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A Bottom-Up Method for Simplifying Support
Vector Solutions

DucDung Nguyen and TuBao Ho

Abstract—The high generalization ability of support vector machines
(SVMs) has been shown in many practical applications, however, they are
considerably slower in test phase than other learning approaches due to
the possibly big number of support vectors comprised in their solution. In
this letter, we describe a method to reduce such number of support vectors.
The reduction process iteratively selects two nearest support vectors
belonging to the same class and replaces them by a newly constructed
one. Through the analysis of relation between vectors in input and feature
spaces, we present the construction of the new vectors that requires to
find the unique maximum point of a one-variable function on (0,1), not
to minimize a function of many variables with local minima in previous
reduced set methods. Experimental results on real life dataset show that
the proposed method is effective in reducing number of support vectors
and preserving machine’s generalization performance.

Index Terms—Feature space, input space, kernel methods, reduced set
method, support vector machines (SVMs).

I. INTRODUCTION

Support vector machines (SVMs) (e.g., [12], [4]) have been found
to be very robust in many applications, for example in the field of op-
tical character recognition [7], [8], text categorization [6], and face de-
tection in images [9]. The high generalization ability of SVMs is en-
sured by special properties of the optimal hyperplane that maximizes
the distance to training examples in a high dimensional feature space
[1]. However, SVMs are considerably slower in test phase than other
learning methods like decision trees or neural networks [2], [3], [7],
[8].

The solution of a SVM is parameterized by a set of training exam-
ples, called support vectors (SVs), and their corresponding weights.
When a new test sample is introduced, SVMs compare it with these
SVs via kernel calculations; this computation becomes very expensive
if the number of SVs is large. To reduce this computational complexity,
reduced set methods, e.g., [2], [5], and [11], try to approximate the orig-
inal solution by another comprised by a much smaller number of newly
constructed vectors, called the reduced vectors set. For former methods
described in [2], [10], and [11] the construction of each reduced vector
requires to solve an unconstrained optimization problem in a space of
d+ 1 variables, where d is dimension of input space. Hence the com-
putation is very expensive because the search must be repeated many
times with different initial points to escape from local minima [2], [10].
The method described in [5] tries to find exact approximations of SVM
solutions based on the linearly dependency of SVs in feature space, but
its applicability is very limited due to the fact that feature space’s di-
mensionality is often very large or even infinite.

In this letter, we describe a conceptually simpler and computation-
ally less expensive method to simplify support vector solutions. In-
stead of constructing reduced vectors set incrementally, two nearest
SVs belonging to the same class will be iteratively considered and re-
placed by a newly constructed vector. The construction of new vec-
tors only requires to find the unique maximum point of a one-variable
function on (0, 1). Experimental results show the effectiveness of our
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proposed method in reducing the number of support vectors and pre-
serving generalization performance. On the United States Postal Ser-
vice (USPS) handwritten digit recognition database, a 91.3% (for poly-
nomial kernel) and 90.0% (for Gaussian kernel) reduction rate were
achieved, with a corresponding 0.2% and 0.3% loss in predictive accu-
racy.

II. REDUCED SVMS

SVMs work in feature space indirectly via a kernel function
K(x; y) = �(x) � �(y) where � : Rd ! F is a map from a
d-dimensional input space to a possibly high-dimensional feature
space [12]. For a two-class classification problem, the decision rule
takes the form

y = sign

N

i=1

�iK(x; xi) + b (1)

where�i are weights of support vectors xi; x is the input vector needed
to classify, b is the bias, and NS is the number of support vectors.

The reduced set methods try to approximate the normal vector 	 of
the separating hyperplane

	 =

N

i=1

�i�(xi) (2)

expanded in images of input vectors xi 2 Rd; �i 2 R, by a reduced
set expansion

	0 =

N

i=1

�i�(zi) (3)

with NZ < NS ; zi 2 Rd; �i 2 R. To classify a new test point x,
calculation (1) is replaced by

y = sign

N

i=1

�iK(x; zi) + b : (4)

The goal of reduced set method is to choose the smallest NZ < NS ,
and construct the corresponding reduced set f(zi; �i)gi=1...N such
that any resulting loss in generation performance remains acceptable
[2].

The method described in [2] starts by replacing the original expan-
sion 	 with the image of one input vector and its corresponding weight
(z1; �1), and then iteratively finds (zm+1; �m+1) so that their images
approximate the complement vectors 	m(	0 = 	)

	m =

N

i=1

�i�(xi)�

m

j=1

�j�(zj): (5)

In general, an unconstrained optimization technique is used to find
(zm; �m). For a particular kind of kernel K(x; y) = K(kx � yk2) a
fixed-point iteration scheme can be used to improve the speed of the
finding [10], [11]. However, the main drawback is still that they may
suffer from numerical instability and get trapped in a local minimum.

