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Abstract: Document clustering, the grouping of documents into several clusters, has
been recognized as a means for improving efficiency and effectiveness of information
retrieval and text mining. With the growing importance of electronic media for storing
and exchanging large textual databases, document clustering becomes more signifi-
cant. Hierarchical document clustering methods — having a dominant role in document
clustering — seem not adequate for large document databases as the time and space
requirements are typically of order O(N?3) and O(N?), where N is the number of in-
dex terms in a database. In addition, when each document is characterized by only
several terms or keywords, clustering algorithms often produce poor results as most
similarity measures yield many zero values. In this paper we introduce a nonhierar-
chical document clustering algorithm based on a proposed tolerance rough set model
(TRSM). This algorithm contributes two considerable features: (1) it can be applied to
large document databases as the time and space requirements are of order O(NlogNV)
and O(N), respectively; (2) it can be well adapted to documents characterized by a
few terms due to the TRSM ability of semantic calculation. The algorithm has been
evaluated and validated by experiments on test collections.

Keywords: document clustering, tolerance rough set model, upper approximations,
document similarity, complexity.

1 Introduction

With the growing importance of electronic media for storing and exchanging textual
information, there is an increasing interest in methods and tools that can help finding
and sorting information included in the text documents [4]. It is known that docu-
ment clustering — the grouping of documents into clusters — plays a significant role
in improving efficiency and can also improve effectiveness of text retrieval as it allows
doing cluster-based retrieval instead of full retrieval. Document clustering is a difficult
clustering problem by a number of reasons [7], [3], [19], and some problems occur ad-
ditionally when doing clustering on large textual databases. Particularly, when each
document in a large textual database is represented by only a few keywords, current
available similarity measures in textual clustering [1], [3] often yield zero-values that
decreases considerably the clustering quality. Although having a dominant role in
document clustering [19], hierarchical clustering methods seem not be appropriate for



large textual databases as they require typically computational time and space of or-
der O(N?) and O(N?), respectively, where N is the total number of terms in a textual
database. In such a case, nonhierarchical clustering methods are better adapted as
their computational time and space requirements are much less [7].

Rough set theory, a mathematical tool to deal with vagueness and uncertainty
introduced by Pawlak in early 1980s [10], has been successful in many applications
[8], [L1]. In this theory each set in a universe is described by a pair of ordinary sets
called lower and upper approximations, determined by an equivalence relation in the
universe. The use of the original rough set model in information retrieval, called the
equivalence rough set model (ERSM), has been investigated by several researchers [12],
[16]. A significant contribution of ERSM to information retrieval is that it suggested
a new way to calculate the semantic relationship of words based on an organization
of the vocabulary into equivalence classes. However, as analyzed in [5], ERSM is not
suitable for information retrieval due to the fact that the requirement of the transitive
property in equivalence relations is too strict to the meaning of words, and there is no
way to calculate automatically equivalence classes of terms. Inspired by some works
that employs different relations to generalize new models of rough set theory, e.g.,
[14], [15], a tolerance rough set model (TRSM) for information retrieval that adopts
tolerance classes instead of equivalence classes has been developed [5].

In this paper we introduce a TRSM-based nonhierarchical clustering algorithm for
documents. The algorithm can be applied to large document databases as the time
and space requirements are of order O(NlogN) and O(N). It can also be well adapted
to cases where each document is characterized by only a few index terms or keywords
as the use of upper approximations of documents makes it possible to exploit the
semantic relationship between index terms. After a brief recall of the basic notions of
document clustering and the tolerance rough set model in section 2, we will present in
section 3 how to determine tolerance spaces and the TRSM nonhierarchical clustering
algorithm. In section 4 we report experiments with five test collections for evaluating
and validating the algorithm on clustering tendency and stability, efficiency as well as
effectiveness of cluster-based information retrieval in contrast to full retrieval.

2 Preliminaries

2.1 Document Clustering

Consider a set of documents D = {dy,ds,..., dy} where each document d; is rep-
resented by a set of index terms t; (e.g., keywords) each is associated with a weight
Wi4 € [O, ].] that reflects the importance Oftz in dj, i.e., dj = (tlja Wiy, t2j, Wj; .. -5 t?‘j) wrj)-

The set of all index terms from D is denoted by T = {t1,t3,...,tx}. Given a query in
the form Q = (g1, wig; g2, Wag; - - -5 ¢s, Wsg) Where ¢; € T and wyy, € [0, 1], the informa-
tion retrieval task can be viewed as to find ordered documents d; € D that are relevant
to the query Q.



