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Abstract

Imbalanced data learning received considerable atten-
tion from the research and industrial communities. It is
problematic as traditional machine learning methods fail
to achieve satisfactory results due to the skewed class dis-
tribution. Solutions to the problem generally use traditional
machine learners to make a bias decision in favor of the
smaller class. To make such a bias decision, one usually
needs a good assumption of data distributions. The com-
monly made assumptions are Gaussian distributions, sub-
spaces, clusters or the implicit assumptions behind clas-
sifiers. For many imbalanced data sets, due to the short-
age of small class data, distributions are hard to be recog-
nized, making the common assumptions too strong to hold
true in practice. We propose to use a more flexible as-
sumption of the small class lying on a manifold. Based
on recent advances in manifold learning algorithms, ba-
sic sampling strategies to account for skewed class distri-
bution are designed. However, it is also shown that some
interpolation-based sampling strategies suffer from several
statistical drawbacks. Another sampling strategy is derived
to overcome these drawbacks. The algorithms using these
sampling strategies show the merit of the sampling strate-
gies and the utility of the manifold assumption.

1 Introduction

Imbalanced dataset is one with very a skewed class dis-
tribution. For instance, in a binary classification problem,
when one class accounts for only 2%, the other class has
98% of the examples. In such a situation, traditional clas-
sifiers would classify every example to the large class with
an overall accuracy of 98%. However, the small class is
not leant at all. The small class is outnumbered, therefore
prediction for the small class would appear to be less sta-
tistical significant. In practice, the problem is encountered
in various domains, for example, diagnoses of rare diseases

[17], fraudulent transaction detection [5], oil spills in satel-
lite images [9], rooftop detection [11], biological data [12],
network intrusion detection [10], etc. In these examples, the
small class is usually of primary interest; hence an overall
accuracy of 98% does not make any sense.

The reason that traditional classifiers fail to learn the
small class is that they tend to make the fundamental as-
sumption of an equal class distribution. When dealing with
imbalanced data, most approaches bend this assumption
by introducing biases into traditional classification meth-
ods. The ground, on which a bias is introduced, is usu-
ally some form of data distribution. A natural assumption
is that small class data is simply sparser. In this case, re-
balancing class distribution, either by adding examples to
small class (upsampling) or removing examples from the
large class (downsampling), would be sufficient. It was ob-
served that these sampling methods did not give a good per-
formance [7]. Simple cost-sensitive method, which gives
distinct costs to classes, does not make much difference in
various classification methods [4]. Similarly, SMOTE [2]
generates synthetic data to add to the small class using near-
est neighbor links. It is basically relied on this assumption.

Various other assumptions have been made on the effect
of imbalanced data. Elkan [4] claimed that rebalancing has
little effect on decision functions, but it is more effective to
use cost-sensitive learning. It was claimed the imbalanced
data effect happens within clusters in the data [13]; rebal-
ancing class distributions on clusters would solve the prob-
lem. The concept of Tomek link is used to downsample the
large class [9]. Imbalanced data effect is attributed to small
disjuncts, the ones with only a few small class examples
[8]. Higher spatial resolution in feature space is given to
small class [18] as small class is thought to occupy a small
region. Various assumptions were proposed, but none have
been made a de facto standard. It is a common belief that
each assumption is only good for some data types. There-
fore, it is necessary to introduce different assumptions and
corresponding solutions for different data types. The less
strict an assumption is, the more applicable it can be.

1



Figure 1. A manifold of small class.

In search of a good assumption for imbalanced data dis-
tribution, we used the notion of manifold. Manifold is a way
to model complicated data distribution and to reveal hidden
structures. The key distinction from previous approaches is
that manifold is aflexible framework, which does not im-
pose strict assumptions on small class data distribution. It
does not require data to lie in clusters, linear subspaces or
small disjuncts. Figure 1 shows an example of the small
class distribution that may be difficult to characterize using
traditional distribution models, and manifold is expected to
be an effective alternative. Having assumed the manifold
structure of small class data, we deal with the imbalanced
data problem by generating synthetic examples with two
sampling strategies.

