
Probabilistic Sentence Reduction Using Support Vector Machines

M.L. Nguyen, A. Shimazu, S. Horiguchi, B.T. Ho and M. Fukushi

Japan Advanced Institute of Science and Technology
1-8, Tatsunokuchi, Ishikawa, 923-1211, JAPAN

nguyenml@jaist.ac.jp

Abstract

This paper investigates a novel application of
support vector machines (SVMs) in sentence re-
duction. Furthermore, we propose a new prob-
abilistic sentence reduction method based on
support vector machine learning. Experimental
results show that the proposed methods outper-
form earlier methods in term of sentence reduc-
tion performance.

1 Introduction

The most popular methods of sentence reduc-
tion for text summarization are corpus based
methods. Jing (Jing 00) studied a method to
remove extraneous phrases from sentences by
using multiple sources of knowledge to decide
which phrases could be removed. However,
while this method exploits a simple model for
sentence reduction by using statistics computed
from a corpus, a better model can be obtained
by using a learning approach.

Knight and Marcu (Knight 02) proposed
a sentence reduction based on corpus using
machine learning technique. They discussed
a noisy-channel based approach and a deci-
sion tree based approach to sentence reduction.
Their algorithms provide the best way to scale
up the full problem of sentence reduction us-
ing available data. However, these algorithms
involve the constraint that the word order of
a given sentence and its reduced sentence are
the same. Nguyen and Horiguchi (Nguyen 03a)
presented a new sentence reduction technique
based on a decision tree model without the con-
straint. They also indicated that semantic in-
formation is useful for sentence reduction tasks.

The major drawback of previous works on
sentence reduction is that those methods are
likely to output local optimal results, which may
have lower accuracy. This problem is caused by
the inherent sentence reduction model; that is,
only a single reduced sentence can be obtained.

As pointed out by Lin (Lin 03), the best sen-
tence reduction output for a single sentence is
not approximately best for text summarization.
This means that local optimal refer to the best
reduced output for a single sentence and the
best reduced output for the whole text is global
optimal. Therefore, it is very valuable if the sen-
tence reduction task can generate multiple re-
duced outputs and select the best one using the
whole text document. However, such a sentence
reduction method has not yet been proposed.

Support Vector Machines (Vapnik 95), on the
other hand, are strong learning methods in com-
paring with decision tree learning and other
learning methods (Sholkopf 97). The aim of this
paper is to illustrate the potential of SVMs in
enhancing the accuracy of sentence reduction in
comparing with previous works. Accordingly, a
novel deterministic method for sentence reduc-
tion using SVMs and a two-state method us-
ing pairwise coupling (Hastie 98) are described.
Furthermore, to solve the problem of generating
multiple best outputs, we propose a probabilis-
tic sentence reduction model, in which a variant
of probabilistic SVMs using pairwise coupling
and two-stage method is discussed.

The remaining of this paper will be or-
ganized as follows: Section 2 introduces the
Support Vector Machines learning. Section 3
presents the previous works on sentence reduc-
tion and our deterministic sentence reduction
using SVMs. We also discuss remained prob-
lems of deterministic sentence reduction. Sec-
tion 4 presents a probabilistic sentence reduc-
tion using support vector machine to solve this
problem. Section 5 presents implementation
and experimental results; Section 6 gives our
conclusions and presents some remained prob-
lems to be solved in our future work.

2 Support Vector Machines

Support vector machine (SVM)(Vapnik 95) is a
technique of machine learning based on statisti-

cal learning theory. Suppose that we are given
l training examples (xi, yi), (1 ≤ i ≤ l), where
xi is a feature vector in n dimensional feature
space, yi is the class label {-1, +1 } of xi. SVM
finds a hyperplane w.x + b = 0 which correctly
separates training examples and has maximum
margin which is the distance between two hy-
perplanes w.x + b ≥ 1 and w.x + b ≤ −1. The
optimal hyperplane with maximum margin can
be obtained by slowing the following quadratic
programming.

min 1
2 ‖w‖+ C0

l∑
i

ξi

s.t. yi(w.xi + b) ≥ 1− ξi

ξi ≥ 0

(1)

where C0 is the constant and ξi is called a slack
variable for the non-separable case. In final, the
optimal hyperplane is formulated as follows:

f(x) = sign

(
l∑
1

αiyiK(xi, x) + b

)
(2)

where αi is the Largrange multiple, and
K(x′, x′′) is called a kernel function, it calcu-
lates similarity between two arguments x′ and
x′′. For instance, the Polynomial kernel func-
tion is formulated as follow:

K(x′, x′′) = (x′.x′′)p (3)

SVMs estimate the label of an unknown exam-
ple x whether sign of f(x) is positive or not.