A full search strategy examines the whole document set D to find relevant docu-
ments of (). If the document set D can be divided into clusters of related documents,
the cluster-based search strategy can considerably increase retrieval efficiency as well as
retrieval effectiveness by searching the answer only in appropriate clusters. The hierar-
chical clustering of documents has been largely considered [2], [6], [18], [19]. However,
with the typical time and space requirements of order O(N?) and O(N?), hierarchical
clustering is not suitable for large collections of documents. Nonhierarchical clustering
techniques, with their costs of order O(NlogN) and O(N), certainly are much more
adequate for large document databases [7]. Most nonhierarchical clustering methods
produce partitions of documents. However, according to the overlapping meaning of
words, nonhierarchical clustering methods that produce overlapping document classes
serve to improve the retrieval effectiveness.

2.2 Tolerance Rough Set Model

The starting point of rough set theory is that each set X in a universe U can be
“viewed” approximately by its upper and lower approximations in an approximation
space R = (U, R), where R C U x U is an equivalence relation. Two objects z,y € U
are said to be indiscernible regarding R if zRy. The lower and upper approrimations
in R of any X C U, denoted respectively by L(R,X) and U(R, X), are defined by

LR, X)={zeU:[z]g C X} (1)

UR, X)={z € U:[z]e N X # ¢} (2)

where [z]r denotes the equivalence class of objects indiscernible with x regarding the
equivalence relation R. All early work on information retrieval using rough sets was
based on ERSM with a basic assumption that the set 7 of index terms can be di-
vided into equivalence classes determined by equivalence relations [12], [16]. In our
observation among the three properties of an equivalence relation R (reflexive: zRx;
symmetric: xRy — yRx; transitive: xRy AyRz — xRz for Vx,y, z € U), the transitive
property does not always hold in certain application domains, particularly in natural
language processing and information retrieval. This remark can be illustrated by con-
sidering words from Roget’s thesaurus where each word is associated with a class of
other words that have similar meanings. Figure 1 shows associated classes of three
words root, cause and basis. It is clear that these classes are not disjoint (equivalence
classes) but overlapping and the meaning of the words is not transitive.

Overlapping classes can be generated by tolerance relations which require only
reflexive and symmetric properties. A general approximation model using tolerance
relations was introduced in [14] in which generalized spaces are called tolerance spaces
that contain overlapping classes of objects in the universe (tolerance classes). In [14],
a tolerance space is formally defined as a quadruple R = (U, I,v, P), where U is a
universe of objects, I : U — 2V is an uncertainty function, v : 2V x 2V — [0,1] is a
vague inclusion and P : [(U) — {0, 1} is a structurality function.
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Figure 1: Overlapping classes of words

We assume that an object x is perceived by information Inf(xz) about it. The
uncertainty function I : U — 2V determines I(z) as a tolerance class of all objects
which are considered to have similar information with x. This uncertainty function
can be any function satisfying the condition z € I(x) and y € I(x) iff z € I(y) for any
xz,y € U. Such a function corresponds to a relation Z C U x U understood as zZy iff
y € I(z). T is a tolerance relation because it satisfies the properties of reflexivity and
symietry.

The vague inclusion v : 2V x 2V — [0, 1] measures the degree of inclusion of sets,
in particular it relates to the question of whether the tolerance class I{x) of an object
x € U is included in a set X. There is only one requirement of monotonicity with
respect to the second argument of v, i.e., v(X,Y) < v(X, Z) for any X,Y,Z C U and
Y C Z.

Finally, the structurality function is introduced by analogy with mathematical
morphology [14]. In the construction of the lower and upper approximations, only
tolerance sets being structural elements are considered. We define that P : I(U) —
{0, 1} classifies I(x) for each x € U into two classes — structural subsets (P(I(z)) = 1)
and non-structural subsets (P(/(z)) = 0). The lower approximation £(R, X) and the
upper approximation U (R, X) in R of any X C U are defined as

LR, X)={xzeU|lP(I{x))=1& v(I(z),X) =1} (3)

UR, X) = {z € UIPUI(z)) = 1 & v(I(z),X) > 0} (4)

The basic problem of using tolerance spaces in any application is how to determine
suitably 7, v and P.



