &(a ) � + �& X 
�� X ? ) &hg ) � 

���� Ju$y���K d X 
 & p ) X ? &b� ) (5)

where � � cu�yL��K s X 
 & p ) X ? &(� ) (6)

Notethattheorthogonalsumcombinationis only applicable
to suchtwo BPAs that verify the condition

� O . .
As we will partially see in the following sections,these

two operationessentiallyplay an important role in the ER
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approachto MADM underuncertaintydevelopedin, e.g.,[28],
[29], [33]. Although the discountingoperationhas not been
mentionedexplicitly in thesepublishedsources.

I I I . THE EVIDENTIAL REASONING APPROACH

Let us return to the two-level hierarchicalstructurewith
a generalattribute � at the top level and a finite set � ��1� 
 ���
�������! ����
�������!#$�

of its basicattributesat the bottomlevel.
Let us be given weights

'  
(
*$� . �����
�"��= ) of basicattributes�� 

(
*�� . ���
������= ), respectively. Denote

5 �
the degreeof belief

to which the generalattribute � is assessedto the evaluation
gradeof

�E�
, for

9 � . �
��������: .

A. TheOriginal ER Algorithm

The original ER algorithmproposedin [28] hasbeenused
for thepurposeof obtaining

5$�
(
9 � . ���
������: ) by aggregating

the assessmentsof basicattributesgiven in (2). The summary
of the algorithmin this subsectionis takenfrom [33].

Given the assessment
4 & �  �)

of a basic attribute
�  

(
*>�. ���
������= ), let X �76  be a basic probability massrepresenting

the belief degree to which the basicattribute
�  

supportsthe
hypothesisthat the attritute � is assessedto the evaluation
grade

� �
. Let X�� 6  be the remainingprobabilitymassunas-

signedto any individualgradeafterall the
:

gradeshave been
consideredfor assessingthe generalattribute � as far as

�� 
is

concerned.Thesequantitiesaredefinedas followsX �76  � '  5H�H6  �
for
9 � . ���
������: (7)X � 6  � .|{ �c��K�
 X �76  � .|{ '  �c��K�
 5H�H6  (8)

Let ���
�  �� ���1�l
	�
���
�����  �
be the subsetof first

*
basic

attributes.Let X �76 �
�  �� be a probability massdefined as the
belief degreeto which all thebasicattributesin �����  h� supports
the hypothesisthat � is assessedto

���
. Let X � 6 ���  h� be the

remainingprobability massunassignedto individual grades
after all the basicattributesin � �
�  �� have beenassessed.The
quantitiesX �76 �
�  �� and X � 6 ���  h� canbegeneratedby combining
the basic probability masses X �H6 � and X � 6 � for all

9 �. ���
������: , and � � . �
��������*"�
With these notations, the key step in the original ER

algorithmis to inductively calculateX �H6 ���  ��
 � and X � 6 ���  ��
 �
as followsX �76 ���  ��
 � � � ���  ��
 � & X �H6 ���  h� X �76  ��
 � X �H6 ���  h� X�� 6  ��
� X � 6 ���  h� X �76  ��
 ) (9)X � 6 ���  ��
 � � � ���  ��
 � & X � 6 ���  h� X � 6  ��
 ) (10)

for
9 � . �����
�"��:>��*�� . ���
������= {�. , and

� ���  ��
 � is a
normalizingfactor definedby� �
�  ��
 � � ���� .|{ �c � K�
 �c��K�
� tK � X � 6 ���  h� X �!6  ��
������

�<

(11)

Thenwe obtain5H� � X �H6 ��� #2� � for
9 � . �
��������:5 � � X � 6 ��� #2� � .|{ �J��K�
 5H� (12)

B. SynthesisAxiomsand the ModifiedER Algorithm

Inclined to developing theoretically sound methodsand
tools for dealing with MADM problemsunder uncertainty,
Yang and Xu [33] have recently proposeda systemof four
synthesisaxioms within the ER assessmentframework with
which a rational aggregation processneedsto satisfy. These
axiomsare symbolicallystatedasbelow.

Axiom 1. (Independency) If
52�H6  � + for all

*�� . �����
����= ,
then

57�C� + .
Axiom 2. (Consensus) If

5��U6  � . and
5H�H6  � + , for all*�� . ���
������= � and

9 � . ���
������: ,
9 o�¢¡

, then5 � � . , 5 � � + , for
9 � . �����
����: ,

9 o�£¡
.

Axiom 3. (Completeness) Assume
� � � �

and denote¤ � �¥� 9x8 � � j � � �
. If

5 �H6  m + for
9 j ¤ �

and J� eU¦U§ 5 �H6  ¨� . � for all
*¨� . �����
����=�� then5H� m + for

9 j ¤ �
and J� el¦©§ 5H�T� . aswell.

Axiom 4. (Incompleteness) If thereexists
* j � . �
���
����=|�

suchthat

�J�LK�
 57�H6  $O . � then

�J��K�
 57� O . .
It is easilyseenfrom (9–12)that the original ER algorithm

naturally follows the independency axiom. Concerningthe
secondaxiom, the following theorem is due to Yang and
Xu [33].

Theorem 1: If
5 �

and
5 � are calculatedusing (12), then

the concensusaxiom holdsif andonly if#ª K�
 & .|{ '  ) � + (13)

Note that the only constraintimposedon the weights
'  

(
*<�. �����
�"��= ) in the ER approachis +E, '  ,�. � By Theorem1,

it implies that if
'  � . then

�  
dominatesthe assessment

of � , i.e.other basic attributeswith smallerweightsplay no
role in the assessment.To resolve this dilemma,the following
schemefor weightnormalizationhasbeenconsideredin [28],
[29], [30] '  � z '  «@¬l­ K�
�6R®R®R® 6 # � '  � (14)

and z is a constantdeterminedby satisfying#ª K�
 ¯° .|{}z '  «@¬	­ K�
�6R®R®R® 6 # � '  ±�2²³ ,µ´
where ´ is a smallconstantrepresentingthedegreeof approx-
imation in aggregation. By consideringnormalizedweights'  

’s insteadof
'  

’s, it meanstheconsensusaxiomcouldonly
besatisfiedapproximately. However, thisweightnormalization
hasstill anothershortcomingthat themostimportantattribute
may play a dominatingrole in the assessmentof � . Further,
it hasbeenalsoshown in [33] that the original ER algorithm
doesnot satisfy the completenessaxiom.

Undersucha consideration,YangandXu [33] proposeda
new ER algorithm that satisfiesall the synthesisaxioms.Its
main featuresare summarizedas follows

1) Weight normalization. In the new ER algorithm, the
weights

'  
(
*C� . �
���
����= ) of basic attributes are nor-
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malizedsuchthat: +�, '  ,�. , and#c  K�
 '  � . (15)

2) Aggregation process. First, the probability mass X¶� 6  
given in (8) is decomposedinto two parts: X � 6  �·X � 6  �� X � 6  , whereXC� 6  $� .|{ '  �� and

·X�� 6  �� '  \¸ .|{ �c��K�
 5 �H6  b¹ (16)

Then, with the notationsas in precedingsection, the
processof aggregating the first

*
assessmentswith the& * � . ) th assessmentis recursively carriedout as followsX �H6 ���  ��
 � ��� ���  ��
 � _ X �H6 ���  h� X �H6  ��
 � X �76 �
�  �� X � 6  ��
� X � 6 ���  h� X �H6  ��
 ` (17)X � 6 ���  h� �º·X � 6 �
�  �� � X � 6 ���  h� � 9 � . ���
������:·X � 6 ���  ��
 � ��� ���  ��
 � _ ·X � 6 ���  h� ·XC� 6  ��
� X � 6 ���  h� ·X � 6  ��
 � ·X � 6 �
�  �� X � 6  ��
 ` (18)X � 6 ���  ��
 � ��� ���  ��
 � _ X � 6 ���  h� � X�� 6  ��
 ` (19)

where
� ���  ��
 � is definedassameas in (11).