III. A BOTTOM-UP METHOD FOR SIMPLIFYING SV SOLUTIONS

A. Simplification of Two SVs

The solution of SVMs can be analyzed from a mechanical point of
view: if each image of support vectors exerts a force on the decision
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hyperplane, then the SVMs solution satisfies the conditions of equilib-
rium [3]. In an equilibrium system, if we replace two member forces
by an equivalent one, then the equilibrium state of the system will not
change. In an SVM solution, if we replace two images�(xi) and�(xj)
of two support vectors belonging to the same classxi and xj by a vector
M = m�(xi)+(1�m)�(xj), wherem = �i=(�i+�j) and weight
vector M by �m = (�i+�j), then for any point x in the input space,
calculation (1) can be computed through (NS � 1) vectors

y = sign

N

k=1;k6=i;k 6=j

�kK(x; xk) + �mM � �(x) + b : (6)

The difficulty is that M cannot be used directly; we must use its
pre-image, and in many situations we cannot find it. Our solution is to
approximate M by an image �(z) of some input vector z. The optimal
approximation can be made if we choose a vector z that gives a min-
imum value of kM � �(z)k2, or in other words, we have to solve the
optimization problem

min
z

kM � �(z)k2: (7)

The following propositions will give us the way to find vector z ef-
ficiently. All that is required is to find the unique maximum point of a
one-variable function on (0, 1). The coefficient of z then can be calcu-
lated analytically.

Proposition 1: For Gaussian RBF kernelsK(x; y) = exp(�kx�
yk2), the 2-norm optimal approximation of M = m�(xi) + (1 �
m)�(xj);m = �i=(�i+�j); �i�j > 0, is the image of input vector
z determined by

z = kxi + (1� k)xj (8)

where k is the maximum point of

f(k) = mC
(1�k)
ij + (1�m)Ck

ij (9)

with Cij = K(xi; xj)
Proposition 2: For polynomial kernels K(x; y) = (x � y)p,

the the 2-norm optimal approximation of M = m�(xi) + (1 �
m)�(xj);m = �i=(�i+�j); �i�j > 0, is the image of input vector
z determined by

z =
kMk1=p

kz�k
z� (10)

where z� = kxi + (1� k)xj and k is the maximum point of h(k)

h(k) = kMku(k)v(k) (11)

where

u(k) =
1

x2i k
2 + 2(xi � xj)k(1� k) + x2j (1� k)2

p=2
(12)

v(k) = m x2i k + (xi � xj)(1� k)
p

+ (1�m) (xi � xj)k + x2j (1� k)
p
: (13)

The important point here is that f(k) andh(k) are one-variable func-
tions having unique maximum point on (0, 1). The maximum point can
be easily reached using common univariate optimization methods.

Proposition 3: The optimal coefficient � for approximating
�mM = �i�(xi) + �j�(xj) by ��(z) is

� =
�mM � �(z)

k�(z)k2
: (14)

Equation (14) is used to find the coefficient for one newly con-
structed vector. For the whole reduced vectors set, the following
proposition is used to recompute all the coefficients to get a better
approximation.

Proposition 4 ([10]): The optimal coefficients � = (�1; . . . ; �N )
for approximating 	 = N

i=1 �i�(xi) by 	0 = N
j=1 �j�(zj) (for

linear independent �(z1); . . . ;�(zN )) are given by

� = (Kz)�1
K

zx� (15)

whereKz
ij = �(zi) � �(zj) andKzx

ij = �(zi) � �(xj)
As mentioned in [10], (15) always gives optimal coefficients to get a

solution that is at least as good as the original one. In our experiments,
(15) was used to recompute the final coefficients of all vectors in the
reduced set after the iterative simplification process finished.

B. Simplification of SV Solution

The simplification procedure iteratively replaces two support vectors
(including newly created vectors) xi and xj by a new vector z using
the method described in Section III-A. This process can be viewed as
a bottom-up hierarchical clustering procedure, and there are two prob-
lems we have to take into consideration. First, how to select a good
pair of support vectors to simplify, and second, when the simplifica-
tion process will stop.

1) Selection Heuristic: The optimal pair of two SVs is the one that
produces a minimum value of d(�) in (32). However, we cannot use
this criterion because it is too expensive. Moreover, we are more con-
cerned about the original solution and the final simplified one, so the
strictly good approximation of the solutions at every intermediate steps
is not necessary. The alternative heuristic is based on the difference be-
tween two vectorsM = m�(xi)+(1�m)�(xj) and�(z) in (7). For
Gaussian kernels, we can select xi and xj that give a maximum value
of Cij = K(xi; xj) in (9), or equivalently, select two closest support
vectors belonging to the same positive or negative class. Another inter-
pretation for this selection heuristic is that we are trying to approximate
two Gaussian RBFs by one Gaussian RBF, and intuitively, the closer
pair centers, the better approximation. This selection heuristic can also
be reasonably applied to polynomial kernels because the input vector z
that maximizesM ��(z) in (26) is linear dependent with xi and xj and
the closer two vectors xi and xj (or smaller angle between two vectors
xi and xj ) will give a bigger maximum value of M � �(z).