3 TRSM Nonhierarchical Clustering

3.1 Determination of Tolerance Spaces

We first describe how to determine suitably I,v and P for the information retrieval
problem. First of all, to define a tolerance space R we choose the universe U as the
set T of all index terms

U={tite,...,tn} =T (5)

The most crucial issue in formulating a TRSM for information retrieval is identification
of tolerance classes of index terms. There are several ways to identify conceptually
similar index terms, e.g., human experts, thesaurus, term co-occurrence, etc. We
employ the co-occurrence of index terms in all documents from D to determine a
tolerance relation and tolerance classes. The co-occurrence of index terms is chosen
for the following reasons: (i) it gives a meaningful interpretation in the context of
information retrieval about the dependency and the semantic relation of index terms
[17], and (ii) it is relatively simple and computationally efficient. Note that the co-
occurrence of index terms is not transitive and cannot be used automatically to identify
equivalence classes. Denote by fp(t;,t;) the number of documents in D in which two

index terms ¢; and ¢; co-occur. We define the uncertainty function I depending on a
threshold 6 as

Io(t:) = {t; | fo(ti t;) = 0} U {t:} (6)

It is clear that the function Iy defined above satisfies the condition of ¢; € Iy(¢;) and
t; € Ip(t;) iff t; € Iy(t;) for any t;,t; € T, and so Iy is both reflexive and symmetric.
This function corresponds to a tolerance relation Z C T x T that ¢,Zt; iff t; € Iy(¢;),
and Iy(t;) is the tolerance class of index term ¢;. The vague inclusion function v is
defined as XNy

WXY) = )
This function is clearly monotonous with respect to the second argument. Based on
this function v, the membership function p for ¢; € 7, X C T can be defined as

pulti, X) = v(Ly(ts), X) = %

Suppose that the universe 7 is closed during the retrieval process, i.e., the query )
consists of only terms from 7. Under this assumption we can consider all tolerance
classes of index terms as structural subsets, i.e., P(ly(t;)) = 1 for any t; € 7. With
these definitions we obtained the tolerance space R = (7,1, v, P) in which the lower
approximation L(R,X) and the upper approximation U(R,X) in R of any subset
X C T can be defined as

(8)

LR, X)={t: € T | v(Lp(t:), X) = 1} (9)

UR,X)={tie T | v(lo(t;), X) > 0} (10)



Table 1: Approximations of first 10 documents concerning “machine learning”

keywords L(R,d;) U(R,d;)
dy | ti, Lo, 13, tg, 5 I3, ta, U5 1, t2, U3, t4, U5, t16, log
d2 t67 t77 tSv t9 tﬁv t77 t87 t9 t67 t77 tSv t9
ds | ts, t1, tio, 11, to ts, t10, t11 t1, t2, t4, t5, tig, t11, t16, 26
dy | te, t7, t12, t13, t14 e, t7, tig, t13, 14 ls; t7, L1, t13, t14
ds | t2, t15, {4 Ly, t15 t1, 2, tg, 5, t15, tog
de | 11, t16, t17, t1s, 19, t20 ti6, t17, t18, f19, t20 t1, t2, t5, ti6, t17,t18, t19, t20
dr | ta1, tos, ta3, tog, 123 to1, taz, fo3, f2q, tos ta1, o2, ta3, foq, tos
dg | ta, t12, tos, tor t12, t26, tor t1, t2, tq, t5, t12, t2e, tor
dy | tas, to, tog t26, t2s t1, t2, tq, t5, t2g, tog
dig | t1, tis, ta1, t26, 29, t30, t31 t16, t21, t26, t29, t30, t31 t1, to, ts, t1e, t21, t26, t20, T30, t31

Denote by fg,(t;) the number of occurrences of term ¢; in d; (term frequency), and
by fp(t;) the number of documents in D that term ¢; occurs in (document frequency).