For assigningthe assessment
4 & � ) for the generalat-

tribute � , after all
=

assessmentsof basicattributeshave
beenaggregated,the algorithmfinally defines5H� � X �H6 ��� #2�.|{ X � 6 �
� #2� � for

9 � . ���
������: (20)5 � � ·X � 6 ��� #2�.|{ X � 6 �
� #2� (21)

and then, 4 & � ) �0� & � � ��5 � ) � 9 � . �
���
����:»� (22)

The following theoremsare due to Yangand Xu [33] that
aretakenfor grantedto develop thenew ER algorithmabove.

Theorem2: The degreesof belief definedby (20) and(21)
satisfy the following+3, 5 � �"5 ��,¼. � 9 � . �����
�"��:�c��K�
 57� � 5 � � .

Theorem3: If
5 �U6  $� . and

5 �H6  $� + for all
9 � . �����
����:

with
9 o�k¡

, and
*|� . �
���
����= , then

5 � � . , 5 � � + for all9 � . ���
������: with
9 o�£¡

, and
5 � � + .

Theorem4: Let
� � � �

and
� � �0�¾½�� �

, we denote¤ � �¥� 9x8 � � j � � �
and

¤ � �¥� � 8 � � j � � � . If
5 �76  m +

(
9 j ¤ �

), J � el¦©§ 5H�76  � . and
5U�!6  � + ( � j ¤ � ), for all*<� . ���
������= , then J � eU¦ § 57�T� . and

5U��� + ( � j ¤ � ).
Theorem5: Assumethat + O '  O . for all

*$� . ���
������= .

If thereexists an
*

suchthat

�J��K�
 5H�H6  $O . � then
5 � m + .

In [33], the authorshave given direct proofs of thesethe-
orems,which are somehow complicated.In the next section,
we alsogive a brief descriptionof thesetheoremsin termsof
D-S theory.

IV. A REANALYSIS OF THE ER APPROACH

Let us remindourselves the available informationgiven to
an assessmentproblemin the two-level hierarchicalstructure
asdepictedin Fig. 2:¿ the assessments

4 & �  �)
for basic attributes

�  
(
*À�. �
���
����= ), and¿ the weights

'  
of the basicattributes

�  
(
*�� . �
���
�"��= ).

Given the assessment
4 & �  �)

of a basic attribute
�  

(
*£�. �����
�"��= ), we now define a correspondingBPA, denotedbyX  , which quantifiesthebelief abouttheperformanceof
�l 

as
follows: for any

�ÂÁÃ�
X  & � ) �ÅÄÆÆÇ ÆÆÈ

5H�H6  �
if
�É�0�1�C�v�& .|{ �J��K�
 5H�H6  Ê) � if
�É�Ë�+ � otherwise

(23)

For the sakeof simplicity, we will write X  & � � ) insteadofX  & �	� � � ) asusual.Thequantity X  & � � ) representsthebelief
degree that supportsfor the hypothesisthat

�F 
is assessed

to the evaluationgrade
� �

. While X  & � ) is the remaining
probability massunassignedto any individual gradeafter all
evaluation gradeshave been consideredfor assessing

�  
. If4 & �  �)

is a completeassessment,X  is a probability distri-
bution, i.e. X  & � ) � + . Otherwise, X  & � ) quantifies the
ignorance.

As suchwith
=

basicattributes
�  

, we obtain
=

correspond-
ing BPAs X  asquantifiedbeliefsof theassessmentsfor basic
attributes.The problemnow is how to generateanassessment
for � , i.e.

4 & � ) , representedby a BPA X , from X  and
'  

(
*x� . ���
������= ). Formally, we aim at obtaininga BPA X that

combinesall X  ’s with taking weights
'  

’s into accountin
the generalform of the followingX � #Ì  K�
 &('  2Í X  Ê) (24)

where
Í

is a product-typeoperationand
�

is a sum-type
operationin general.

As such,by applyingdifferentparticularoperationsfor
Í

and
�

, we mayhave differentaggregationschemesfor obtain-
ing the BPA X representedthe generatedassessment

4 & � ) .
However, beforeexploring any new aggregationschemes,we
first interestinglyre-interpretthe original ER approachin the
spirit of the new formulation.

A. TheDiscounting-and-Orthogonal SumScheme

Let usfirst consider
Í

asthediscountingoperationand
�

as
theorthogonalsumin D-S theory. Then,for each

*<� . ���
������= ,
we have

&('  �Í X  Î) is a BPA (refer to (3–4))definedby (25),
for any

�ÂÁÃ�
and

9 � . ���
������: , at the top of thenext page.
With this formulation,we considereach X  as the belief

quatified from the information source
4 & �  �)

and the weight'  
as a “degreeof trust” of

4 & �Ï )
supportingthe assessment

of � asa whole.As mentionedin [20], an obviousway to use
discountingwith Dempster’s ruleof combinationis to discount
all BPAs X  (

*�� . �
��������= ) at correspondingrates
& .n{ '  )

(
*�� . ���
������= ) beforecombiningthem.
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&b'  Í X  ) & � )\Ð� X�Ñ<Ò & � ) �ZÄÆÆÇ ÆÆÈ
'  h5 �76  ��

if
�Ó���	� � �& .|{ '  Î)�� '  & .|{ �J��K�
 5H�76  Î) � .|{ '  �J��K�
 5H�H6  � if
�Ó�µ�+ � otherwise

(25)

Thus, Dempster’s rule of combinationnow allows us to
combine BPAs X�Ñ Ò (

*>� . ���
������= ) under the independent
assumptionof informationsourcesfor generatingthe BPA X
for the assessmentof � . Namely,X � #Ì  K�
 XCÑ Ò (26)

where, with an abuse of the notation,
�

stands for the
orthogonalsum.

At this juncture,wecanseethattheaggregationprocessesin
original ER approachreviewed above follow this discounting-
and-orthogonalsum scheme.In addition, it is of interestto
note that, by definition, in this aggregation schemeit would
benotnecessaryto requiretheprocessof weightnormalization
satisfyingthe constraint #c  K�
 '  � .
That is, by relaxing this constraint on weights, we may
avoid the mutual and exclusive assumptionof information
sourcessupportingthe assessmentfor � , which seemsto be
questionablein the context of aggregatedassessments,even
thoughweightswould have a probability-like interpretation.

It would be worth noting that two BPAs X Ñ�Ò and X ÑvÔ� are
combinable,i.e.

& X�Ñ�Ò � X ÑvÔ� ) doesexist, if andonly if� � �c � K�
 �c��K�
� tK � XCÑ Ò & ��� ) X Ñ Ô� & � � )|O .
For example,assumethat we have two basicattributes

�	

and

��?
with4 & �	
 ) � � & ��

� + ) � & �C?�� + ) � & ��A1� + ) � & ��B	� . ) � & �CD�� + ) �4 & �
? ) � � & ��

� + ) � & �C?�� + ) � & ��A1� . ) � & ��B	� + ) � & �CD�� + ) �

andboth are equally important,or
' 
 � ' ?

