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Abstract—In multiple-attrib ute decision making (MADM)
problems,one often needsto deal with decisioninformation with
uncertainty. During the last decade,Yang and Singh (1994) have
proposedand developed an evidential reasoning(ER) approach
to deal with suchMADM problems.Essentially, this approachis
basedon an evaluation analysismodel and the Dempster’s rule
of combination in the DempsterShafer theory of evidence.

In this paper, we re-analysethe ER approach explicitly in
terms of DempsterShafer theory, and then proposea general
schemeof attrib ute aggregation in MADM under uncertainty.
In the spirit of such a reanalysis,the previous ER algorithms
are reviewed and other two aggregation schemesare discussed.
Conceming the synthesisaxioms recently proposedby Yang and
Xu (2002)for which a rational aggregationprocessshould grant,
theoretical featuresof new aggregationschemesre alsoexplored
thoroughly. A numerical example traditionally examined in
published sourceson the ER approachis usedto illustrate the
discussedechniques.

|. INTRODUCTION

Practically decisionmakersare often requiredto choose
betweenseveral alternatvesor optionswhereeachoption ex-
hibits a rangeof attributesof botha quantitae andqualitatve
nature.A decisionmay not be properly made without fully
takinginto accountall attributesconcerned3], [9], [16], [22],
[28], [33]. In addition,in mary MADM problems,one also
frequentlyneedsto dealwith decisionknowledgerepresented
in forms of both qualitative and quantitatve informationwith
uncertainty

So far, mary attemptshave beenmadeto integrate tech-
niguesfrom artificial intelligence(Al) andoperationatesearch
(OR) for handling uncertaininformation, e.g., [1], [4], [5],
[6], [10], [11], [15], [24], [27]. During the last decadeor
S0, an evidential reasoning[ER) approachhasbeenproposed
and developed for MADA under uncertaintyin [28], [29],
[31], [32], [33]. Essentially this approachis basedon an
evaluationanalysismodel [35] andthe evidencecombination
rule of the DempsterShafer(D-S) theory[20] (which in turn
is one of the major techniquesfor dealingwith uncertainty
in Al). The ER approachhas been appliedto a range of
MADM problemsin engineeringand managementincluding
motorg/cle assessmen29], generalcaigo ship design[18],
systemsafetyanalysisandsynthesig23], retro-fitferry design
[30] amongothers.
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Thekernelof theER approachs anER algorithmdeveloped
on the basis of a multi-attribute evaluation framewvork and
Dempsters rule of combinationin D-S theory of evidence
[28]. Basically thealgorithmmakesuseof Dempsters rule of
combinationto aggregateattributesof a multi-level structure.
Dueto a needof developingtheoreticallysoundmethodsand
tools for dealingwith MADM problemsunder uncertainty
recently Yang and Xu [33] have proposeda systemof four
synthesisaxioms within the ER assessmenframeavork with
which a rational aggre@ation processneedsto satisfy It has
alsobeenshawvn that the original ER algorithmonly satisfies
theseaxiomsapproximately At the sametime, guidedby the
aim exactly, the authorshave proposeda nev ER algorithm
that satisfiesall the synthesisaxiomsprecisely

Interestingly enough,the D-S theory of evidence on the
one handallows us to coarseor refine the databy changing
to a higher or lower level of granularity (or attribute in the
contet of a multi-level structure)accompaniedvith a pow-
erful evidence combinationrule. This is an essentialfeature
for multiple attribute assessmensystemsbasedon a multi-
level structureof attributes.On the otherhand, one of major
adwantageof the D-S theoryover corventionalprobabilityis
thatit providesa straightforwardvay of quantifyingignorance
andis thereforea suitableframavork for handlingincomplete
uncertaininformation. This is especiallyimportantand useful
for dealingwith uncertainsubjective judgmentsvhenmultiple
basic attributes (also called factors) needto be considered
simultaneoushy28].

It is worth emphasizinghat the underlyingbasisof using
Dempsters rule of combinationis the independenassumption
of information sourcesto be combined.However, in situa-
tions of multiple attribute assessmenbasedon a multi-level
structureof attributes,assumptionsegardingtheindependence
of attributes’ uncertainevaluationsmay not be appropriaten
generalMoreover, anothetimportantissueconcerningherule
is that it may yield counterintuitve results especiallywhen
a high conflict betweeninformation sourcesto be combined
arises.This problemof completelyignoringconflict causedy
a normalizationin Dempsters rule was originally pointedout
in [34]. Consequentlythis hashighly motivatedresearcherso
proposea numberof othercombinationrulesin the literature
to addresgthe problem,e.g. [24], [26] (see[19] for a recent
suney).

In this paperwe dealwith the attribute aggreyationproblem
in the ER approactto MADM underuncertaintydevelopedin,
e.g.,[28], [33]. Firstwe reanalysithepreviousER approachn



termsof D-S theoryso that the attribute aggreation problem
in MADM underuncertaintycan be generallyformulatedas
a problemof evidencecombination.Thenwe proposesereral
new aggregation schemesand simultaneouslyexamine their
theoreticalfeatures.For the purposeof the presentpaper we
take only qualitative attributes of an MADM problem with
uncertaintyinto account,thoughquantitae attributeswould
be alsoincludedin a similar way as consideredn [28], [29].

To proceedit is first necessaryo briefly recallbasicnotions
on the MADM problemwith uncertainty the basicevaluation
framavork andthe D-S theoryof evidence.This is undertaken
in Sectionll and followed in Sectionlll by a discussion
of the ER approachto MADM under uncertaintyproposed
previously. SectionlV thenexploresthe attribute aggreation
problem detailedly and SectionV examinesa motorg/cle
performanceassessmenproblem taken from [33]. Finally,
SectionlV presentssomeconcludingremarks.

[I. BACKGROUND
A. ProblemDescription

This subsectiondescribesan MADM problem with un-
certainty through a tutorial example taken from [33]. As
mentionedabore, for the purposeof this paper only qualitative
attributes of the problem are takeninto account.For more
detailsthe readercould be referredto [28], [29].

To subjectiely evaluate qualitative attributes (or features)
of alternatves (or options),a setof evaluationgradesmay be
firstly suppliedas follows

H={H, ... H,, .. Hy}

where H,,’s are called evaluationgradesto which the stateof
a qualitative attribute y may be evaluated.Thatis, H provides
a completeset of distinct standarddor assessingjualitative
attributesin question.Although differentattributesmay have
differentsetsof evaluationgrades for the sakeof simplicity,
in this paperwe assumethe sameset# for all attributesof
concern.Further without lossof generality it is assumedhat
Hy41 is preferredto H,.

Let us turn to a problemof motorg/cle evaluation[7]. To
evaluatethe quality of the opemtion of a motorg/cle, the set
of distinctevaluationgradess definedby (1) at the top of the
page.

Becauseopemtion is a generaltechnical conceptand is
not easyto evaluatedirectly, it needsto be decomposednto
detailedconceptssuchas handling transmissionand brakes
Again, if a detailed conceptis still too generalto assess
directly, it may be further decomposednto more detailed
conceptsFor example, the conceptof brakesis measuredy
stoppingpower, braking stability, and feel at control, which
canprobablybe directly evaluatedby an expert andtherefore
referredto as basicattributes(or basicfactors).

Generallya qualitative attribute y may be evaluatedthrough
a hierarchicalstructureof its subattrilutes. For instance,the
hierarchyfor evaluationof the opeation of a motorgscle is
depictedasin Fig. 1.

In evaluationof qualitative attributes, judgmentscould be
uncertain.For example,in the problemof evaluatingdifferent

typesof motorgscles, the following type of uncertainsubjec-
tive judgmentdor the brakesof a motorg/cle, say“Y amaha”,
was frequentlyused[7], [33]:

1) Its stoppingpoweris average with a confidencedegree
of 0.3 andit is goodwith a confidencedegree of 0.6.

2) lIts braking stability is goodwith a confidencedegreeof
1.

3) Its feel at contwl is evaluated to be good with a
confidencedegree of 0.5 and to be excellent with a
confidencedeggree of 0.5.