The weights w;; of terms ¢; in documents d; is defined as follows. They are first
calculated by

(1+log(fi, (L)) x log 724 if ¢, € d,

0 if t; ¢ d,

then are normalized by vector length as w;; <= w;;/1/3;, eq, (why)?. This term-weighting
method is extended to define weights for terms in the upper approximation U(R, d;)
of d;. It ensures that each term in the upper approximation of d; but not in d; has a
weight smaller than the weight of any term in d,.

([ (1 + log(fa, (t:))) % log#(ti) if ¢, €d;,
wij = minthedj whj X —1f1%(g%\£1];?1(>t(12,))) if tl‘ < M(R, dj) \ dj (12)
0 if ¢ & U(R,d,)

The vector length normalization is then applied to the upper approximation U(R, d;)
of d;. Note that the normalization is done when considering a given set of index terms.

We illustrate the notions of TRSM by using the JSAI database of articles and
papers of the Journal of the Japanese Society for Artificial Intelligence (JSAI) after
its first ten years of publication (1986-1995). The JSAT database consists of 802 doc-
uments. In total, there are 1823 keywords in the database, and each document has
in average 5 keywords. To illustrate the introduced notions, let us consider a part of
this database that consists of first 10 documents concerning “machine learning”. The
keywords in this small universe are indexed by their order of appearance, i.e., {; = “ma-
chine learning”, t; = “knowledge acquisition”, ..., t3g = “neural networks”, t3; = “logic
programming”. With § = 2, by definition (6) we have tolerance classes of index terms
L(t1) = {t1,t2, 15, tie}, La(ta) = {t1,t2, ta, ts, tae}, Lo(ts) = {ta,ta}, Lo(ts) = {t1,t2, 85},
]2(t6> = {tG,t7}, ]2(t7) = {tG,t7}, Iz(tm) = {tl,tlﬁ}, IQ(tQG) = {tg,tgG}, and each of



Table 2: The TRSM nonhierarchical clustering algorithm

Input The set D of documents and the number K of clusters.
Result K overlapping clusters of D associated with cluster membership of each document.

1. Determine the initial representatives Ri, Ro, ..., Rx of clusters C7, (5, ...,Ck as K ran-
domly selected documents in D.

2. For each d; € D, calculate the similarity S(U(R,d;), Rx) between its upper approx-
imation U(R,d;) and the cluster representative Ry, k = 1,..., K. If this similarity is
greater than a given threshold, assign d; to Cj, and take this similarity value as the

cluster membership m(d;) of d; in Cj.

3. For each cluster Cj, re-determine its representative Rj.

4. Repeat steps 2 and 3 until there is little or no change in cluster membership during a
pass through D.

5. Denote by d, an unclassified document after steps 2, 3, 4 and by NN(d,) its nearest
neighbor document (with non-zero similarity) in formed clusters. Assign d, into the
cluster that contains NN(d,, ), and determine the cluster membership of d,, in this cluster
as the product m(d,) = m(NN(d,)) x S(U(R,d,),U(R,NN(d,))). Re-determine the
representatives Ry, for k=1,..., K.

other index terms has the corresponding tolerance class consisting of only itself, e.g.,
Ir(t3) = {t3}. Table 1 shows these 10 documents, their lower and upper approximations
with 8 = 2.

3.2 TRSM Nonhierarchical Clustering Algorithm

Table 2 describes the TRSM nonhierarchical clustering algorithm. It can be consid-
ered as a reallocation clustering method to form K clusters of a collection D of M
documents [3]. The distinction of the TRSM nonhierarchical clustering algorithm is it
forms overlapping clusters and it uses approximations of documents and cluster’s rep-
resentatives in calculating their similarity. The latter allows us to find some semantic
relatedness between documents even when they do not share common index terms. Af-
ter determining initial cluster representatives in step 1, the algorithm mainly consists
of two phases. The first does an iterative reallocation of documents into overlapping
clusters by steps 2, 3 and 4. The second does by step 5 an assignment of documents
that are not classified in the first phase, into clusters containing their nearest neigh-
bors with non-zero similarity. Two important issues of the algorithms will be further
considered: (i) how to define the representatives of clusters; and (ii) how to determine
the similarity between documents and the cluster representatives.



