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ABSTRACT
Motivation: Even in a simple organism like yeast Saccharomyces
cerevisiae, transcription is an extremely complex process. The expres-
sion of sets of genes can be turned on or off by the binding of specific
transcription factors to the promoter regions of genes. Experimental
and computational approaches have been proposed to establish map-
pings of DNA-binding locations of transcription factors. However,
although location data obtained from experimental methods are noisy
owing to imperfections in the measuring methods, computational
approaches suffer from over-prediction problems owing to the short
length of the sequence motifs bound by the transcription factors.
Also, these interactions are usually environment-dependent: many
regulators only bind to the promoter region of genes under specific
environmental conditions. Even more, the presence of regulators
at a promoter region indicates binding but not necessarily function:
the regulator may act positively, negatively or not act at all. There-
fore, identifying true and functional interactions between transcription
factors and genes in specific environment conditions and describing
the relationship between them are still open problems.
Results: We developed a method that combines expression data
with genomic location information to discover (1) relevant transcrip-
tion factors from the set of potential transcription factors of a target
gene; and (2) the relationship between the expression behavior of a
target gene and that of its relevant transcription factors. Our method
is based on rule induction, a machine learning technique that can effi-
ciently deal with noisy domains. When applied to genomic location
data with a confidence criterion relaxed to P -value = 0.005, and three
different expression datasets of yeast S.cerevisiae, we obtained a set
of regulatory rules describing the relationship between the expression
behavior of a specific target gene and that of its relevant transcription
factors. The resulting rules provide strong evidence of true positive
gene-regulator interactions, as well as of protein–protein interactions
that could serve to identify transcription complexes.
Availability: Supplementary files are available from http://www.jaist.
ac.jp/∼h-pham/regulatory-rules
Contact: h-pham@jaist.ac.jp

1 INTRODUCTION
Even in a simple organism like Saccharomyces cerevisiae the mech-
anisms of gene transcriptional regulation are extremely complex and
uncovering them is one of the key problems in computational bio-
logy. About 10% of genes in any organism can produce proteins
having a transcriptional role. These proteins are called transcription
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factors or regulators, and their DNA-binding interactions make the
set of downstream genes express.

Mapping of DNA-binding locations of transcription factors has
been proposed both by experimental (Iyer et al., 2001; Ren et al.,
2000; Lee et al., 2002; Lieb et al., 2001) and computational
approaches (Roth et al., 1998; Liu et al., 2002; Matys et al., 2003;
Timothy et al., 1995; Kellis et al., 2003). However, although genomic
location data from experimental approaches is noisy owing to imper-
fect measuring methods (Lee et al., 2002), computational approaches
suffer from over-prediction problems owing to the short length of the
motifs bound by the transcription factors. Harbison et al. (2004) have
constructed a map of yeast transcriptional regulatory code at differ-
ent confidence levels by incorporating results from both kinds of
methods. The frequency of false positives in genome-wide location
data ranges from 6 to 10%, and about one-third of actual DNA-
regulator interactions are not reported at the 0.001 P -value level (Lee
et al., 2002). Nevertheless, increasing the P -value to include more
true DNA-regulator interactions makes the rate of false positives
increase. Also, interactions between regulators and DNA-binding
sites are environment-dependent (Harbison et al., 2004): many reg-
ulators bind only to the promoter of certain genes under specific
conditions. Even more, presence of regulators at a promoter region
indicates binding but not necessarily function: the regulator may act
positively, negatively or not act at all. Therefore, recognizing relev-
ant regulators of a gene and describing how they regulate it under
specific environmental conditions are still unanswered problems.

DNA-binding locations of transcription factors and gene-
expression profiles are important information to reveal regulatory
modules, which describe the regulation of a group of transcription
factors on a set of genes. There are two main approaches to uncover
regulatory modules: genes can be clustered into modules based on
the similarity of their expression profiles, and then common bind-
ing sites of transcription factors in the promoter region of genes in
each module can be found (Pilpel et al., 2001; Ihmels et al., 2002).
Alternatively, we can group genes into modules that are commonly
bound by a set of transcription factors and then validate the expres-
sion profiles to confirm these modules (Bar-Joseph et al., 2003; Pham
et al., 2004). However, these methods do not mention under which
environmental conditions the interactions take place, nor how tran-
scription factors regulate genes in each module. Segal et al. (2003)
introduced a probabilistic method for inferring not only regulatory
modules, but also their regulatory program (describing the relation-
ship between the expression of target genes and that of transcription
factors). This approach uses the Expectation–Maximization (EM)
algorithm to search the model (structure of regulatory modules and
its parameters) with highest Bayesian score. The main drawback of
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Fig. 1. Approach overview. (A) Genomic locations; (B) Gene-expression profiles; (C) Gene-expression behaviors; (D) Regulatory table; (E) Regulatory rules.