Different from previous works, we show that the sam-
pling strategies based on interpolation like SMOTE and our
in-class sampling suffer from some statistical drawbacks.
It is shown that those sampling strategies do not increase
the convex hull of the small class data. They also decrease
the variance of the small class. These drawbacks mean that
those sampling strategies may not be sufficient to make a
bias decision in favor of the small class. The out-class sam-
pling strategy is designed to overcome the drawbacks of us-
ing only interpolation-based samplings. We then propose
three algorithms based on the two sampling strategies. Ex-
periments show the necessity of these strategies and the ef-
fectiveness of algorithms based on them.

In this work, we first review the fundamental idea behind
manifold learning in Section 2. We then design two sam-
pling strategies for imbalanced data in Section 3. In Section
4, we describe a family of three algorithms using the strate-
gies. We then evaluate those algorithms in comparison with
other classifiers in Section 5. We then conclude the paper
with some outlooks.

2 Manifold Learning

The driving force of manifold learning is for the problem
of intrinsically low dimensional data that lies in a high di-
mensional space. Such problems are encountered across do-
mains various domains. The target of manifolds learning al-
gorithms is to discover the low and meaningful dimensional
representation of data [16]. The fundamental assumption
in manifold learning algorithms is that data should lie on a
manifold, which is viewed as a Riemannian submanifold of
the ambient Euclidean space and is globally isomorphic to
a convex subset of a low dimensional space [3]. In this sec-
tion, we review the key idea behind the manifold assump-
tion and borrow it for the imbalanced data problem.

Recently, a new family of manifold learning algorithms
has been proposed to characterize the intrinsic geometric
structure of a manifold and embed it into a low (hopefully
meaningful) dimensional space. Representative algorithms
are ISOMAP [16] and LLE [14]. The frameworks of these
algorithms are quite similar and can be unified as: con-
structing a neighborhood graph and distill information, then
embedding the data into a low dimensional space preserving
the information. The first step in the framework extracts in-
formation characterizing the manifold. After the abstraction
process, the information is used to construct a low dimen-
sional space representation of the original manifold. Var-
ious algorithms extract different information for computa-
tional purposes, but basically, the information is based on
some neighborhood graphs. The ISOMAP algorithm can
be described as follows:

Given a data setX = {xi}n
i=1, xi ∈ Rd, we wish to find

a mappingφ : Rd → Rd′ such that the mapping preserves
some desired information.

1. Determine which points are neighbors in the manifold
based on distance between pairs of pointsd(xi, xj).
Two simple methods are connecting points within
some fixed radiusε or connecting all k-nearest neigh-
bors. The connections form a weighted graph G.

2. Estimate the geodesic distancesdM (xi, xj) between
all pairs of points on the manifold by the shortest path
distancesdG(xi, xj) from the graph G.

3. Use the Multidimensional Scaling method to construct
an embedding ofX in the lower dimensional space
yi = φ(xi) ∈ Rd′ by minimizing an objective func-
tion that tries to preserve geodesic distances.

LLE is slightly different that instead of preserving pairwise
distances, it preserves linear coefficients that reconstruct
each data point from its neighbors.

These algorithms directly model the manifold of data
points by constructing a neighborhood graph. Information



on the graph, such as geodesic distances or linear coeffi-
cients to reconstruct data points, characterizes the manifold.
These algorithms are capable of modeling nonlinear mani-
folds. Manifold modeling is flexible in the sense that it does
not make any strict assumption of data distribution like clus-
ters, linear subspaces, Gaussian mixtures and so on. This
motivates us to use manifold to model the small class in im-
balanced data. The reason is that in imbalanced data, the
small class is difficult to learn due to its shortage of data
and may not exhibit any regularity. Therefore, the manifold
assumption would be weak enough to for imbalanced data,
when other common but strong assumptions fail.

3 Sampling Strategies

Having assumed that small class examples lie in a man-
ifold, the first step in a manifold learning framework could
be used to extract relevant information of the manifold to
deal with imbalanced data. As the small class is short of
training examples, it is expected that the manifold would be
represented by an inefficient number of examples. There-
fore, we use the manifold assumption to generate more syn-
thetic training examples to add to the small class in order
to account for the imbalanced data problem. We fisrt de-
scribe the in-class sampling toenhancethe manifold struc-
ture based on interpolation operators. Then statistical draw-
backs of interpolation-based samplings are presented. To
overcome the drawbacks, we propose the out-class sam-
pling to expandthe manifold structure, enlarging the mani-
fold region to have a bias in favor of the small class.