3.2.1 Representatives of clusters

The TRSM clustering algorithm constructs a polythelic representative Ry [or each
cluster Cy, k =1,..., K. In fact, R} is a set of index terms such that:

- each document d; € C} has some or many terms in common with Fy;
- terms in R}, are possessed by a large number of d; € Cy;
- no term in R, must be possessed by every document in CY.

It is well known in Bayesian learning the decision rule with minimum error rate to
assign a document d; in the cluster Cj, is

P(d;|Ci) P(Cy) > P(d;|Cp) P(Ch), Vh # k (13)
When it is assumed that the terms occur independently in the documents we have
P(d;|Cy) = P(t;,|Ck) P(t,|Ck)...P(t;,|Ck) (14)

Denote by fc, (t;) the number of documents in Cy that contain ¢;, we have P(t;|Cy) =
fo, () /|Ck]. In step 3 of the algorithm, all terms occurred in documents belonging
to C} in step 2 will be considered to add to Ry, and all terms existed in R, will be
considered to remove from or to remain in Ry. Equation (14) and heuristics of the
polythetic properties of the cluster representatives lead us to adopt rules to form the
cluster representatives:

1. Initially, Ry = ¢.
2. For all dj € (', and for all t; € dj, if fck (tz>/|0k| > o then Ry, = R, U {tz}
3. It d; € Cy and d; N R, = ¢ then Ry = R U argmax ¢y Wij.

The weights of terms ¢; in R, is first averaged by of weights of this terms in all
documents belonging to Cj, that means wy, = (Xgec, wiy)/{d; : ti € d;}|, then
normalized by the length of the representative Ry.

3.2.2 Similarity between documents and the cluster representatives

Many similarity measures between documents can be used in the TRSM clustering
algorithm. Three three common coefficients of Dice, Jaccard and Cosine [1], [3] are
implemented in the TRSM clustering program to calculate the similarity between pairs
of documents d;, and d,,. For example, the Dice coefficient is

) _ 2 X zg:l(wkjl X wka)

Sp(dj,,dj,) = (15)
e Zszl wl%jl + zljcvzl wl%jQ
When binary term weights are used, this coefficient reduced to
2xC
Spld;,,d;,) = 16
D( Jis J2> A+ B < )



Table 3: Test collections

Collection Subject Documents Queries Relevant
JSAI Artificial Intelligence 802 20 32
CACM Computer Science 3200 64 15
CISI Library Science 1460 76 40
CRAN Aeronautics 1400 225 8
MED Medicine 3078 30 23

where C' is the number of terms that d;, and d;, have in common, and A and B are
the number of terms in d; and dj,. It is worth to note that the Dice coefficient (or
any other well-known similarity coefficient used for documents [1], [3]) yields a large
number of zero values when documents are represented by only a few terms as many of
them may have no terms in common (C' = 0). The use of the tolerance upper approx-
imation of documents and of the cluster representatives allows the TRSM algorithm
to improve this situation. In fact, in the TRSM clustering algorithm, the normal-
ized Dice coeflicient is applied to the upper approximation of documents U(R, d,), i.e.,
Sp(U(R,d;), Ry)) is used in the algorithm instead of Sp(d;, Rg). Two main advantages
of using upper approximations are:

1. To reduce the number of zero-valued coefficients by considering documents them-
selves together with the related terms in tolerance classes;

2. The upper approximations formed by tolerance classes make it possible to re-
trieval documents that may have few (even no) terms in common with the query.

4 Validation and Evaluation

We report experiment results on clustering tendency and stability as well cluster-based
retrieval effectiveness and efficiency [3], [19]. Table 3 summarizes test collections used
in our experiments including JSAI where each document is represented in average by
5 keywords and four other common test collections [3]. Columns 3, 4, and 5 show
the number of documents, queries, and the average numbers of relevant documents
for queries. The clustering quality for each test collection depends on parameter 6
in TRSM and on o in clustering algorithm. We can note that the higher value of ¢
the large upper approximation and the smaller lower approximation of a set X. Our
experiments suggested that when the average number of terms in documents is high
and/or the size of the document collection is large, high values of 6 are often appropriate
and vice-versa. In Table 6 of subsection 4.3 we can see how retrieval effectiveness relates
to different values of 8. To avoid biased experiments when comparing algorithms we
take default values K = 15,0 = 15, and ¢ = 0.1 for all five test collections. Note
that TRSM nonhierarchical clustering algorithm yields at most 15 clusters as in some