. In the extreme,
setting ´ � + and the weights

' 

and

' ?
being normalized

using(14) leadto
' 
\� ' ?�� . , whichresultsin

& X@Ñ�Õ
 � XCÑ�Ö? )
doesnot exist.

Anotherissuewith theorthogonalsumoperationis in using
thetotal probabilitymass

�
(calledthedegreeof conflict [24])

associatedwith conflict asdefinedin thenormalizationfactor.
Consequently, applyingit in anaggregationprocessmayyield
counterintuitive results in the face of significant conflict in
certain contexts as pointed out in [34]. Fortunately, in the
context of the aggregatedassessmentbasedon a hierarchical
evaluationmodel,by discountingall BPAs X  (

*<� . ���
������= )
at correspondingrates

& .×{ '  ) (
*×� . �
���
����= ), we actually

reduceconflict betweenthe variousbasicassessmentsbefore
combiningthem.

Note further that,by definition,focal elementsof each XØÑ Ò 
are eithersingletonsetsor the whole set

�
. It is easyto see

that X also verifies this propertyif applicable.Interestingly,
thecommutative andassociative propertiesof Dempster’s rule
of combinationwith respectto a combinablecollection of
BPAs X Ñ<Ò (

*$� . ���
������= ) and the mentionedpropertyessen-
tially form the basisfor the ER algorithmsdevelopedin [28],
[33]. In other words, the original ER algorithm summarized
in (9)–(10)hasbeenimplementedfor calculationof the BPAX . More particularly, with the samenotationsas in preceding
section,anddenotingfurtherXC���  h� �  Ì��K�
 X Ñ Ô�
for
*<� . �
��������= , we haveXC���  h� & ��� ) � X �76 �
�  �� � for

9 � . �����
����: (27)X ���  h� & � ) � X � 6 ���  h� (28)

Further, by a simpleinduction,we easilyseethatthefollowing
holds

Lemma1: With thequantity X � 6 ���  h� inductively definedby
(19), we have X � 6 ���  h� �£� ���  h�  ª�
K�
 & .|{ ' � ) (29)

where
� ���  h� is inductively definedby (11).

By now, it is obviouslyclearthat,excepttheweightnormal-
ization, the key differencebetweenthe original ER algorithm
and the modified ER algorithm is nothing but the way of
assignmentof

5 �
(
9 � . �
���
�"��: ) and

5 � after obtained X .
That is, in the original ER algorithm,the BPA X is directly
usedto definethe assessmentfor � by assigning5H� � X & ��� ) � X �76 �
� #2� � for

9 � . ���
������: (30)5 � � X & � ) � X � 6 ��� #2� (31)

While in the modifiedER algorithm,after obtainedthe BPAX , insteadof using X to definethe assessmentfor � asin the
original ER algorithm, it definesa BPA X¶Ù derived from X
as followsX Ù & � � ) � X & � � ).|{ X � 6 ��� #v� � for

9 � . ���
������: (32)X Ù & � ) � & X & � ) { X � 6 ��� #2� ).|{ X � 6 �
� #2� � ·X � 6 ��� #2�.|{ X � 6 ��� #v� (33)

Note that in this casewe must have
'  O . for all

*Ú�. �����
�"��= .
Then the assessmentfor � is definedby assigning5 � � X Ù & � � ) � for

9 � . �
���
����: (34)5 � � X Ù & � ) (35)
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By (32)–(33),Theorem2 straightforwardlyfollows as X is
a BPA.� Further, the following lemmaholds.

Lemma2: If all assessments
4 & �  �)

(
*£� . ���
������= ) are

complete,we haveX & � ) � X � 6 ��� #2� ��� ��� #2� #ª K�
 & .|{ '  () (36)

i.e.,
·X � 6 �
� #2� � + ; and,consequently,

4 & � ) definedby (34) is
alsocomplete.

As if
'  � + then the BPA X�Ñ Ò immediately becomes

the vacuousBPA, and, consequently, plays no role in the
aggregation.Thus,without any lossof generality, we assume
that + O '  xO . for all

*�� . �
��������= . Under this assumption,
we areeasilyto seethatif theassumptionof Theorem4 holds,
thenÛ�ÜnÝ ÒÒ ���©�1���7� 8 9 jÚÞ � �\ß¶�!�Ú��� for

*<� . �����
�"��= (37)

where

ÛàÜ Ý ÒÒ denotesthe family of focal elementsof X Ñ�Ò .
Hence,by a simple induction,we alsohaveÛ Ü ���©�1���7� 8 9 jÚÞ � �\ß¶�!�Ú�

(38)

Note that the assumptionof Theorem3 is the sameas that
given in Theorem4 with

8 Þ � 8 � . �
Therefore,Theorems3 and 4 immediately follows from

Lemma2 alongwith (32)–(35)and (38).
It is alsoeasilyseenthatX & � ) ��� �
� #2� #ª K�
 X Ñ�Ò & � ) �£� ��� #2� #ª K�
 _ '  X  & � )�� & .F{ '  Ê) `

(39)
and in addition, if there is an incompleteassessment,say4 & � � )

, then
' � X � & � )|m + � resultingin' � X � & � ) #ª K�
 tKL� & .|{ '  )àm +

This directly implies XØÙ & � )�m + � Consequently, Theorem4
follows as (34)–(35).

B. TheDiscounting-and-Yager’s CombinationScheme

To addressthe issueof conflict asmentionedabove, Yager
proposedin [24] a modificationof Dempster’s rule of com-
binationby addingthe total probabilitymassassociatedwith
conflict to the frame of discerment,insteadof using it for
normalization.That is, given two BPAs X 
 and X ? over a
frame W , Yager’s rule of combinationyields a BPA denoted
by XTá asshown in (40) below.

As such,in Yager’s ruleof combination,thetotalprobability
massassociatedwith conflict betweenthe two BPAs to be
combinatedis attributed to the frame W and, consequently,
enlargesthe degreeof ignorance.

In thecontext of multi-attributeassessmentframework, after
discountedthe BPA X  (

*$� . ���
������= ) obtainedfrom a basic
assessmentfor

�  
at a discountrate of

& .×{ '  Ê) , we would
now like to apply Yager’s rule of combinationfor obtaining
an aggregatedBPA for the assessmentof the generalattribute� . As Yager’s rule of combinationis not associative, we can
not combine X Ñ�Ò (

*�� . �
��������= ) in a recursive mannerasthe
caseof Dempster’s rule,but applya multiple-pieceof evidence
versiondefinedin [24]. This rule is suitablefor anaggregation
process(but nota updatingprocess)asin themultipleattribute
aggregation.

Particularly, we define X�á asa combinationof BPAs XTÑ Ò 
(
*�� . ���
������= ) asshown in (41) at the bottomof the page.