this method lies precisely in the EM algorithm, which is known to
converge often to local optima, as well as to depend strongly on the
initial models supplied.

In this paper, we propose a method that combines expression
data with genomic location data to discover qualitative relationships
between the expression of a gene (target gene) and that of its relevant
transcription factors. We assume that transcription factors regulating
the expression of a gene must bind to its promoter, and the expres-
sion of the target gene must be consistent, in a specific way, to the
expression behavior of these transcription factors.

By analyzing data from microarray experiments, we can see
how the expression of a gene changes related to modifications in
the expression level of its transcription factors. We represent these
expression behaviors by three states: downregulation (D), upregu-
lation (I ) and no change (N ). We then develop a method based on
rule induction (a machine learning technique that can efficiently deal
with noisy domains), to discover consistent relationships between the
expression behavior of target genes and the expression behavior of
their transcription factors. Our method can find (1) relevant tran-
scription factors from the set of potential transcription factors of a
target gene; and (2) the relationship between the expression beha-
vior of a target gene and the expression behavior of these relevant
transcription factors.

When applied to genomic location data with a relaxed confidence
criterion (P -value = 0.005) and three different expression datasets
of yeast S.cerevisiae, our method produced a set of regulatory rules
comprehensively describing the relationship between the expres-
sion behavior of a target gene and that of its relevant transcription
factors. We could find the most frequent regulators occurring in
regulatory rules under different conditions: response to environ-
mental stress, response to DNA-damaging agents and during the

cell cycle. We illustrate how the resulting regulatory rules provide
strong evidence of true positive gene-regulator interactions, as well as
evidences of protein–protein interactions that could serve to identify
transcription complexes.

2 METHODS

2.1 Approach overview
In this work we find regulatory rules that relate the expression of a gene with
that of its regulators. Given n potential transcription factors tf1, . . . , tfn bind-
ing to the promoter of a target gene Gt and assuming genes G1, . . . , Gn are
responsible for expressing these factors (Fig. 1A for an example with n = 2),
we build a regulatory table as follows: we first determine the expression pro-
files of G1, . . . , Gn and Gt (Fig. 1B) from the expression data. By comparing
the results of pairs of experiments, we can determine if the expression of
genes increased (I ), decreased (D) or did not change (N ) at the same time
(Fig. 1C). With this information we can construct the regulatory table with
instances of the form (G1 = v1, . . . , Gn = vn, Gt = vt , count = k), with
vi = I , D or N (Fig. 1D). Section 2.2 provides more information on the
regulatory tables. From the regulatory tables, we then apply the CN2-SD rule
induction system (Section 2.3) to produce a set of regulatory rules (Fig. 1E).

2.2 Regulatory tables
Given a gene and a set of its potential transcription factors, the regulatory
table of this gene (the target gene) is a contingency table describing the rela-
tion between the expression behavior of the gene and its regulators. If a gene
has n potential regulators, its regulatory table consists of at most 3n rows,
since the expression behavior of each regulator has three states: I (upregula-
tion), D (downregulation) and N (no change). For each set (G1, . . . , Gn, Gt)

of regulators and target gene, we then study their expression profiles. Every
experiment is compared against all others to determine if the expression of
a gene increased (ex − ey > T ), decreased (ex − ey < −T ) or did not
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change (|ex −ey | ≤ T ). Section 2.6 describes how the threshold T is determ-
ined. Fig. 1D is an example of regulatory table of a gene with two potential
regulators.