Table 4: Results of clustering tendency

# relevant % average of relevant documents
queries | documents 0 1 2 3 4 5 | average
JSAI 20 321199 | 19.8 | 185 | 185 | 11.8 | 11.5 2.2
CACM 64 151503 225|128 | 79| 42| 23 1.0
CISI 76 40 | 454 | 258 | 15.0 | 75| 43| 1.9 1.1
CRAN 225 813341327192 90| 46| 1.0 1.2
MED 30 231104 | 18.7|18.6 | 21.6 | 19.6 | 11.1 2.5

cases several initial clusters can be merged into one during the iteration process, and
for @ > 6 upper approximations of terms in JSAI become stable (unchanged).

4.1 Validation of Clustering Tendency

The experiments attempt to determine whether worthwhile retrieval performance would
be achieved by clustering a database, before investing the computational resources
which clustering the database would entail [3]. We employ the nearest neighbor test [19]
by considering, for each relevant document of a query, how many of its n nearest
neighbors are also relevant; and by averaging over all relevant documents for all queries
in a test collection in order to obtain single indicators. We use in these experiments
five test collections with all queries and their relevant documents.

The experiments are carried out to calculate the percentage of relevant documents
in the database that had 0, 1, 2, 3, 4, or 5 relevant documents in the set of 5 nearest
neighbors of each relevant document. Table 4 reports the experimental results synthe-
sized from those done on five test collections. Columns 2 and 3 show the number of
queries and total number of relevant documents for all queries in each test collection.
The next six rows stand for the percentage average of the relevant documents in a
collection that had 0, 1, 2, 3, 4, and 5 relevant documents in their sets of 5 nearest
neighbors. For example, the meaning of row JSAI column 9 is “among all relevant
documents for 20 queries of JSAI collection, 21.8 % of them have 5 nearest neighbor
documents are all relevant documents”. The last column shows the average number of
relevant documents among 5 nearest neighbors of each relevant document. This value
is relatively high for JSAI and MED collections and vice-versa for the others.

As the finding of nearest neighbors of a document in this method is based on the
similarity between the upper approximations of documents, this tendency suggests if
the TRSM clustering method might appropriately be applied for retrieval purpose. This
tendency can be clearly observed in concordance with the high retrieval effectiveness
for JSAI and MED shown in Table 6.
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Table 5: Synthesized results about the stability

Percentage of changed data
% | 2% | 3% | 4% | 5% | 10% | 15%
0=2|284 562720566 |548 | 11.26 | 14.41
0=3|355|464|451 633|793 ]| 12.06 | 15.85
0=41]097 265274422562 ]| 8.02]13.78

4.2 Validation of Clustering Stability

4.3 The Stability of Clustering

The experiments were done for the JSAT test collection in order to validate the stability
of the TRSM clustering, i.e., to verify that whether the TRSM clustering method
produces a clustering which is unlikely to be altered drastically when further documents
are incorporated. For each value 2, 3, and 4 of §, the experiments are done 10 times
each for a reduced database of size (100 — 5)% of D. We randomly removed a specified
amount of s% documents from the JSAI database, then re-determine the new tolerance
space for the reduced database. Once having the new tolerance space, we perform the
TRSM clustering algorithm and evaluate the change of clusters due to the change of
the database. Table 5 synthesizes the experimental results with different values of s
from 210 experiments with s% = 1%, 2%, 3%, 4%, 5%, 10% and 15%.

Note that a little change of data implies a possible little change of clustering (about
at the same percentage as for 6 = 4). The experiments on the stability for other test
collections have nearly the same results as those of JSAI. That suggests that the TRSM
nonhierarchical clustering method is highly stable.