Recall, by definition, that focal elementsof each X�Ñ Ò are
eithersingletonsetsor the whole set

�
. For

*�� . �
���
����= , let
us denoteÛ  <�0�U�	� � � 8 � � j �¾â '  (5 �H6  m + �xßÚ�!�Ú� (42)

With this notation,we have the family of focal elementsofX Ñ Ò (
*<� . �
��������= ) is

Û � � Û  L½|���Ú� if
'  <� . and

4 & �! )
is

complete,otherwise

Û  
is. For simplicity, we use

���
instead

of
�1�E�v�

without dangerof confusion.
Then,we getX á & � � ) � cã Ò e	ä ÒåyÒ æ Õ ã Ò K ã|ç

#ª K�
 X�Ñ<Ò & �  ) (43)

X 
 � X ? &ig )|Ð� X á &hg ) �èÄÆÆÇ ÆÆÈ
+ � if

g � aX 
 & W ) X ? & W )�� Ju$y���K s X 
 & p ) X ? &(� ) � if
g � WJu$y���K d X 
 & p ) X ? &(� ) � otherwise

(40)

X á & � ) � ÄÆÆÆÆÆÆÆÆÆÆÇ ÆÆÆÆÆÆÆÆÆÆÈ
+ � if

�Ó� a#é K�
 X�Ñ<Ò & � )<� Jã Ò w �åyÒ æ Õ ã Ò K s
#é K�
 XCÑ�Ò & �  ) � if

�Ó�µ�
Jã Ò w �åyÒ æ Õ ã Ò K ã

#é K�
 XCÑ Ò & �  ) � otherwise

(41)
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 XCÑ Ò & � )<� � (44)

where
�

is a constantdefinedas�É� cã Ò e	ä §ÒåyÒ æ Õ ã Ò K s
#ª K�
 X Ñ<Ò & �  ) (45)

representingthe total degreeof conflict.
Now, by this aggregationschemewe candefine5H�£� X á & ��� ) � for

9 � . �����
�"��: (46)5 � � X á & � ) � .|{ �c��K�
 X á & � � ) (47)

for generatingthe aggregatedassessmentfor � .
Let us denoteÞ �0� . � [ �
���
�"��=à� (48)Þ �� �0�1* jØÞ 8 '  5H�76  $m + ��� for

9 � . ���
������: (49)

and ê &bÞ �� ) the power setof ë �� . Then
5F�

(
9 � . �
��������: ) is

calculatedalgorithmicallyas shown in (50) at the bottomof
the page.

We are now ready to concernwith the synthesisaxioms.
Obviously, the first independency axiom is followed as there
is at leastone

�  
in (43) being

���
, thus,we have

5L�T� + if5H�H6  � + for all
*��

Similar to the original ER algorithm,we
have the following

Theorem6: If
57�

and
5 � are calculatedusing (46) and

(47), thenthe concensusaxiom holdsif andonly if#ª K�
 & .|{ '  () � +
Proof: Assumethat

5 �U6  \� . for all
*|� . ���
������=�� and5 �H6  <� + for

9 � . �����
�"��: ,
9 o�£¡

, and
*<� . �
��������=��

By definition, we haveX Ñ Ò & � � ) �Mì '  � if
9 ��¡+ � if
9 o��¡

and X�Ñ Ò & � ) � & .�{ '  b) , for
*C� . �
���
�"��= � Consequently,

Û � ���	���L� . This directly implies from (45) that
�Ó� + . So,

we obtain 5 � � #ª K�
 & .|{ '  ()
Then,theconsensusaxiomandthat

Û � �0�1� � � immediately
imply 5 � � #ª K�
 & .|{ '  () � +

Conversely, if
é # K�
 & .�{ '  ) � + thenthe consensusaxiom is

trivially satisfied.This concludesthe proof.
Unsurprisingly, asin caseof thediscounting-and-orthogonal

sum schemeabove, the discounting-and-Yager’s combination
schemedoes not directly yield a generatedassessmentfor� exactly satisfying the completenessaxiom. This can be
overcomeby modifying the assignmentof

5<�
’s and

5 � fromXCá asshown in the following.

C. The Modified Discounting-and-Yager’s Combination
Scheme

As we have seen, the direct use of the discounting-and-
Yager’s combinationschemefor definingtheassessmentfor �
makesit fail to desiredlysatisfythe synthesisaxioms.This is
causedmainly by the fact that an aggregatedrate of discount
is attributed to

5 � as a part of the unassignedprobability
mass.Yet a so-calleddegree of disagreementas a part of the
conflict factor

�
also plays a role. In this part, insteadof

commiting thesefactors to the unassignedprobability mass,
they areusedfor the normalizationbeforeassigningfor

5 �
’s

and
5 � . However, beforedoing so, we mustfirst be clearon

what thesefactorsare.
Denote Û � � #í K�
 Û � (51)

where

Û � � Û  ½$���Ú� (
*<� . ���
������= ). That is,

Û �
consistsof

commonsingletonfocal elementsof all BPAs X Ñ�Ò ’s. In other
words,all basicattributes

�  
(
*�� . �
���
�"��= ) areassessedto all

evaluationgradesin

Û �
to variouslypositivedegreesof belief.

As a part of conflict aroseduring the aggregationprocessof
basicassessments,we definethe degreeof disagreement,de-
notedby

� 

, amongthevariousbasicassessmentsatevaluation

gradesin

Û �
as follows� 
 � cã Ò e	ä §åyÒ æ Õ ã Ò K s

#ª K�
 X Ñ Ò & �  ) (52)

Note that
� 


is alsoa constantand is a part of the degreeof
conflict

�
definedby (45) asshown in Appendix.

Dueto themultiplicativenatureof thecombinationrule, we
definethe aggregatedrateof discount,denotedby

� ?
, as� ?î� #ª K�
 & .|{ '  () (53)

Also,
� ?

is a constantand is a part of

#é K�
 X Ñ�Ò & � ) .
The assignmentof a constantamountof

& � 
 � � ? )
to
5 � as

partof unassignedprobabilitymassmay causethe aggregated

X á & ��� ) � cs	tK�ï e	ð ��� §ç � ª e ï '  57�H6  ª� e �Ïñ ï�ò ' � & .�{ �c��K�
 5H�H6 � )�� & .|{ ' � )bó (50)
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assessmentto be incompleteeven whenall basicassessments
are not. Therefore, in the modified discounting-and-Yager’s
combinationscheme,this amountof

& � 
 � � ? )
is assigned

proportionallyback to all individual gradesand
�

using the
following normalizationprocess5H�£� X�á & � � ).|{ & � 
 � � ? ) � for

9 � . �
���
����: (54)5 � �¢X�á & � ) { & � 
 � � ? ).|{ & � 
 � � ? ) (55)

As remarkedabove on
� 


and
� ?

, it is easily seen,by
definition, that the following holds.

Proposition1: The degreesof belief generatedusing(54)–
(55) satisfy the following+3, 5H����5 � ,�. � for

9 � . �
���
�"��:�c�LK�
 5H� � 5 � � .
Regarding the synthesisaxioms, we have desiredly the

following.
Theorem7: The aggregatedassessmentfor � definedas in

(54)–(55)exactly satisfiesall four synthesisaxioms.
Proof: SeeAppendix.

