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An Approach to Concept Formation Based on Formal

Concept Analysis

SUMMARY  Computational approaches to concept forma-
tion often share a top-down, incremental, hill-climbing classifica-
tion, and differ from each other in the concept representation and
quality criteria. Each of them captures part of the rich variety
of conceptual knowledge and many are well suited only when the
object-attribute distribution is not sparse. Formal concept anal-
ysis is a set-theoretic model that mathematically formulates the
human understanding of concepts, and investigates the algebraic
structure, Galois lattice, of possible concepts in a given domain.
Adopting the idea of representing concepts by mutual closed sets
of objects and attributes as well as the Galois lattice structure for
concepts from formal concept analysis, we propose an approach
to concept formation and develop OSHAM, a method that forms
concept hierarchies with high utility score, clear semantics and
effective even with sparse object-attribute distributions. In this
paper we describe OSHAM, and in an attempt to show its per-
formance we present experimental studies on a number of data
sets from the machine learning literature.

key words: machine learning, concept formation, formal concept
analysis, concept lattice, concept hierarchy.

1. Imntroduction

While supervised learning (learning from examples) is
relatively well developed and understood, unsupervised
learning (concept formation and discovery) is certainly
still a great challenge in machine learning. In recent
years there has been a growing interest in concept for-
mation and several computational models have been
developed for its two simultaneous tasks:

Gliven a set of object descriptions;
Find a hierarchical clustering that determines
useful subsets of objects (clustering);

¢ Find intensional definitions for these subsets of
objects (characterization).

Concept formation differs from the traditional nu-
merical unsupervised clustering in finding not only hier-
archical clusters of data but also their ’'good’ conceptual
descriptions. It differs from inductive learning from ex-
amples in dealing with objects which are not assigned
to classes a priori. Although concept formation meth-
ods often share a top-down, incremental, hill climbing
classification with the assumption that each object is
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described as a point in a discrete p-dimensional (at-
tribute) space, they differ mainly {rom each other in
the concept representation and criteria of goodness (bi-
ases). Most concept formation methods employ one
of the three well known views on concepts (classical,
probabilistic and exemplar) and their criteria used to
modify and evaluate the concept hierarchy are mostly
local and/or heuristic [4], [5].

CLUSTER/2 [9] is one influential conceptual clus-
tering method that forms categories with ’good’ con-
junctions of common features to all category members.
Its bias is to prefer short and specific conjunctive de-
scriptions. AUTOCLASS [1] employs a probabilistic
representation for each cluster and a Bayesian method
to form clusters. Its bias is defined by a collection of
prior probability distribution over the space of clusters
including priors on the number of true clusters and pri-
ors on their attributes. UNIMEM [7] organizes concepts
in the hierarchy with an concept description as conjunc-
tion of attribute-value pairs. The search in UNIMEM is
guided by the idea of predictiveness and predictability
though these notions are not formally defined with clear
semantics. COBWEB [3] is often referred to as hav-
ing many positive characteristics. It employs a proba-
bilistic representation for concepts and a heuristic mea-
sure called category utility. The search of COBWEB is
guided by its bias of finding a set of clusters that maxi-
mizes category utility. Like COBWEB, ARACHNE [§]
represents knowledge as a hierarchy of probabilistic con-
cepts, and focuses on the structural quality of the hier-
archies while maintaining high predictive accuracy.

Concept formation systems are often based on a
measure of similarity between objects and, depending
on the used measure, many of them are well suited only
when objects are described in terms of a fixed number
of attributes. However, in many real-world situations
objects are not described by the same attributes. Often,
only a few attributes are related to a given object and
the description of this object does not concern other
attributes in the whole set of attributes. For example,
each disease is described by a small number of symp-
toms from the set of all symptoms for certain diseases.
In these cases the object-attribute distribution is always
sparse.

Formal concept analysis, which has been developed
during the last ten years by Wille and his colleagues,
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for example, [11], [12], [2], is a set-theoretic model that
mathematically formulates the human understanding of
concepts, and studies the algebraic structure of possi-
ble concepts in a given domain. Adopting the idea of
representing concepts by mutual closed sets of objects
and attributes as well as the Galois lattice structure for
concepts in formal concept analysis, we propose in this
paper OSHAM (standing for Making Automatically a
Hierarchical Structure of Objects), a novel concept for-
mation method which is highly comprehensible and ef-
fective even with sparse object-attribute distributions.
In section 2, we briefly present formal concept anal-
ysis, the method OSHAM, and prove its correctness.
Section 3 provides empirical results of OSHAM, par-
ticularly with data sets extracted from the UC Irvine
Repository of Machine Learning Databases. Section 4
concludes with a summary, related and future works.

