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Abstract—In rough-set-based data analysis, the so-called of a numerical evaluation of the dependency properties
approximation quality is the traditional measure to evaluate generated by these attributes. To deal with practical sit-
the classification success of attributes in terms of a numerical uations where a fuzzy classification must be approximated

evaluation of the dependency properties generated by these . . .
attributes. To deal with practical situations where a fuzzy by available knowledge expressed in terms of a Pawlak's

classification must be approximated by available knowledge approximation space, we introduce in this paper an exten-
expressed in terms of a Pawlak's approximation space, we sion of approximation quality measure aimed at providing
introduce in this paper an extension of this measure aimed g numerical characteristic for such situations. Furthermore,
at providing a numerical characteristic for such situations.  eytensions of related coefficients such as the precision
Other related coefficients asprecision and significance are - -
also discussed correspondingly. A simple example is given to Measure and the significance measure are also discussed.
illustrate the proposed notions. The rest of this paper is organized as follows. Section |l
briefly introduces necessary notions of rough sets and fuzzy
sets, the mass assignment of a fuzzy set. In Section lll,
After nearly twenty years of introducing fuzzy sets [20], after recalling the notion of a rough fuzzy set [7] roughness
the notion of a rough set [13] has been introduced as measures of a fuzzy set are briefly reviewed. Section IV
new mathematical tool to deal with the approximation of aliscusses an extension of the approximation quality mea-
concept in the context of incomplete information. Basicallysure to deal with situations where a fuzzy classification
while a fuzzy set introduced by Zadeh models the ill-must be approximated by available knowledge expressed in
definition of the boundary of a concept often describederms of an approximation space. An illustration example is
linguistically, a rough set introduced by Pawlak characpresented in Section V. Finally, some concluding remarks
terizes a concept by its lower and upper approximationsre presented in Section VI.
due to indiscernibility between objects arose because of

I. INTRODUCTION

incompleteness of available knowledge. Both the theories Il. PRELIMINARIES
have been proving to be of substantial importance in many ) ) ) ) . .
areas of application [11], [12], [14], [16], [21]. In this section we recall basic notions in the theories

Since the introduction of rough set theory, many attempt8f rough sets and fuzzy sets. Throughout this paper, we
to establish the relationships between the two theories, &/PPose thal/ is a finite non-empty set.
compare each to the other, and to simultaneously hybridize
them have been made (e.g. [7], [12], [15], [17], [18],A- Pawlak’s Approximation Quality
[19]). As an attempt in the line of integration between the The rough set theory begins with the notion of an
two theories, Banerjee and Pal [3] have rec_ently pmposeéjpproximation space, which is a pdi7, R), whereU be
a roughness measure for fuzzy sets, making use of thge ynjverse of discourse arfd an equivalence relation
concept of a rough fuzzy set [7]. However, as pointeqy, 7 je., R is reflexive, symmetric, and transitive. The
outin [10], Banerjee and Pal's roughness measure exhibig|ation R decomposes the séf into disjoint classes in
some undesired properties. Very recently, the authors ig,ch a way that two elementsy are in the same class iff

[10] have introduced an alternative roughness measure f%. y) € R. Let denote bylU/R the quotient set ot/ by
fuzzy sets based on the notions of the mass assignmem{a relationR. and

of a fuzzy set and its-cuts. It has been shown that this
new measure of roughness satisfies interesting properties U/R={X,Xs,...,Xn}
and simultaneously avoids these undesired properties.

As is well-known, in rough-set-based data analysis, thehereX; is an equivalence class &,i = 1,2,...,m.
so-called approximation quality measure is often used to Given an arbitrary sef{ € 2V, in general it may not
evaluate the classification success of attributes in ternt®e possible to describ& precisely in{U, R). One may



characterizeX by a pair of lower and upper approximationswhere for eache € U we call ur(z) the membership

defined as follows [13]: degree ofz in F. Practically, we may considéf as a set
_ of objects of concern, and a crisp subsetlbfrepresent
R(X) = U Xis R(X) = U Xi a “non-vague” concept imposed on objectslin Then a

X;CX X;NX#0

fuzzy setF of U is thought of as a mathematical repre-
The pair(R(X), R(X)) is the representation of an ordinary sentation of a “vague” concept described linguistically.