In the abore statementsthe confidencedegreesrepresent
theuncertaintyin the evaluation.Notethatthetotal confidence
degreein eachstatementmay be smallerthanl asthe caseof
thefirst statementThis may be dueto incompleteof available
information.

In a similar fashion, all basic attributesin questioncould
be evaluated.The problemnow is how to generatean overall
assessmendf the opelation of a motorg/cle by aggreating
the all uncertainjudgmentsof its basicattributesin a rational
way. The evidential reasoningapproachdevelopedin [28],
[29], [33] has provided a meansbasedon Dempsters rule
of combinationfor dealingwith suchan aggregationproblem.

B. EvaluationAnalysisModel

The evaluation analysis model was proposedin [35] to
representuncertainsubjectve judgments,such as statements
specifiedin precedingsubsectionjn a hierarchicalstructure
of attributes.

To begin with, let ussuppose simplehierarchicalstructure
consistingof two levels with a generalattribute, denotedby
y, at the top level and a finite set £/ of its basicattributesat
the bottomlevel (graphically shavn in Fig. 2). Let

E=A{e,...,e;,...,er}

and assumehe weightsof basicattributesare given by W =
(w1,...,w;, ..., wr), Wherew; is the relative weight of the
ith basic attribute (e;) with 0 < w; < 1. Attribute weights
essentiallyplay an importantrole in multi-attribute decision
models. Becausethe elicitation of weights can be difficult,
several methodshave beenproposedfor reducingthe burden
of the procesq14].

Fig. 2. A two-level hierarchy

Given the following set of evaluationgrades
H={Hy,...,Hn,...,Hy}

designedas distinct standardgor assessingn attribute, then
an assessmerfor ¢; of an alternatve can be mathematically
representedn termsof the following distribution [33]

S(ei) = {(Hn,Bns) | n=1,...,N}, fori=1,....L (2)



‘H = {poor (H,), indifferent (H,), average (Hs3), good (H.), excellent(H5)}

1)

operation

Fig. 1. Evaluationhierarchyfor operation[33]

where /3’M- denotesa degree of belief satisfying 3, ; > 0,
and Zn 1Pni < 1. An assessmertﬁ(ez) is called complete
(respectyely, incompletg if Z —1Bni = 1 (respectiely,
Yne1 fui < 1).

For example,the threeassessmentk.—3.givenin preceding
subsectioncan be representedn the form of distributions
definedby (2) as

S(stoppingpowel =
S(braking stability)
S(feel at control)

(Hs,0.3), (H4,0.6)}

{
{(H47 )}
{(H4,0.5), (Hs,0.5)}

whereonly gradeswith nonzerodegreesof belief arelistedin
the distributions.

Let us denoteg,, the degree of belief to which the general
attribute y is assessedo the evaluation gradeof H,. The
problem now is to generateg,, for n = 1,...,N, by
combinatingthe assessment®r all associatedasicattributes
e; (i=1,...,L) asgivenin (2). However, beforecontinuing
the discussion,t is necessaryto briefly review the basis of
D-S theoryof evidencein the next subsection.

C. DempstetShaferTheoryof Evidence

In D-S theory a problemdomainis representedy a finite
set© of mutually exclusive and exhaustve hypothesesgalled
frameof discernmen{2Q]. In the standardprobability frame-
work, all elementdn © areassigned probability And when
the degree of supportfor an event is known, the remainder
of the supportis automaticallyassignedo the negationof the
event. On the otherhand,in D-S theorymassassignmentsre
carriedout for eventsasthey know, andcommittingsupportor
aneventdoesnot necessarilymply thatthe remainingsupport
is committed to its negation. Formally, a basic probability
assignmeniBPA, for short)is a functionm : 2 — [0, 1]

verifying

The quantity m(A) can be interpretedas a measureof the
belief that is committed exactly to A, given the available
evidence.A subsetA € 2© with m(A) > 0 is called a focal

stopping power

braking stability feel at control

elementof m. A BPA m is calledto be vacuousf m(©) = 1
andm(A) = 0 for all A # ©.

Two evidential functionsderived from the basicprobability
assignmentare the belief function Bel and the plausibility
function P!, definedas

Y. m(B)

Bel(A) = > m(B), and Pl(A) =
P£BCA BNA#D

The differencebetweenm(A) and Bel(A) is that while
m(A) is our belief committedto the subsetA excluding ary
of its propersubsets,Bel(A) is our degree of beliefin A as
well asall of its subsetsConsequentlyP!/(A) representshe
degreeto which the evidencefails to refute A. Note that all
the threefunctionsare in an one-to-onecorrespondencwvith
eachother

Two usefuloperationghat play a centralrole in the manip-
ulationof belief functionsarediscountingandDempsters rule
of combination[20]. The discountingoperationis usedwhen
a sourceof information provides a BPA m, but one knows
that this sourcehas probability o of reliable. Then one may
adopt(1 — «) asones discountrate, which resultsin a new
BPA m® definedby

m*(A) = 3)

m*(0) = (4)
Considernow two piecesof evidenceon the sameframe ©
representecby two BPAs m; and ms. Dempsters rule of
combinationis thenusedto generatea new BPA, denotedby

(m1 @ ms) (alsocalledthe orthogonalsum of m; andms),
definedasfollows

am(A), forary ACO
(1 —a)+ am(0)

(mi @mo)(0) = 0,
(mem)4) = &5 5 mBm(©) 6
where
R = E ml(B)mz(C) (6)

BNC=0
Notethatthe orthogonasumcombinatioris only applicable
to suchtwo BPAs that verify the conditionx < 1.
As we will partially seein the following sections,these
two operationessentiallyplay an importantrole in the ER



approachto MADM underuncertaintydevelopedin, e.g.,[28],
[29], [33]. Although the discountingoperationhas not been
mentionedexplicitly in thesepublishedsources.

I1l. THE EVIDENTIAL REASONING APPROACH

Let us return to the two-level hierarchical structurewith
a generalattribute y at the top level and a finite set £ =
{e1,...,ei, ..., e} of its basicattributesat the bottomlevel.
Let us be given weightsw; (i = 1, ..., L) of basicattributes
e; (1 =1,...,L), respectiely. Denotef, the degreeof belief
to which the generalattribute y is assessedo the evaluation
gradeof H,, forn=1,..., N.

A. The Original ER Algorithm

The original ER algorithmproposedn [28] hasbeenused
for thepurposeof obtainings,, (n = 1, ..., N) by aggregating
the assessmentsf basicattributesgivenin (2). The summary
of the algorithmin this subsectioris takenfrom [33].

Given the assessmenf(e;) of a basicattribute ¢; (1 =
1,..., L), let m,; be a basic probability massrepresenting
the belief degreeto which the basicattribute e; supportsthe
hypothesisthat the attritute y is assessedo the evaluation
gradeH,. Let my ; be the remainingprobability massunas-
signedto ary individualgradeafterall the N gradeshave been
consideredor assessinghe generalattribute y asfar ase; is
concernedThesequantitiesare definedas follows

Mpi = wlﬂnyi, forn:l,...,N (7)
N N
My = 1=y mpi=1l—wiy P (8)
n=1 n=1
Let Eru) = {e1,...,ei} be the subsetof first i basic

attributes. Let m,, ;(;) be a probability massdefined as the
belief degreeto which all the basicattributesin E(;) supports
the hypothesisthat y is assessedo H,. Let my r(;) bethe
remaining probability mass unassignedo individual grades
after all the basicattributesin Ep(; have beenassessedlhe
quantitiesm,, r(;y andmy r(;y canbe generatedy combining
the basic probability massesm,, ; and my ; for all n
1,...,N,andj =1,...,1.