3.1 In-class Sampling

Our method for modeling the manifold of the small class
follows the common framework of manifold learning as
ISOMAP and LLE. To enhance the manifold structure, the
strategy generates synthetic examples for the small class
with the requirement that synthetic examples should lie in
the manifold. Therefore, it is natural to choose synthetic
examples as points in the line segment connecting nearest
neighbors. The in-class sampling strategy is described in
Figure 2.

This strategy is similar to SMOTE [2] in the sense that
they both base on interpolation operators on the small class
only, i.e. using nearest neighbor line segments. The strategy
is different from SMOTE in the sense that it is fully deter-
ministic, while SMOTE chooses among k-nearest neighbors
randomly and generate synthetic examples randomly in the
line segments. The idea of generating synthetic examples of
to make data more dense was also used in [6]. The assump-
tion behind is that line segments between nearest neighbors
are likely to lie inside or near the region of the small class.

Input: D+ is set of small class examples,xi ∈ D+

Parameter: k is number of nearest neighbors,
n is sampling degree

Output: Synthetic examplesS+

1. Look forxi’s k-nearest neighbors inD+.
NN+(xi) ⊂ D+, |NN+(xi)| = k

2. Choose from its k-nearest neighbors n examples
with the largest distances toxi.
nNN+(xi) ⊂ NN+(xi), |nNN+(xi)| = n

3. For each chosen neighbor, generate a synthetic example
as the middle point of the line segment between it andxi.
∀xj ∈ nNN+(xi), xij =

xi+xj

2
→ xij ∈ S+

Figure 2. In-class Sampling Strategy.

This is also the assumption of most of manifold learning
algorithms, to model manifold with neighborhood graphs.

3.2 Drawbacks of Interpolation-based
Sampling

In-class sampling and SMOTE add synthetic examples
into the small class, making numbers of examples from
classes less skewed. However, increasing the number of
examples of the small class does not always have a desir-
able effect. In this section, we show that even having more
examples, one may not have a bias decision. For some clas-
sifiers, generating more synthetic examples these ways has
an opposite effect.

Theorem 1: The synthetic examples generated by in-
class sampling always lie inside the convex hull of the orig-
inal small class examples.

The proof of this property is straight from the convex-
ity of convex hull: all line segments connecting points in-
side the convex hull lie entirely within the convex hull. In
case the shortage of the small class data causes the shrink-
age of the ideal convex hull, only in-class sampling strategy
would be insufficient. For hard margin-based linear classi-
fiers, generating synthetic examples this way does not make
any bias decision.

Theorem 2: The inclusion of synthetic examples into the
original data set reduces the expected (bias-corrected) vari-
ance of small class data.

Proof: Denote the set of small class examples asD+ =
{xi}n

i=1. Then the mean of the set isx = 1
n

∑n
i=1 xi

and its (bias-corrected) variance is:var1 = var(D+) =
1

n−1

∑n
i=1(xi − x)2.

Denote the set ofp generated synthetic examples as
S+ = {xi}n+p

n+1. The new mean of all small class examples

now isx′ = 1
n+p

∑n+p
i=1 xi. The variance of the new small



class data isvar2 = var(D+ ∪ S+) = 1
n+p−1

∑n+p
i=1 (xi −

x′)2.
Denoted = min‖xi − xj‖, 1 6 i < j 6 n and l =

‖x− x′‖.
The way in-class sampling generate synthetic examples

is: xn+m = xi+xj

2 , then for anyx, (xi−x)2 +(xj −x)2 =

2(xn+m − x)2 + (xi−xj)
2

2 > 2(xn+m − x)2 + d2

2 .
If we assume thati, j are random indices in{1..n}, then

the expected value of
∑p

m=1(xn+m−x)2 6 p
n

∑n
i=1(xi−

x)2 − p
2d2.