set X in the approximation spac@/, R) or simply called _Given_a number € (0, 1], the a-cut, or a-level set, of

the rough set ofX. F is defined as follows

_ In [14]_, Pawla_lk_ introduces two n_umerical chac_ract_eriza- Fo = {z € Ulpr(z) > a)

tions of imprecision of a subseY in the approximation o o

space (U, R): accuracy and roughness Accuracy of X, which is a subset of/. In [1], [2] Baldwin introduced the
denoted byar(X), is simply the ratio of the number so-called mass assignment of a fuzzy set aimed at providing
of objects in its lower approximation to that in its uppera probabilistic based semantics for a fuzzy concept defined

approximation; namely as a family of possible definitions of the concept. The mass
assignment of a fuzzy set is defined as follows.
ar(X) = |§(X)‘ (1) Let F' be a fuzzy subset of a finite univeréé such
|R(X)| that the range of the membership functjop, denoted by
where| - | denotes the cardinality of a set. Then the roughMd(#r), is Mdur) = {ai, ..., an}, wherea; > aiy >
ness ofX, denoted bypr(X), is defined by subtracting *> ©r ¢ =1....,n — 1. Let
the accuracy from 1: F;={z e Ulpr(z) > a;}
pr(X)=1—ap(X)=1- @(X” (2) fori=1,...,n. Then the mass assignmentiof denoted
R(X)| by mr, is a probability distribution oY definded by
Note that the lower the roughness of a subset, the better is mr(@) = 1-a
its approximation. mp(F;) = a;— a1, fori=1,...,n,

= with a1 = 0 by convention. Thea-level sets F;,
RX)=0 ; — 1,...,n, (or {F;}, U {0} if F is a subnormal
andpr(X) = 0. o _ _ fuzzy set, i.emax,cy{ur(z)} < 1) are referred to as the
3) pr(X) = 0if and only if X is definable in(U, R).  {oca) elements ofny. The mass assignment of a fuzzy
In the rough set theory, the approximation qualitys  concept is then considered as providing a probabilistic

often used to describe the degree of partial dependengysed semantics for the membership function of the fuzzy
between attributes. concept.

Assume now there is another equivalence relatin
defined onU/, which forms a partition (or, classification) Il. ROUGHNESSMEASURES OF AFUZZY SET
U/P of U, sayU/P = {Y1,...,Y,}. Note thatR and P  A. Rough Fuzzy Sets
may be induced respectively by sets of attributes applied | gt 5 finite approximation spad#’, R) be given. LetF
to objects inU. Then the approximation quality df by  pe a fuzzy set i/ with the membership function . The
R, also called thedegree of dependencis defined by upper and lower approximatiod®(F) and R(F) of F by
ST IR(Y))| R are fuzzy sets in the quotient géf R with membership

1) AsR(X) C X CR(X),0< pr(X) < 1.
2) By convention, whenX = (), R(X) =

Yr(P) = 7] (3) functions defined [7] by
which is represented in terms of accuracy as follows 1 ry (Xi) = gé%gg{ﬂF(w)} 5)
" |R(Y; X;) = min T 6
R (P) = Z| (U|)04R(Yi) @) pr(r)(Xi) = min {pp()} (6)
=1

fori =1,....,m. (R(F),R(F)) is called a rough fuzzy
In this case the measurgz(P) can be regarded as the set.
weighted mean of the accuracies of approximationPof ~ The rough fuzzy se(R(F), R(F)) then induces two
by R [8]. fuzzy setsF* and F, in U with membership functions

] defined respectively as follows
B. Fuzzy Sets and Mass Assignment

Let U be a finite and non-empty set. A fuzzy s&tof pr-(2) = pgpy (Xi) andpp, (2) = peer) (Xi)
U is nothing but a mapping frorty into the unit interval if + ¢ X;, for i = 1,...,m. That is, F* and F,
[0, 1]: are fuzzy sets with constant membership degree on the

pr U —[0,1] equivalence classes bf by R, and for anyzx € U, pp«(z)



(respectivelyu r, (z)) can be viewed as the degree to which Let F* and F,. be fuzzy sets induced from the rough
x possibly (respectively, definitely) belongs to the fuzzy sefuzzy set(R(F'), R(F')) as above. Denote

F[3].

