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Abstract

In this paper we present interesting relationships between the context model, modal

logic and fuzzy concept analysis. It has been shown that the context model proposed by

Gebhardt and Kruse [Int. J. Approx. Reason. 9 (1993) 283] can be semantically ex-

tended and considered as a data model for fuzzy concept analysis within the framework

of the meta-theory developed by Resconi et al. in 1990s. Consequently, the context

model provides a practical framework for constructing membership functions of fuzzy

concepts and gives the basis for a theoretical justification of suitably use of well-known

t-norm based connectives such as min–max and product–sum rules in applications.

Furthermore, an interpretation of mass assignments of fuzzy concepts within the con-

text model is also established.
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1. Introduction

While the real world consists of a very large number of instances of events

and continuous numeric values, people only represent and process their
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knowledge in terms of abstracted concepts derived from generalization of these

instances and numeric values. The fundamental elements in human reasoning

are sentences normally containing vague concepts.

The mathematical model of vague concepts was firstly introduced by Zadeh
[37] by using the notion of partial degrees of membership, in connection with

the representation and manipulation of human knowledge automatically. Since

then mathematical foundations as well as successful applications of fuzzy set

theory have already been developed [23]. However, concerning the semantics of

fuzzy sets, at present there is no uniformity in the interpretation of what a

membership grade means. Dubois and Prade [7] have explored three main

semantics for membership functions in which each semantics underlies a par-

ticular class of applications. As such, fuzzy set-based applications became
feasible only when the methods of constructing membership functions of rel-

evant fuzzy sets were efficiently developed in given application contexts.

During the last decade, Resconi et al. [32–34] have developed a hierarchical

uncertainty meta-theory based upon modal logic. In particular, they estab-

lished the usual semantics of propositional modal logic as a unifying frame-

work within which various theories of uncertainty, including the fuzzy set

theory, Dempster–Shafer theory of evidence, possibility theory, and Sugeno’s

k-measures, can be conceptualized, compared, and organized hierarchically.
Although Resconi’s theory has shown to be very fruitful and potentially

important as a unifying approach in the study of uncertainty, it is also a rather

abstract one and, hence, ones need to relate it semantically to data models in

particular application situations.

At the same time, Gebhardt and Kruse [9] have also developed a model of

vagueness and uncertainty––called the context model––that provides a formal

framework for the comparison and semantic foundation of several theories of

uncertainty such as Bayes theory, Dempster–Shafer theory, and the possibility
theory. For a point of view of formal concept analysis, in [18] we have pro-

posed an approach to the problem of mathematical modeling of fuzzy concepts

based on the theory of formal concept analysis [8] and the notion of context

model [9,26]. Particularly, we introduced the notion of fuzzy concepts within a

context model and the membership functions associated with these fuzzy

concepts. It is shown that fuzzy concepts can be interpreted exactly as the

collections of a-cuts of their membership functions. While this approach may

be suitable for forming fuzzy concepts which are verbal descriptions imposed
on quantitative individual characteristics of objects such as tall, short, very tall,

etc. It makes it difficult to form complex fuzzy concepts which may be imposed

on a combination of individual characteristics of objects, as well as in defining

composed fuzzy concepts from fuzzy concepts in different domains such as tall

and heavy. In [19], based on the meta-theory developed by Resconi et al. in

1990s [32–34], we have proposed a model of modal logic for fuzzy concept

analysis from a context model. By this approach, we can integrate context
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models by using a model of modal logic, and then develop a method of cal-

culating the expression for the membership functions of composed and/or

complex fuzzy concepts based on values f0; 1g corresponding to the truth

values fF ; Tg assigned to a given sentence as the response of a context con-
sidered as a possible world. It is of interest to note that fuzzy intersection and

fuzzy union operators by this model are truth-functional and, moreover, they

are a well-known dual pair of product t-norm and probabilistic sum t-conorm
[20].

In this paper we first explore interesting relationships between the context

model, modal logic and fuzzy concept analysis. Then we establish a mass

assignment interpretation of fuzzy concepts proposed by Baldwin et al. [1,2]

within the context model.
The rest of this paper is organized as follows. In the next section, we briefly

present some preliminary concepts: context model, modal logic, and meta-

theory (with a short introduction to the modal logic interpretation of various

uncertainty theories). Section 3 introduces a context model for fuzzy concept

analysis and propose a model of modal logic for formulating fuzzy sets within a

context model. The mass assignment interpretation of fuzzy concepts is given

in Section 4. Finally, Section 5 presents some concluding remarks.
2. Preliminaries: context model, modal logic, and meta-theory

2.1. Context model

In the framework of fuzzy data analysis, Gebhardt and Kruse [9] have
introduced the context model as an approach to the representation, interpre-

tation, and analysis of imperfect data. The short motivation of this approach

stems from the observation that the origin of imperfect data is due to situa-

tions, where we are not able to specify an object by an original tuple of ele-

mentary characteristics because of incomplete information available.