3 Deterministic Sentence Reduction
Using SVMs

3.1 Problem Description
In the corpus based decision tree approach, a
given input sentence is parsed into a syntax tree
and the syntax tree is then transformed into a
small tree to obtain a reduced sentence.

Let t and s be syntax trees of the original sen-
tence and a reduced sentence, respectively. The
process of transforming syntax tree t to small
tree s is called a rewriting process (Knight 02),
(Nguyen 03a). To transform the syntax tree t to
the syntax tree s, some terms and five rewriting
actions are defined.

An Input list consists of a sequence of words
subsumed by the tree t where each word in the
Input list is labelled with the name of all syntac-
tic constituents in t. Let CSTACK be a stack
that consists of sub trees in order to rewrite a
small tree. Let RSTACK be a stack that con-
sists of sub trees, which are removed from the
Input list in the rewriting process.

• SHIFT action transfers the first word from the
Input list into CSTACK. It is written mathe-
matically and given the label SHIFT.

• REDUCE(lk, X) action pops the lk syntactic
trees located at the top of CSTACK and com-
bines them into a new tree, where lk is an in-
teger and X is a grammar symbol.

• DROP X action moves subsequences of words
that correspond to syntactic constituents from
the Input list to RSTACK.

• ASSIGN TYPE X action changes the label of
trees at the top of the CSTACK. These POS
tags might be different from the POS tags in
the original sentence.

• RESTORE X action takes the X element in
RSTACK to remove that element into the Input
list, where X is a subtree.

For convenience, let configuration be a status
of Input list, CSTACK and RSTACK. Let cur-
rent context be the important information of a
configuration. The important information are
defined as a vector of features using heuristic
methods as in (Knight 02), (Nguyen 03a).

The main idea behind the deterministic sen-
tence reduction is that it uses a rule in the
current context of the initial configuration to
select a distinct action in order to rewrite an
input sentence into a reduced sentence. After
that, the current context is changed to a new
context and the rewriting process is repeated
for selecting an action that corresponds to the
new context. The rewriting process is finished
when it meets a termination condition. Here,
one rule corresponds to the function that maps
the current context to a rewriting action. These
rules are learned automatically from the corpus
of long sentences and their reduced sentences
(Knight 02), (Nguyen 03a).

3.2 Example
Figure 3 shows an example of applying a se-
quence of actions to rewrite the input sentence
(a, b, c, d, e), where each character is a word.
The structure of the Input list, two stacks, and
the term of a rewriting process based on the
actions mentioned above are illustrated in Fig-
ure 3. For example, in the first row, DROP
H deletes the sub-tree with its root node H in
the Input list and stored it in the RSTACK.
The reduced tree s can be obtained after ap-
plying a sequence of actions as follows: DROP
H; SHIFT; ASSIGN TYPE K; DROP B; SHIFT;
ASSIGN TYPE H; REDUCE 2 F; RESTORE H;

SHIFT; ASSIGN TYPE D; REDUCE 2G. In this
example, the reduced sentence is (b, e, a).

Figure 1: An Example of Rewriting Process

3.3 Learning Reduction Rules Using
SVMs

As mentioned above, the action for each config-
uration can be guessed by using a learning rule,
which map a context to an action. To obtain
such rules, the configuration is represented by
a vector of features with a high dimension. Af-
ter that, we estimate the training examples by
using several support vector machines to deal
with the multiple classification problem in sen-
tence reduction.
3.3.1 Features
One of the important task in applying SVMs to
text summarization is to define features. Here,
we describe features used in our sentence reduc-
tion models.

Figure 2: Example of Configuration

The features are extracted based on the cur-
rent context. As it can be seen in Figure 4, a
context includes the status of the Input list and
the status of CSTACK and RSTACK. We define

a set of features for a current context as follows:
Operation feature
The operation features are selected as follows.

• These features reflect the number of trees in
CSTACK and RSTACK, and the type of last
five actions.