Under such a view, we now define the notion of a

definable fuzzy sein (U, R). A fuzzy set F' is called
definableéf R(F) = R(F), i.e. there exists a fuzzy sétin
U/R such thatup(z) = pr(X;) if z € X;,i=1...,m.
Further, as defined in [3], fuzzy sefs and G in U are
said to beroughly equal denoted byF' ~ i G, if and only

such thatv; > w;y1 > 0fori=1,...,p— 1. Obviously,
{w1,...,wp} CY(pr), andw; = aq andw, > a,. With
this notation, we have

Proposition 1: For any1 < j < p, if there exists
a;,ay € mg(ur) such thatw; 11 < a; < ay < w; then

if . . we haveF; ~g Fl'f,l and SOpR(Fi) = pR(Fi’)-

R(F) = R(G) andR(F) = R(G). Further, we can represent the roughngg$F’) in terms
of level sets of fuzzy setd, and F* in the following
proposition.

In [3], Banerjee and Pal have proposed a roughness proposition 2: We have
measure for fuzzy sets in a given approximation space. »
Essentially, their measure of roughness of a fuzzy set Z(wi — )1 - (Fi)w; |
depends on parameters that are designed as thresholds of = [(F™)w; |
definiteness and possibility in membership of the objects .
in U to the fuzzy set. wherew,, = 0, by convention.

Consider parameters, 3 such that) < < a < 1. The I\P/Iore ir?;[_eresst.ir:?:ty, we ok?[ta}iwn thgcflolllovgng. hl
a-cut (Fy), and g-cut (F*)g of fuzzy setsF, and F*, foposifion . 1t Tuzzy S€1S andtin © are roughly

respectively, are called to be thelower approximation equal in(U, R), then we havgr (F) = pr(G).
the B-upper approximatiorof F' in (U, R), respectively.
Then a roughness measure of the fuzzySetith respect
to parametersr, 8 with 0 < 8 < a < 1, and the
approximation spacéU, R) is defined by

|(F\)al
[(F*)s]

B. Roughness Measures of Fuzzy Sets

pr(F) )

IV. ROUGH APPROXIMATION QUALITY OF A Fuzzy
CLASSIFICATION

Recall that roughness of a crisp set is defined as opposed
to its accuracy. First, in the following we will see that it
is possible to make a similar correspondency between the
roughness and accuracy of a fuzzy set.

It should be noticed that if" is a subnormal fuzzy set,

It is obvious that this definition of roughness measure, havem(f) > 0, and then the empty set may be also

a8

Pr () sf[rongly de_pends on_parametersandﬁ. considered as a possible definition Bf In this case, we
As pointed out in [10], this measure of roughness ha§hould define the roughness measure"cés

several undesirable properties. Simultaneously, the authors

also introduce a parameter-free measure of roughness of a

Py’ (F) = (7)

fuzzy set as follows.

Let F' be a normal fuzzy set ity. Assume that the range
of the membership functiopr is {ai,...,a,}, where
a; > ajpr > 0,fori=1,...,n—1,anda; = 1. Let
us denoten the mass assignment éf defined as in the
preceding section. Let

F,={zeUlur(z) > a;}, fori=1,...,n.

With these notations, the roughness measuré’ afith
respect to the approximation spa{dé R) is defined by

pn(F) = 3 me(Ry(1 — B

i=1

IR . .
\R(Fz)\) = ;mF(FZ)pR(Fz)
(8)

That is, the roughness of a fuzzy deis the weighted sum

of the roughness measures of nested focal subsets which

are considered as its possible definitions.
Observation 1: « Clearly,0 < pr(F) < 1.

e pgr(:) is a natural extension of Pawlak’s roughness

measure for fuzzy sets, i.e. ' is a crisp subset of
U thenpr(F) = pr(F).
« Fis a definable fuzzy set if and only jfr(F) = 0.

pr(F) = ZmF(Fi)pR(Fi) +mr(@)pr(®)  (9)

which trivially turns back to the normal case above as, by
convention,p () = 0. However, we should take the case
into account when once we want to consider the accuracy
measure instead of roughness, with the convention that
CKR(@) =1.

Under such an observation, it is eligible to define the
accuracy measure for a fuzzy sétby

ar(F) =Y mp(F)ar(F) (10)
i=1
if F'is a normal fuzzy set, or

agr(F) = ZmF(Fi)aR(Fi) +mp(@)ar(@)  (11)

if F'is a subnormal fuzzy set. With this definition we have
ar(F) =1- pr(F) (12)
for any fuzzy setF' in U.