2) Stopping Condition: The simplified solution is always different
from the original one, so the simplification will possibly cause a degra-
dation in generalization performance. To control this circumstance, we
can monitor the difference between the two solutions caused by sim-
plification process, and the process will stop when any replacement of
two SVs by a new one makes the difference exceed a given threshold.
In the following we define a quantity called Maximum Marginal Dif-
ference (MMD) to estimate the difference between two support vector
solutions.

Definition 1: Suppose that the distance from a point �(x) to the
original optimal hyperplane is d, and to the new hyperplane determined
by the simplified solution is d0. The Marginal Difference (MD) on�(x)
regarding to the two solutions is

MD(�(x))
def
= jd� d0j (16)

and the difference between two solutions is defined as

MMD
def
= max

i=1...N
MD(�(xi)) (17)

where x1; . . . ; xN are original support vectors.
The MMD uses the differences between two distances from the

image of original support vectors to the two discriminant hyperplanes
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TABLE I
BOTTOM-UP SIMPLIFICATION ALGORITHM

to estimate the difference between two support vector solutions. The
reason for not using the difference between two normal vectors of
the two hyperplanes k	 � 	0k is that this quantity depends too
much on k	k and k	0k. For complicated problems (k	k is large), a
small difference between two hyperplanes may cause a big difference
k	�	0k, while for easy cases, a small k	�	0k corresponds to a big
difference between hyperplanes, so there is a big difference between
the two solutions.

3) The Algorithm: The algorithm for simplifying support vector so-
lution is described in Table I. It iteratively selects two support vectors
and tries to replace them by a newly created vector. The process will
stop when there is no replacement success, and finally all coefficients
and reduced vectors are recomputed to get a better approximation.

C. Pursuing a Better Approximation

A better approximate solution can be achieved by applying the un-
constrained optimization process to minimize F = k	 � 	0k with
respect to all zj and �j together (phase 2 in [2]). Though the cost is
high (working in a space of (d + 1)NZ variables), this process can
bring an effective reduction in the objective function F , or effective
improvement of the simplified solution.

IV. EXPERIMENT

To assess its effectiveness, we applied proposed method to simplify
ten binary classifiers trained to distinguish one digit from others in
the USPS handwritten digit recognition database. The dataset contains
normalized gray scale images of handwritten digits taken from US zip
codes; the size of each image is 16� 16 pixels, and the data set is di-
vided into a training set of 7291 images and a test set of 2007 images.
For each binary classifier trained by a Gaussian kernel or by a poly-
nomial kernel, different values of MMD were used to give a different
reduction rate in number of SVs as well as different levels of loss in gen-
eralization performance. The first column in Table II displays different
values of threshold MMD (MMD = 0:0 for original machines). The
columns titled “# of SVs” display the total number of SVs in all ten bi-
nary classifiers. There are two kinds of errors. The first, named “Phase
1 Errors,” were produced by the simplified classifiers using the simpli-
fication process described in Section III-B (phase 1), and the second,
named “Phase 2 Errors,” were produced by those using the optimiza-
tion process described in Section III-C (phase 2) after phase 1 finished.
For both kernels we could reduce more than 90% of SVs with only a
minor loss in generalization performance.

TABLE II
REDUCTION IN NUMBER OF SVS AND THE CORRESPONDING LOSS IN

GENERALIZATION PERFORMANCE WITH DIFFERENT VALUES OF MMD

V. DISCUSSION

We have described a method to reduce the computational complexity
of support vector machines by reducing number of support vectors
comprised in their solution. Our method has several advantages com-
pared to earlier reduced set methods. First, the reduced vectors are con-
structed in a more “natural” way, leading to a more “meaningful” re-
duced set. Each vector in the reduced set could be considered as rep-
resentative of several closed original SVs belonging to the same class.
The second advantage lies in the uniqueness of the result in finding
reduced set. With our proposed method, each reduced vector corre-
sponds to the unique maximum point of a one-variable function on (0,
1), and the result of the finding (for both two phases) is unique be-
cause we search from the same initial point and use the same strategy.
All the results described in this letter can be reproduced easily with a
one-run test. Reproduction is difficult and very expensive, if not im-
possible, for the former methods because for each reduced vector they
have to solve a multivariate parameter optimization problem, and the
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search has to restart many times with different initial points. For the
second phase optimization, as noted in [10], the optimization also must
be restarted to make sure that the global minimum of the cost function
is actually found. The third advantage is its competitive SVs reduction
rate while preserving well machine’s performance. Experiments on the
USPS dataset show that a reduction rate of 90.0% can be achieved with
only a 0.3% loss in predictive accuracy (Gaussian kernel, MMD =
1:0), and 91.3% with a 0.2% lost (polynomial kernel, MMD = 1:2).
The corresponding numbers reported in [10] are (for Gaussian kernel)
90% reduction rate with 0.3% loss.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: For Gaussian RBF kernels, � maps each input vector
onto the surface of the unit hypersphere in feature space, so we have
k�(z)k = 1 for every z; kMk is a constant and can be calculated via
�(xi) and �(xj). (7) is equivalent to

max
z

M � �(z): (18)