A context model is defined as a triple hD;C;ACðDÞi, where D is a non-empty

universe of discourse, C is a non-empty finite set of contexts, and the set

ACðDÞ ¼ faja : C ! 2Dg which is called the set of all vague characteristics of D
with respect to C. Let a 2 ACðDÞ, a is said to be contradictory (respectively,

consistent) if and only if 9c 2 C, aðcÞ ¼ ; (respectively, \c2C aðcÞ 6¼ ;). For a1,
a2 2 ACðDÞ, then a1 is said to be more specific than a2 iff for any c 2 C,
a1ðcÞ � a2ðcÞ.

If there is a finite measure PC on the measurable space ðC; 2CÞ, then

a 2 ACðDÞ is called a valuated vague characteristic of D w.r.t. PC. Then we call a

quadruple hD;C;ACðDÞ; PCi a valuated context model. Formally, if PCðCÞ ¼ 1

the mapping a : C ! 2D is a random set but obviously with a different inter-
pretation within the context model. We should mention that a formal
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connection between fuzzy sets and covering functions of random sets was

established in [12,13].

In Gebhardt and Kruse’s approach, each characteristic of an observed ob-

ject is described by a fuzzy quantity formed by context model [26]. It should be
emphasized that the forming of a fuzzy quantity by this approach is essentially

comparable with the creation of a membership function in fuzzy set theory [22]

and a possibility distribution in possibility theory [6], respectively. More

refinements of the context model as well as its applications could be referred to

Gebhardt and Kruse [10] and Gebhardt [11].

In the connection with formal concept analysis, it is interesting to note that

in the case where C is a single-element set, say C ¼ fcg, a context model for-

mally becomes a formal context in the sense of Ganter and Wille (see [8]) as
follows. Let hD;C;ACðDÞi be a context model such that jCj ¼ 1. Then the triple

ðO;A;RÞ, where O ¼ D, A ¼ ACðDÞ and R � O� A such that ðo; aÞ 2 R iff

o 2 aðcÞ, is a formal context. Thus, a context model can be considered as a

collection of formal contexts. Under such an observation, we have introduced

in [18] an approach to the problem of mathematical modeling of fuzzy concepts

based on the theory of formal concept analysis and the notion of context

model. Particularly, we introduced the notion of fuzzy concepts within a

context model and the membership functions associated with these fuzzy
concepts. It is of interest to note that this approach to fuzzy concepts provides

a unified interpretation for both notions of LT-fuzzy sets in the sense of

Rasiowa and Nguyen [31] as well as of fuzzy sets in the sense of Zadeh [37].

2.2. Modal logic

In this subsection, we briefly review the basic concepts of modal logic.

Propositional modal logic [5] is an extension of classical propositional logic
that adds to the propositional logic two unary modal operators, an operator of

necessity, �, and an operator of possibility, }. Given a proposition p, �p
stands for the proposition ‘‘it is necessary that p’’, and similarly, }p represents

the proposition ‘‘it is possible that p’’. Modal logic is well developed syntac-

tically [5].

In [32–34], the modal logic interpretation of various uncertainty theories is

based on the fundamental semantics of modal logic using Kripke models. A

model, M , of modal logic is a triple
M ¼ hW ;R; V i;
where W , R, V denote, respectively, a set of possible worlds, a binary relation

on W , and a value assignment function, by which truth ðT Þ or falsity ðF Þ is

assigned to each atom in each possible world, i.e.
V : W � Q ! fT ; F g;
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where Q is the set of all atoms. The value assignment function is inductively

extended to all formulas in the usual way, the only interesting cases being
Table

Access

No

No

Seri

Refl

Sym

Tran

Con

Euc
V ðw;�pÞ ¼ T () 8w0 2 W ; ðwRw0Þ ) V ðw0; pÞ ¼ T () RsðwÞ � kpkM

V ðw;}pÞ ¼ T () 9w0 2 W ; ðwRw0Þ and

V ðw0; pÞ ¼ T () RsðwÞ \ kpkM 6¼ ;:
where RsðwÞ ¼ fw0 2 W jwRw0g, and kpkM ¼ fwjV ðw; pÞ ¼ Tg.
Relation R is usually called an accessibility relation; we say that world u is

accessible to world w when ðw; uÞ 2 R. If not specified otherwise, we always

assume that W is finite. It is convenient to denote W ¼ fw1;w2; . . . ;wng and to

represent relation R by a matrix R ¼ ½rij�, where
rij ¼
1 if ðwi;wjÞ 2 R
0 if ðwi;wjÞ 62 R

�

Different systems of modal logic are characterised by different additional

requirements on accessibility relation R [5]. Some systems of modal logic are

depicted as shown in Table 1 (see [5]).