Then we have:

(n + p− 1) ∗ var2 =
n+p∑

i=1

(xi − x′)2

=
n+p∑

i=1

(xi − x′)2 + 2(x′ − x)
n+p∑

i=1

(xi − x′)

+ (n + p){(x− x′)2 − l2}

=
n+p∑

i=1

(xi − x)2 − (n + p)l2

6 n + p

n

n∑

i=1

(xi − x)2 − p

2
d2 − (n + p)l2

var2 6 (n + p)(n− 1)
n(n + p− 1)

∗ var1 −
(n + p)l2 + p

2d2

n + p− 1

var2 < (1− p

n(n + p− 1)
) ∗ var1

var2 < var1. ¤

(1)

As in-class sampling is a deterministic version of
SMOTE, we can easily see that SMOTE, which is also
based on interpolation operator, suffers from these draw-
backs.

Theorems 1 and 2 show drawbacks for learning imbal-
anced data as for the shortage of training examples; it is
reasonable to expect that the convex hull of the small class
may be shrunken down. It is also expected that the vari-
ance of small class is not greater than the true one. Hence,
using interpolation-based sampling would result in smaller
variances than the true variance. Hence, interpolation-based
samplings cannot generate the correct the true data distribu-
tion for the small class.

These statistical drawbacks may explain why it was
observed by Elkan [4] that rebalancing class distribu-
tions make little different in decision functions, but it is
more promising to use cost sensitive learning. The rea-
son is that rebalancing class distribution traditionally uses
interpolation-based sampling or resampling the original
data sets that would suffer from the drawbacks (or at least
does not give any counter effect). Furthermore, based on
these drawbacks, we will show that it is possible to use ap-

Input: xi ∈ D+ is a small class examples,
D− is set of large class examples.

Parameter: k is number of nearest neighbors,
n is sampling degree,
ε is expansion degree.

Output: Synthetic examplesS+.

1. Look forxi’s k-nearest neighbors inD+.
NN−(xi) ⊂ D−,|NN−(xi)| = k

2. Choose from its k-nearest neighbors n examples
with the smallest distances toxi

nBN−(xi) ⊂ NN−(xi), |nNN−(xi)| = n
3. For each chosen neighbor, generate a synthetic example

as a point in the line
segment between it andxi.

∀xj ∈ nNN−(xi), xij = (1− ε)xi + εxj → xij ∈ S+

Figure 3. Out-class Sampling Strategy.

propriate sampling strategies to overcome these drawbacks.
This would refute the claim from [4].

3.3 Out-class Sampling

The previous section proves that in-class sampling does
not increase the convex hull, or the (bias-corrected) variance
of small class data. However, it is reasonable to think that
the shortage of data for the small class may shrink down
the learned manifold. It is necessary to introduce new syn-
thetic examples to compensate for this effect and hope it
better reflects an ideal small class data distribution. The ef-
fect of shrinking a manifold would move class boundary to-
ward the small class, therefore we wish to expand the mani-
fold toward the boundary of classes. However, detecting the
boundary of classes would be hard and algorithm specific.
A way around this is to look for nearest neighbors from the
other classes (the large class in binary classification prob-
lems). Therefore, we expand the manifold of small class
by generating synthetic examples linking each small class
example to its nearest neighbors in the large class. We call
this out-class sampling as in Figure 3.

As analyzed above, interpolation-based samplings suffer
from those statistical drawbacks. One can easily see that
generating examples using neighborhood links to the other
class, we are likely to overcome those drawbacks. We can
expect the enlargement of convex hulls and the increase of
the variances. This trategy is expected to complement the
effects caused by using interpolation-based samplings. This
strategy is designed to used together with interpolation-
based samplings.

By default, we setε = 1
3 . This means that the generated

examples are at one third of the way from the small class



Input: D+ is set of small class examples,
D− is set of large class examples.

Parameter: k is number of nearest neighbors,
inn is degree of in-class sampling,
outn is degree of out-class sampling.

Output: Synthetic examplesS+.

For eachxi ∈ D+:
1. In-class sampling with sampling degreeinn.
2. Out-class sampling with sampling degreeoutn.