D. TheDiscounting-and-AveragingScheme

In theaggregationschemesabove,we have defined,for each*<� . ���
������= ,
&b'  Í X  ) astheBPA X Ñ Ò by discountingX  by

a factor
& .<{ '  () (refer to (25)). ThenDempster’s andYager’s

rulesof combinationarerespectively appliedfor obtainingthe
BPA X of the assessmentfor � . Here, we also assumethat+ O '  ,�. for all

*<� . ���
������: .
In this subsection,insteadof applying thesecombination

operationsafter discounting X  ’s, we apply the averaging
operationover

=
BPAs X@Ñ�Ò (

*|� . �
���
����= ) to obtaina BPAX definedby X & � ) �ô.= #c  K�
 X�Ñ<Ò & � ) (56)

for any
�ÉÁõ�

.
Due to (25), we have

X & � ) � ÄÆÆÆÆÇ ÆÆÆÆÈ

# #J K�
 '  5H�H6  � if

���0�1�C�v�
# #J K�
àö .|{ '  �J�LK�
 5 �76  (÷Ã� if
���Ë�+ � otherwise

(57)
After obtainingthe aggregatedBPA X , the problem now

is to use X for generatingthe aggregatedassessmentfor the
generalattribute � . Naturally, we can assign5 � � X & � � ) � .= #c  K�
 '  (5 �76  �� for

9 � . �
��������: (58)5 � � X & � ) � .= #c  K�
 ¸ .|{ '  �c��K�
 5H�H6  i¹ (59)

Then the assessmentfor � is definedby4 & � ) ��� & � � ��5 � )�8 9 � . ���
������:»� (60)

Regardingthe synthesisaxioms,we easilyseethat the first
axiomholdsfor theassessment(60). For thenext two axioms,
we have the following

Theorem 8: The assessment(60) definedvia (58)–(59)sat-
isfies the consensusaxiom and/orthe completenessaxiom if
andonly if

'  � . for all
*<� . �
��������=��

Proof: For the consensusaxiom, the proof is straightfor-
ward. Now we rewrite

5 � definedby (59) as follows5 � �ø.= #c  K�
 ¸ .|{ '  �c��K�
 57�H6  ¹�ø.= #c  K�
 '  à¸ .|{ �c��K�
 57�H6  b¹Ë�É¸ .|{ J # K�
 '  = ¹
(61)

Thus, if all
'  �� . and the assumptionof the completeness

axiomholds,we have
5 � � + andtheconclusionof theaxiom

followseasily. Inversely, if thecompletenessaxiomis satisfied,
we musthave .|{ #J K�
 '  = � +
which directly implies

'  � . for all
*
.

The assessmentfor � accordingto this aggregationscheme
also satisfiesthe incompletenessaxiom trivially due to the
natureof discounting-and-averaging.

Unfortunately, therequirementof
'  � . for all

*
to satisfy

the consensusaxiom and the completenessaxiom would not
be appropriatein general.This is due to the allocationof the
averageof discountrates

z Ð� ¯ùù° .|{ #J K�
 '  = ²�úú³
to
�

asa part of unassignedprobabilitymass.This dilemma
canbe resolved in a similar way asin themodifiedalgorithms
above. Interestingly, this modification leads to the weighted
sum schemeasshown in the following.

E. WeightedSumas the ModifiedDiscounting-and-Averaging
Scheme

By applying the discounting-and-averaging scheme, we
obtain the BPA X as definedby (57). Now, guided by the
synthesisaxioms,insteadof makingdirectuseof X in defining
the generatedassessment

4 & � ) (i.e., allocating the average
discountrate z to

5 � asa partof unassignedprobabilitymass)
asabove, we definea new BPA denotedby X Ù derived fromX by makinguseof

& .|{ z ) asa normalizationfactor. More
particularly, we defineX Ù & ��� ) � X & ��� ).|{ z � for

9 � . ���
������: (62)X Ù & � ) � X & � ) { z.|{ z (63)
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Combining(57) and(61) we interestinglyobtainX Ù & � � ) � #c  K�
 '  b5 �H6  �� for
9 � . �����
�"��: (64)X Ù & � ) � #c  K�
 '  �¸ .|{ �c�LK�
 5H�76  h¹ (65)

where '  � '  #J K�
 '  � for
*�� . �����
����=

Let usturnbackto thegeneralschemeof combinationgiven
in (24).Undertheview of thisgeneralscheme,theabove BPAX Ù is nothingbut an instanceof it by simply considering

Í
asthe multiplicationand

�
asthe weightedsum.Namely, we

have X Ù & � � ) � #c  K�
 '  X  & � � ) � for
9 � . �
��������: (66)X Ù & � ) � #c  K�
 '  X  & � ) (67)

where relative weights
'  

are normalizedas above so thatJ  '  � . . It is of interest to note that the possibility of
usingsuchan operationhaspreviously beenmentionedin, for
example,[25]. Especially, the weightedsumoperationof two
BPAs hasbeenusedfor theintegrationof distributeddatabases
for purposesof datamining [12].

Now we quite naturally define the assessmentfor � by
assigning5H��� X Ù & ��� ) � #c  K�
 '  X  & ��� ) � for

9 � . �����
����: (68)5 � � X Ù & � ) � #c  K�
 '  X  & � ) (69)

Appealingly simple as it is, we can see quite straightfor-
wardly that the following theoremholds.

Proposition2: The degreesof belief generatedusing(68)–
(69) satisfy the following+3, 5 � ��5 ��,�. � for

9 � . �
���
�"��:�c�LK�
 5 � � 5 � � .
Furthermore,concerningthe synthesisaxioms,we have the

following theorem.
Theorem9: The aggregatedassessmentfor � definedas in

(68)–(69)exactly satisfiesall four synthesisaxioms.
Proof: Trivially.

F. ExpectedUtility in the ER Approaches

In the tradition of decisionmakingunderuncertainty[17],
the notion of expectedutility has beenmainly usedto rank
alternatives in a particularproblem.That is onecanrepresent
the preferencerelation û on a set of alternatives ü with a
single-valuedfunction ý &bþ ) on ü , calledexpectedutility, such

that for any
þ � � j ü ,

þ ûÿ� if and only if ý &(þ )CI ý & � ) .
Maximization of ý &(þ ) over ü provides the solution to the
problemof selecting

þ
.

In the ER approach,we assumea utility functioný Ù Y � ^ô_R+ � .Ï`
satisfyingý Ù & � ����
 )|m ý Ù & � � ) if

� ����

is preferredto

� � �
This utility function ýxÙ may bedeterminedusingtheprobabil-
ity assignmentmethod[10] or usingothermethodsasin [28],
[33].

If all assessmentsfor basicattributesarecomplete,Lemma2
shows that the assessmentfor � is alsocomplete,i.e.

5 � � + .
Then the expectedutility of an alternative on the attribute �
is definedby ý & � ) � �c��K�
 5 � ý Ù & � � ) (70)

An alternative � is strictly preferredto anotheralternative
�

if
andonly if ý & � & � )")|m ý & � & � )") .

Dueto incompleteness,in general,in basicassessments,the
assessmentfor � may result in incomplete.In sucha case,in
[33] the authorsdefine threemeasures,called the minimum,
maximumandaverageexpectedutilities, as followsý������ & � ) � �n�<
c��K�
 57� ý Ù & ��� )�� & 5H� � 5 � ) ý Ù & ��� ) (71)ý��	� 
 & � ) � & 5�
 � 5 � ) ý Ù & ��
 )�� �c�LK�? 5H� ý Ù & ��� ) (72)ý��
��� & � ) � ý ����� & � )<� ý ��� 
 & � )[ (73)

where, without loss of generality, suppose
� 


is the least
preferredgrade having the lowest utility and

� �
the most

preferredgradehaving the highestutility.
The rankingof two alternatives � and

�
on � is carriedout

by:¿ ����� � if andonly if ý ��� 
 & � & � )")�m ý ����� & � & � )")¿ ����� �
if and only if ý �	� 
 & � & � )�) � ý ��� 
 & � & � )�) andý ����� & � & � )�) � ý ����� & � & � )�)

If theseare not the case,the averageexpectedutility can be
usedto generatea ranking(see,e.g., [33] for moredetails).