These regulatory tables have two important characteristics. First, they con-
tain noise from three different sources: (1) Imperfect measurement methods
to collect gene-expression data, (2) uncertainty of interactions between tran-
scription factors and the target gene (as explained in Section 1) and (3) method
to obtain the threshold value T . Owing to these factors, the expression
behavior of potential regulators turns out to be often inconsistent with the
expression behavior of the target genes. To alleviate this problem, we use
the counts for each state of the expression behavior of the gene (Fig. 1D).
A second important characteristic of the regulatory tables is that they are
sometimes incomplete. Since we construct them from expression data, some
combinations of expression behavior of the set of regulators may have never
happened under any conditions, or occurred with very low frequency as a
result of noise.

Even though regulatory tables can be incomplete and noisy, consist-
ent relationships between expression behavior of genes can nevertheless be
uncovered from them. These relationships are represented in the form of a
rule Gi1 = vi1 , . . . , Gik = vik → Gt = vt , which takes account only of
transcription factors Gi1 , . . . , Gik relevant for the expression behavior of the
target gene Gt , and that ignores other non-relevant factors. In the following
subsections, we will present a machine learning technique, rule induction,
to efficiently discover such kinds of rules from regulatory tables.

2.3 Descriptive rule induction by CN2-SD
Rule induction from examples is a machine learning technique successfully
used as a support tool for knowledge acquisition and prediction. The induced
rules are usually expressed as condition → class, where condition and class
are logic expressions of the form (variable1 = value1 ∧ · · · ∧ variablek =
valuek). There are three kinds of rule inducting algorithms: covering, decision
tree-based and association rule-based. Covering algorithms make use of a
‘separate-and-conquer’ strategy over the search space to learn a rule set
(Furnkranz, 1999). This strategy searches for a rule that explains (covers)
a part of its training instances, separates (or reassigns with lower weight)
these examples and recursively conquers the remaining examples by learning
more rules until no examples remain. Decision tree-based algorithms use a
‘divide-and-conquer’ strategy (Quinland, 1986, 1987). Decision trees can be
easily turned into a rule set by generating one rule for each path from the
root to a leaf. Finally, association rule-based algorithms use an ‘exhaustive
search’ strategy by exploring almost the whole search space (Liu et al., 1998).
The basic idea is to use an association rule algorithm to gather all rules that
predict the class attribute and also pass a minimum quality criterion.

By implementation, the divide-and-conquer strategy (in decision tree-
based algorithms) is restricted to learn non-overlapping rules only. The
exhaustive strategy (in association rule-based algorithms) has the problem
of producing many redundant rules. Separate-and-conquer algorithms can
partially avoid these disadvantages (Furnkranz, 1999; Lavrac et al., 2004).

CN2 (Clark and Nibblet, 1989; Clark and Boswell, 1991) is a rule induc-
tion system implementing the separate-and-conquer strategy. It was originally
designed to solve classification and prediction tasks. CN2 can induce a set of
independent rules, where each rule describes a specific subgroup of instances.
However, owing to the maner in which CN2 iteratively removes examples,
only the first few induced rules are usually of interest. Subsequently induced
rules are obtained from biased example subsets, i.e. subsets including only
positive examples not covered by previously induced rules. This is not suit-
able for description tasks (discovering individual rules describing interesting
patterns, as presented in the work here), where desired rules may cover over-
lapped instances. CN2-SD (Lavrac et al., 2004), a modification of CN2 for
subgroup discovery, solves this problem and will be therefore used in the rest
of this paper.

CN2-SD generalizes the covering algorithm by introducing example
weights. Initially, all examples have a weight of 1.0. However, the weights
of examples covered by a rule will not be set to 0 (as in CN2), but instead

will be reduced by a certain factor. The resulting number of rules is typic-
ally higher than with CN2, since most examples will be covered by more
than one rule. CN2-SD has, therefore, two complementary advantages: it can
learn better local patterns since the influence of previously covered patterns
is reduced, but not completely ignored; and, it can produce a better classifier
by combining the evidence of more induced rules.