Figure 4. Monolithic algorithm.

examples to their neighbors in the other class. The strat-
egy generates examples in the line segment between a small
class example and one of its neighbors from the large class.
This will move the class boundary toward the large class and
expand the small class region, overcoming the two draw-
backs of in-class sampling. The way that out-class sam-
pling moves the class boundary is different from translating
decision boundary toward the large class as in [1]. Out-
class sampling moves the boundary in original data space
depending on nearest neighbors from the large class. The
farther those nearest neighbors are, the more boundary is
moved. This makes the bias of out-class sampling adaptive
to each example, making it close to cost-sensitive learning
strategies.

4 Manifold Sampling Algorithms

In this section, we describe three algorithms that use
sampling strategies for the imbalanced data problem. The
algorithms differ in the way they deploy those sampling
strategies. These are: the Monolithic, Adaptive and Se-
lective algorithms. The Monolithic algorithm simply com-
bines in-class sampling and out-class sampling. The Adap-
tive algorithm uses the two sampling strategies adaptively
depending on the example being considered. The Selective
algorithm guesses when an example being considered needs
to be sampled.

4.1 Monolithic Algorithm

A natural way to combine the two sampling strategies is
to use both of them. The Monolithic algorithm uses both in-
class sampling and out-class sampling for each small class
example. It is summarized in Figure 4.

For each small class example, there will beinn + outn
synthetic examples generated around it.

Input: D+ is set of small class examples,
D− is set of large class examples.

Parameter: k is number of nearest neighbors,
n is total degree of sampling.

Output: Synthetic examplesS+.

For eachxi ∈ D+:
1.Calculate average distances to nearest neighbors.

pnd(xi) = d(xi, xj), xj ∈ NN+(xi)

nnd(xi) = d(xi, xj), xj ∈ NN−(xi)
inn = round(n ∗ nnd

pnd+nnd
)

outn = n− inn
2. In-class sampling with sampling degreeinn.
3. Out-class sample with sampling degreeoutn.

Figure 5. Adaptive algorithm.

4.2 Adaptive Algorithm

Modelling the small class with a manifold, it is reason-
able to assume that some examples to lie well inside the
manifold, some are on its boundary. If one is inside, it is
better to increase the data density around it. On the other
hand, if one is in the boudary of the manifold, it is neces-
sary to concentrate on expanding the boundary. We present
an adaptive way of generating synthetic examples, called
the Adaptive algorithm, based on the following criteria:

• If a small class example is near the boundary of
classes, use more out-class sampling to expand the
boundary of small class.

• If a small class example is well inside the class region,
use more in-class sampling to increase the density of
the class region.

The algorithm is described in Figure 5. In the algorithm,
there is only one parameter (except for the number of near-
est neighbors), which is the total degree of sampling for
each small class example. We use the relative ratio of av-
erage distance to the small and the other class to determine
how close an examples to the class boundary. The algorithm
calculates the degree of in-class and out-class sampling in
an adaptive manner in step1.

4.3 Selective Algorithm

By modelling the small class with a manifold, one may
expect that there are noises on the manifold. To be robust to
the noise picked by manifold learning algorithms, we pro-
pose to use a simple filtering method that detect the reliable
examples, the one that does not lie well inside the other



Input: D+ is set of small class examples,
D− is set of large class examples.

Parameter: k is number of nearest neighbors,
inn is degree of in-class sampling,
outn is degree of out-class sampling.

Output: Synthetic examplesS+.

For eachxi ∈ D+:
1. Calculating average distances to nearest neighbors.

pnd(xi) = d(xi, xj), xj ∈ NN+(xi)

nnd(xi) = d(xi, xj), xj ∈ NN−(xi)
2. If nnd > pnd, continue next x
3. In-class sampling with sampling degreeinn.
4. Out-class sampling with sampling degreeoutn.

Figure 6. Selective algorithm.

class. The algorithm for this intuition, called Selective al-
gorithm, is based on the following criteria:

• If an example is near the boundary of classes or in the
region of its class, use both sampling strategies to en-
hance and expand the manifold structures.

• If an example is well inside the other class region, do
not sample.

The algorithm is described in Figure 6. The algorithm
has two sampling parameters, in-class and out-class sam-
pling degrees as in the Monolithic algorithm. By default,
we use a heuristics to detect the examples lying closer to
the large class than the small class in step1 and 2. The
heuristics means that when an example is too close to the
other class, it is not used for sampling.