2. Description of OSHAM
2.1 Formal Concept Analysis

Formal concept analysis aims to formulate the philo-
sophical understanding of a concept as a unit of two
parts: its extent (all objects belong to the concept) and
its intent (collection of all attributes shared by all those
objects). Formal concept analysis may be considered to
play a similar role in unsupervised learning as version
spaces [10] do in supervised learning. As it is often
difficult to list all objects belonging to a concept and
usually impossible to list all its attributes, it is natural
to work within a specific contezt in which the objects
and attributes are observed.

Definition 1: A context is a triple (O, A, R) where O
be a set of objects, A be a set of attributes and R be a
binary relation between O and A, i.e., R C O x A and
(0,a) € R is understood as the fact that object o has
attribute a.

The current version of OSHAM limits itself to sym-
bolic attributes, each attribute e has a finite set of
values, dom(a) = {vq,,Vass-s Va,, }. In that context,
saying “object o has attribute ¢” means that object o

haa attribnte a4 with aln
nas atiriouie 4 witil SOme vVa:ue ual

ity of representation, we describe OSHAM with binary
attributes. OSHAM has been implemented for multi-
valued attributes and may be extended to more sophis-
ticated context such as mixed numeric and symbolic
domains, predicate logic, etc.

Definition 2: Two derivation operators p : p(A) —
©(0) and A : p(0) — p(A), where p(0) and p(A4) are

the power sets of O and A, are determined as follows:

SCA, p(8)={0o€O | Vac S (o,a)€ R}
XCO, MX)={ac A | Yoe X,(0,a) € R}

Definition 3: An attribute subset S of A is called
closed it Xp(S) = S (X of O is closed if pA(X) = X).

Tar the cimmnlic.
£OF a4 5impaic

For all S C A the subset p(S) is closed and is called to
be generated by S (for all X C O the subset A\(X) is
closed and called to be generated by X).

We are particularly interested in the subsets of ob-
jects and attributes which are closed under the oper-
ators p and A. The main reason is that, restricted to
these closed sets, p and X are two order-reversing one-
to-one operators. The following theorem indicates a
natural “duality” between objects and attributes.
Theorem 1: The mappings A and p define a Galois
connection between p(0) and p(A).

As a consequence, the following properties hold:

if S1CS, then p(S1) 2 p(S2) and
Ap(S1) € Ap(S2)
then A(X7) 2 A(X3) and
PA(X1) € pA(X>
S CAp(S), X CpA(X)
pro=p, ApA =X, Ap(Ap(S)) = Ap(S)
P(U,’ Sj) = ﬂj P(Sj)v /\(Uj Xj) = ﬂ /\( )

Definition 4: A concept Cis a pair (X, 9) Wlth XC
0, S C A satislying p(S§) = X and AM(X) = S (Le., X
and § are closed). X and S are called the eztenszon
and the intension of C, respectively.

The set of all concepts (X,S) of the context
(O, A, R) is denoted by B(O, A, R). Consider one more
order relation “subconcept-superconcept” (denoted by
<) that constitutes the most important structure on
B(O, A,R).
Definition 5: !
concept (X3, 82) if X1 2 X, which is equivalent to
S1 C S;. (X32,82) is then subconcept of (X1, 51).
Basic theorem: Let (O, A, R) be a context. Then
B(O, A, R) := (B(O, A, R), <) is a complete latticel in

which infimum and supremum can be described as fol-

lows:
/\ Xt7St ﬂ Xt7>‘p U St

if X, C X,

~—

teT teT teT
V (X5,8:) = (pA(|J X2), () Se)
teT teT teT

In general, a complete lattice L is isomorphic to
B(0, A, R) if and only if there are mappingsy: O — L
and u : A — L such that yO is supremum-dense in
L (ie. L ={VX|X C v0}), pA is infimum-dense in
L (ie. L = {AX|X C pA}), and (0,a) € R —
¥(0) < pfa) for all 0 € O and @ € A. In particular,
L = B(L,L,<).