For description tasks, besides the weighted covering method, CN2-SD
needs also a rule evaluation heuristic that favors rules with higher general-
ity (Pham et al., 2005). In the rest of this paper, we will use a weighted
relative accuracy heuristic [Equation (1)]. During the weighted covering
strategy tends to find rules that explain overlapped subgroups of instances
in the search space, the weighted relative accuracy heuristic produces highly
general rules that express the knowledge contained in one specific subgroup.

hWRA(condition → class) = p(condition)

p(class|condition) − p(class)
(1)

2.4 Filtering regulatory rules
By using a weighted covering strategy CN2-SD can restrict the redundancy
of learned rules and guarantee the scanning of the whole search space. How-
ever, uninteresting rules are still produced. In addition to the significance
test, which ensures that the distribution of examples among classes covered
by a rule is significantly different to the distribution obtained by random
assignment (Clark and Nibblet, 1989), we use two other heuristics to filter
out undesired rules. Given a regulatory rule r , TF1 = v1, . . . , TFn = vm →
Target_gene = v[nD , nI , nN ], where vi(i = 1, . . . , m) and v are expres-
sion behavior values ({D, I , N}) of genes or transcription factors; and
[nD , nI , nN ] are the class distribution of examples covered by r .

Removing trivial rules and irrelevant conditions in a rule. r is called a
trivial regulatory rule if the predictive value of Target_gene is N (no change).
This rule can be interpreted as: ‘there is no relationship between the target
gene and its transcription factors’. Since these kind of rules are trivial, they
are removed from the learned rule set.

If there is any transcription factor in the condition part of a rule appearing
with value N (no change), this transcription factor has no role in regulating
the expression of the target gene. We also remove these irrelevant factors in
the condition part of the rules, and update the class distribution for the new
rules.
Removing inconsistent regulatory rules. The consistence (cons) of a non-
trivial regulatory rule r is defined as

cons(r) = np

nD + nI

× np

nD + nI + nN

(2)

where np is equal to nD if r is a classification prediction rule for Target_gene
belonging to class D, and equal to nI if r is a classification prediction rule
for Target_gene belonging to class I . Consistence takes into account two
factors: a confidence-without-noise np/(nD +nI ) and confidence-with-noise
np/(nD + nI + nN), where nN is the parameter representing noise in micro-
array data. Clearly, 0 ≤ cons(r) ≤ 1, and the higher the value of cons(r), the
higher the confidence that regulatory rule r is true.

2.5 Datasets
In our experiments we used genomic location data (as described in Harbison
et al., 2004) as a source for potential gene–transcription factor interac-
tions. This dataset contains interactions between 106 transcription factors
and ∼6200 genes of yeast S.cerevisiae, with a relaxed binding criterion of
confidence P -value ≤ 0.005 (in order to increase the number of true and func-
tional interactions that can be found), and conserved in at least one other yeast
species. Three expression datasets (Gasch et al., 2000, 2001; Spellman et al.,
1998) are also used to analyze the expression behavior of target genes as
well as transcription factors response to environmental stresses, response to
DNA-damaging agents and during the cell cycle. The number of experiments
of these three datasets is 172, 52 and 77.
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Table 1. Summary of produced regulatory rules

Response to environmental
changesa

Response to
DNA damageb

Cell cyclec All

Number of rules 2438 1974 506 3707
Number of genes 1002 889 288 1336
Number of interactions found 2206 1938 580 3033
Number of interactions found 1518 (68.8%) 1350 (69.7%) 401 (69.1%) 2103 (69.3%)

with P -value ≤ 0.001
Number with p-value ≤ 0.001, 475/1993 (23.8%) 557/1927 (28.9%) 389/790 (48.2%) 455/2558 (17.8%)

no interaction found
Ten most frequent regulators RAP1, ABF1, STE12, FHL1,

REB1, NRG1, HSF1,
SWI6, UME6, CBF1

RAP1, FHL1, HSF1, GCN4,
ABF1, STE12, CIN5,
MSN4, CBF1, MBP1

SWI6, STE12, SWI4, MBP1,
DIG1, MSN4, PHD1,
FKH1, FKH2, ABF1

RAP1, ABF1, STE12, REB1,
GCN4, HSF1, NRG1,
CBF1, SWI6, FHL1

aGasch et al. (2000).
bGasch et al. (2001).
cSpellman et al. (1998).