4.4 Discussion

These three algorithms base on different heuristics to
combine in-class and out-class samplings. Monolithic and
Selective algorithms need two parameters, namely sam-
pling degrees while Adaptive algorithm needs only one (like
SMOTE). Monolithic algorithm blindly uses both in-class
and out-class sampling. Adaptive algorithm uses the rela-
tive position of each example on the learnt manifold to have
an appropriate sampling rates. Selective algorithm, on the
other hand, chooses only the examples from the small class
with high confidence to lie on the manifold of the small
class to sample.

5 Experimental Evaluation

In this section, we first carried out experiments to show
that interpolation-based samplings, which decrease the vari-
ances of the small class, would not have the ability to have

−3 −2 −1 0 1 2 3
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Figure 7. Gaussian distributions with differ-
ent sampling rates.

classifiers made a bias decision in favor of small class using
simple synthetic data sets. We then run on real text classi-
fication data sets to show that the algorithms we proposed
actually can help to increase the ability to learn the small
class in comparison with the similar technique of SMOTE.
We also showed that it is also the case in practice that us-
ing out-class sampling, which increases the small class data
variance, can be very significant in real situations.

5.1 Drawbacks of Interpolation-based
Sampling

We simulated simple data distributions to show the draw-
backs of interpolation-based sampling. We generated data
for two class,+1 at (1, 0) ∈ R2 and−1 at (−1, 0) ∈ R2

according to Gaussian distribution with variance1
2 . Class

+1 has 25 examples while class−1 has 800 examples. We
then applied the in-class sampling to class+1 repeatedly 6
times, each time with 100% sampling degrees. After that,
the final data set for class+1 contains exactly 800 train-
ing examples. We monitored the variances of classes and
graphed their (normalized Gaussian) distributions to show
in one-dimensional space in Figure 7.

In the original data sets for both classes, their (bias cor-
rected) variances are very close to 0.5 as generated. During
the course of in-class sampling, the variances of class+1
are 0.4331, 0.4150, 0.4100, 0.4083 and 0.4077. One can
see from the figure that at first, the two distributions are
quite similar and close to the original data generation mod-
els. However, the variance of class+1 quickly decreases
(the tops of the data distributions increase). Please note that
at the 3200% sampling degree for the+1 class, numbers
of training examples of the two classes are equal. How-
ever, optimal classification would make a bias decision for



Table 1. Statistics and F-measure results on Reuters-21578 data.

class #train %train #test SVMs SMOTE Monolithic Adaptive Selective
acq 1569 28.6 696 94.43 94.55 95.55 94.43 94.53
crude 253 4.6 212 87.78 90.26 94.07 93.28 92.37
earn 2840 51.8 1083 74.15 74.51 97.16 97.11 82.90
grain 41 0.7 10 88.89 88.89 95.23 95.23 95.23
interest 190 3.5 81 75.38 79.10 85.18 84.47 86.27
money-fx 206 3.8 87 78.15 79.74 81.87 80.65 81.01
ship 108 2.0 36 70.18 70.18 82.86 82.26 81.01
trade 251 4.6 75 87.41 88.41 95.42 95.42 90.90
average 5485 100 2189 82.046 83.205 90.793 90.356 87.926

the−1 class as their graphs intersect at some positive point.
This demonstrates that only using interpolation-based sam-
pling like in-class sampling or SMOTE, in some case one
cannot recover the true distribution of small class data and
still cannot make a bias decision in favor of the small class.

5.2 Effectiveness of the Algorithms

We evaluate the ability of the proposed algorithms to
learn imbalanced data in various domains. The base learner
in our experiments was Support Vector Machines [15], due
to its high performance on a vast number of domains. How-
ever, the approaches are meant to be general, not bound to
any specific classification method. We showed the perfor-
mance withF measure, defined as:F measure = 2∗ pr∗rc

pr+rc
wherepr and rc respectively are the precision and recall
of the learner on the small class. We deliberately choose
domains in which data potentially has manifold structures:
Reuters-215781 and 20 newsgroups2.