In this paper, basedon the Generalized Insufficient Reason
Principle, we definea probability function r Ü on

�
derived

from X for the purposeof makingdecisionsvia the pignistic
transformation[21]. Namely,r Ü & � � ) � X & � � )<� .: X & � ) for

9 � . �
��������: (74)

That is, as in the two-level languageof the so-called
transferable belief model [21], the aggregatedBPA X itself
representedthe belief is entertainedbasedon the available
evidence at the credal level, and when a decisionmust be
made, the belief at the credal level inducesthe probability
function r Ü definedby (74) for decisionmaking.Particularly,
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theapproximatelyassessmentfor � for thepurposeof decision
making is thendefinedas5 Ù � � r Ü & � � ) ��5 � � .: 5 � � for

9 � . ���
������: (75)

Therefore, the expected utility of an alternative on the
attribute � is straightforwardlydefinedbyý & � ) � �c��K�
 5 Ù� ý Ù & ��� ) � �c�LK�
 & 57� � .: 5 � ) ý Ù & ��� ) (76)

As such,while theamountof belief
5 � (dueto ignorance)is

allocatedeitherto the leastpreferredgrade
�Ø


or to the most
preferredgrade

���
to define the expectedutility interval in

Yang’sapproach[33], in ourapproachit is uniformlyallocated
to every evaluation grade

���
, guided by the Generalized

Insufficient ReasonPrinciple[21], to definean approximately
assessmentfor � and,hence,a single-valuedexpectedutility
function.

In the following section,we examine a turorial example
taken from [33] to figure out how differencebetweenthe
variousaggregationschemesas well as the respective results
yielded.

V. AN EXAMPLE: MOTORCYCLE ASSESSMENT PROBLEM

Theproblemis to evaluatetheperformanceof four typesof
motorcycles,namelyKawasaki, Yamaha, Honda, andBMW.

The overall performanceof each motorcycle is evaluated
basedon threemajor attributeswhich are quality of engine,
operation, general finish. Theseattributesall are generaland
difficult to assessdirectly. So theseattributesarecorrespond-
ingly decomposedinto moredetailedsubattributesto facilitate
the assessment.The processof attribute decompositionfor
the evaluationproblemof motorcycles resultsin an attribute
hierarchygraphically depictedin Fig. 3, where the relative
weightsof attributesat a singlelevel associatedwith thesame
upperlevel attribute aredefinedby

'  
,
'  �

, and
'  �!�

for the
attributesat level 1, 2, and3 respectively.

Using the five-gradeevaluationscale as given in (1), the
assessmentproblemof motorcycles is given in TableI, wherer ,
Þ
,
g

, � , and � are the abbreviationsof poor, indifferent,
average, good, and excellent, respectively, and a number in
bracketdenotedthe degree of belief to which an attribute is
assessedto a grade.For example, � & + ��� ) means“excellentto
a degreeof 0.8”.

Further, all relevant attributesare assumedto be of equal
relative important[33]. That is' 
\� ' ?|� ' A � + �RQ©QUQUQ' 
�
x� ' 
±?|� ' 
ÎAî� ' 
ÊBà� ' 
�D � + � [' ?�
\� ' ?�?\� ' ?"A � + �RQ©QUQUQ' ?!
�
 � ' ?!
�? � ' ?!
ÊA � ' ?!
ÊB � + � [ V' ?�?!
x� ' ?�?�? � + �RV' ?"A�
 � ' ?"A�? � ' ?"A�A � + �RQ©QUQUQ' A

 � ' AÏ? � ' A�A � ' A�B � ' A�D � + � [

In the sequent,for the purposeof comparison,we generate
different three resultsof aggregation correspondingto Yang

andXu’s modifiedER methodandthe othertwo developedin
this paper.

By applyingthemodifiedER method,thedistributedassess-
mentsfor overall performanceof four types of motorcycles
are given in Table II. These four distrubutions and their
approximationsvia thepignistictransformation(TableIII) are
graphicallyshown as in Fig. 4.

At thesametime,by applyingtheweightedsumaggregation
scheme(shortly, SW method),we easilyobtainthedistributed
assessmentsfor overall performanceof four typesof motor-
cycles as shown in Table IV (graphicallydepictedin Fig. 5
(a)). The pignistic transformationappliedto theseaggregated
assessmentsyields the approximatelyassessmentsfor overall
performanceof motorcyclesasgiven in TableV (graphically,
Fig. 5 (b)).

As we can easily see, there is not so much difference
betweenthe result obtainedby the modified ER algorithm
andthatobtainedby the weightedsummethod,especiallythe
behavior of correspondinglyassessmentdistributionsis almost
the sameasFig. 4 (a) andFig. 5 (a) have shown.

However, as we see in the following, the result yielded
by the modified Yager’s combinationmethod (shortly, MY
method) is relatively different from those obtainedby the
above methods.This is unsurprisingas we were attributing
a factor of conflict to

�
as “unknown” in the aggregated

assessment.
For generatingthe assessmentfor an attribute � at a higher

level in the hierarchyof attributes shown in Fig. 3, all the
BPAs of its direct subattributes are firstly aggregated via
(50), and the generatedassessmentfor � is then obtained
usingthe normalizationprocessrepresentedin (54) and(55).
This processis carried out upward from the bottom level
to the top of the hierarchy in order to obtain the overall
assessment.With this methodof aggregation, we obtain the
distributedassessmentsfor overall performanceof four types
of motorcyclesas shown in TableVII, which are graphically
depictedin Fig. 6 (a).

From the obtainedresult, it is interestingto observe that,
althougha totaldegreeof incompletenessin basicassessments
of Honda is 1.25 in compareto those of the other three,
which in turn are0.5 for bothKawasakiandYamaha, and0.4
for BMW, the unassignedprobability massof the generated
assessmentfor Hondais smallerthanthoseof theremainders.
This is due to a lower conflict betweenbasicassessmentsof
Honda in compareto thoseof the others.

For the purposeof decisionmaking,we apply the pignistic
transformationto theaggregatedassessmentsin orderto obtain
the approximatelyassessmentsfor overall performanceof
motorcycles as shown in Table VII and depictedgraphically
in Fig. 5 (b).