The basic theorem shows the algebraic structure of
the concept space. Let us illustrate the concept lattice
with an example given by the cross-table in Table 1.
This table can be understood as a description of a for-
mal context: its objects are the eight students whose
names are heading the rows (Anna, Boris, Carol, Dana,

tA lattice L is complete when each of its subset X has a
least upper bound and a greatest lower bound in L.
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Emily, Frank, Garis, Henri, denoted by A, B, C, D, E,
F, G, H) and its attributes are the six hobbies which
are represented by the columns (Sport, Music, Movie,
Reading, Cooking, Sleeping, denoted by Sp, Mu, Mo,
Re, Co, Sl); furthermore, the symbols X indicate when
an object has an attribute, i.e., which student has en-
joyed in which hobby. The corresponding concept lat-
tice is represented in Figure 1.

\ [Sp [Mu[Mo[Re[Co]S

A X X X X
B X X X %
C X X X

D | x X X X
E X X X
F X X X X

G X %

H X X X

Table 1. Context about hobbies of students

Formal concept analysis provides a mathematical
model of conceptual knowledge which enables us to ful-
fill specified aims. Some efforts have been pursued to
find and draw the concept lattice with a computer or
to apply it in data analysis and knowledge acquisition,
see [12], [13]. The number of all conceptsin a real-world
context, in the worst case, may be an exponential func-
tion of the number of objects or attributes. Just as a
human considers only some special useful concepts, an
efficient learning method in a real-world context should
not carry out an exhaustive search of the whole concept
lattice.

The basic idea of OSHAM is to generate a part
of the concept lattice corresponding to a concept hier-
archy with a high utility score. As p and A are two
order-reversing one-to-one operators, OSHAM tends to
a tradeoff between the coverage and length of con-
cept’s intensions in order to guarantee forming suf-
ficiently general and informative concepts, where the
coverage ©(S) of an attribute subset S is defined by
©0(9) = card(p(9))/card(0O). Starting from a set of ob-
jects, OSHAM detects and organizes recursively con-

cents at different levels ceneralitv in the concent hi-
cepls at qifterent leve:is generaity in tne concept ni

erarchy. Each level of the hierarchy corresponds to a
partition of the whole object set. Each concept is then
clustered recursively into subconcepts with more spe-
cial properties.

OSHAM is described in a main algorithm and aux-
iliary procedures. Starting from O and A, a hierarchy
H which is empty at the beginning will be formed grad-

uﬂ]]}fl F‘ﬂ"‘ Qimh];f’;f‘f as PQ{"]’\ nnr‘]p in 1']’\!3 ]’ﬁprar(‘hv VV;]]

ally. For simplicity, as each node in the hierarchy will
be found corresponding to a closed object set generated
by a closed attribute set and OSHAM is applied recur-
sively, we identify in what follows a concept (p(S), S)
on the hierarchy with its extension p(S) or its inten-
sion S. Each concept C' = (p(S), 5) is determined by
a 6-tuple description <name, level, {superconcepts},
{subconcepts}, S, p(S) >.

{A,B,C,D,E,F,G,H)(}

[ADERGp ]| [(AB.CD.F.GMuy]| [(B.C.EFRMo)| [(ABCFGH®Re | [(0.6.M(Co)] [(ABDEHSD ]

[(A,0,F}(sp,Mu) | [(A,B,C,F.G}(Mu,Re)| [ A, D.E)(Sp. 8] [ (A.B,D)(Mu,S)) (A, B, H) (Re, S1)
{E, F) (Sp, Mo) (D, G} (Mu, Co) (B, E) (Mo, S1) [(6.H) (Re, Co) | {D, H} (Co, SN)
i S iran
[[(A.F)(Sp.Mu, Re)] [ (B.C.F)(Mu,Mo,Re) | [ (G) (Mu, Re, Co)] , B) (Mu, Re, S1) (E) {Sp, Mo, SI) (H) (Re, Co, S1)
~\
[(A}(Sp.Mu,Re.S)] [ (F)(Sp.Mu,Mo.Re} | \[ (D) (Sp.Mu,Co,S)) | (B} (Mu, Mo, Re, SI)_|
(}(Sp, Mu, Mo, e, Co, SI}
Fig. 1  Concept lattice of the formal context in Table 1

2.2 Algorithm OSHAM (0, A, H)

Input Object set O, attribute set A, concept
hierarchy H

Result H formed recursively

Top-level Call OSHAM (O, A, H) with all initial
elements of O and A; H is empty

Variables w is the set of classified objects, 6 is a

given threshold.
1. Initially w = 0.