With these notations, the key step in the original ER
algorithmis to inductively calculatem,, r(; 41y andmsy (1)
asfollows

My 1641) = Krpn) (M 16)Mn i1 + Mn 16)yMai01
+My 1) Mnit1) 9)
my vy = Kiaeny(maraymaivn) (10)
forn = 1,...,N, ¢« = 1,...,L — 1, and Ky41) Is a

normalizingfactor definedby
-1

N N
1- szt,l(i)mj,Hl

I{I(i+1) = (11)
t=1j=1
j#t
Thenwe obtain
ﬂn = My (L), forn:l,...,N
N 12
Bu = myrry=1- 2—31 Bn (12)

B. SynthesisAxiomsand the Modified ER Algorithm

Inclined to developing theoretically sound methods and
tools for dealingwith MADM problemsunder uncertainty
Yang and Xu [33] have recently proposeda systemof four
synthesisaxioms within the ER assessmenframeavork with
which a rational aggreyation processneedsto satisfy These
axiomsare symbolically statedas below.

(Independengyif 3, ; =0foralli=1,...,L,
theng, = 0.

(Consensuslf g,; = 1 and 3, ; = 0, for all
t=1,...,L,andn =1,...,N, n # k, then
Ge=1,p,=0,forn=1,... N,n#k.
(CompletenegsAssumeHt C H and denote
Jt={n|H, e HT}. If B,; >0forneJt
and > B,; =1, foralli=1,... L, then

neJ+
Bn>0forneJtand Y. 3, =1 aswell

Axiom 1.

Axiom 2.

Axiom 3.

neJ+
(Incompletenegdf thereexistsi € {1,..., L}
N N
suchthat " 6,; < 1,then )" 8, < 1.

n=1 n=1
It is easilyseenfrom (9—12)thatthe original ER algorithm
naturally follows the independengc axiom. Concerningthe
secondaxiom, the following theoremis due to Yang and
Xu [33].
Theoem 1: If 3, and 3y are calculatedusing (12), then
the concensusaxiom holdsif andonly if

Axiom 4.

[[(1—w)=0

Note thatthe only conls_t%ainljmposedon the weightsw; (i =
1,..., L) in the ER approachis 0 < w; < 1. By Theoreml,
it implies that if w; = 1 thene; dominatesthe assessment
of y, i.e.other basic attributeswith smallerweights play no
role in the assessmenflo resole this dilemma,the following
schemefor weight normalizationhasbeenconsideredn [28],
[29], [30]

(13)

_ w;
wi=a max_{w;} (14)

=1,..,

and« is a constantdeterminedby satisfying

L

e
H '_maXL{wi}

i=1 i=1

=1,...,

w; S 5

whered is a smallconstantepresentinghe degreeof approx-
imation in aggreation. By consideringnormalizedweights
w;'sinsteadof w;’s, it meansthe consensusxiom couldonly
be satisfiedapproximatelyHowever, thisweightnormalization
hasstill anothershortcominghat the mostimportantattribute
may play a dominatingrole in the assessmendf y. Further
it hasbeenalso showvn in [33] that the original ER algorithm
doesnot satisfy the completenessxiom.

Undersucha considerationyang and Xu [33] proposeda
newv ER algorithm that satisfiesall the synthesisaxioms. Its
main featuresare summarizedas follows

1) Weight normalization In the new ER algorithm, the
weightsw; (i = 1,...,L) of basic attributes are nor



malizedsuchthat: 0 < w; < 1, and

L
Zwi = 1
i=1

2) Aggregation process First, the probability mass my, ;
given in (8) is decomposednto two parts: my ; =
My, + My ;, where

(15)

N
My, = 1 —w;, andmy; = w; (1 - Zﬂm) (16)
n=1
Then, with the notationsas in precedingsection, the
processof aggreating the first i assessmentwith the
(¢4 1)th assessmeris recursvely carriedout as follows

My 1G41) = Kr1) [Mn 16)Mn 41 + M 1yMagi41
+m7-t,1(i)mn,z’+1] (17)
My 1(:) :T’h}[y[(i)—i—m’;{yj(i), n=1,... N
My 1i41) = Kren) Mo M iz
My 1) M i1 + MM i) (18)

My 1i+1) = Krggn) [ 10y + Maiga] (19)

where Kp(;41) is definedas sameasin (11).
For assigningthe assessment(y) for the generalat-
tribute y, afterall . assessmentsf basicattributeshave
beenaggr@ated,the algorithmfinally defines

Mn I(L)

Bn = — ,forn=1,...,N (20)
L=y 1)
B = 1””‘_7’(” 21)
— My (L)
andthen,
S(y) ={(Hn,Pn),n=1,...,N} (22)

The following theoremsare due to Yang and Xu [33] that
aretakenfor grantedto develop the new ER algorithmabove.

Theoem 2: The degreesof belief definedby (20) and (21)
satisfy the following

Ogﬂnaﬂﬂgla n:l,...,N
N

Zﬂn +ﬂ’H:1

n=1

Theoem3: If fy; =1 and@,; =0foraln=1,..., N
with n # k, andi = 1,..., L, theng, = 1, 8, = 0 for all
n=1,...,N withn # k, and 3y = 0.

Theoem4: Let Ht C # andH~ = H \ H*, we denote
Jt ={n|H, e Ht}andJ~ = {j|H; e H™}. If B,; >0
(neJ¥), Y, cs+bni=1andp;; =0 (j € J7), for all
i=1,...,L theny” v B, =1andp; =0 (jeJ).

Theoem5: Assumethat0 < w; < 1forall¢e=1,... L.

N
If thereexistsan: suchthat )" 8,; < 1, thengy > 0.

In [33], the authorshave gni\7e1n direct proofs of thesethe-
orems,which are someha complicated.In the next section,
we alsogive a brief descriptionof thesetheoremsn termsof
D-S theory

IV. A REANALYSIS OF THE ER APPROACH

Let us remind oursehesthe available informationgiven to
an assessmenproblemin the two-level hierarchicalstructure
asdepictedin Fig. 2:

+ the assessmentsS(e;) for basic attributes e; (@ =
1,...,L), and
« the weightsw; of the basicattributese; (: =1, ..., L).
Given the assessmeniS(e;) of a basic attribute e; (i =
1,...,L), we now define a correspondingBPA, denotedby
m;, which quantifiesthe belief aboutthe performanceof ¢; as
follows: for ary H C H

Bris if H={H,}
N
m;(H)=4¢ (1-— Z_:l Bni), FTH=HN (23)
0, - otherwise

For the sakeof simplicity, we will write m;(H,) insteadof
m; ({H,}) asusual.Thequantitym; (H,) representthebelief
degree that supportsfor the hypothesisthat ¢; is assessed
to the evaluationgrade H,,. While m;(#) is the remaining
probability massunassignedo ary individual gradeafter all
evaluation gradeshave been consideredfor assessing:;. If
S(e;) is a completeassessmentn; is a probability distri-
bution, i.e. m;(#) = 0. Otherwise, m;(#) quantifiesthe
ignorance.

As suchwith L basicattributese;, we obtain . correspond-
ing BPAs m; asquantifiedbeliefsof the assessmenter basic
attributes. The problemnow is how to generatean assessment
for y, i.e. S(y), representedy a BPA m, from m; and w;
(:=1,...,L). Formally, we aim at obtaininga BPA m that
combinesall m;’'s with taking weightsw;’s into accountin
the generalform of the following

L
m = @(wl ® m;) (24)
i=1
where ® is a product-typeoperationand ¢ is a sum-type
operationin general.

As such, by applying different particular operationsfor ®
and®, we may have differentaggreyationschemedor obtain-
ing the BPA m representedhe generatedassessmens(y).
However, beforeexploring ary new aggregation schemeswe
first interestinglyre-interpretthe original ER approachin the
spirit of the new formulation.

A. The Discounting-and-Ortbhgmal SumSdeme

Let usfirst consider asthediscountingoperatiorand® as
theorthogonakumin D-Stheory Then,foreachi =1, ..., L,
we have (w; ® m;) is a BPA (referto (3—4)) definedby (25),
forary H CH andn = 1,..., N, atthetop of the next page.