2.3. Meta-theory based upon modal logic

In the context of a research program initiated by Resconi and his colleagues
[14–17,24,32–34], the authors have developed a hierarchical uncertainty meta-

theory based upon modal logic. In particular, they established the usual

semantics of propositional modal logic as a unifying framework within which

various theories of uncertainty can be conceptualized, compared, and orga-

nized hierarchically. Within this framework, modal logic interpretations for

several theories, including the Dempster–Shafer theory, fuzzy set theory,

possibility theory, and Sugeno’s k-measures have been already proposed. These

interpretations are based on Kripke model of modal logic.
A Kripke model is given by a triple M ¼ hW ;R; V i. Moreover, Resconi et al.

have suggested to add a weighting function X : W ! ½0; 1� such that
1

ibility relation and axiom schemas

condition Df}. }p $ :�:p
condition K. �ðp ! qÞ ! ð�p ! �qÞ
al: 8w9w0ðwRw0Þ D. �p ! }p
exive: 8wðwRwÞ T. �p ! p
metric: 8w8w0ðwRw0 ) w0RwÞ B. p ! �}p
sitive: 8w8w08w00ðwRw0 and w0Rw00 ) wRw00Þ 4. �p ! ��p
nected: 8w8w0ðwRw0 or w0RwÞ 4.3. �ð}p _ }qÞ ! ð�}p _�}qÞ
lidean: 8w8w08w00ðw0Rw and w0Rw00 ) wRw00Þ 5. }p ! �}p
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Xn
i¼1

XðwiÞ ¼ 1
as a component of the model M . In such a way we obtain a new model of

modal logic, namely M1 ¼ hW ;R; V ;Xi.
With the model M1, given a universe of discourse X we can consider

propositions that are relevant to fuzzy sets have the following form:
ax : \x belongs to a given set A"
where x 2 X and A denotes a subset of X that is based on a vague concept. Set

A is then viewed as an ordinary fuzzy set whose membership function lA is

defined, for all x 2 X , by the following formula:
lAðxÞ ¼
Xn
i¼1

XðwiÞiax
where
iax ¼
1 if V ðwi; axÞ ¼ T
0 otherwise

�

The set-theoretic operations such as complement, intersection and union de-
fined on fuzzy sets are then formulated within the model M1 based on logical

connectives NOT, AND, OR respectively (see [32,34]).

To model the interpretation of Dempster–Shafer theory of evidence in

terms of modal logic, the authors in [14,32] employed propositions of the

form
eA : \A given incompletely characterized element �is classified in set A"
where X denotes a frame of discernment, A 2 2X and � 2 X . Due to the inner

structure of these propositions, it is sufficient to consider as atomic proposi-

tions only propositions efxg, where x 2 X . Propositions eA are then defined as

eA ¼ _x2Aefxg for A 6¼ ; and e; ¼ ^x2X:efxg.
Furthermore, for each world wi 2 W , it is assumed that V ðwi; efxgÞ ¼ T for

one and only one x 2 X and that the accessibility relation R is serial (see Table

1). Then the model M1 yields the following equations for the four basic func-
tions in the Dempster–Shafer theory:
BelðAÞ ¼
Xn
i¼1

XðwiÞið�eAÞ; PlðAÞ ¼
Xn
i¼1

XðwiÞið}eAÞ

mðAÞ ¼
Xn
i¼1

XðwiÞi �eA ^
^
x2A

}efxg

 !" #
; QðAÞ ¼

Xn
i¼1

XðwiÞi
^
x2A

}efxg

 !
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where Bel, Pl, m and Q denote the belief function, plausibility function, basic

probability assignment, and commonality function in the Dempster–Shafer

theory, respectively.

In the case where a basic probability assignment m in the Dempster–Shafer
theory induces a nested family of focal elements, we obtain a special belief

function called a necessity measure, along with a corresponding special plau-

sibility function called a possibility measure. Possibility theory is based on these

two special measures [6]. It has been shown in [24] that the accessibility relation

R of models associated with possibility theory are transitive and connected, i.e.

these models formally correspond to the modal system S4.3 (see Table 1). The

authors also showed the completeness of modal logic interpretation for pos-

sibility theory.
3. Fuzzy concepts by context model based on modal logic

In this section we propose a context model for fuzzy concept analysis based

on modal logic. Firstly, we consider a context model for a single domain of an

attribute which can be applied to a set of objects of concern.

3.1. Single domain case

Fuzzy set was introduced as a mathematical modeling of vague concepts in

natural language. Obviously, the usefulness of a fuzzy set for modeling a lin-

guistic label depends on the appropriateness of its membership function.

Therefore, the practical determination of an accurate and justifiable function
for any particular situation is of major concern.

Notice that the specific meaning of a vague concept in a proposition is

usually evaluated in different ways for different assessments of an entity by

different agents, contexts, etc. [35]. Let us consider the following example.