2. Verily the splitting conditions of (O, A). If one of
the following conditions hold:

a. ClosedProperAttSet (O, A) = failure;
b. card(0) < 6;

then consider (O, A) as an unsplitable concept and
return.

3. Split (O, A) into subconcepts corresponding to a
partition of O. To form subconcepts repeat the
steps a—d until O\w = 0:

a. Find a promising attribute o* by procedure
MaxCoverage (O, 4,w, a*).

b. Find a maximum closed attribute subset S
containing a* by procedure MaxClosed AttSet
(0,4, a*, 5).

c. Form (p(S), S) as a subconcept of (O, A). Let
w=wUp(S).

d. Form intersecting subconcepts corresponding
to intersections of p(S) with extensions of
existing concepts on H excluding its super-
concepts by procedure IntersectionConcept
(H,S).

4. For each subconcept (p(S5),5) formed in the step
3, apply recursively OSHAM (O, A, H) with O =
p(S),A=A\S.
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As OSHAM is applied recursively in forming con-
cepts at different levels of the generality, the split-
ting conditions determine whether a concept is possible
(condition 2.a) or worth (condition 2.b) to split fur-
ther into subconcepts. The condition 2.b guarantees a
consideration on concepts that cover at least some min-
imum number of objects. Algorithm OSHAM is refined
by the following auxiliary procedures.

2.3 Auxiliary procedures

ClosedProperAttSet (O, A)
/* Determine there exist or not a closed proper subset
of the attribute set A */

1. Determine a* as attribute that satisfies ¢({a*}) =
mazqeap({al}).

2. Determine the subset of attributes S = {a € 4 |

p({a}) = p({a”})}

3. if the coverage ¢({a*}) < 1 then S is a proper
subset of A, return success else return failure.

MaxCoverage (0, A, w,a*)

/* Find attribute a* so that w U p({a*}) is the largest
cover of O by the same way described in procedure
ClosedProperAttSet (O, A). If many attributes a sat-
isfy this condition, choose a* arbitrarily that minimizes
card(w N p({a})) (the minimum intersection condition)
*

MaxClosedAttSet (O, 4,a*, S)
/* Find the closed attribute subset containing a given
attribute a* */
Let S = {a*}.
for every a € A\ {¢*} do
if p({a}) = p({a*}) then S = SU {a}.

IntersectionConcept (H, 5)
/* Form intersecting concepts from a given concept

(p(5),5) */

1. for every existing concept (p(5'), §') on H, exclud-
ing superconcepts of (p(S),9), if p(S) N p(S") # 0
then create the intersecting concept (p(S5"), $").
The extension p(S”) is the intersection of the
extensions of two constituent concepts, p(S") =
p(S) 0 p(S"). The intension S” is the closed at-
tribute set found by procedure MaxCLosedAttSet
(O, A, a*, S) where a* is one attribute chosen arbi-
trarily from Ap(S").

2. Apply recursively IntersectionConcept (H, S").
2.4 Correctness of the algorithm
In this subsection we will prove some properties which

shows that OSHAM forms correctly concepts accord-
ing to the definitions in 2.1. First, we remark that each