With this formulation, we considereachm; as the belief
quatified from the information sourceS(e;) and the weight
w; asa “degreeof trust” of S(e;) supportingthe assessment
of y asa whole. As mentionedn [20], an obviousway to use
discountingvith Dempsters rule of combinationis to discount
all BPAs m; (i = 1,..., L) at correspondingates(1 — w;)
(¢ =1,..., L) beforecombiningthem.



wiﬂn,ia
(w; © my)(H) & m (H) =
07

N N
(I —w)+wi(1= 3 Bni)=1—w; Y Pni, FH=H
n=1 n=1

if H={H,}
(25)

otherwise

Thus, Dempsters rule of combinationnow allows us to
combine BPAs m}* (i =
assumptiorof informationsourcedor generatinghe BPA m
for the assessmentf y. Namely

L
n =
i=1

where, with an aluse of the notation, ¢ standsfor the
orthogonalsum.

At thisjuncture we canseethattheaggreationprocesse
original ER approaclreviewed above follow this discounting-
and-orthogonakum scheme.In addition, it is of interestto
note that, by definition, in this aggr@ation schemeit would
benotnecessaryo requirethe procesf weightnormalization
satisfyingthe constraint

(26)

That is, by relaxing this constraint on weights, we may
avoid the mutual and exclusive assumptionof information
sourcessupportingthe assessmenfor y, which seemsto be
guestionableén the contt of aggrejated assessmentsven
thoughweightswould have a probability-ike interpretation.
It would be worth notingthattwo BPAs m ;"* and m;}j are
combinablej.e. (m;* & mf;’j) doesexist, if andonly if

N N
K=Y m(Hy)m{? (Hy) < 1
t=1n=1
n#£t
For example, assumethat we have two basic attributese;
andes with

S(e1) = {(H1,0),(H2,0),(Hs,0),(Ha,1),(Hs,0)}
S(ea) = {(H1,0),(H2,0),(Hs,1),(H4,0),(Hs, 0)}

and both are equallyimportant,or w; = w-. In the extreme,
settingd = 0 and the weightsw,; and ws being normalized
using(14)leadto w; = wy = 1, whichresultsin (m{* ®&m%?)

doesnot exist.

Anotherissuewith the orthogonakumoperationis in using
thetotal probabilitymassk (calledthe degreeof conflict[24])
associatedvith conflict asdefinedin the normalizationfactor.
Consequentlyapplyingit in anaggreationprocessnayyield
counterintuitve resultsin the face of significant conflict in
certain contts as pointed out in [34]. Fortunately in the
contet of the aggregatedassessmentasedon a hierarchical
evaluationmodel, by discountingall BPAS m; (i =1,...,L)
at correspondingates(1 — w;) (i = 1,..., L), we actually
reduceconflict betweenthe variousbasic assessmentisefore
combiningthem.

Note furtherthat, by definition,focal elementsof eachm’:

1,..., L) under the independent are eithersingletonsetsor the whole set#. It is easyto see

that m also verifies this propertyif applicable.Interestingly
the commutatve andassociatie propertiesof Dempsters rule
of combinationwith respectto a combinablecollection of
BPAs m}* (i = 1,..., L) andthe mentionedpropertyessen-
tially form the basisfor the ER algorithmsdevelopedin [28],
[33]. In otherwords, the original ER algorithm summarized
in (9)—-(10)hasbeenimplementedor calculationof the BPA
m. More particularly with the samenotationsasin preceding
section,and denotingfurther

7
=D’
mI(l) = mj
i=1

fori=1,...,L, we have
mI(Z)(Hn) = My 1(:), for n = 1,...,N (27)
mrqy(H) = may ra) (28)

Further by a simpleinduction,we easilyseethatthefollowing
holds

Lemmal: With thequantitym r(;) inductively definedby
(19), we have

m;qy](i) = I{I(z) H(l — wj)
j=1

where K ;) is inductively definedby (11).

By now, it is obviously clearthat, excepttheweightnormal-
ization, the key differencebetweenthe original ER algorithm
and the modified ER algorithm is nothing but the way of
assignmenpof g, (n = 1,..., N) and 33 after obtainedm.
That s, in the original ER algorithm,the BPA m is directly
usedto definethe assessmerfor y by assigning

Bn m(Hy,) =my, 1), forn=1,...,N (30)
Pu = m(H)=my ) (31)
While in the modified ER algorithm, after obtainedthe BPA
m, insteadof usingm to definethe assessmerfor y asin the

original ER algorithm, it definesa BPA m’ derived from m
asfollows

(29)

m’(Hn):M, forn=1,...,N (32)
1T —my 1)
T -
mipy) = VO Tirw) M) (g
I —my 1) =My r(r)
Note that in this casewe musthave w; < 1 for all ¢ =
1,..., L.
Thenthe assessmerfor y is definedby assigning
On = T?ll(ffn)7 forn=1,...,N (34)
Bu = m'(H) (35)



By (32)—(33),Theorem?2 straightforwardlyfollows asm is
a BPA. Further the following lemmaholds.

Lemma2: If all assessment$(e;) (¢ = 1,...,L) are
complete,we have
L
m(H) =My ) = Kir H (1 —w;) (36)
i=1

i.e., my (1) = 0; and, consequentlyS(y) definedby (34) is
alsocomplete.

As if w; = 0 thenthe BPA m}* immediately becomes
the vacuousBPA, and, consequentlyplays no role in the
aggreation. Thus, without ary loss of generality we assume
that0 < w; < 1 foralli =1,..., L. Underthis assumption,
we areeasilyto seethatif theassumptiorof Theorem4 holds,
then

Fow={{H}neITYu{H}, fori=1,...,L (37)
where F, »; denotesthe family of focal elementsof m;".
Hence,by ‘a simpleinduction,we also have

Fm = {{Hn}In € I} U {H} (38)

Note that the assumptionof Theorem3 is the sameas that
givenin Theorem4 with |7T] = 1.

Therefore, Theorems3 and 4 immediately follows from
Lemma?2 alongwith (32)—(35)and (38).

It is alsoeasily seenthat
Hmw’ = I(I(L)H[wimi(ﬂ)—i—(l—wi)]
=1 (39)

and in addition, if thereis an incomplete assessmentsay
S(e;), thenw;m;(H) > 0, resultingin

L
—IXI

::]h

B. The Discounting-and-ager’'s CombinationStheme

To addresghe issueof conflict as mentionedabove, Yager
proposedin [24] a modification of Dempsters rule of com-
binationby addingthe total probability massassociatedvith
conflict to the frame of discerment,insteadof using it for
normalization.That is, given two BPAs m; and m- over a
frame ©, Yagers rule of combinationyields a BPA denoted
by mY asshawvn in (40) below.

As such,in Yagers rule of combinationthetotal probability
mass associatedwith conflict betweenthe two BPAs to be
combinatedis attributed to the frame © and, consequently
enlagesthe degree of ignorance.

In thecontext of multi-attributeassessmeritamework, after
discountedhe BPA m; (i = 1, ..., L) obtainedfrom a basic
assessmenfor ¢; at a discountrate of (1 — w;), we would
now like to apply Yagers rule of combinationfor obtaining
an aggreatedBPA for the assessmertf the generalattribute
y. As Yagers rule of combinationis not associatie, we can
not combinem;’* (i = 1,..., L) in arecursie mannerasthe
caseof Dempsters rule, but applya multiple-pieceof evidence
versiondefinedin [24]. This ruleis suitablefor an aggreation
procesgbut nota updatingprocesspasin themultiple attribute
aggreation.

Particularly, we definem? asa combinationof BPAs m}”:
(1=1,...,L) asshavn in (41) at the bottomof the page.

Recall, by definition, that focal elementsof eachm}"* are

eithersingletonsetsor thewholeset#. Fori =1,... L, let
us denote
Fi={{Hn}Hpo € H Awifn; > 0} U{H} (42)

With this notation,we have the family of focal elementsof
m (i=1,...,L)is Ft = F;\ {#} if w; =1 andS(e;) is
complete,otherwise; is. For simplicity, we use H,, instead
of {H,} without dangerof confusion.