Consider a sentence such as: ‘‘John is tall’’, where ‘‘tall’’ is a linguistic term

of a linguistic variable, the height of people [38]. Assume that the domain

D ¼ ½0; 3m� which is associated with the base variable of the linguistic variable

height. Note that in the terms of fuzzy sets, we may know John’s height but
must determine to what degree he is considered ‘‘tall’’. Next consider a set of

worlds W in the sense of the Kripke model in which each world evaluates the

sentence as either true or false. That is each world in W responds either as true

or false when presented with the sentence ‘‘John is tall’’. Notice that these

worlds may be contexts, agents, persons, etc. This implicitly shows that each

world wi in W determines a subset of D given as being compatible with the

linguistic term tall. That is this subset represents wi’s view of the vague concept

‘‘tall’’ [21]. At this point we see that the context model introduced by Gebhardt
and Kruse [9] can be semantically extended and considered as a data model for
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constructing membership functions of vague concepts based on modal logic.

An important principle mentioned in [35] is ‘‘we can not separate the assess-

ments of the entity without some loss property in the representation of the

entity itself’’.
Let us consider a context model C ¼ hD;C;ACðDÞi, where D is a domain of

an attribute �at’ which is applied to objects of concern, C is a non-empty finite

set of contexts, and ACðDÞ is a set of linguistic terms associated with the domain

D considered now as vague characteristics in the context model. For example,

consider D ¼ ½0; 3m� which is interpreted as the domain of the attribute height

for people, C is a set of contexts such as Japanese, American, Swede, etc., and

ACðDÞ ¼ fvery short; short; medium; tall; more or less tall; . . .g. Each con-

text determines a subset of D given as being compatible with a given linguistic
term. Formally, each linguistic term can be considered as a mapping from C to

2D. For linguistic terms such as tall and very tall, there are two interpretations

possible: it may either be meant that very tall implies tall, i.e. that every very

tall person is also tall. Or tall is an abbreviation for ‘‘tall, but not very tall’’.

These two interpretations have been used in the literature depending on the

shape of membership functions of relevant fuzzy sets. The linguistic term very

tall is more specific than tall in the first interpretation, but not in the second

one.
Furthermore, we can also associate with the context model a weighting

function or a probability distribution X defined on C. As such we obtain a

valuated context model
C ¼ hD;C;ACðDÞ;Xi
By this context model, each linguistic term a 2 ACðDÞ may be semantically

represented by the fuzzy set A as follows:
lAðxÞ ¼
X
c2C

XðcÞlaðcÞðxÞ
where laðcÞ is the characteristic function of aðcÞ. Intuitively, while each subset

aðcÞ, for c 2 C, represents the c’s view of the vague concept a, the fuzzy set A is
the result of a weighted combinated view of the vague concept. Now, we can

formulate further for the set-theoretic operations on fuzzy sets by a straight-

forward manner in this model. However, for the sake of a further development

in the next subsection, in the sequent we will formulate the problem in the

terms of modal logic. To this end, we now consider propositions that are rel-

evant to a linguistic term have the following form:
ax : \x belongs to a given set A"
where x 2 D and A denotes a subset of D that is based on a linguistic term a in

ACðDÞ. Assume that C ¼ fc1; . . . ; cng, we now define a model of modal logic
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M ¼ hW ;R; VD;Xi
where W ¼ C, that is each context ci is associated with a possible world wi; R is

a binary relation on W , in this case R is the identity, i.e. each world wi only

itself is accessible; and VD is the value assignment function such that for each

world in W , by which truth ðT Þ or falsity ðF Þ is assigned to each atomic

proposition ax by
VDðwi; axÞ ¼
1 if x 2 aðciÞ
0 otherwise

�

With this background, we now define the compatible degree of any value x in

the domain D to the linguistic term a (and the set A is then viewed as an or-

dinary fuzzy set) as the membership expression of truthood of the atomic

sentence ax in M as follows:
lAðxÞ ¼
Xn
i¼1

XðwiÞVDðwi; axÞ ð1Þ
In the case without the weighting function X, the expression lAðxÞ can be de-

fined as
lAðxÞ ¼
jWax j
jW j ¼ 1

n

Xn
i¼1

VDðwi; axÞ ð2Þ
where Wax ¼ fw 2 W jVDðw; axÞ ¼ 1g, and j � j denotes the cardinality of a set.