4.4 Evaluation of Cluster-based Retrieval Effectiveness

The experiments evaluate effectiveness of the TRSM cluster-based retrieval by com-
paring it with full retrieval by using the common measures of precision and recall.
Precision P is the ratio of the number of relevant documents retrieved over the total
number of documents retrieved. Recall R is the ratio of relevant documents retrieved
for a given query over the number of relevant documents for that query in the database.
Precision and recall are defined as

_ |Rel N Ret| R |Rel N Ret|

= 17
| Ret| | Rel| (17)

where Rel C D is the set of relevant documents in the database for the query, and
Ret C D is the set of retrieved documents. Table 6 shows precision and recall of the

TRSM-based full retrieval and the VSM-based full retrieval (Vector Space Model [9])

11



Table 6: Precision and recall of full retrieval

JSAI CACM CISI CRAN MED

0 P R P R r R r R P R

30 0.934 | 0.560 | 0.146 | 0.231 | 0.147 | 0.192 | 0.265 | 0.306 | 0.416 | 0.426
25 0.934 | 0.560 | 0.158 | 0.242 | 0.151 | 0.194 | 0.266 | 0.310 | 0.416 | 0.426
20 0.934 | 0.560 | 0.159 | 0.243 | 0.150 | 0.194 | 0.268 | 0.311 | 0.416 | 0.426
15 | 0.934 | 0.560 | 0.160 | 0.241 | 0.155 | 0.204 | 0.257 | 0.301 | 0.415 | 0.421
10 0.934 | 0.560 | 0.141 | 0.221 | 0.142 | 0.178 | 0.255 | 0.302 | 0.414 | 0.387
8 0.934 | 0.560 | 0.151 | 0.254 | 0.138 | 0.172 | 0.242 | 0.291 | 0.393 | 0.386
0.945 | 0.550 | 0.141 | 0.223 | 0.146 | 0.178 | 0.233 | 0.271 | 0.376 | 0.365
0.904 | 0.509 | 0.137 | 0.182 | 0.152 | 0.145 | 0.223 | 0.241 | 0.356 | 0.383
0.803 | 0.522 | 0.111 | 0.097 | 0.125 | 0.057 | 0.247 | 0.210 | 0.360 | 0.193

N = O

VSM | 0.934 | 0.560 | 0.147 | 0.232 | 0.139 | 0.184 | 0.258 | 0.295 | 0.429 | 0.444

where the TRSM-based retrieval is done with values 30, 25, 20, 15, 10, 8, 6, 4, and
2 of . After ranking all documents according to the query, precision and recall are
evaluated on the set of retrieved documents determined by the default cutoff value as
the average number of relevant documents for queries in each test collection. From
this table we see that precision and recall for JSAI are high, and they are higher and
stable for the other collections with # > 15. With these values of 8, the TRSM-based
retrieval effectiveness is comparable or somehow higher than that of VSM.

To evaluate the performance of cluster-based retrieval by TRSM, we carried out
retrieval experiments on all queries of test collections. For each query in the test
collection, clusters are ranked according to the similarity between the query and the
cluster representatives. Based on these ranking order the cluster-based retrieval is
carried out.

Table 7 reports the average of precision and recall for all queries in test collections
using the TRSM cluster-based retrieval with 1, 2, 3, 4 clusters, and full retrieval (20
clusters). Usually, along the ranking order of clusters when cluster-based retrieval
is carried out on the more clusters we obtain higher recall value. Interestingly, the
TRSM cluster-based retrieval achieved higher recall than that of full retrieval on several
collections. More importantly, the TRSM cluster-based retrieval on four clusters offers
precision higher than that of full retrieval in most collections. Also, the TRSM cluster-
based retrieval achieved recall and precision nearly as that of full search just after
searching on one or two clusters. These results show that the TRSM cluster-based
retrieval can contribute considerably to the problem of improving retrieval effectiveness
in information retrieval.
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Table 7: Precision and recall of the TRSM cluster-based retrieval

1 cluster 2 clusters 3 clusters 4 clusters 5 clusters full search

Col. P R P R P R P R P R P

R

JSAI 0.973 | 0.375 | 0.950 | 0.458 | 0.937 | 0.519 | 0.936 | 0.544 | 0.932 | 0.534 | 0.934 | 0.560
CACM | 0.098 | 0.063 | 0.100 | 0.127 | 0.117 | 0.166 | 0.132 | 0.221 | 0.144 | 0.240 | 0.160 | 0.241
CISI 0.177 | 0.078 | 0.141 | 0.139 | 0.151 | 0.179 | 0.156 | 0.206 | 0.158 | 0.212 | 0.155 | 0.204
CRAN | 0.204 | 0.219 | 0.238 | 0.278 | 0.250 | 0.290 | 0.257 | 0.301 | 0.261 | 0.304 | 0.257 | 0.301
MED 0.393 | 0.277 | 0.396 | 0.393 | 0.372 | 0.425 | 0.367 | 0.445 | 0.380 | 0.472 | 0.415 | 0.421