• We also used the features represents for the
information of two stacks, as the information
denotes the syntactic category of the root
nodes of the partial trees built up to certain
time. We considered the ten last partial
trees in CSTACK and RSTACK for obtaining
syntactic category of their root nodes, and the
POS tag of a last word in CSTACK is also
considered as a feature.

Original tree feature
These features denote the syntactic constituents
that start with the first unit in the Input list.
For example, in Figure 4 the syntactic con-
stituents are labels of the current element in the
Input list from “VP” to the verb “convince”.
Semantic features
The followings are used in our model as seman-
tic information.

• Semantic information about current words
within the Input list; these semantic types
are obtained by using the named entities such
as Location, Person, Organization and Time
within the input sentence. To define these
name entities, we use the method described in
(Borthwick 99).

• Semantic information about whether or not the
word in the Input list is a head word.

• The word relations such as whether or not a
word is in a relation with other words in the
sub-categorization table. These relations and
the sub-categorization table are obtained by us-
ing the Commlex database (Macleod 95).

Using the semantic information, we are able to
avoid deleting important segments within the
given input sentence. For instance, the main
verb, the subject and the object are essential
and for the noun phrase, the head noun is essen-
tial, but an adjective modifier of the head noun
is not. For example, let us consider that the
verb “convince” was extracted from the Comm-
lex database as follows.

convince
NP-PP: PVAL (“of”)
NP-TO-INF-OC

This entry indicates that the verb “convince”

can be followed by a noun phrase and a preposi-
tional phrase starting with the preposition “of”.
It can be also followed by a noun phrase and a
to-infinite phrase. This information shows that
we cannot delete an “of” prepositional phrase
or a to-infinitive that is the part of the verb
phrase.

3.3.2 Two-state SVMs Learning using
the Pairwise Coupling

Using these features we can extract training
data for SVMs. Here, a sample in our train-
ing data consists of a pairs of a feature vectors
and a action. The algorithm to extract train-
ing data from the training corpus are modified
using the algorithm described in our pervious
work (Nguyen 03a).

Since the original support vector machine
(SVM) is a binary classification method while
the sentence reduction problem is formulated as
multiple classification, we have to find a method
of adapting support vector machines to this
problem. For multi-class SVMs, one can use
the strategies such as one-vs all, pairwise com-
parison or DAG graph (Hsu 02). In this paper,
we use the pairwise strategy that constructs a
rule for discriminating pairs of classes and then
selecting the class with the most winning among
two class decisions.

To boost the training time and the reduction
performance, we propose a two-stage SVM de-
scribed below.

Suppose that the examples were divided into
five groups m1,m2, ..., m5., Let Svmc be multi-
class SVMs and let Svmc-i be multi-class SVMs
for a group mi. We use one Svmc classifier to
recognize to which group a given example e
should be belong. Assume that e has been be-
longed to the group mi. The classier Svmc-i is
then used to recognize a specific action for the
example e. The five classifiers Svmc-1, Svmc-
2,..., Svmc-5 are trained by using those exam-
ples which have actions belonging to SHIFT,
REDUCE, DROP, ASSIGN TYPE and RE-
STORE.

Table 1 shows the distribution of examples on
five data groups.

3.4 Disadvantage of Deterministic
Sentence Reductions

The idea of the deterministic algorithm is used
the rule for each current context to select the
action and so on. The process terminates when
a stop condition meet. If early steps of this
algorithm fail to select the best actions, then the

Table 1: Distribution of example data on five
data groups

Name Number of examples
SHIFT-GROUP 13363
REDUCE-GROUP 11406
DROP-GROUP 4216
ASSIGN-GROUP 13363
RESTORE-GROUP 2004
TOTAL 44352

possibility of obtaining a wrong reduced output
becomes high.

One way to solve this problem is to select mul-
tiple actions that corresponds to the context at
each step in the process of rewriting. However,
the question that emerges here is how to deter-
mine criteria to use in selecting multiple actions
for a context. If this problem can be solved,
then multiple best reduced outputs can be ob-
tained for each input sentence and the best one
will be selected by using the whole text docu-
ment.

We propose a model for selecting multiple ac-
tions for a context in sentence reduction as a
probabilistic sentence reduction and present a
variant of probabilistic sentence reduction in the
next section.