2.6 Assigning expression behavior labels
We compare the expression values ei and ej of a gene between any two
microarray experiments i and j to determine its expression behavior. If
ej − ei > T , the expression behavior of the gene is upregulated (I ) from
experiment i to experiment j ; if ej − ei < T , the expression behavior of
the gene is downregulated (D); otherwise it is unchanged (N ). When the
threshold value T is large, our system will produce regulatory rules with high
confidence-without-noise but low confidence-with-noise (Section 2.4). These
regulatory rules are often true positives although by using a high threshold
we are also discarding some relevant regulatory rules. Inversely, if the value
of T is small, our system will produce many irrelevant regulatory rules owing
to the noise in microarray data. To determine a reasonable threshold T for a
microarray dataset, we first set an initial value T0 large enough, then apply our
method to find a set of true positive regulatory rules. This set is considered as
previously known regulatory rules (since the set often includes true positives).
We then tune the parameter T to get the highest value of the average measure
cons [Equation (2)] over all the rules in this set. By using this method, we
obtained threshold values T for the data (1.3) and data (0.75) of Gasch et al.
(2000, 2001) and data (1.0) of Spellman et al. (1998).

3 RESULTS
Results were obtained by using the datasets for gene-expression
profiles response to environmental conditions (Gasch et al., 2000,
2001; Spellman et al., 1998), with T threshold values calculated as
in Section 2.6 (1.3, 0.75 and 1.0). These datasets represent the gene-
expression profiles response to environmental stresses, response to
DNA-damaging agents and during the cell cycle. Genomic loc-
ation data of yeast S.cerevisiae with binding criterion relaxed to
P -value ≤ 0.005 and conserved in at least one other yeast (Harbison
et al., 2004) was used to determine potential transcription factors of
a gene. We removed genes that are bound by no regulator or where
95% of the total number of expression behaviors were N (no change).
There are 1800, 2133 and 1172 remaining genes that are bound by
at least one transcription factor and significantly expressed, i.e. they
have a number of expression behaviors of classes D or I >5% of
their total number of behaviors. For each gene in these sets and each
expression dataset, we constructed a table (Fig. 1), obtaining a total
of 1800, 2133 and 1172 regulatory tables. The algorithm CN2-SD
(Lavrac et al., 2004) with WRA heuristic [Equation (1)] was then
applied to find all regulatory rules from these tables. Finally, we

filtered out trivial rules, trivial conditions in rules (Section 2.4), reg-
ulatory rules covering few examples and rules with consistence <0.3.

We found 3707 regulatory rules for predicting 1336 target genes
to be D and the same number of rules for prediction being I . Since
we analyze any pair of experiments without considering their time
order, with each regulatory rule for predicting the target gene to be D

there is an equivalent regulatory rule for predicting it to be I , where
variables in the condition part of the rule received the opposite values
(I ↔ D). For example, rules Gx = D, Gy = D → Gt = I and
Gx = I , Gy = I → Gt = D are equivalent. For simplicity, we will
refer only to regulatory rules for predicting target gene Gt belonging
to class D as the representative ones.

Table 1 shows the number of regulatory rules, number of genes
controlled by these rules and the 10 most frequent transcription
factors found from these three expression datasets. We found 1002
genes appearing in 2438 regulatory rules in response to environ-
mental stresses; 889 genes appearing in 1974 rules in response to
DNA-damaging agents; 288 genes appearing in 506 rules related to
the cell cycle; and a total of 1336 genes in 3707 rules in all three kinds
of environments. We also found that the most frequent transcription
factors occurring in regulatory rules in response to environmental
stresses (RAP1, ABF1, STE12, FHL1, REB1, etc.) and in response
to DNA-damaging agents (RAP1, FHL1, HSF1, GCN4, ABF1,
etc.) are quite similar and agree with the function they have been
annotated with in Gene Ontology (Harris et al., 2004), whereas the
most frequent transcription factors occurring in regulatory rules from
the cell-cycle dataset (SWI6, STE12, SWI4, MBP1, DIG1, etc.)
have functions previously reported to control the cell cycle during
growth (Harris et al., 2004). The full set of regulatory rules can be
obtained on-line (files *regulatory-rules.txt).