For the extremum, we have 0 = rz(M ��(z)). To get the gradient
in terms of K , we substitute M = m�(xi) + (1 � m)�(xj) and
K(x; y) = exp(�kx � yk2) to get the sufficient condition

0 = rz(M � �(z))

= 2m exp(�kxi � zk2)(xi � z)

+ 2(1�m) exp(� kxj � zk2)(xj � z) (19)

leading to

z =
s=i;j �s exp(�kxs � zk2)xs

s=i;j �s exp(�kxs � zk2)
(20)

or

z = kxi + (1� k)xj (21)

where

k =
�i exp(�kxi � zk2)

s=i;j �s exp(�kxs � zk2):
(22)

Because �i�j > 0 (or xi and xj belong to the same positive or
negative class) then 0 < k < 1. (21) means that z always lies on
the segment connecting xi and xj . To ease the finding of z we define
f(k) = M � �(z) and search for the maximum point of f(k)

f(k) =M � �(kxi + (1� k)xj)

= m exp(�kxi � xjk
2(1� k)2)

+ (1�m) exp(�kxi � xjk
2
k
2)

= mC
(1�k)
ij + (1�m)Ck

ij (23)

where Cij = exp(�kxi � xjk
2) = K(xi; xj)

APPENDIX B
PROOF OF PROPOSITION 2

Proof: For polynomial kernels,�maps each input vector x lying
on the surface of a hypersphere of radius r(kxk = r) onto the surface
of a hypersphere of radius r2p in the feature space. To approximate M
by �(z) we can constrain �(z) to lay on the surface of the same hy-
persphere with M in feature space without any lost in generality. This
is equivalent to constraining z to lie on the surface of the hypersphere
of radius kMk1=p in the input space, and (7) becomes

max
z

M � �(z) (24)

subject to

kzk = kMk1=p: (25)

The following lemma shows that the (vector) solution of (24), xi,
and xj are linearly dependent.

Lemma 1: The input vector z that maximizes M � �(z) in (24) is
linearly dependent with xi and xj .

Proof: Replacing M = m�(xi) + (1�m)�(xj) into (24) we
have

M � �(z) = (m�(xi) + (1�m)�(xj)) � �(z)

= m(xi � z)
p + (1�m)(xj � z)

p
: (26)

Suppose that z is an input vector satisfying constraint (25) and z1 is
the orthogonal projection of z on the plane determined by xi and xj .
Let’s consider input vector z0

z
0 =

kzk

kz1k
z1: (27)

We have z0 satisfying constraint (25) and xi � z0 � xi � z; xj � z
0 �

xj � z, or M � �(z0) � M � �(z). This means that the optimal vector
zopt for maximizing M � �(z) lies on the plane (xi; xj), or zopt is
linear dependent with xi and xj .

Because the solution of (24), called zopt, lies on the plane (xi; xj)
and kzoptk = kMk1=p, there exits a vector z� and a scalar k such that

z
� = kxi + (1� k)xj (28)

and

zopt =
kMk1=p

kz�k
z
�

: (29)

Call g(z) = M � �(z), we have

g(zopt) =M � �(zopt)

= m(xi � zopt)
p + (1�m)(xj � zopt)

p

=
kzoptk

p

kz�kp
[m(xi � z

�)p + (1�m)(xj � z
�)p] : (30)

Because zopt satisfies (25) then kzoptk
p = kMk. Replacing z� =

kxi + (1 � k)xj into (30) leads to

h(k) = kMku(k)v(k) (31)

where u(k) and v(k) are defined in (12) and (13).

APPENDIX C
PROOF OF PROPOSITION 3

Proof: Once we replace xi and xj by z, or approximate M by
�(z) in feature space, the difference between two solutions will be, for
every input vector x

d(�) = j�mM � �(x)� ��(z) � �(x)j

= j(�mM � ��(z)) � �(x)j: (32)

This difference will be minimized when d(�) gets the min-
imum value. In (32) d(�) can be minimized by minimizing
d1(�) = k�mM � ��(z)k, and its minimum point is at

� =
�mM � �(z)

k�(z)k2
(33)
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