For the two databases, we carried out standard prepro-
cessing as follows. First, we filtered out multiple label doc-
uments. Non-letter characters, short words of less than three
characters and stop words were removed. We then applied
Porter’s stemming3 to the remaining words. Too infrequent
words were removed. These steps left Reuters-21578 data
with 4172 terms, and 20 newsgroups with 17835 terms. For
Reuters-21578, in the end, we chose only eight categories,
which gave us large enough number of documents for the
experiment. Train-test splitting was recommended by the
data sources. Finally, documents were represented using
TFIDF.

We used SVMs from the LIBSVM4 package. We eval-
uated the effectiveness of the proposed algorithms by com-
paring their performance against SVMs itself and SMOTE
on top of SVMs. Table 1 and 2 show the statistics of the

1http://www.daviddlewis.com/resources/t̃estcollections/reuters21578/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.tartarus.org/martin/PorterStemmer/
4http://www.csie.ntu.edu.tw/ cjlin/libsvm/

data sets (number of the small class training examples, its
percentage and number of the small class testing examples)
and the results of each algorithm in a column, namely the
plain SVMs, followed by the SMOTE, Monolithic, Adap-
tive and Selective algorithms. The last rows contain total
numbers for statistics and average results of all data sets for
algorithms.

Parameters for the algorithms were chosen as follows:
For SVMs on text classification, we chose linear kernel.
Regularization parameterC was selected from the high-
est F measure using a cross-validation,C=10 for Reuters-
21578 andC=5 for 20 newsgroups. The other algorithms,
i.e. SMOTE and our sampling algorithms used the same
SVMs parameters. Number of nearest neighborsk=5 for all
experiments. For the sampling degrees (in-class and out-
class sampling) of our approaches and of SMOTE, as noted
previously, they are free parameters; we just run with all
parameters and select the highest ones.

For the Reuters-21578 data in Table 1, on average,
SMOTE gives a little higher F-measure than plain SVMs
(1.159% higher). However, all of the proposed algorithms
give much higher results than SVMs (8.747% for Mono-
lithic, 8.310% for Adaptive and 5.880% for Selective).
Moreover, our algorithms also show a significant improve-
ment over SMOTE (7.588%, 7.151% and 4.721%). This
experiment confirms the merit of proposed sampling algo-
rithms. This also confirms our observation about the draw-
backs of interpolation-based samplings like SMOTE and
proves that out-class sampling strategy is necessary.

Results for the 20 newsgroups data are shown in Table
2. We can see that, in most cases, our proposed algorithms
give some improvement over plain SVMs, and a slight im-
provement over SMOTE. On average, the improvements of
those algorithms over SVMs are: SMOTE: 4.083%, Mono-
lithic: 5.049%, Adaptive: 4.611% and Selective: 4.286%.
One may conclude that in these data sets, it is likely that
out-class sampling is not crucial, that only in-class sampling
would be enough. However, using out-class sampling does
not damage performance as we can see that the approaches



Table 2. Statistics and F-measure results on 20 newsgroup data.

class #train %train #test SVMs SMOTE Monolithic Adaptive Selective
atheism 480 4.3 319 64.43 72.04 72.04 69.85 70.61
graphic 584 5.2 389 68.91 72.14 72.35 71.89 72.09
ms-windows 572 5.1 394 55.41 61.59 64.07 64.06 64.97
pc.hardware 590 5.2 392 61.63 65.07 65.07 65.43 66.07
mac.hardware 578 5.1 385 68.98 72.23 72.66 72.84 72.27
windows.x 593 5.3 392 70.74 74.66 74.93 74.93 73.33
forsale 585 5.2 390 75.77 79.44 81.45 81.17 80.69
autos 594 5.3 395 80.47 82.65 82.65 82.53 82.42
motorcycles 598 5.3 398 87.99 88.80 88.80 88.00 88.83
baseball 597 5.3 397 85.47 86.59 87.86 87.60 86.84
hockey 600 5.3 399 94.22 94.53 94.59 94.42 94.54
crypt 595 5.3 396 86.62 88.80 88.80 87.76 88.62
electronics 591 5.2 393 56.36 65.28 65.28 64.19 65.71
med 594 5.3 396 76.52 80.80 83.81 83.60 81.10
space 593 5.3 394 83.76 86.58 86.58 86.16 86.78
christian 598 5.3 398 77.47 79.62 82.10 82.10 81.36
guns 545 4.8 364 70.83 73.48 74.73 74.27 73.93
mideast 564 5.0 376 78.00 83.13 83.67 83.04 79.62
politics 465 4.1 310 56.32 61.19 64.31 63.49 62.00
religion 377 3.3 251 40.36 53.30 55.48 55.15 54.19
average 11293 100 7528 72.013 76.096 77.062 76.624 76.299