It should be noticed how one gene is often regulated by one or more
transcription factors depending on environmental conditions. For
example, gene YPR145W (ASN1) is regulated by different subsets
of regulators (Table 2) under environmental stresses. The tran-
scription factors that most influenced the expression of YPR145W
response to environmental changes are STE12, with regulatory rule
YPR145W = D ← STE12 = D covering 2703 instances and con-
sistence 0.82; and DAL82, which negatively regulates YPR145W.
The transcription factors GCN4 and GLN3, when acting together

ii104



Transcriptional regulatory rules

Table 2. Examples of regulatory rules (boldface indicates consistency ≥0.3)

Regulatory rules Response environment changes Response DNA-damage Cell cycle
Class distribution Consistence Class distribution Consistence Class distribution Consistence

YPR145W = D ← STE12 = D [2198, 8, 479] 0.82 [36, 11, 130] 0.16 [0, 0, 102] 0.00
YPR145W = D ← GCN4 = I, STE12 = D [300, 0, 33] 0.90 [0, 0, 0] 0.00 [0, 0, 5] 0.00
YPR145W = D ← DAL82 = I [820, 56, 435] 0.59 [19, 42, 155] 0.03 [0, 1, 6] 0.00
YPR145W = D ← DAL82 = I, GCN4 = I [256, 15, 95] 0.66 [0, 1, 3] 0.00 [0, 0, 0] 0.00
YPR145W = D ← DAL82 = I, GLN3 = I [356, 11, 92] 0.75 [6, 2, 14] 0.2 [0, 0, 0] 0.00
YBR067C = D ← ASH1 = D [1077, 111, 1102] 0.43 [111, 180, 303] 0.07 [408, 171, 696] 0.23
YBR067C = D ← ASH1 = D, HSF1 = I [124, 0, 8] 0.94 [0, 7, 6] 0.00 [0, 3, 2] 0.00
YBR067C = D ← HSF1 = D, NRG1 = D [74, 301, 228] 0.02 [24, 0, 6] 0.80 [0, 11, 16] 0.00
YBR067C = D ← HSF1 = D [139, 350, 360] 0.05 [51, 6, 41] 0.47 [26, 1, 51] 0.32

Table 3. Genes regulated by MBP1 and SWI6

Rule Env.+ GO terms for target gene

MBP1 = D,SWI6 = D → YBR070C = D b,c Nuclear envelope–endoplasmic reticulum network
MBP1 = D SWI6 = I → YDR263C (DIN7) = D a DNA repair, mitochondrion
MBP1 = I SWI6 = I → YDR507C (GIN4) = D c Protein amino acid phosphorylation, protein kinase activity, bud neck
MBP1 = D SWI6 = I → YGL178W (MPT5) = D a Cell wall organization and biogenesis, mRNA binding,cytoplasm
MBP1 = I SWI6 = D → YGR109C (CLB6) = D c G1/S transition of mitotic cell cycle, cyclin-dependent protein kinase regulator activity
MBP1 = I SWI6 = D → YGR152C (RSR1) = D a,c Bipolar bud site selection, GTPase activity, plasma membrane
MBP1 = D SWI6 = I → YGR180C (RNR4) = D b DNA replication, ribonucleoside-diphosphate reductase activity, cytoplasm
MBP1 = D SWI6 = D → YJL187C (SWE1) = D c G2/M transition of mitotic cell cycle, protein kinase activity, nucleus
MBP1 = D SWI6 = D → YKL008C (LAC1) = D a,c Ceramide biosynthesis, sphingosine N -acyltransferase activity, endoplasmic reticulum
MBP1 = I SWI6 = D → YMR179W (SPT21) = D c Regulation of transcription from Pol II promoter,nucleus
MBP1 = I SWI6 = D → YMR307W (GAS1) = D a Cell wall organization and biogenesis,‘1,3-beta-glucanosyltransferase activity’,

mitochondrion
MBP1 = D SWI6 = D → YNR009W = D a,c Unknown, cytoplasm
MBP1 = I SWI6 = D → YNR009W = D a Unknown, cytoplasm
MBP1 = I SWI6 = D → YPL127C (HHO1) = D c ‘Regulation of transcription, DNA-dependent’, DNA binding, nucleus
MBP1 = D SWI6 = D → YPR075C (OPY2) = D c Cell cycle arrest in response to pheromone, cytoplasm
MBP1 = I SWI6 = D → YPR120C (CLB5) = D c G1/S transition of mitotic cell cycle, cyclin-dependent, protein kinase regular activity,

nucleus

+Env. = a, b, c ≡ regulatory rule is activated in response to environmental stresses, in response to DNA-damaging agents or during cell cycle, respectively.

with STE12 or DAL82, can increase the activation ability of these
factors. Conversely, a transcription factor (independently or cooper-
atively with others) can regulate many different genes at the same
time. For example, MBP1 interacts with SWI6 in different ways to
regulate the activity of 15 different genes (Table 3).