Similar as in [34], it is straightforward to define the set-theoretic operations

such as complement, intersection, union on fuzzy sets induced from linguistic

terms in ACðDÞ by the model M using logical connectives NOT, AND, and OR

respectively. Apply Eq. (1) to the complement Ac of fuzzy set A we have
lAcðxÞ ¼
Xn
i¼1

XðwiÞVDðwi;:axÞ ¼
Xn
i¼1

XðwiÞð1� VDðwi; axÞÞ ¼ 1� lAðxÞ
In addition to propositions ax, let us also consider propositions
bx : \x belongs to a given set B"
where x 2 D and B denotes a subset of D that is based on another linguistic

term b in ACðDÞ. Then we also have
lBðxÞ ¼
Xn
i¼1

XðwiÞVDðwi; bxÞ ð3Þ
To define composed fuzzy sets A \ B and A [ B, we now apply logical con-

nectives AND, OR to propositions ax and bx as follows:



120 V.N. Huynh et al. / Information Sciences 160 (2004) 111–129
lA\BðxÞ ¼
Xn
i¼1

XðwiÞVDðwi; ax ^ bxÞ ð4Þ

lA[BðxÞ ¼
Xn
i¼1

XðwiÞVDðwi; ax _ bxÞ ð5Þ
It is easily seen that if a is more specific than b, we have
lA\BðxÞ ¼ minðlAðxÞ; lBðxÞÞ

lA[BðxÞ ¼ maxðlAðxÞ; lBðxÞÞ
for any x 2 D. This interpretation of linguistic hedges such as very, less, etc., is

in accordance with that considered in [38]. This also justifies for the observa-

tion that linguistic terms with positive semantic consistency, the min–max rule
is more correct in applications.

Following properties of the operations _, ^ in classical logic, we easily

obtain
lA[BðxÞ ¼ lAðxÞ þ lBðxÞ � lA\BðxÞ ð6Þ
Furthermore, it follows directly by (4)–(6) that
maxð0; lAðxÞ þ lBðxÞ � 1Þ6 lA\BðxÞ6 minðlAðxÞ; lBðxÞÞ

maxðlAðxÞ; lBðxÞÞ6 lA[BðxÞ6 minð1;lAðxÞ þ lBðxÞÞ
It should be noticed that under the constructive formulation of fuzzy sets by

this context model, fuzzy intersection and fuzzy union operations are no longer

truth-functional. Furthermore, if there is a non-trivial relationship between
contexts, we should take the relation R into account in defining of the fuzzy set

A. A solution for this is by using modal operators � and }, and results in an

interval-valued fuzzy set defined as follows:
lAðxÞ ¼
Xn
i¼1

XðwiÞVDðwi;�axÞ;
Xn
i¼1

XðwiÞVDðwi;}axÞ
" #
In the next subsection we deal with the general case where composed fuzzy sets

which represent linguistic combinations of linguistic terms of several context

models are considered.

3.2. General case

Let us consider a pair of variables x and y which may be interpreted as the

values of two attributes at1 and at2 for objects of concern, ranging on domains
D1 and D2, respectively. Let Ci ¼ hDi;Ci;ACiðDiÞ;Xii, for i ¼ 1; 2 be context

models defined on D1 and D2, respectively.
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It should be emphasized that in the framework of fuzzy data analysis,

characteristics (attributes) of observed objects can be considered simulta-

neously in the same contexts. However, this situation may not be longer

suitable for fuzzy concept analysis. For example, let us consider two attributes
height and income of a set of people. Then, a set of contexts used for formu-

lating of vague concepts of the attribute height may be given as in the preceding

subsection; while another set of contexts for formulating of vague concepts of

the attribute income (like high, low, etc.), may be given as a set of kinds of

employees or a set of residential areas of employees.

In this subsection we define a unified model of modal logic for combining

these context models in order to formulate composed fuzzy sets which repre-

sent linguistic combinations of linguistic terms from different domains.
Given two context models Ci ¼ hDi;Ci;ACiðDiÞ;Xii defined on Di, for

i ¼ 1; 2, respectively. A pair ðx; yÞ 2 D1 � D2 is then interpreted as the pair of

values of two attributes at1 and at2 for objects of concern. Recall that each

element in ACiðDiÞ is a linguistic term understood as a mapping from Ci ! 2Di .

Assume that jCij ¼ ni, for i ¼ 1; 2.
We now define a unified Kripke model as follows:
M ¼ hW ;R; V ;Xi
where W ¼ C1 � C2, R is the identity relation on W , and
X : C1 � C2 ! ½0; 1�
ðc1i ; c2j Þ 7!xij ¼ xixj
where the simplified notations Xðc1i ; c2j Þ ¼ xij;X1ðc1i Þ ¼ xi;X2ðc2j Þ ¼ xj are

used.

We should emphasize that the assumption imposed on this definition of X is

that each individual context model is independent to the other as the example

about attributes height and income just mentioned above.

For ai 2 ACiðDiÞ, for i ¼ 1; 2, we now formulate composed fuzzy sets, which

represent combinated linguistic terms like ‘‘a1 and a2’’ and ‘‘a1 or a2’’ within
model M .