We are now ready to assumea utility function ý Ù Y � ^_R+ � .�` definedin [33] as followsý Ù & r ) � + � ý Ù &(Þ ) � + � Q©VH�ý Ù &hg ) � + � V©VH� ý Ù & � ) � + ���UV7� ý Ù & � ) � .
Using (76), we easily obtain the expectedutility of four

typesof motorcyclesaccordingto thevariousmethodsasgiven
in TableVIII.
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overall performance

general
(w3)

engine
(w1)  

 responsiveness (w11)    

operation 
(w2)

fuel economy (w12)               

quietness (w13)   

vibration (w14)     

starting (w15)     

transmission
(w22)

brakes
(w23)

handling
(w21)

quality of finish(w31)     

seat comfort (w32)  

head light (w33)    

mirrors (w34)  

horn (w35)    

steering (w211)    

bumpy bend (w212)     

manoeuvrability (w213)       

top speed (w214)        

clutch operation (w221)       

gearbox operation (w222)     

stopping power (w231)   

braking stability (w232)        

feel at control (w233)     

Fig. 3. Evaluationhierarchyfor motorcycleperformanceassessment[33]

TABLE I

GENERALIZED DECISION MATRIX FOR MOTORCYCLE ASSESSMENT [33]

General attrib utes Basic attrib utes
types of motor cycle (alternatives)

Kawasaki(a � ) Yamaha(a � ) Honda(a � ) BMW (a )

Overall performance

engine

responsiveness ! (0.8) " (0.3) ! (0.6) " (1.0) # (1.0)

fuel economy $ (1.0) # (1.0) # (0.5) $ (0.5) ! (1.0)

quietness # (0.5) $ (0.5) $ (1.0) " (0.5) ! (0.3) ! (1.0)

vibration " (1.0) # (1.0) " (0.5) ! (0.5) % (1.0)

starting " (1.0) $ (0.6) " (0.3) " (1.0) $ (1.0)

operation

handling

steering ! (0.9) " (1.0) $ (1.0) $ (0.6)

bumpybends $ (0.5) " (0.5) " (1.0) " (0.8) ! (0.1) % (0.5) # (0.5)

maneuverability $ (1.0) ! (0.9) # (1.0) % (1.0)

top speedstability ! (1.0) " (1.0) " (1.0) " (0.6) ! (0.4)

transmission
clutch operation $ (0.8) " (1.0) ! (0.85) # (0.2) $ (0.8)

gearboxoperation $ (0.5) " (0.5) # (0.5) $ (0.5) ! (1.0) % (1.0)

brakes
stoppingpower " (1.0) $ (0.3) " (0.6) " (0.6) ! (1.0)

brakingstability " (0.5) ! (0.5) " (1.0) $ (0.5) " (0.5) ! (1.0)

feel at control % (1.0) " (0.5) ! (0.5) " (1.0) " (0.5) ! (0.5)

general

quality of finish % (0.5) # (0.5) " (1.0) ! (1.0) " (0.5) ! (0.5)

seatcomfort " (1.0) " (0.5) ! (0.5) " (0.6) ! (1.0)

headlight " (1.0) $ (1.0) ! (1.0) " (0.5) ! (0.5)

mirrors $ (0.5) " (0.5) " (0.5) ! (0.5) ! (1.0) " (1.0)

horn $ (1.0) " (1.0) " (0.5) ! (0.5) ! (1.0)
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TABLE II

AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTOCYCLES USING THE MODIFIED ER METHOD [33]

Poor( % ) Indifference( # ) Average( $ ) Good( " ) Excellent( ! ) Unknown( & )

Kawasaki 0.0547 0.0541 0.3216 0.4452 0.1058 0.0186

Yamaha 0.0 0.1447 0.1832 0.5435 0.1148 0.0138

Honda 0.0 0.0474 0.0621 0.4437 0.4068 0.0399

BMW 0.1576 0.0792 0.1124 0.1404 0.5026 0.0078
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(a) The AggregatedAssessment (b) ApproximationAssessmentvia PignisticTransformation

Fig. 4. Overall Evaluationof Motorcyclesvia the Modified ER Method

TABLE III

APPROXIMATELY ASSESSMENTS FOR FOUR TYPES OF MOTOCYCLES USING THE MODIFIED ER METHOD

Poor( % ) Indifference( # ) Average( $ ) Good( " ) Excellent( ! )

Kawasaki 0.05842 0.05782 0.32532 0.44892 0.10952

Yamaha 0.00276 0.14746 0.18596 0.54626 0.11756

Honda 0.00798 0.05538 0.07008 0.45168 0.41478

BMW 0.15916 0.08076 0.11396 0.14196 0.50416

TABLE IV

AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTOCYCLES BY USING THE WEIGHTED SUM AGGREGATION SCHEME

Poor( % ) Indifference( # ) Average( $ ) Good( " ) Excellent( ! ) Unknown( & )

Kawasaki 0.0703 0.0667 0.3139 0.3972 0.1247 0.0272

Yamaha 0.0 0.1611 0.2122 0.4567 0.1501 0.0198

Honda 0.0 0.0611 0.0796 0.4344 0.3922 0.0659

BMW 0.1639 0.0917 0.1278 0.1685 0.437 0.0111

Consequently, the rankingof the four typesof motorcycles
is given in the Table IX.

Notethatthesamerankingresultfor all methodscouldalso
be obtainedby the expectedutility interval and the ranking
schemeby YangandXu [33] asmentionedabove. As we have
seen,althoughthesolutionto theproblemof selectingthebest
alternative is thesamefor all thethreemethodsof aggregation,
the ranking order betweenthe alternatives is different.More
particularly, while Yamahais preferredto BMW accordingto

the results of the first two methods,BMW is preferred to
Yamahaaccordingto the third method.This is because,by
the third method of aggregation, the former is assessedto
goodandexcellent to a total degeeof 0.5797while the latter
0.54872.

VI . CONCLUDING REMARKS

In this paper, we have reanalysedthe ER approachto
MADM underuncertainty. Interestingly, the analysisprovides
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Fig. 5. Overall Evaluationof Motorcyclesvia WeightedSum Method

TABLE V

APPROXIMATELY ASSESSMENTS FOR FOUR TYPES OF MOTOCYCLES USING THE WEIGHTED SUM METHOD

Poor( % ) Indifference( # ) Average( $ ) Good( " ) Excellent( ! )

Kawasaki 0.07574 0.07214 0.31934 0.40264 0.13014

Yamaha 0.00396 0.16506 0.21616 0.46066 0.15406

Honda 0.01318 0.07428 0.09278 0.44758 0.40538

BMW 0.16612 0.09392 0.13 0.17072 0.43922

TABLE VI

AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTOCYCLES USING THE MODIFIED YAGER’ S COMBINATION METHOD

Poor( % ) Indifference( # ) Average( $ ) Good( " ) Excellent( ! ) Unknown( & )

Kawasaki 0.0344 0.0369 0.2114 0.276 0.0653 0.3761

Yamaha 0 0.099 0.127 0.3143 0.0843 0.3753

Honda 0 0.028 0.0375 0.2835 0.3331 0.3177

BMW 0.0855 0.0464 0.0628 0.1025 0.3268 0.376

P I A G E U
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation grades

D
eg

re
es

 o
f b

el
ie

f

Kawasaki
Yamaha
Honda
BMW

P I A G E
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation grades

D
eg

re
es

 o
f b

el
ie

f

Kawasaki
Yamaha
Honda
BMW

(a) The AggregatedAssessment (b) ApproximationAssessmentvia PignisticTransformation

Fig. 6. Overall Evaluationof Motorcyclesvia the Modified Yager’s CombinationMethod
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TABLE VII

APPROXIMATELY ASSESSMENTS FOR FOUR TYPES OF MOTOCYCLES USING THE MODIFIED YAGER’ S COMBINATION METHOD

Poor( % ) Indifference( # ) Average( $ ) Good( " ) Excellent( ! )