4 DISCUSSION

4.1 Relevant interactions from genomic locations data
We analyzed relevant interactions between 94 transcription factors
and 1336 genes occurring in 3707 regulatory rules found by our
method. We found 3033 relevant interactions among them (Table 1),
2103 (69.3%) of which have been reported in the genomic locations
data with P -value ≤ 0.001 (Lee et al., 2002). Therefore, 31.7% of
the relevant interactions found in regulatory rules are from potential
ones in the genomic locations with 0.001 ≤ P -value ≤ 0.005. This
result agrees with the work of Lee et al. (2002), where it was reported
that about one-third of actual DNA-regulator interactions in genomic

locations data are missed at P -value = 0.001. Details of interactions
in regulatory rules and in genomic locations data for the 1336 genes
can also be obtained from the complementary on-line material. Out
of the 2558 interactions, 455 interactions, involving the 1336 genes
(Table 1) and all interactions involving other genes from this gen-
omic locations data were not found in regulatory rules. The reasons
are: (1) the genomic locations data contain substantial noise; (2) in
our experiments we only considered three kinds of environmental
conditions, whereas the genomic locations data contain potential
interactions that do not actually take place under the conditions we
chose; and (3) many physically binding interactions are too weak or
do not translate into a real function.

4.2 Regulatory modules and transcription complexes
We used a clustering method based on a closed itemset lattice, [Pham
et al. (2004)] to group genes regulated by a common subset of
transcription factors. We define a regulatory module as a system
including three components: a set of genes, a set of regulators and a
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Table 4. Description of some regulatory modules

Regulators Roles of regulators Number of genes Significantly shared GO terms

RAP1 Transcriptional silencing of HML and HMR loci,
activation of ribisomal glycolytic enzymes, etc.

111 (71/111) protein biosynthesis (P = 4.99e − 41)
(21/111) ribosome biogenesis (P = 1.37e − 10)

ABF1 Chromatin-reorganizing activity involved in
transcriptional activation, gene silencing, and DNA
replication and repair

132 (27/132) ribisome biogenesis (P = 4.74e − 14)
(24/132) RNA processing (P = 1.29e − 08)

STE12 Activates genes involved in mating or
pseudohyphal/invasive growth pathways

78 (14/78) conjugation with cellular fusion
(P = 3.87e − 12)

(13/78) response to abiotic stimulus (P = 3.69e − 7)
FHL1 Similarity to DNA-binding domain of Drosophila

forkhead, required for rRNA processing
82 (66/82) protein biosynthesis (P = 8.41e − 49)

(14/82) ribosomal subunit assembly (P = 1.27e − 15)
HSF1 Heat shock transcription factor, activates multiple genes

in response to hyperthermia
99 (17/99) protein folding (P = 3.57e − 18)

(17/99) response to stress (P = 6.95e − 06)
SWI6 G1/S transition, meiotic gene-expression localization

regulated by phosphorylation
67 (16/67) development (P = 6.62e − 6),

(8/67) regulation of cell cycle (P = 2.25e − 5)
MBP1 Involved in regulation of cell-cycle progression from G1

to S phase
37 (6/37) DNA replication (1.35e − 5),

(10/37) DNA metabolism (0.00023)
(5/37) DNA repair (0.0006)

MBP1 and SWI6 Complex regulating transcription at the G1/S transition 15 (6/15) regulation of cell cycle (P = 1.24e − 7), (3/15)
regulation of cyclin dependent protein kinase activity
(P = 3.91e − 6)

SWI4 Involved in cell-cycle dependent gene expression 36 (6/36) regulation of cell cycle (P = 3.52e − 5),
(4/36) G1/S transition of mitotic cell cycle

(P = 8.71e − 5),
(3/36) G2/M transition of mitotic cell cycle

(P = 0.00059)
GCN4 Amino acid biosynthetic genes with respect to amino

acid starvation
77 (21/77) amino acid and derivative metabolism

(P = 6.86e − 16)

set of regulatory rules between them. Since a gene can be regulated
by different sets of regulators with different regulatory rules, it can
belong to multiple regulatory modules. Genes in each module often
have similar or related functions that agree with the role of their
transcription factors. We used GO Term Finder to search for signi-
ficantly shared GO terms directly or indirectly associated with the
genes in each regulatory module. To determine significant terms, the
algorithm examines a group of genes to find GO terms to which a high
proportion of the genes are associated, as compared with the number
of times the term is associated with other genes. Table 4 describes
regulatory modules including some of the most frequent regulators.
The modules obtained in this work are more complete than those in
previous studies (Pilpel et al., 2001; Ihmels et al., 2002; Bar-Joseph
et al., 2003; Segal et al., 2003; Pham et al., 2004), in addition to
what genes and regulators compose each module, we also describe
the regulatory relationship between them in the form of a rule under
certain environmental conditions.