4 Probabilistic Sentence Reduction
Using SVM

4.1 The Probabilistic SVMs Models

Let A be a set of k actions A =
{a1, a2...ai, ..., ak} and C be a set of n con-
texts C = {c1, c2...ci, ..., cn} . A probabilistic
model α for sentence reduction will select an
action a ∈ A for the context c with probability
pα(a|c). The pα(a|c) can be used to score ac-
tion a among possible actions A depending the
context c that is available at the time of deci-
sion. There must be several methods to esti-
mate such scores. We called these probabilistic
sentence reduction methods. The conditional
probability pα(a|c) are estimated using a variant
of probabilistic support vector machine, which
is described in following sections.

4.1.1 Probabilistic SVMs using the
Pairwise Coupling

For convenience, we denote uij = p(a = ai|a =
ai∨aj , c). Given a context c and an action a, we
assume that the estimated pairwise class prob-
abilities rij of uij are available. Here rij can
be estimated by some binary classifiers. For

instance, we could estimate rij by using the
SVM binary posterior probabilities as described
in (Plat 2000). Then, the goal is to estimate
{pi}k

i=1 , where pi = p(a = ai|c), i = 1, 2, ..., k.
For this propose, a simple estimate of these
probabilities can be derived by using the fol-
lowing voting method:

pi = 2
∑

j:j 6=i

I{rij>rji}/k(k − 1)

where I is an indicate function and k(k − 1) is
the number of pairwise classes. However, this
model is too simple and we can obtain a better
model by using the following method.

Assume that uij are pairwise probabilities of
the model subject to the condition that uij =
pi/(pi+pj). In (Hastie 98), the authors proposed
to minimize the Kullback-Leibler (KL) distance
between the rij and uij

l(p) =
∑

i 6=j

nijrij log
rij

uij
(4)

where rij and uij are the probabilities of a pair-
wise ai and aj in the estimated model and our
model, respectively, and nij is the number of
training data where their classes are ai or aj .
To find the minimizer of equation (6), they first
calculate

∂l(p)
∂pi

=
∑

i 6=j

nij(−rij

pi
+

1
pi + pj

).

Thus, letting ∆l(p) = 0, they proposed to find
a point satisfying

∑

j:j 6=i

nijuij =
∑

j:j 6=i

nijrij ,
k∑

i=1

pi = 1,

where i = 1, 2, ...k and pi > 0.
Such a point can be obtained by using the al-
gorithm described elsewhere in (Hastie 98). It
is applied to obtain a probabilistic SVM model
for sentence reduction using a simple method as
follows. Assume that our class labels belong to
l groups: M = {m1,m2...mi, ..., ml} , where l
is a number of groups and mi is a group e.g.,
SHIFT, REDUCE ,..., ASSIGN TYPE. Then
the probability p(a|c) of an action a for a given
context c can be estimated as follows.

p(a|c) = p(mi|c)× p(a|c, mi) (5)

where mi is a group and a ∈ mi. Here, p(mi|c)
and p(a|c,mi) are estimated by the method in
(Hastie 98).

4.2 Probabilistic sentence reduction
algorithm

After obtained a probabilistic model p, we then
use this model to define function score, by which

the search procedure ranks derivation of in-
complete and complete reduced sentences. Let
d(s) = {a1, a2, ...ad} be the derivation of a small
tree s, where each action ai belong to a set of
possible actions. The score of s is the product
of the conditional probabilities of the individual
actions in its derivation.

Score(s) =
∏

ai∈d(s)

p(ai|ci) (6)

where ci is the context in which ai was decided.
The search heuristic attempts to find the best
reduced tree s∗ as follow:

s∗ = argmax︸ ︷︷ ︸
s∈tree(t)

Score(s) (7)

where tree(t) are all the complete reduced trees
from the tree t of the given long sentence. As-
sume that for each configuration the actions
{a1, a2, ...an} are sorted in the decreasing or-
der according to p(ai|ci), in which ci is the con-
text of that configuration. Algorithm 1 shows
a probabilistic sentence reduction using the top
K-BFS search algorithm. This algorithm uses a
breadth-first search which does not expand en-
tire frontier, but instead expands at most the
top K scoring incomplete configurations in the
frontier and terminated it when finding M com-
pleted reduced sentences (CL is a list of reduced
trees), or when all hypotheses have been ex-
hausted. A configuration is completed if and
only if the Input list is empty and there is one
tree in the CSTACK. Note that, the function
get-context(hi, j) obtained the current context
of the jth configuration in hi, where hi is a heap
at step i. The function Insert(s,h) ensures that
the heap h is sorted according to the score of
each element in h. Essentially, in implementa-
tion we can use a dictionary of contexts and
actions observed from the training data in or-
der to reduce the number of actions to explore
for a current context.