Kawasaki 0.10962 0.11212 0.28662 0.35122 0.14052

Yamaha 0.07506 0.17406 0.20206 0.38936 0.15936

Honda 0.06354 0.09154 0.10104 0.34704 0.39664

BMW 0.1607 0.1216 0.138 0.1777 0.402

TABLE VIII

EXPECTED UTIL ITY OF FOUR TYPES OF MOTORCYCLES

Kawasaki Yamaha Honda BMW

ER method 0.69026 0.73577 0.85664 0.71577

WSmethod 0.67327 0.72228 0.86285 0.68871

MY method 0.63594 0.66237 0.77923 0.67151

TABLE IX

RANKING OF FOUR TYPES OF MOTORCYCLES

Method Ranking order

ER method Honda ' Yamaha ' BMW ' Kawasaki

WSmethod Honda ' Yamaha ' BMW ' Kawasaki

MY method Honda ' BMW ' Yamaha ' Kawasaki

a generalformulation for the attribute aggregation problem
in MADM under uncertainty. Under such a generalization,
several various aggregation schemeshave been examined,
including the previous one. Theoretical propertiesof new
schemesregardingthesynthesisaxiomsproposedin [33] were
alsoexplored.Especially, by this reformulationof theattribute
aggregation problem, we have shown that the aggregation
schemebasedon the weightedsum operationcould be also
consideredfor the aggregation process in the context of
MADM underuncertainty. Thisallowsusto handleincomplete
uncertaininformationin a simpleandpropermannerwhenthe
assumptionregardingtheindependenceof attributes’uncertain
evaluationsis not appropriate.

For thepurposeof decisionmaking,anapproximatemethod
of uncertain assessmentsbased on the so-called pignistic
transformation[21] has beenapplied to define the expected
utility function, insteadof using the expectedutility interval
proposedpreviously. A tutorialexamplehasbeenexaminedto
illustratethe discussedtechniques.

In summary, by the resultsobtainedin this paper, we do
hopeto supportfurther aggregationschemesfor the attribute
aggregation problem in MADM under uncertainty. This is
especiallyhelpful in decisionmakingsituationswherea single
methodof aggregationwould be inapplicableor not enough.

APPENDIX

In this Appendix, we give the proof of Theorem 7 on
thesynthesisaxiomsfor themodifieddiscounting-and-Yager’s
combinationscheme.Clearly, the independency axiom is im-
mediatelyfollowed from (43) as the caseof the discounting-
and-Yager’s combinationscheme.Note that we assumehere

that weights
'  

’s are normalizedso that + O '  O . for all* jÚÞ �
First we needsomepreparations.Recall that5H��� X á & ��� ).|{ & � 
 � � ? ) � for

9 � . ���
������:5 � �ÓXCá & � ) { & � 
 � � ? ).|{ & � 
 � � ? )X á & � ) �)( � �
where

( � #ª K�
 _ '  X  & � )�� & . { '  ) `� � cã Ò e	ä §Ò	* åyÒ æ Õ ã Ò K s
#ª K�
 '  X  & �  )Û � ���	� � 8 � � j �¾â '  h5 �76  m + �

Let us denote
+ � Û �
-,

Û �?),/.0.1.2,
Û �#

+ � � Û � ,
Û � ,/.0.1.2,

Û �
where , denotesthe Cartesianproduct.For�É� & � 
 �
��������� # ) j + &

or
+ � )

by 3 � we mean 3
# K�
 �  . We cannow decompose

(
into two

partsas
( �-( Ù � � ? , where
( Ù � cs	tK�ï e	ð � � � ª e ï '  X  & � ) ª e �Ïñ ï & .|{ '  ) (77)

Similarly,
�

is decomposedas
�É� � Ù � � 
 with� Ù � cãne ��42ñ54 § �y ã K s
#ª K�
 '  X  & �  ) (78)

Proof for the ConsensusAxiom

Supposethat
5v�U6  � . for all

* j¢Þ �
and

5v�H6  � + for¡ o� 9 � . �
���
����: ,
9 o� ¡

, and
* jØÞ �

Then,we haveXCÑ Ò & ��� ) � ì '  � if
9 ��¡+ � if
9 o��¡

and X Ñ�Ò & � ) � & .|{ '  b) , for
* jÚÞ �

ThusÛ � ���	� � � for all
*<� . ���
������=
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This directly implies that
� � + . Further, we have

( Ù � + ,
since X  & � ) � + , for all

* jÚÞ �
Hence,we getX á & � ) � � ? � #ª K�
 & .|{ '  )

which immediatelyfollows that
5 � � + .

Inductively, we havecï e	ð � � � ª  e ï '  ª� e ��ñ ï & .|{ ' � ) � .
Therefore cs	tK�ï e	ð ��� � ª e ï '  ª� e ��ñ ï & .|{ ' � ) � .|{ � ?
From (49) andthe assumptionwe have

Þ �� � Þ � Thusthe last
equationand(50) imply that

5 � � . . This completestheproof
for the consensusaxiom.

Proof for the CompletenessAxiom

Assume
� � � �

and denote
¤ � � � 9x8 ��� j � � �

. We
now prove the following statement:

If
57�H6  nm + for

9 j ¤ �
and J� eU¦U§ 5H�H6  � . � for all

* j}Þ �
then

5 � m + for
9 j ¤ �

and J� eU¦U§ 5 � � . aswell.

Since + O '  O . for all
* j Þ

, we haveX Ñ<Ò & ��� ) � ì '  5H�76  xm + � if
9 j ¤ �+ � otherwise

andhence Û � ���	� � 8 9 j ¤ � ��� for all
* jØÞ

Therefore,
+ � �)+

, which directly follows
� Ù � + . Further,

from (49) we get
Þ �� � Þ

for all
9 j ¤ �

. Using (50), we
obtainX á & � � ) � cs	tK�ï e	ð � � � ª e ï '  (5 �H6  ª� e ��ñ ï & .|{ ' � ) (79)

for any
�E� j � �

(i.e.,
9 j ¤ �

).
On the other hand,we have X  & � ) � + for all

*
. So, we

have also
( Ù � + . By definition,we getX á & � ) � � 
 � � ?

Thus 5 � ��X�á & � ) { & � 
 � � ? ).|{ & � 
 � � ? ) � +
From (43) and the assumption

5 �H6  x� + if
9 oj ¤ �

, for all* jÚÞ �
we easilydeducethatX á & � � ) � + � for any

9 j � . �����
�"��:»�x½n¤ �
Immediately, it follows5 � � + � for any

9 j � . �
��������:»��½n¤ �
Again, since + O '  |O . for all

*
, it follows

� ? m + . This
implies from (79) that XÚá & ��� )3m + for all

9 j ¤ �
. Thus,5H� m + for all

9 j ¤ �
. Finally, the desiredequationc� eU¦U§ 5H�T� .

is followed as J ��LK�
 5 � � 5 � � . � This concludesthe proof
for the completenessaxiom.

Proof for the IncompletenessAxiom

Now we give a proof for the last axiom. Assumethereis

an index
*76 jØÞ

suchthat

�J��K�
 5 �H6  98 O . � we must prove that�c�LK�
 5H� O . � or equivalently,
5 � m +

By definition,we have5 � � XCá & � ) { & � 
 � � ? ).|{ & � 
 � � ? ) � ( Ù � � Ù.|{ & � 
 � � ? )
So it is sufficient to show either

( Ù m + or
� Ù m + , say( Ù m + . Indeed,since �c�LK�
 5 �76  98 O .

we have X  8 & � )|m + � This follows'  8 X  8 & � ) ª e ��ñ�:  8�; & .|{ '  Î)|m +
as + O '  O . for all

* jÚÞ �
Thusfrom (77) we easilydeduce
( Ù m +

which we desired.This completelyconcludesthe theorem.
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