For simplicity of notation, let us denote O a set of objects of concern which

we may apply for two attributes at1, at2 those values range on domains D1 and

D2, respectively. Then instead of considering fuzzy sets defined on different

domains, we can consider fuzzy sets defined only on a universal set, the set of

objects O. As such, we now consider atomic propositions of the form
ao : \An object o is in relation to a linguistic term a"
where a 2 AC1
ðD1Þ [ AC2

ðD2Þ or a is a linguistic combination of linguistic terms

in AC1
ðD1Þ [ AC2

ðD2Þ.
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Notice that this constructive formulation of composed fuzzy sets is com-

parable with the notion of the translation of a proposition ao into a relational

assignment equation introduced in [39].

3.2.1. a is a single term

Firstly we consider the case where a 2 AC1
ðD1Þ. For this case, we define the

valuation function V in M for atomic propositions ao by
V ððc1i ; c2j Þ; aoÞ ¼
1 if at1ðoÞ 2 aðc1i Þ
0 otherwise

�

Then the fuzzy set A which represents the meaning of the linguistic term a is

defined in the model M as follows:
lM
A ðoÞ ¼

Xn1
i¼1

Xn2
j¼1

xijV ððc1i ; c2j Þ; aoÞ ð7Þ
Set W 0 ¼ fðc1i ; c2j Þ 2 C1 � C2 j V ððc1i ; c2j Þ; aoÞ ¼ 1g. It follows by definition of V
that W 0 ¼ C0

1 � C2, where C0
1 ¼ fc1i 2 C1jat1ðoÞ 2 aðc1i Þg. The following prop-

osition is implied directly.

Proposition 1. We have
lM
A ðoÞ ¼ lM1

A ðoÞ
where lM1
A ðoÞ is represented by lM1

A ðat1ðoÞÞ as in preceding subsection, here
at1ðoÞ 2 D1 denotes the value of attribute at1 for object o.

Similar for the case where a 2 AC2
ðD2Þ, we define the valuation function V in

M for atomic propositions ao by
V ððc1i ; c2j Þ; aoÞ ¼
1 if at2ðoÞ 2 aðc2j Þ
0 otherwise

�

Obviously, we also have

Proposition 2
lM
A ðoÞ ¼ lM2

A ðoÞ
where lM2
A ðoÞ is represented by lM2

A ðat2ðoÞÞ as in preceding subsection, here
at2ðoÞ 2 D2 denotes the value of attribute at2 for object o.

3.2.2. a is a composed linguistic term

We now consider for the case where a is a composed linguistic term which is
of the form like ‘‘a1 and a2’’ and ‘‘a1 or a2’’, where ai 2 ACiðDiÞ, for i ¼ 1; 2. To
formulate the composed fuzzy set A corresponding to the term a in the model
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M , we need to define the valuation function V for propositions ao. It is natural
to express ao by
ao ¼
a1;o _ a2;o if a is \a1 or a2"
a1;o ^ a2;o if a is \a1 and a2"

�

where ai;o, for i ¼ 1; 2, are propositions of the form
ai;o : \An object o is in relation to a linguistic term ai":
Consider the case where a is ‘‘a1 or a2’’. Then, the valuation function V for

propositions ao is defined as follows:
V ððc1i ; c2j Þ; a1;o _ a2;oÞ ¼
1 if at1ðoÞ 2 a1ðc1i Þ _ at2ðoÞ 2 a2ðc2j Þ
0 otherwise

�

With this notation, we are now ready to define the compatible degree of any
object o 2 O to the composed linguistic term ‘‘a1 or a2’’ in the model M by
lAðoÞ ¼ lA1[A2
ðoÞ ¼

Xn1
i¼1

Xn2
j¼1

xijV ððc1i ; c2j Þ; a1;o _ a2;oÞ ð8Þ
where A1, A2 denote fuzzy sets which represent component linguistic terms a1,
a2, respectively.

Similar for the case where a is ‘‘a1 and a2’’. The valuation function V for
propositions ao is then defined as follows:
V ððc1i ; c2j Þ; a1;o ^ a2;oÞ ¼
1 if at1ðoÞ 2 a1ðc1i Þ ^ at2ðoÞ 2 a2ðc2j Þ
0 otherwise

�

and the compatible degree of any object o 2 O to the composed linguistic term

‘‘a1 and a2’’ in the model M is defined by
lAðoÞ ¼ lA1\A2
ðoÞ ¼

Xn1
i¼1

Xn2
j¼1

xijV ððc1i ; c2j Þ; a1;o ^ a2;oÞ ð9Þ
Notice that in the case without the weighting function X in the model M , the

membership expressions of composed fuzzy sets defined in (8) and (9) are

comparable with those given in [35].