5 Experiments and Discussion

We used the same corpus as described in
(Knight 02), which includes 1067 pairs of sen-
tences and their reductions. To evaluate sen-
tence reduction algorithms, we randomly se-
lected 32 pairs of sentences from our parallel
corpus, which is refereed to as the test corpus.
The training corpus of 1035 sentences extracted
44352 examples, in which each training exam-
ple is corresponded to an action. The SVM
tool, the LibSVM (Chang 01) is applied to train
our model. The training examples were divided

Algorithm 1 A probabilistic sentence reduction
algorithm
1: CL={Empty};

i = 0; h0={ Initial configuration}
2: while |CL| < M do
3: if hi is empty then

4: break;
5: end if
6: u =min(|hi|, K)

7: for j = 1 to u do
8: c=get-context(hi, j)

9: Select m so that

m∑
i=1

p(ai|c) < Q is maximal

10: for l=1 to m do
11: parameter=get-parameter(al);

12: Obtain a new configuration s by performing action al
with parameter

13: if Complete(s) then

14: Insert(s, CL)

15: else
16: Insert(s, hi+1)

17: end if
18: end for
19: end for
20: i = i + 1

21: end while

into SHIFT, REDUCE, DROP, RESTORE and
ASSIGN groups. To train our support vec-
tor model in each group, we used the pairwise
method with the polynomial kernel function, in
which the parameter p in (3) and the constant
C0 in equation (1) is 2 and 0.0001, respectively.

The algorithms (Knight 02) and (Nguyen
03a) were served as the baseline1 and the
baseline2 to compare with the proposed algo-
rithms. The deterministic sentence reduction
using SVM and the probabilistic sentence re-
duction is named as SVM-D and SVMP, respec-
tively. For convenience, the ten top reduced
outputs using SVMP is called SVMP-10. We
used the same evaluation method as described
in (Knight 02) to compare the proposed meth-
ods with pervious methods. For this propose,
we presented each original sentence in the test
corpus to three judges who are specialist in En-
glish, together with three sentence reductions:
the human generated reduction sentence, the
outputs of the proposed algorithms, and the
output of the baseline algorithms.

The judges were told that all outputs were
generated automatically. The order of the out-
puts was scrambled randomly across test cases.
The judges participated in two experiments. In
the first, they were asked to determine on a scale
from 1 to 10 how well the systems did with re-
spect to selecting the most important words in
the original sentence. In the second, they were
asked to determine the grammatical criteria of
reduced sentences.

Table 2 shows the results of sentence reduc-
tion using support vector machine in comparing
with the baseline methods and against human
reduction for English language. Table 2 shows
compression rates, and mean and standard de-
viation results across all judges, for each algo-
rithm. The results show that the length of the
reduced sentence using decision trees is shorter
than using SVMs, and indicate that our new
methods outperform the baseline algorithms in
grammatical and importance criteria.

Table 2: Experiment results with Test Corpus
Method Comp Gram Impo
Baseline1 57.19% 8.60± 2.8 7.18± 1.92
Baseline2 57.15% 8.60± 2.1 7.42± 1.90
SVM-D 57.65% 8.76± 1.2 7.53± 1.53
SVMP-10 57.51% 8.80± 1.3 7.74± 1.39
Human 64.00% 9.05± 0.3 8.50± 0.80

Table 2 shows that the first 10 reduced sen-
tences yielded by the reduction process using
SVMP-10 (the SVM probabilistic model) ob-
tained highest performances. We also compared
the computation time of sentence reduction us-
ing support vector machine with the pervious
works. Table 3 shows that the computation
time of SVM-D and SVMP-10 are slower than
baseline, but this value are acceptable. We also

Table 3: Computation times of performing re-
ductions on test-set. Average sentence length
was 21 words.