Table 3 shows a detailed description of one of the regulatory mod-
ules appearing in Table 4. This module consists of 15 distinct genes
commonly regulated by MBP1 and SWI6. These two regulators have
been reported to form a complex involved in regulation of cell-cycle
progression (Koch et al., 1993; Bruin et al., 2004). Out of 15 genes
in this module, 6 of them (GIN4, MPT5, CLB6, SWE1, OPY2 and
CLB5) are related to the cell-cycle regulation (P = 1.24 × 10−7),
as annotated in Gene Ontology.

This example suggests a possible use of our method to predict tran-
scription complexes. We consider all regulatory modules with more

than two regulators and containing at least five genes. Regulators
that coactivate or corepress a specific set of genes are candidates to
form transcription complexes. Table 5 shows candidate complexes
that regulate ≥7 or more genes. For example, SWI4 and SWI6 core-
gulate 16 distinct genes; TEC1 and STE12, 15; INO2 and INO4, 11;
HAP2 and HAP4, 10; FKH1 and FKH2, 7; and SWI4, SWI6 and
STE12, 4. These coregulators have been also previously confirmed
to interact in order to regulate genes (Table 4 for references). There
are some other pairs of coregulators regulating ≥7 genes in the res-
ulting rules for which we could not find any evidence in the BIND
database (Bader et al., 2003). For example, FHL1 and RAP1 core-
gulate (almost always positively) up to 65 distinct genes, with most
of them being related to the process ‘protein biosynthesis’. Until
experimental confirmation, we suggest that these pairs of coregu-
lators could be new transcription complexes. The complete list of
coregulators can be found on-line.

5 CONCLUSION
Data of DNA–transcription factor interactions from experimental
and computational methods is often noisy and contains information
about physically binding interactions, although not necessarily func-
tional ones. By combining this data with expression profiles data, our
rule induction method can discover relevant transcription factors for
a given target gene, as well as the relationship between the expres-
sion behavior of the target gene and that of its relevant regulators. By
using a relaxed confidence value we were able to uncover interactions
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Table 5. Candidate complexes

Candidate complex Number External evidences
of genes

FHL1 and RAP1 65
DIG1 and STE12 21 Olson et al. (2000), BIND Id: 130453
SWI4 and SWI6 16 Siegmund and Nasmyth (1996), BIND

Id: 24482
MBP1 and SWI6 15 Siegmund and Nasmyth (1996), BIND

Id:24484
TEC1 and STE12 15 Kim et al. (2004)
CAD1 and YAP7 14
TYE7 and CBF1 13
MSN2 and MSN4 12
YAP1 and YAP7 11
DAL82 and GLN3 11
INO2 and INO4 11 Wagner et al. (2001), BIND Id: 126362
HAP2 and HAP4 10 McNabb et al. (1997), BIND Id: 170195
CBF1 and GCN4 9
CBF1 and ABF1 9
PHD1 and NRG1 8
SOK2 and CIN5 8
CIN5 and NRG1 8
MBP1 and STE12 8
TEC1 and DIG1 7
STB1 and MBP1 7
FKH2 and FKH1 7 Hollenhorst et al. (2000), BIND id: 172668
CAD1 and YAP1 7
YAP7 and GCN4 7
TEC1 and DIC1 4

and STE12
SWI4 and SWI6 4 Breeden and Nasmyth (1987)

and STE12

usually missed in other studies owing to an excessively strict P -value.
The use of expression profiles obtained under three different envir-
onments allowed us to establish not only if an interaction takes place,
but also if it is functionally active and under what conditions it would
happen.

Our method also provides evidence of transcription factors that
commonly regulate different groups of genes. This result could be
used to identify potential transcription complexes, and we present
examples of previously not reported complexes for which strong
evidence was found.
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