Now we examine the behaviours of operators [;\ in this formulation. Let

us denote by
C0
1 ¼ fc1i 2 C1 j at1ðoÞ 2 a1ðc1i Þg

C0
2 ¼ fc2j 2 C2 j at2ðoÞ 2 a2ðc2j Þg
It is easy to see that
V ððc1i ; c2j Þ; ða1;o _ a2;oÞÞ ¼
1 if ðc1i ; c2j Þ 2 ðC0

1 � C2 [ C1 � C0
2Þ

0 otherwise

�
ð10Þ



124 V.N. Huynh et al. / Information Sciences 160 (2004) 111–129
and
V ððc1i ; c2j Þ; ða1;o ^ a2;oÞÞ ¼
1 if ðc1i ; c2j Þ 2 ðC0

1 � C0
2Þ

0 otherwise

�
ð11Þ
Furthermore, we have the following representation:
ðC0
1 � C2 [ C1 � C0

2Þ ¼ ðC0
1 � C2 ] C1 � C0

2Þ n ðC0
1 � C0

2Þ ð12Þ

where ] denotes an joint union which permits an iterative appearance of ele-

ments.

With these notation, we have the following.

Proposition 3. For any o 2 O, we have
lA1\A2
ðoÞ ¼ lA1

ðoÞlA2
ðoÞ ð13Þ

lA1[A2
ðoÞ ¼ lA1

ðoÞ þ lA2
ðoÞ � lA1

ðoÞlA2
ðoÞ ð14Þ
Proof. By the definition of the valuation function V and Propositions 1 and 2, it

immediately implies (14) from (8) and (12). Similarly, (13) directly follows from

(9). h

Expressions (13) and (14) show that fuzzy intersection and fuzzy union

operators by this model are truth-functional, and, moreover, they are a well-
known dual pair of product t-norm and probabilistic sum t-conorm [20]. This

justifies for the situation when linguistic terms belong to different universes of

discourse, for example tall and high income, there is no constraint of semantic

consistency between them, and reflecting such independence, the product–sum

rule is appropriate in applications. We should also note that for the purpose of

finding new operators for using in the fuzzy expert system shell FLOPS, the

authors in [4] have used elementary statistical calculations on binary data for

the truth of two fuzzy propositions to present new t-norm and t-conorm for
computing the truth of AND, and OR propositions. Interestingly, their t-norm
and t-conorm are also reduced to product t-norm and probabilistic sum t-co-
norm in the case where the sample correlation coefficient equals to 0.
4. Fuzzy sets by context model and mass assignments

In this section we establish a mass assignment interpretation of fuzzy con-

cepts within the context model. The mass assignment for a fuzzy concept was

firstly introduced by Baldwin et al. [1,2] and can be interpreted as a probability

distribution over possible definitions of the concept. These varying definitions
may be provided by a population of voters where each is asked to give a crisp

definition of the concept.



V.N. Huynh et al. / Information Sciences 160 (2004) 111–129 125
Let F be a fuzzy subset of a finite universe U such that the range of the

membership function lF is fy1; . . . ; yng, where yi > yiþ1 > 0, for i ¼ 1; . . . ; n� 1.

Then the mass assignment of F , denoted by mF , is a probability distribution

on 2U satisfying mF ð;Þ ¼ 1� y1;mF ðFiÞ ¼ yi � yiþ1, for i ¼ 1; . . . ; n� 1, and
mF ðFnÞ ¼ yn, where Fi ¼ fu 2 U jlF ðuÞP yig, for i ¼ 1; . . . ; n. fFigni¼1 are re-

ferred to as the focal elements of mF . The mass assignment of a fuzzy concept is

then considered as providing a probabilistic based semantics for membership

function of the fuzzy concept. Furthermore, mass assignment of fuzzy sets have

been applied in some fields such as induction of decision trees [3], computing

with words [27,28], and fuzzy logic [29].

Given a context model C ¼ hD;C;ACðDÞ;Xi. Assume a 2 ACðDÞ and lA

denotes the fuzzy set induced from a as defined by (1) in the preceding section.
The weighting function X can be extended to 2C as a probability measure by
XðX Þ ¼
X
c2X

XðcÞ; for any X 2 2C
Denote fx1; . . . ;xkg the range of X defined on 2C such that xi > xiþ1 > 0, for

i ¼ 1; . . . ; k � 1. Clearly, x1 ¼ 1.
Set Ci ¼ fX 2 2CjXðX Þ ¼ xig, for i ¼ 1; . . . ; k. We now define fAigki¼1

inductively as follows:
A1 ¼
\
c2C

aðcÞ

Ai ¼ Ai�1 [
[
X2Ci

\
c2X

aðcÞ for i > 1
Let s be the least number such that As 6¼ ;.
Obviously, As � Asþ1 � � � � � Ak. If a is consistent then we have s ¼ 1. In this

case let us define m : 2D ! ½0; 1� by
mðEÞ ¼ xi � xiþ1 if E ¼ Ai

0 otherwise

�

where, by convention, xkþ1 ¼ 0.

In the case where s > 1, i.e. that a is not consistent, we define m : 2D ! ½0; 1�
by
mðEÞ ¼
1� xs if E ¼ ;
xi � xiþ1 if E ¼ Ai and i > s
0 otherwise

8<
:

Clearly, in both cases m is a probability distribution over 2D with fAigki¼s is a
nested family of focal elements of m. Consequently, the following holds.