INote thatF; stands forF,,



TABLE |

Before extending the the measure of rough dependency RELATION IN A RELATIONAL DATABASE

defined by (3) (or equivalently, (4)) for the case where

P is a fuzzy classification of/ instead of a crisp one, | ID_| Degree | Experience (n) | Salary |
let us define the cardinality of a fuzzy set in the spirit of 1 | PhD. | 6<n<8 63K
its probabilistic based semantics. That is{F,}”, could 2 | PhD. 1 0<n<?2 47K
be interpreted as a family of possible definitions of the 3 | MS. 6<n<8 53K
conceptF', thenm p (F;) is the probability of the event “the 4 | BS. 0<n<2 26K
concept isF;”, for eachi. Under such an interpretation, 5 | Bs. 2<n<4 29K
the cardinality ofF", also denoted byF|, is defined as the 6 | PhD. | 0<n<?2 50K
expected cardinality by 7 | BS. 2<n<4 35K
. 8 | MS. 2<n<4 40K
9 | Ms. 2<n<4 41K
|7l = ; mr (F)|F] (13) 10 [ MS. [ 8<n<10 68K
11 | M.s. 6<n<8 50K
Quite interestingly, the following proposition shows that 12 | BS. 0<n<2 23K
the expected cardinality (13) is nothing but thecount of 13 | MS. 6<n<8 55K
the fuzzy setf” as introduced by De Luca and Termini [5]. 2 | Ms. 6<n<8 51K
Proposition 4: We have 15 | PhD. | 6<n<8 65K
16 | M.S. 8<n<10 64K

IF| =Y mp(F)|F| = pr(x) (14)
i=1 zeU
FC. To capture this information we need also the so-called

Let us return to an approximation spa¢€, R) and precision measuré(Y;), fori = 1,...,k, defined by
assume further a fuzzy partition, s&fC = {Y1,..., Y},
defined onJ. This situation may come up in a natural way
when a linguistic classification is defined éhand must
be approximated in terms of already existing knowledge
R. which may be considered as the expected relative number

In such a situation, quite naturally with the spirit of theof elements inY; approximated byR. Clearly, we have
proposal described in the preceding section, one may defimg: (Y;) > ar(Y;), for anyi = 1,.... k. As such the two
the approximation quality ofFC by R as measuredr and7r give us enough information about the
“classification power” of the knowledgB with respect to
the linguistic classificatior#C.

In rough-set-based data analysisjs naturally induced
by a subset, say3, of the set of attributes imposed on
where fori = 1,...,k, my, and{Y;;}7<, respectively objects being considered. Then as suggested in [14], we
stand for the mass assignmentaf and the family of its can also measure the significance of the subset of attributes
focal elements. Straightforwardly, it follows from Proposi- B’ C B with respect to the linguistic classificatigfiC by
tion 4 that the difference

1 k
AR(FC) = i > 1Y)l (16)
=1

wr(v) = Y my ) B0l g
j=1 "

k. n;
3n(FC) = 7 S mr (IR (9

i=1 7=1

r(FC) = 4r (FC)

where R’ denotes the equivalence relation induced by
where (Y;)., i = 1,...,k, are fuzzy sets with constant the subset of attribute® \ B’. This measure expresses

membership degree on the equivalence classés by R how influence on the quality of approximation if we drop
. g
as defined in Section Il. It is also interesting to note tha@ttributes inB’ from B.

the approximation quality aFC by R can be also extended For the sake of illustration, in the following section we
via (4) as follows will consider a simple example depicting the introduced

notions.

r(FC) = Z |R(Yi)‘@R(Yi) (17) V. AN EXAMPLE

_ ) ) o Let us consider a relation in a relational database as
However, we will not consider this extension in the rest ok own in Table | (this database is a variant of that found

the paper. o _ _ in [4]). Then by the attribute®egreeand Experiencewe
Furthermore, similar as mentioned in [14], the measurgptain an approximation space

of rough dependencyr does not capture how this partial
dependency is actually distributed among fuzzy classes of (U, ind({Degree Experience}))



U/ind({Degree Experience}) = {{1,15},{2,6}, {3,11,13,14},{4,12},{5,7},{8,9}, {10, 16} }

whereU = {1,...,16}, and the corresponding partition That is we have the following partial dependency in the
as shown at the top of the page. Further, consider now fafatabase

example a linguistic classification )
{Degree Experience} = g4 Salary (29)

{Low, Medium, High}

i ) . To calculate the precision measure of fuzzy classes we
defined on the domain of attribugalary, say [20K,70K],  need to obtain the mass assignment for each fuzzy class and
with membership functions of linguistic classes depicted,,nroximations of its focal sets respectively. For example,
graphically as in Fig. 1. Then the linguistic classificationyhe mass assignment dfow and approximations of its
induces a fuzzy partition o/ whose membership func- {5.4] sets are shown in Table IV. Then we have
tions of fuzzy classes shown in Table II.