relying on it still give higher F-measures.
One can see that the thee algorithms perform differently

on different data sets. None of them gives the highest F-
measure. Therefore, the three algorithms are options for
user to choose from. Comparing to the original SVMs and
SMOTE, we can see that the three algorithms can utilize the
out-class sampling strategy appropriately.

5.3 The merit of out-class sampling

We claimed the deficiency of in-class sampling and
SMOTE that they may shrink down the data distribution in
term of convex hull and sample variance. The above results
show the merit of combining both in-class sampling and
out-class sampling in comparison to SMOTE. In order to
illustrate the merit of out-class over in-class sampling that
out-class sampling also contribute to the performance, we
take an example of runs oninterestandcrudecategories in
Reuters-21578 with different parameters as in Table 3 and
4. The examples show that only in-class sampling is insuffi-
cient and adding out-class sampling is beneficial. In fact, in
both categories, out-class sampling is the main contribution
to the improvements.

In summary, we have compared our proposed algorithms
with plain SVMs and a sampling algorithm of SMOTE. It
was shown that our proposed algorithms give improvements
consistently over the plain SVMs. The algorithms can also
give significantly higher results than SMOTE. These experi-
ments confirm our claim for the drawbacks of in-class sam-

pling and SMOTE. They also show the merit of manifold
assumption.

6 Conclusion and Discussion

In this work, we used the flexible notion of manifold to
represent small class data distribution. Relying on the mani-
fold leaning methods, we developed sampling strategies and
then combined into three algorithms. Evaluated on text do-
main, our algorithms showed significant improvements in
their ability to learn the small class. It is confirmed that
the notion of manifold is flexible enough for data distribu-
tion of the small class and is beneficial when data lies on
or near a manifold. It is also confirmed that the drawbacks
of interpolation-based sampling like in-class sampling and
SMOTE are among the effects of imbalanced data. This
is an insight into the imbalanced data problem. The pro-
posed algorithms use the out-class sampling strategy appro-
priately to overcome the drawbacks of interpolation-based
samplings.

This work inherits the limitations of manifold learning
methods, not suitable for the cases that manifold learning
fails to model the data distribution. To go beyond the cur-
rent work, we think of using more generative models in-
tegrating with manifold learning algorithms. We think it is
important to investigate different effects of each imbalanced
data problem and design more appropriate sampling strate-
gies for each problem accordingly.



Table 3. interestwith different in-class and out-class sampling degrees.

in-class
out-class sampling degree

0 1 2 3 4 5
0 75.38 84.56 81.82 85.19 84.66 83.64
1 77.27 84.35 81.82 85.19 84.66
2 79.10 85.14 83.12 85.19
3 75.38 84.35 81.82
4 79.10 83.78
5 78.20

Table 4. crudewith different in-class and out-class sampling degrees.

in-class
out-class sampling degree

0 1 2 3 4 5
0 87.78 92.31 94.07 92.97 90.77 89.73
1 89.78 92.31 94.07 92.97 90.77
2 90.27 92.31 94.07 92.97
3 90.27 92.31 94.07
4 89.87 92.31
5 89.87

In this work, we infact do not learn the manifold of the
small class explicitly. Instead, it is left as a metaphor to
design suitable algorithms. It is not possible to expect the
small class data to be densely sampled for manifold learn-
ing algorithms to work well. However, only some part of
the small class densely connected would suffice to apply
our algorithms. If the small class is not densely sampled
anywhere, it would be difficult for any method to detect any
regularity to learn the small class. The benefit of assuming
manifold lie in the fact that manifold is a flexible notion; it
can characterize complicated distributions as we are likely
to expect in imbalanced data problem.
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