time when OSHAM is applied to an existing concept it
generates subconcepts of this concept, and the proce-
dure IntersectionConcept ensures that each level of the
hierarchy corresponds to a partition of all initial objects
of O. As OSHAM is based on its auxiliary procedures,
we need to show that these procedures are correct.
Proposition 1: Procedure ClosedProperAttSet de-
termines a closed attribute set.
Proof: Since A # 0, so there exists a* € A: a({a*}) =
mazqecac({a}). Thus, according to procedure Closed-
ProperAttSet, S = {a € A | p({a}) = p({a*})} # 0
since a* € 5. We need to show that S is closed. It
is proved in formal concept analysis that an attribute
set is closed if and only if it corresponds to a maxi-
mal rectangle in the object-attribute matrix. The set
S generated by procedure ClosedProperAttSet contains
all attributes a covering the same set p({a*}), and as a*
covers a maximum number of objects, it is clear that
S corresponds to a maximal rectangle in the object-
attribute matrix. O
Proposition 2: The attribute set S determined
by procedure MaxCoverage and MaxClosed AttSet is
closed.
Proof: This follows directly from the description of
these procedures as they employ the same way of find-
ing a* described in ClosedProperAttSet. O
Proposition 3: Procedure IntersectionConcept
forms correctly concepts.
Proof: There exists at least one a* € Ap(S”) because
Ap(S8") = Mp(S) N p(S")) 2 SUS as each object
belonging to p(S) N p(S’) has all attributes of S and
S’. The procedure MaxClosed AttSet ensures to find,
from a* € Ap(S"), the maximal rectangle in the object-
attribute matrix. Thus, §” is a closed attribute set
corresponding to p(5) N p(S’). O

In formal concept analysis, when we construct a
concept lattice from a context, the number of con-
cepts can be exponential in the size of the context,
and the complexity of finding concepts is exponential,
since the number of concepts may be large. More pre-
cisely, the upper bound of complexity of determining all
concepts of a given context (O, 4, R) is (|O]|A|?) times
the number of concepts. The complexity of OSHAM is
O(|O||4]), and the concept hierarchy is constructed by
OSHAM in linear time in the number of objects and
the total number of attributes.

3. Experimental results

OSHAM version 1.0 is written in ANSI C and is capa-
ble of running on a wide range of platforms. It has been
tested using a number of databases, particularly those
from the UC Irvine Repository of Machine Learning,
including the Wisconsin breast cancer, Lung cancer,
DNA prometer gene sequences, large soybean disease,
and mushroom. Results from two of them are given
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below. The experiments have been designed as follows:

e divide the data set randomly into training and
testing data;

e run OSHAM on the training data with different
parameters without using the class information in
the concept formation process; only use the class
information to name the generated classes;

e match testing data set with the concept hierarchy
and evaluate the prediction accuracy.

3.1 Wisconsin Breast Cancer Data

This data set contains 699 examples of patients with
breast cancer (as of 15 July 1992) represented by
9 integer-valued attributes, respectively are Clump
Thickness, Uniformity of Cell Size, Uniformity of Cell
Shape, Marginal Adhesion, Single Epithelial Cell Size,
Bare Nuclei, Bland Chromatin, Normal Nucleoli, Mi-

tncee. Bach inctance liec in one of twa noccihle clagces
¢0SCS, 1Lalil 1IsuadliCl 1iCs 11 OIIC C1 VWO POssLIC Liasses,

benign or malignant, with the class distribution being
benign: 458 (65.5%) and malignant: 241 (34.5%).

559 instances are randomly chosen for the training
set and the remaining 140 are used for testing. OSHAM
1s tested over 40 runs with different values of parame-
ters on the training set. Following are some generated
concepts extracted from the text output of OSHAM:

CONCEPT 42

Level 5

Superconcepts = {40}

Subconcepts = {47 48 49}

Defining_Feature = {(4,2)(8,1)(5,1)(7,1)(3,1)}
Unclassified_Instances = {318 428 457 466}

CONCEPT 48

Level 6

Superconcepts = {42}

Subconcepts = {53 54 55 56}

Defining_Feature = {(6,2)(4,2)(8,1)(5,1)(7,1)(3,1)}
Unclassified_Instances = {86 270 334 425 430 449}

The defining features, for example {(4,2) (8,1) (5,1)
(7,1) (3,1)} are understood as Marginal Adhesion =
value2 N Normal Nucleoli = valuel A Single FEpithe-
lial Cell Size = valuel N Bland Chromatin = valuel A
Uniformity of Cell Shape = valuel. The average per-
centage of successful matched unknown instancesin the
testing data is 94.3%.

3.2 Mushroom data

OSHAM has been tested in a domain of mushroom.
This data set includes 8124 instances each was de-
scribed along 23 attributes all have been nominalized.

Or exneriments consisted of presenting a seagnence of
Ul CAPCIIICILS CONLIELEU O pIosCiiviily o SCQUCIILT U1

1400 randomly chosen instances as training set, and
the rest as testing set. Mushrooms are classified a pri-
ori into two poisonous and edible categories. The data
is collected with missing values.