7A"{DegreeExperience} (Low) = 0.878

Similarly, we also obtain
Low Medi um Hi gh
ﬁ{DegreeExperience} (Medium) = 0.646

ﬁ{DegreeExperience} (ngh) = 0.876

Now in order to show how the influence of, for example,
attribute Experience on the quality of approximation, let
us consider the partition induced by the attribitegree
as shown on the next page.

20 30 45 60 70 Then we obtain approximations of the fuzzy partition
induced bySalary in the approximation space defined by
Fig. 1. A Linguistic Partition ofSalary Attribute Degreegiven in Table V. Thus we have
N 3.
TABLE Il Y{Degree: (Salary) = 1_6 =02

INDUCED Fuzzy PARTITION OF U BASED ON Salary Similarly we also easily obtain

| U | HLow | UMedium | KHigh |

1]o0 0 1 Y{Experience; (Salary) = % =0.316

2|0 0.87 0.13

3|0 0.47 0.53 As we can see, both attribut&egreeand Experience

4 |1 0 0 are highly significant as without each of them the measure
5|1 0 0 of approximation quality changes considerably. It would
6 |0 0.67 0.33 be worth noting that based on background knowledge one
7 | 067 | 033 0 may infer a dependency betwegbegree Experience}

8 | 033 | 067 0 andSalary which is often expressed linguistically, however

9 | 027 |o073 0 such a dependency in general can not be described by
100 0 1 traditional data dependencies.

1|0 0.67 0.33

121 0 0 VI. CONCLUSIONS

B0 033 0.67 In this paper we have extended the measure of rough
1410 0.6 0.4 dependency for fuzzy classification for dealing with prac-
110 0 L tical situations where a fuzzy classification must be ap-
60 0 L proximated by available knowledge expressed in terms of

a classical approximation space. Such situations may come
Then approximations of the fuzzy partition induced byup naturally for example when we want to realize partial
Salary in the approximation space defined Bggreeand  dependency between attributes which is infered based on
Experienceare given in Table . Using (16) we obtain background knowledge; while such a dependency can not
13.46 be expressed in terms of traditional data dependencies as
*V{DegreeExperience; (Salary) = 16 0.84 described in Example.



TABLE IlI
THE APPROXIMATIONS OF THE FUZZY PARTITION BASED ONSalary

X; [ {L,15) [ {2,6] [ {3,11,13,14) | {4,12] [ {5,7) | 13,9} | {10,16}
[t igh. 1 0.13 0.33 0 0 0 1
[itTioh: 1 0.33 0.67 0 0 0 1
[0 edium. 0 0.67 0.33 0 0 | 067 0
LM odiume 0 0.87 0.67 0 033 | 0.73 0
L ow. 0 0 0 1 067 | 0.27 0
[Low- 0 0 0 1 1 | 033 0
TABLE IV
MASS ASSIGNMENT FORUT 0wy AND APPROXIMATIONS OF ITS FOCAL SETS
a 1 0.67 0.33 0.27
Low, {4,512} | {4,5,12,7} | {4,5,12,7,8} | {4,5,12,7,8,9}
M Low(Low,) 0.33 0.34 0.06 0.27
R(Low.) (4,12} | {4,5,12,7} | {4,5,12,7} | {4,5,12,7,8,9}
R(Low.) | {4,5,12,7} | {4,5,12,7} | {4,5,12,7.8,9} | {4,5,12,7,8,9}

U/ind({Degree) = {{1,2,6,15},{3,8,9,10, 11,13, 14, 16}, {4,5,7,12}}

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]
El

TABLE V
THE APPROXIMATIONS OF THE FUZZY PARTITION BASED ONSalary

X; {1,2,6,15} {3,8,9,10,11,13,14, 16} {4,5,7,12}
HUHigh. 0.13 0 0
HHigh* 1 1 0
HMedium, 0 0 0
K Medium* 087 073 033
MLow, O 0 067
L ow 0 0.33 1
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