Then, we get

w;m; (H (1 —w;)
z:l L )
i m¥ (Hy) = > [[mi () (43)
This directly implies m’(#) > 0. ConsequentlyTheorem4 JHer =1
follows as (34)—(35). A H'=H,
0, if A=10
mi @ ma(A) 2 (4) = OOV F 5, m(Bhma(C), T A=O (a0)
Y. mu(B)mz(C), otherwise
BnC=A
L .
[Im>3H)+ > IIm’(H), ifH=H
i=1 ng'H i=1
mY (H) = 0, H'=0 (41)
L
oo I myi(HY), otherwise
H'CH i=1
A Hi=H




m'(H) =[]m¥ (") + K (44)
i=1
where K is a constantdefinedas
L
K= Y J[m @) (45)
HIE]:I‘F i=1
representinghe total degree of conflict.
Now, by this aggr@ation schemewe can define
Bn =mY (H,), forn=1,...,N (46)
N
Bu=m" (H)=1-Y m" (Hy) (47)
n=1
for generatinghe aggregatedassessmerfor y.
Let us denote
I ={1,2,...,L} (48)
IF={ielwp,; >0}, forn=1,...,N (49)

andP(I;}) the power setof ZF. Theng, (n=1,...,N)is
calculatedalgorithmically as shovn in (50) at the bottom of
the page.

We are now readyto concernwith the synthesisaxioms.
Obviously, the first independengc axiom is followed as there
is atleastone H' in (43) being H,,, thus,we have 3, = 0 if
Bn,i = 0 for all 1. Similar to the original ER algorithm, we
have the following

Theoem6: If 3, and B are calculatedusing (46) and
(47), thenthe concensusxiom holdsif and only if

L
[[(1—w)=0
i=1
Proof: Assumethatfg,; = 1forall:=1,...,L, and

Bni=0forn=1,...,N,n#k,andi=1,... L.
By definition, we have

if n==F

if n £k

wi,

m i) ={
and m;* (%) = (1 — w;), for ¢ = 1,..., L. Consequently

F = {H}. This directly implies from (45) that K = 0. So,

we obtain
L

[0 = wy)

i=1

By =

Then,the consensuaxiomandthatF;* = { H;} immediately
imply

Corversely if Hle(l —w;) = 0 thenthe consensusxiomis
trivially satisfied.This concludesthe proof. ]

Unsurprisinglyasin caseof thediscounting-and-ohiogonal
sum schemeabove, the discounting-and-&gers combination
schemedoes not directly yield a generatedassessmentor
y exactly satisfying the completenessaxiom. This can be
overcomeby modifying the assignmenof 3,,’s and 8z from
mY asshawn in the following.

C. The Modified Discounting-and-&ger's Combination
Sdeme

As we have seen,the direct use of the discounting-and-
Yagers combinationschemefor definingthe assessmerfor y
makesit fail to desiredlysatisfythe synthesisaxioms.This is
causedmainly by the fact that an aggregatedrate of discount
is attributed to 3% as a part of the unassignedorobability
mass.Yet a so-calleddegree of disageementas a part of the
conflict factor K also plays a role. In this part, instead of
commiting thesefactorsto the unassignecrobability mass,
they are usedfor the normalizationbeforeassigningfor 3,,’s
and pz . However, beforedoing so, we mustfirst be clearon
whatthesefactorsare.

Denote

L
Fr=Ft

i=1
whereFt = F,\{#} (i = 1,..., L). Thatis, F*+ consistsof
commonsingletonfocal elementf all BRPAs m**’s. In other
words,all basicattributese; ( = 1,..., L) areassessetb all
evaluationgradesin F* to variouslypositive degreesof belief.
As a part of conflict aroseduring the aggre@ation processof
basicassessmentsye definethe degree of disagreementde-
notedby «,, amongthevariousbasicassessmentt evaluation

gradesin F* asfollows

L
. Wy 7
K = E Hmi (H")
HieFt i=1
L
n H'=¢
i=1

(51)

(52)

Note that x; is alsoa constantandis a part of the degree of
conflict K definedby (45) as shavn in Appendix.

Dueto the multiplicative natureof the combinatiorrule, we
definethe aggreatedrate of discount,denotedby «-, as

L

Ko = H(l — w;)

i=1

(53)

L
Also, k, is a constantandis a partof [] m{"* ().

L i=1
By = H(l —w;) =0 The assign_menbf acon§tanamountof (k1+k2) to By as
i partof unassignegbrobabilitymassmay causethe aggreated
N
m (Ho) = > [JwiBei T [wiCl =D Baj) + (1 —w)) (50)
P#TEP(I;)i€T Jjel\r n=1



assessmertb be incompleteeven whenall basicassessments Thenthe assessmerfor y is definedby

are not. Therefore,in the modified discounting-and-dgers

combinationscheme,this amountof (x; + «2) is assigned

proportionallybackto all individual gradesand # usingthe
following normalizationprocess

__mi(H) _

Bn =Tt ) forn=1,...,N (54)
_ mY (%) B ("fl + :‘62)

Pu = 1= (%1 + #2) (55)

As remarkedabore on x; and ks, it is easily seen, by
definition, that the following holds.

Proposition1: The degreesof belief generatedising (54)—
(55) satisfythe following

0<Bn, <1, forn=1,....N

N
Zﬂn'i'ﬂ?-t:l

Regardiﬁélthe synthesisaxioms, we have desiredly the
following.
Theoem7: The aggr@atedassessmerfor y definedasin
(54)—(55)exactly satisfiesall four synthesisaxioms.
Proof: See Appendix. ]

D. The Discounting-and-Reraging Sdheme

In theaggregationschemesbove, we have defined for each
i=1,...,L, (w;®m;) astheBPA m;"* by discountingn; by
afactor (1 —w;) (referto (25)). ThenDempsters andYagers
rulesof combinationarerespectiely appliedfor obtainingthe
BPA m of the assessmenfor y. Here, we also assumethat
O<w; <lforalle=1,...,N.

In this subsection,jnsteadof applying thesecombination
operationsafter discountingm;'s, we apply the averaging
operationover L BPAs m}"* (: = 1,..., L) to obtaina BPA
m definedby

L
_ 1 w
m(H) = 7Y mi" (H) (56)
i=1
forary H C H.
Dueto (25), we have
L
+ 3 wifn i, if H={H,}
i=1
= — L N
m(H) %Z(l—wiZﬂn,i), if H=%
i=1 n=1
0, otherwise
(57)

After obtainingthe aggrejated BPA 7, the problem now
is to usem for generatinghe aggr@atedassessmerbr the
generalattribute y. Naturally we can assign

L
1
m(Hy) =+ > wifni, forn=1,...,N(58)

i=1

m(H) = %Z (1 — w; Eﬁm)

ﬂn =

(59)

Sly) ={(Hn,Bn)n=1,...,N} (60)

Regardingthe synthesisaxioms,we easily seethat the first
axiom holdsfor theassessmer(60). For the next two axioms,
we have the following

Theoem 8: The assessmer(60) definedvia (58)—(59)sat-
isfies the consensusixiom and/orthe completenessxiom if
andonly if w; =1foralli=1,... L.

Proof: For the consensusxiom, the proof is straightfor
ward. Now we rewrite 33 definedby (59) asfollows

L L N
EZ (1 — wj Zﬂm)
i=1 n=1
L N L
- %Ewi (1 - Zﬂn,z) + (1 - &le> (61)
i=1 n=1

Thus, if all w; = 1 andthe assumptiorof the completeness
axiomholds,we have 33 = 0 andthe conclusiorof theaxiom
followseasily Inversely if thecompletenesaxiomis satisfied,
we musthave

By =

L
wj
1— i=1 —
17 0
which directly implies w; = 1 for all s. ]

The assessmerfor y accordingto this aggr@ationscheme
also satisfiesthe incompletenessaxiom trivially due to the
natureof discounting-andageraging.

Unfortunately the requiremenof w; = 1 for all i to satisfy
the consensusxiom and the completenessixiom would not
be appropriatdn general.This is dueto the allocationof the
averageof discountrates

to # asa part of unassignegrobability mass.This dilemma
canberesohedin a similar way asin the modifiedalgorithms
abore. Interestingly this modificationleadsto the weighted
sum schemeas shavn in the following.