Proposition 4. We have m ¼ mlA , where mlA denotes the mass assignment of the
fuzzy set lA in the sense of Baldwin as defined above.
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Proof. Assume a 2 ACðDÞ and lA denotes the fuzzy set induced from a as de-

fined by (1). Equivalently, for any x 2 D, we have
lAðxÞ ¼
X
c2C

XðcÞlaðcÞðxÞ
where laðcÞ is the characteristic function of aðcÞ. As such the range of the

membership function lA is a subset of fx1; . . . ;xkg, the range of X defined on

2C with xi > xiþ1 > 0, for i ¼ 1; . . . ; k � 1. More particularly, the range of lA is

fxs; . . . ;xkg with s being defined as above.
Now it is sufficient to prove that Ai is exactly xi-cut of the fuzzy set lA, for

i ¼ s; . . . ; k. Indeed, as denoted previously, for each i ¼ s; . . . ; k, we have

Ci ¼ fX 2 2CjXðX Þ ¼ xig. This follows by the definition of xi’s that for each

X 2 Ci and x 2 \c2X aðcÞ, we obtain
lAðxÞ ¼
X
c2C

XðcÞlaðcÞðxÞ ¼
X
c2X

XðcÞlaðcÞðxÞ ¼ xi
Thus we have lAðxÞ ¼ xi for only x’s those belong to the set [X2Ci \c2X aðcÞ.
Consequently, by the definition of Ai’s as above, it follows that Ai is exactly xi-

cut of the fuzzy set lA. This concludes the proof. h

On the other hand, for a 2 ACðDÞ, it naturally generates a mass distribution

ma over 2D defined as follows:
maðEÞ ¼ Xðfc 2 CjaðcÞ ¼ EgÞ; for any E 2 2D
In this case, if the mass assignment for a fuzzy concept could be interpreted as a

probability distribution over possible definitions of the concept, it would seem

desirable that the natural mass distribution ma coincides with the mass

assignment of the fuzzy set lA induced by a up to a permutation of C. However,

this is not generally the case. Actually, due to the additive property imposed on
X, we have the following.

Proposition 5. Given a context model C ¼ hD;C;ACðDÞ;Xi, and a 2 ACðDÞ.
Assume that lA is the fuzzy set induced from a as defined by (1). Then ma ¼ mlA if
and only if the family faðcÞjc 2 Cg forms a nested family of subsets in D.

Proof

()): This part follows directly from the definitions of ma and mlA .

(�): Assume that faðcÞjc 2 Cg is a nested family of subsets in D. Let
faðcÞjc 2 Cg ¼ fAigni¼1

with A1 � A2 � � � � � An. We now show that maðAiÞ ¼ mlAðAiÞ, for any
i ¼ 1; . . . ; n. Clearly, for each i ¼ 1; . . . ; n, Ai is the ai-cut of the fuzzy set

lA with ai being defined as follows:
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ai ¼
Xn
j¼i

mlAðAjÞ ð15Þ
On the other hand, we have
lAðxÞ ¼
X
c2C

XðcÞlaðcÞðxÞ
for any x 2 D. Thus, it follows from the assumption faðcÞjc 2 Cg ¼ fAigni¼1

that, for any x 2 Ai n Ai�1,
ai ¼ lAðxÞ ¼
Xn
j¼i

X
c2C:aðcÞ¼Aj

XðcÞ ¼
Xn
j¼i

maðAjÞ ð16Þ
From (15) and (16) it easily implies that maðAiÞ ¼ mlAðAiÞ, for any i. This

completes the proof. h
5. Conclusions

Interesting relationships between context model, modal logic and fuzzy con-

cept analysis have been explored in this paper. As is well-known, the two fol-

lowing important problems should be taken into account inmost fuzzy set-based

applications. The first problem is how to construct efficiently membership

functions of fuzzy sets in a given particular application. This one has been studied

by many distinguished fuzzy scholars including Turksen [36], Pedrycz [30], Klir

et al. [25] among others. The second problem is how to use suitably connectives in

the fuzzy setting. As observed from practical applications of fuzzy sets, if fuzzy
sets of interest model linguistic terms with positive semantic consistency, for

example tall and very tall, the min–max rule is more correct. In the other hand,

when linguistic terms belong to different universes of discourse, for example tall

and high income, there is no constraint of semantic consistency between them,

and reflecting such independence, the product–sum rule is appropriate in

applications. As such, if context model provides a semantic interpretation of

forming fuzzy concepts, it gives a theoretical justification for appropriate use

of t-normbased connectives such asmin–max and product–sum rules in practical
applications, as well. Furthermore, this paper also established an interpretation

of mass assignments of fuzzy concepts within the context model.
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