4.5 Evaluation of TRSM Nonhierarchical Clustering Efficiency

The proposed TRSM clustering algorithm in Table 2 has the linear time complexity
O(N) and space complexity O(N), where N is the number of index terms in a text
collection. The finding of the cluster representative Cj requires O(|Cyl), therefore
steps 1 and 3 are of O(M), where M is the number of documents in the collection.
Step 2 is a linear pass with O(M). Step 4 repeats steps 2 and 3 in a limited number
of iterations (in our experiments, step 4 terminated within 11 iterations of steps 2 and
3), and step 5 assigns unclassified documents once. Thus, the total time complexity of
the algorithm is of O(N), because M < N.

However, the algorithm works on the base of data files associated with the TRSM
described in section 3. From a given collection of documents we need to prepare all the
files before running the TRSM nonhierarchical clustering algorithm. It consists of mak-
ing an index term file, term encoding, document-term and term-document (inverted)
relation files as indexing files, files of term co-occurrences and tolerance classes for each
value of §. A direct implementation of these procedures requires the time complexity
of O(N?), but we implemented the system by applying a sorting algorithm (quick-sort)
of O(Nlog N) to make the indexing files, then created the TRSM related files for the
term co-occurrence, tolerance classes, upper and lower approximations files in the time

of O(N).

All the experiments reported in this paper were performed on a conventional work-
station GP7000S Model 45 (Fujitsu, 250 MHz Ultra SPARC-II, 512 MB). Theoretically,
we can note that requires in average m/ K of the full search time, where K is the number
of clusters.

Concerned with generating the TRSM files for the JSAI database, the direct im-
plementation with O(N?) required up to 6 minutes [14 hours for CRAN], but the
quicksort-based implementation with O(N log N) took about 3 seconds (JSAI) [23 min-
utes for CRAN] for making the files by running a package of shell scripts on UNIX.
The efficiency of the algorithm is shown in Table 7, where the TRSM time includes the
time from processing the original texts until gencrating all necessary files inputted to
the clustering algorithm. Thanks to short time for preparing the database files as well
as shorter time for cluster-based search in comparing with the full search, the proposed
method is able to be applied to large databases of documents.
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Table 8: Performance Measurements of the TRSM Cluster-based Retrieval

Size Nb of TRSM | Clustering Full 1-cluster | Memory
Col. (MB) | Queries Time | Time (sec) | Search (sec) | Search (sec) (MB)
JSAI 0.1 20 2.4s 8.0 0.8 0.1 12
CACM 2.2 64 | 22m2.2s 146.0 13.3 1.2 15
CISI 2.2 76 | 13m16.8s 18.0 40.1 34 13
CRAN 1.6 225 | 23m9.9s 13.0 20.5 1.8 13
MED 1.1 30 40.1s 4.0 2.5 0.3 28

5 Conclusion

We have proposed a document nonhierarchical clustering algorithm based on the toler-
ance rough set model of tolerance classes of index terms from document databases. The
algorithm can be viewed as a kind of reallocation clustering methods where the sim-
ilarity between documents are calculated using their tolerance upper approximations.
Different experiments have been carried out on several test collections for evaluating
and validating the proposed method on the clustering tendency and stability, the ef-
ficiency as well as effectiveness of cluster-based retrieval using the clustering results.
With the computational time and space requirements of O(NlogN) and O(N), the
proposed algorithm is appropriate for clustering large document collections. The use
of the tolerance rough set model and the upper approximations of documents allow
us to use efficiently the method in the case when documents are represented by a few
terms.

With the results obtained so far, we believe that the proposed algorithm contributes
considerable features to document clustering and information retrieval. There are still
many works to do in this research such as (1) to incrementally update tolerance classes
of terms and document clusters when new documents are added to the collections; (2)
to extend the tolerance rough set model by considering the model without requiring
a symmetric similarity or tolerance classes based on co-occurrence between more than
two terms.
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