E. WeightedSumas the Modified Discounting-and-#eraging
Sdeme

By applying the discounting-andageraging scheme, we
obtain the BPA m as definedby (57). Now, guided by the
synthesisaxioms,insteadof makingdirectuseof mz in defining
the generatedassessmens(y) (i.e., allocating the average
discountratea to 3 asa partof unassignegrobabilitymass)
asabove, we definea nev BPA denotedby m’ derived from
m by makinguseof (1 — @) asa normalizationfactor. More
particularly we define

' (H,) = ml(f;), forn=1,...,N (62)
m'(H) = Lf{ _) = a (63)



Combining(57) and (61) we interestinglyobtain

L
_I(Hn) :Zmzﬂn i, forn=1, , N (64)

i=1
L N
i=1 n=1

where ws

W = — ' fori=1,...,L

3w

Let usturnbackto thegenerakchemeof combinationgiven
in (24). Underthe view of this generalschemethe abore BPA
m' is nothingbut an instanceof it by simply considering
asthe multiplicationand @ asthe weightedsum.Namely we
have

,forn=1,...,N (66)

EI

> wm
L
Z (67)
=1
where relative weights w; are normalizedas above so that
>, w; = 1. It is of interestto note that the possibility of
usingsuchan operationhaspreviously beenmentionedn, for
example,[25]. Especially the weightedsum operationof two
BPAs hasbeenusedfor theintegrationof distributeddatabases
for purposeof datamining [12].
Now we quite naturally define the assessmentor y by
assigning

(69)

Appealingly simple as it is, we can see quite straightfor
wardly that the following theoremholds.

Proposition2: The degreesof belief generatedising (68)—
(69) satisfythe following

0<fn,fu <1,
N

Eﬂn'i'ﬂ?-t:l

Further?n_olreponcerninghe synthesisaxioms,we have the
following theorem.
Theoem9: The aggr@atedassessmerfor y definedasin
(68)—(69)exactly satisfiesall four synthesisaxioms.
Proof: Trivially.

forn=1,...,N

F. ExpectedUtility in the ER Approadces

In the tradition of decisionmakingunderuncertainty[17],
the notion of expectedutility hasbeenmainly usedto rank
alternatvesin a particularproblem.Thatis one canrepresent
the preferencerelation > on a set of alternatves X with a
single-waluedfunctionu(z) on X, calledexpectedutility, such

10

thatfor ary =,y € X, z > y if andonly if u(z) > u(y).
Maximization of u(z) over X provides the solutionto the
problemof selectingz.

In the ER approachwe assumea utility function

u H —[0,1]
satisfying
v (Hpy1) > u'(Hy) if Hyyq is preferredto H,,.

This utility functionu’ may be determinedusingthe probabil-
ity assignmenimethod[10] or usingothermethodsasin [28],
[33].

If all assessmentsr basicattributesarecompleteLemma2
shavs thatthe assessmerfor y is alsocomplete,i.e. 53 = 0.
Then the expectedutility of an alternatve on the attribute y
is definedby

N
=Y Bau'(Hy) (70)
n=1
An alternatve a is strictly preferredto anotheralternatve b if
andonly if u(y(a)) > u(y(b)).

Dueto incompletenessn generaljn basicassessmentghe
assessmerfor y may resultin incomplete.In sucha case,in
[33] the authorsdefine three measurescalled the minimum,
maximumand averageexpectedutilities, as follows

Umax Z ﬂn ﬁN + ﬂ'H) (Hn) (71)
umin(y) = (ﬁl + ﬂ’H Hl + Z ﬂn n (72)
uavg(y) — Umax (3/) + Umin (y) (73)

2
where, without loss of generality supposeH; is the least
preferredgrade having the lowest utility and H  the most
preferredgradehaving the highestutility.
The ranking of two alternatvesa andb ony is carriedout
by:
o a >y bif andonly if umin(y(a)) > umax(y(b))
e a ~y bif andonly if umin(y(a)) = umin(y(b)) and
umax(y(a)) — umax(y(b))
If theseare not the case,the averageexpectedutility can be
usedto generatea ranking (see,e.g.,[33] for more details).
In this paper basedon the Genearlized Insuficient Reason
Principle, we definea probability function P,,, on # derived
from m for the purposeof making decisionsvia the pignistic
transformation21]. Namely
Pn(Hy) N (74)

m(Hp) + %m(?{) forn=1,...,

That is, as in the two-level languageof the so-called
transfeable belief model[21], the aggr@atedBPA m itself
representedhe belief is entertainedbasedon the available
evidence at the credal level, and when a decisionmust be
made, the belief at the credal level inducesthe probability
function P,,, definedby (74) for decisionmaking.Particularly,



the approximatelyassessmerior y for the purposeof decision
makingis thendefinedas

P =

Therefore, the expected utility of an alternatve on the
attribute y is straightforwardlydefinedby

P (Hp) = B + %ﬂg{, forn=1,..., N(75)

N

N
/o 1 /
uly) = nz_jlﬂnu (Hn) = nzzjlwn + 5P (Hy)  (76)

As such,while theamountof belief 34 (dueto ignorancejs
allocatedeitherto the leastpreferredgrade H; or to the most
preferredgrade H x to define the expectedutility interval in
Yangs approact33], in ourapproachit is uniformly allocated
to every evaluation grade H,,, guided by the Generalized
Insufficient ReasorPrinciple[21], to definean approximately
assessmerfor y and, hence,a single-\aluedexpectedutility
function.

In the following section,we examine a turorial example
taken from [33] to figure out how difference betweenthe
variousaggreationschemesas well asthe respectie results
yielded.

V. AN EXAMPLE: MOTORCYCLE ASSESSMENT PROBLEM

The problemis to evaluatethe performanceof four typesof
motorg/cles, namely Kawasaki Yamaha Honda and BMW.

The overall performanceof each motorg/cle is evaluated
basedon three major attributeswhich are quality of engine
opeftion, geneal finish Theseattributesall are generaland
difficult to assesdlirectly. So theseattributesare correspond-
ingly decomposedhto more detailedsubattrilutesto facilitate
the assessmeniThe processof attribute decompositionfor
the evaluation problemof motorg/cles resultsin an attribute
hierarchy graphically depictedin Fig. 3, where the relative
weightsof attributesat a singlelevel associatedvith the same
upperlevel attribute are definedby w;, w;;, andw;; for the
attributesat level 1, 2, and 3 respectiely.

Using the five-gradeevaluation scale as given in (1), the
assessmenmniroblemof motorg/clesis givenin Tablel, where
P, I, A, G, and E arethe abbreiations of poor, indifferent,
aveirge good and excellent respectiely, and a numberin
bracketdenotedthe degree of belief to which an attribute is
assessetb a grade.For example, £(0.8) means"excellentto
a dggreeof 0.8".

Further all relevant attributesare assumedo be of equal
relative important[33]. Thatis

W) = Wy =Wz = 0.3333
Wi = Wiz =wiz=wia=wis = 0.2
Wy = way = waez = 0.3333
Wall = W21z = Wa13 = war4 = 0.25
waz1 = Wiz = 0.5
W31 = Wazs = Wwazz = 0.3333
W3] = W3z = W3z = W34 = wzs = 0.2

In the sequentfor the purposeof comparisonwe generate
different three resultsof aggreation correspondingo Yang
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andXu’s modifiedER methodandthe othertwo developedin
this paper

By applyingthe modifiedER method the distributedassess-
mentsfor overall performanceof four types of motorg/cles
are given in Table ll. These four distrututions and their
approximationwia the pignistictransformatior(Tablelll) are
graphicallyshawvn asin Fig. 4.

At thesametime, by applyingtheweightedsumaggregation
scheme(shortly, SW method),we easilyobtainthe distributed
assessmentfor overall performanceof four typesof motor
cycles as shawvn in Table IV (graphicallydepictedin Fig. 5
(a)). The pignistic transformatiorappliedto theseaggreated
assessmentgields the approximatelyassessmentor overall
performanceof motorg/clesasgivenin TableV (graphically
Fig. 5 (b)).