[CT [ C2 ] C3 [Ca[ C5 [ C6 | |
234 | 753 | 1555 | 403 | 1309 | 1401 | 245
0.79 | 0.88 | 0.07 | 1.0 | 0.05 1.0 0.73
0.21 | 0.12 | 0.93 | 0.0 | 0.95 0.0 0.26

Table 2. Prediction distribution over testing data

The concent hierarchv at the 1
4 1€ CoNCePpL nlerardily al wae il V nsi

six superconcepts, two of which are mainly poisonous
(C3, C5) and four are mainly edible (C1, C2, C4 and
C6). Table 2 shows the prediction rate distribution
over testing data. The first line of the table indi-
cates the number of instances recognized as members
of these concepts. These superconcepts are refined at
lower levels of the hierarchy. The second and the third
lines stand for the edible and poisonous probabilities
estimated for these concepts. There are 245 instances
which are not completely matched by the concept hi-
erarchy. A flexible matching procedure is studying in
order to give a prediction for these cases. The number
of false negative and false positive cases are 166 and
119, respectively. The correct classification rate over
the testing set is 95.2% which is approximalely the best
results reported by other methods in machine learning
literature for the same data set.

4. Concluding Remarks

We have presented a concept formation method based
on formal concept analysis. Formal concept analysis
mathematically formulates the traditional understand-
ing of a concept as a unit of thoughts consisting of two
parts: the extension and the intension. It offers a nat-
ural tool for concept formation tasks with a strong al-
gebraic structure of complete lattices. OSHAM differs
mainly from the work of Wille on formal concept analy-
sis in not carrying out an exhaustive search but generat-
ing a part of the concept lattice in a hierarchical form by
a non-exhaustive manner. Once a level of the hierarchy
is formed, the procedure is repeated recursively for each
existing concept. OSHAM has been implemented and
experimented. It performs reasonably well on various
public data sets in machine learning. By the nature of
the concept representation in formal concept analysis,
OSHAM is effective even with sparse object-attribute
distributions.

If compared to the related work, OSHAM has the

following advantages:

o Concepts are formed with high utility score.
Though the approach is different, OSHAM obtains,
in terms of probability, the high utility score as
other methods using probabilistic concepts, for ex-
ample Fisher’s COBWEB [3], [5]. COBWEB forms
concepts with a high within-class similarity, this
means the probabilities of attribute values for a
given concept, P(A4; = V;;|Cy) are high. OSHAM
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forms concepts in a way such that all objects of
each concept share the same set of attribute values

with highest probabilities P(A; = V;;|C%).

e Many concept formation systems, e.g., COBWEB,
are sensitive to the order of instance representa-
tion. One advantage of OSHAM is that it is com-
pletely independent with this order of instance rep-
resentation.

o Concepts formed by OSHAM have a clear seman-
tics and high coherence. Any concept in the hi-
erarchy is a subconcept of some concepts with
more properties (more specific), and is a super-
concept of some other concepts with less properties
(more general). OSHAM concepts naturally satisly
the condition of vertically well placed concepts in
ARACHNE [8]. In a on-going work, by adding con-
straints on the dissimilarity between classes of ob-
jects, the OSHAM concepts are additionally modi-
fied to horizontally well placed, and as a result they
become well organized.

As OSHAM is under elaboration, it may be possi-
ble to improve it in different directions:

e More evaluation of experts on constructed concept
hierarchies and automatic parameter selection in
order to quickly obtain acceptable results.

¢ Extension of the method to more complex for-
malisms, in particular to the predicate logic.

e OSHAM forms disjoint concepts as do most con-
cept learning systems. By skipping the Intersec-
tionConcept operator, OSHAM can be modified to
form effectively overlapping concepts which are im-
portant in some domains.

e Extension of OSHAM into a hybrid system by com-
bining it with some features of probabilistic, ex-
emplar views and the similarity principle of cate-
gorization. In this on-going work, OSHAM is able
to deal with exceptional cases and unmatched in-
stances.

e OSHAM is a nonincremental concept learning
method that accepts only symbolic attributes. It
is necessary to extend it for numeric attributes and
an incremental learning mode.
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