As we can easily see, there is not so much difference
betweenthe result obtainedby the modified ER algorithm
andthat obtainedby the weightedsum method,especiallythe
behaior of correspondinghassessmentistributionsis almost
the sameasFig. 4 (a) and Fig. 5 (a) have shawvn.

However, as we seein the following, the result yielded
by the modified Yagers combinationmethod (shortly MY
method) is relatively different from those obtainedby the
abosre methods.This is unsurprisingas we were attributing
a factor of conflict to # as “unknown” in the aggrgated
assessment.

For generatinghe assessmerfbr an attribute y at a higher
level in the hierarchyof attributes shavn in Fig. 3, all the
BPAs of its direct subattrilutes are firstly aggreated via
(50), and the generatedassessmenfor y is then obtained
usingthe normalizationprocessrepresentedn (54) and (55).
This processis carried out upward from the bottom level
to the top of the hierarchyin order to obtain the overall
assessmeniVith this methodof aggreation, we obtainthe
distributedassessment®r overall performanceof four types
of motorg/cles as shavn in Table VII, which are graphically
depictedin Fig. 6 (a).

From the obtainedresult, it is interestingto obsere that,
althougha total degreeof incompletenesm basicassessments
of Honda is 1.25 in compareto those of the other three,
whichin turn are 0.5 for both Kawasakiand Yamaha and0.4
for BMW, the unassignedrobability massof the generated
assessmerfor Hondais smallerthanthoseof the remainders.
This is dueto a lower conflict betweenbasic assessmentsf
Hondain compareto thoseof the others.

For the purposeof decisionmaking, we apply the pignistic
transformationio theaggrgatedassessmenia orderto obtain
the approximately assessmentgor overall performanceof
motorg/cles as shavn in Table VII and depictedgraphically
in Fig. 5 (b).

We are now readyto assumea utility functionu’ : # —
[0, 1] definedin [33] asfollows

u'(P)=0, '(I)=0.35,
u'(A) = 0550 (G) =0.85u'(E) =1
Using (76), we easily obtain the expected utility of four

typesof motorg/clesaccordingo the variousmethodsasgiven
in Table VIII.
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Fig. 3. Evaluationhierarchyfor motorcycleperformanceassessmeri83]

responsiveness (W)

fuel economy (w;,)

quietness (W;3)

vibration (w,,)

starting (W;s)
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seat comfort ( ws,)
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mirrors ( Wa,)

horn ( wss)

TABLE |
GENERALIZED DECISION MATRIX FOR MOTORCY CLE ASSESSMENT [33]

steering (W,1;)

bumpy bend (W)
manoeuvrability ( Ws;3)
top speed (W,y4)

clutch operation (W)

gearbox operation (W,,,)

stopping power (Wag;)
braking stability ( w,s,)

feel at control ( W,s3)

General attrib utes Basic attrib utes - types of motor cycle (alternatives)
Kawasaki(a;) Yamaha(as) Honda(as) BMW (a4)
responsieness F (0.8) G (0.3) E (0.6) G (1.0) 1(1.0)
fuel economy A(1.0) 1(1.0) 1(0.5) A(0.5) E(1.0)
engine quietness 1(0.5) A(0.5) A(1.0) G(0.5) E(0.3) E(1.0)
vibration G (1.0) 1(1.0) G(0.5) £(0.5) P(1.0)
starting G (1.0 A(0.6) G(0.3) G (1.0) A(1.0)
steering F(0.9) G(1.0) A(1.0) A(0.6)
handling bumpy bends A(0.5) G(0.5) G (1.0) G(0.8) £(0.1) | P(0.5)1(0.5)
maneuverability A(1.0) F(0.9) 1(1.0) P(1.0)
] top speedstability FE(1.0) G(1.0) G(1.0) G(0.6) E£(0.4)
operation N clutch operation A(0.8) G(1.0) E(0.85) 1(0.2) A(0.8)
transmission -
Overall performance gearboxoperation | 4(0.5) G(0.5) | 1(0.5) A(0.5) FE(1.0) P(1.0)
stoppingpower G(1.0) A(0.3) G(0.6) G(0.6) E(1.0)
brakes brakingstability G(0.5) E(0.5) G(1.0) A(0.5) G(0.5) E(1.0)
feel at control P(1.0) G(0.5) £(0.5) G(1.0) G(0.5) E(0.5)
quality of finish P(0.5) 1(0.5) G(1.0) E(1.0) G(0.5) £(0.5)
seatcomfort G(1.0) G(0.5) E(0.5) G(0.6) FE(1.0)
general headlight G(1.0) A(1.0) E(1.0) G(0.5) E(0.5)
mirrors A(0.5) G(0.5) | G(0.5) F(0.5) E(1.0) G(1.0)
horn A(1.0) G(1.0) G(0.5) £(0.5) E(1.0)

12



AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTOCY CLESUSING THE MODIFIED ER METHOD [33]

TABLE I

13

Poor(P) | Indifferencél) | AveragéA) | GoodG) | ExcellentZ) | Unknowrfl)
Kawasaki | 0.0547 0.0541 0.3216 0.4452 0.1058 0.0186
Yamaha 0.0 0.1447 0.1832 0.5435 0.1148 0.0138
Honda 0.0 0.0474 0.0621 0.4437 0.4068 0.0399
BMW 0.1576 0.0792 0.1124 0.1404 0.5026 0.0078
0.7 T 0.7
-8 Kawasaki -8 Kawasaki
-A- Yamaha -A- Yamaha
-~ Honda -~ Honda
0.6/ S BMW 4 0.6H S BMW 4
0.5 : : T 0.5
% 0.3 m % 0.3
[s] [a]
0.2 T 0.2
0.1F : 4 01l
0 I3 | ; s = U 0 3 | A s E

A
Evaluation grades
(a) The AggregatedAssessment
Fig. 4. Overall Evaluationof Motorcyclesvia the Modified ER Method

Evaluation grades

(b) ApproximationAssessmentia Pignistic Transformation

TABLE I
APPROXIMATELY ASSESSMENTSFOR FOUR TYPES OF MOTOCY CLESUSING THE MODIFIED ER METHOD

AGGREGATED ASSESSMENTSFOR FOUR TYPES OF MOTOCY CLESBY USING THE WEIGHTED SUM AGGREGATION SCHEME

Poor(P) | Indifferencél) | AveragéA) | GoodG) | ExcellentFE)
Kawasaki | 0.05842 0.05782 0.32532 0.44892 0.10952
Yamaha | 0.00276 0.14746 0.18596 0.54626 0.11756
Honda | 0.00798 0.05538 0.07008 0.45168 0.41478
BMW 0.15916 0.08076 0.11396 0.14196 0.50416
TABLE IV

Poor(P) | Indifferencél) | AveragéA) | GoodG) | Excellen{E) | Unknowrfl)
Kawasaki | 0.0703 0.0667 0.3139 0.3972 0.1247 0.0272
Yamaha 0.0 0.1611 0.2122 0.4567 0.1501 0.0198
Honda 0.0 0.0611 0.0796 0.4344 0.3922 0.0659
BMW 0.1639 0.0917 0.1278 0.1685 0.437 0.0111

Consequentlythe ranking of the four typesof motorg/cles
is givenin the Table IX.

Notethatthe samerankingresultfor all methodscould also
be obtainedby the expectedultility interval and the ranking
schemeby YangandXu [33] asmentionedabore. As we have
seenalthoughthe solutionto the problemof selectinghe best
alternatve is the samefor all thethreemethodsof aggreyation,
the ranking order betweenthe alternatvesis different. More
particularly while Yamahais preferredto BMW accordingto

the results of the first two methods,BMW is preferredto
Yamahaaccordingto the third method. This is because py
the third method of aggr@ation, the former is assessedo
goodandexcellentto a total degee of 0.5797while the latter
0.54872.

VI. CONCLUDING REMARKS

In this paper we have reanalysedthe ER approachto
MADM underuncertainty Interestingly the analysisprovides
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Evaluation grades

APPROXIMATELY ASSESSMENTSFOR FOUR TYPES OF MOTOCY CLESUSING THE WEIGHTED SUM METHOD

Poor(P) | Indifferencél) | AveragéA) | GoodG) | ExcellentF)
Kawasaki | 0.07574 0.07214 0.31934 0.40264 0.13014
Yamaha | 0.00396 0.16506 0.21616 0.46066 0.15406
Honda | 0.01318 0.07428 0.09278 0.44758 0.40538
BMW 0.16612 0.09392 0.13 0.17072 0.43922
TABLE VI
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Poor(P) | Indifferencél) | AveragéA) | GoodG) | Excellen{E) | Unknowrfl)
Kawasaki | 0.0344 0.0369 0.2114 0.276 0.0653 0.3761
Yamaha 0 0.099 0.127 0.3143 0.0843 0.3753
Honda 0 0.028 0.0375 0.2835 0.3331 0.3177
BMW 0.0855 0.0464 0.0628 0.1025 0.3268 0.376
0.5
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Fig. 6. Overall Evaluationof Motorcyclesvia the Modified Yagers CombinationMethod
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TABLE VI
APPROXIMATELY ASSESSMENTSFOR FOUR TYPES OF MOTOCY CLESUSING THE MODIFIED YAGER’ S COMBINATION METHOD

Poor(P) | Indifferencél) | AveragéA) | GoodG) | ExcellentF)
Kawasaki | 0.10962 0.11212 0.28662 0.35122 0.14052
Yamaha | 0.07506 0.17406 0.20206 0.38936 0.15936
Honda | 0.06354 0.09154 0.10104 0.34704 0.39664
BMW 0.1607 0.1216 0.138 0.1777 0.402
TABLE VIl

EXPECTED UTILITY OF FOUR TYPES OF MOTORCY CLES . . .
i € 1. First we needsomepreparationsRecall that

Kawasaki | Yamaha | Honda | BMW mY(Hn)
ERmethod | 0.69026 | 0.73577 | 0.85664 | 0.71577 P = 1— (k1 + #2) forn=1,...,N
WSmethod | 0.67327 | 0.72228 | 0.86285 | 0.68871 mY (7‘[) _ (h‘l + 52)
MY method | 0.63594 | 0.66237 | 0.77923 | 0.67151 Bu =
1— (1{1 =+ K?z)
TABLE IX m"(H)=A+ K
RANKING OF FOUR TYPES OF MOTORCY CLES
where
Method Ranking order L
ER method | Honda > Yamaha> BMW > Kawasaki A = H[wimi (1) + (1 — wi)]
WSmethod | Honda> Yamaha> BMW > Kawasaki i=1
- L
MY method | Honda> BMW > Yamaha> Kawasaki .
K = > [T wimi(?)
HieF}: élHl:(Di:1
a generalformulation for the attribute aggreyation problem Ft = {Hp|Hn € HAwifhn; >0}

in MADM under uncertainty Under such a generalization,
several various aggrejation schemeshave been examined, Let usdenote
including the previous one. Theoretical propertiesof new
schemesegardingthe synthesisaxiomsproposedn [33] were + + i .
alsoexplored.Especially by this reformulationof the attribute Ff=F"xFrx.xF
aggreation problem, we have shavn that the aggreation
schemebasedon the weightedsum operationcould be also
consideredfor the aggregation processin the contet of H=(H',...,H') €T (orF*)
MADM underuncertaintyThisallows usto handleincomplete
uncertaininformationin a simpleandpropermannemwhenthe
assumptiomegardingthe independencef attributes’uncertain
evaluationsis not appropriate. A = Z H wim; (H) H (1— w;)
For the purposeof decisionmaking,anapproximatemethod DgreP(D) ier e\,
of uncertain assessmentdased on the so-called pignistic
transformation[21] has beenappliedto definethe expected Similarly, X is decomposeds K = K’ + ;1 with
utility function, insteadof usingthe expectedutility interval L
proposedpreviously. A tutorial examplehasbeenexaminedto K' = Z H wim; (H?)
illustratethe discussedechniques. He@\rt)i=1
In summary by the resultsobtainedin this paper we do NH=0
hopeto supportfurther aggrgation schemedor the attribute
aggreation problem in MADM under uncertainty This is  Proof for the Consensué\xiom
especiallyhelpfulin decisionmakingsituationswherea single
methodof aggr@ationwould be inapplicableor not enough.

F =FtxFf = xFf

where x denoteghe Cartesianproduct.For

partsas A = A’ + k-, where

k#tn=1,...,N,n#k,andi € I.
Then, we have

APPENDIX
In this Appendix, we give the proof of Theorem7 on m (H,) = { w, @f n==k
the synthesisaxiomsfor the modifieddiscounting-and-sgers ! 0, if n £k

combinationscheme Clearly, the independeng axiom is im- andm* () = (1 — w;), for i € I. Thus
mediatelyfollowed from (43) asthe caseof the discounting- ! e ’
and-Yagers combinationscheme.Note that we assumehere Fr={Hp}foralli=1,...,L
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that weightsw;’s are normalizedso that 0 < w; < 1 for all

by NH we meannk_, H?. We cannow decompose\ into two

(77)

(78)

Supposethat g ; = 1 for all ¢ € I, and 3,; = 0 for



This directly impliesthat K = 0. Further we have A’ = 0,
sincem;(#) = 0, for all ¢ € I. Hence,we get
L
mY (H) = ka = H(l — w;)
i=1
which immediatelyfollows that 34 = 0.
Inductively, we have

S o T 0-w)=

TeP(I)i€T JEI\T

Z Hwi H (I—w;)=1—ks

PZTEP(I) €T JEI\T

Therefore

From (49) andthe assumptiorwe have I,j = I. Thusthelast
equationand (50) imply that 3, = 1. This completeghe proof
for the consensusxiom.

Proof for the Completenesgxiom

AssumeH* C H anddenoteJt = {n|H, € Ht}. We
now prove the following statement:

If B,;, >0forne Jt and > pB,; =1, forallie I,
neJ+
theng, >0forne Jt and Y. 3, =1 aswell

i . neJt
Since0 < w; < 1 for all 7 € I, we have

w; _f wiPn; >0, ifneJt
mi"*(Hn) = { 0, otherwise
and hence
Fr={H,neJ%}, forallicI

Therefore,F+ = T, which directly follows K’ = 0. Further
from (49) we get I = I for all n € J*. Using (50), we

obtain
Yo ITwites IT 1 —wy)

mY (Hy) =
PATEP(I) €T JEI\T

forary H, € H* (i.e.,n € J*).
On the other hand,we have m;(#) = 0 for all . So, we
have also A’ = 0. By definition, we get

mY(H) = K1 + Ko

(79)

Thus i
Bay = m” () — (k1 + k2)
= 1-— (K?l + f‘CQ)
From (43) andthe assumption3,, ; = 0 if n ¢ J¥, for all
¢ € I, we easilydeducethat

=0

mY (H,) =0, foraryne{l,....N}\J*
Immediately it follows
Bn=0, foraryne{l,...,N}\J*

Again, since0 < w; < 1 for all 7, it follows k2 > 0. This
implies from (79) thatmY (H,,) > 0 for all n € J*. Thus,
Bn > 0 for all n € J*. Finally, the desiredequation

is followed as EnN:1 Bn + B = 1. This concludesthe proof
for the completenessxiom.
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Proof for the Incompletenesaxiom
Now we give a proof for the last axiom. Assumethereis

N
anindex iy € I suchthat > 3, ;, < 1, we mustprove that

n=1

N
Zﬂn < 1, orequivalently Gy > 0

n=1
By definition, we have
mY (H) — (k1 + k2) A+ K
1— (k1 +r2)  1—(k1+ka)

So it is sufficient to shov either A’ > 0 or K’ > 0, say
A’ > 0. Indeed,since

P =

N
Z ﬁn,ig < 1
n=1

we have m;,(#) > 0. This follows

Wi Mg (%) H (1 - wl) >0
iel\{io}

as0 < w; < 1forall ¢ € I. Thusfrom (77) we easilydeduce
A'>0

which we desired.This completelyconcludeshe theorem.
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