Method Time (sec)
Baseline 138.25
SVM-D 212.46
SVMP-10 1030.25

investigated how sensitive the proposed algo-
rithms are with respect to the training data by
carrying out the same experiment on sentences
of a different genre. We took the test corpus by
selecting sentences in the web-site of the Ben-
ton Foundation (http://www.benton.org). The
leading sentences in each news were selected as
the most relevant sentences to the summary of
the news. We obtained 32 leading long sen-
tences and 32 headlines for each news above.
The 32 sentences are used as a second test for
our methods. We use a simple ranking crite-
ria that the more words in the reduced sentence
overlap with the words in the headline, the more

important sentence is. A sentence satisfying
this criteria is called a relevant candidate.

For a given sentence, we use a simple method,
namely SVMP-R to obtain a reduced sentence
by selecting a relevant candidate among the ten
top reduced outputs using SVMP-10.

Table 4 depicts the experiment results of
the baseline methods, SVM-D, SVMP-R and
SVMP-10, respectively. The results shows
that, when applied to sentence of a different
genre, the performance of SVMP-10 degrades
smoothly, while the performance of the deter-
ministic sentence reductions (the baselines and
SVM deterministic) drops sharply. This indi-
cates that the probabilistic sentence reduction
using support vector machine is more stable.

Table 4 shows that the performance of
SVMP-10 is also closed to the human reduc-
tion outputs and outperform the performance
of previous works. In addition, the performance
of SVMP-R outperforms the deterministic sen-
tence reduction algorithms and the differences
of SVMP-R’s results and SVMP-10’s results are
small. This indicates that we can obtain re-
duced sentences which are relevant to the head-
line, while ensure the grammatical criterion and
the importance criterion compared to the orig-
inal sentences.

Table 4: Experiment results with Benton Cor-
pus

Method Comp Gramm Impo
Baseline1 54.14% 7.61± 2.10 6.74± 1.92
Baseline2 53.13% 7.72± 1.60 7.02± 1.90
SVM-D 56.64% 7.86± 1.20 7.23± 1.53
SVMP-R 58.31% 8.25± 1.30 7.54± 1.39
SVMP-10 57.62% 8.60± 1.32 7.71± 1.41
Human 64.00% 9.01± 0.25 8.40± 0.60

6 Conclusions

We have presented a new probabilistic sentence
reduction approach that enables a long sentence
to be rewritten into reduced sentences based on
support vector models. Our methods achieves
a better performance in comparing with earlier
methods. The proposed reduction approach can
generate multiple best outputs. Experimental
results showed that the running time of reduc-
ing sentences is reasonable and the top of 10 re-
duced sentences returned by the reduction pro-
cess might yield accuracies dramatically higher
than previous works. We believe that a good

ranking method might improve the sentence re-
duction performance further.

References

A. Borthwick, “A Maximum Entropy Approach
to Named Entity Recognition”, Ph.D the-
sis, Computer Science Department, New York
University (1999).

C.-C. Chang and C.-J. Lin, “LIB-
SVM: a library for support vec-
tor machines”, Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

H. Jing, “Sentence reduction for automatic
text summarization”, In Proceeding of the
First Annual Meeting of the North Ameri-
can Chapter of the Association for Compu-
tational Linguistics NAACL-2000.

T.T. Hastie and R. Tibshirani, “Classification
by pairwise coupling”, The Annals of Statis-
tics, 26(1): pp. 451-471, 1998.

C.-W. Hsu and C.-J. Lin, “A comparison of
methods for multi-class support vector ma-
chines”, IEEE Transactions on Neural Net-
works, 13, pp. 415-425, 2002.

K. Knight and D. Marcu, “Summarization be-
yond sentence extraction: A Probabilistic ap-
proach to sentence compression”, Artificial
Intelligent 139: pp. 91-107, 2002.

C.Y. Lin, “Improving Summarization Perfor-
mance by Sentence Compression — A Pi-
lot Study”, Proceedings of the Sixth Inter-
national Workshop on Information Retrieval
with Asian Languages, pp.1-8, 2003.

C. Macleod and R. Grishman, “COMMLEX
syntax Reference Manual”; Proteus Project,
New York University (1995).

M.L. Nguyen and S. Horiguchi, “A new sentence
reduction based on Decision tree model”,
Proceedings of 17th Pacific Asia Conference
on Language, Information and Computation,
pp. 290-297, 2003

V. Vapnik, “The Natural of Statistical Learning
Theory”, New York: Springer-Verlag, 1995.

J. Platt,“ Probabilistic outputs for support vec-
tor machines and comparison to regularized
likelihood methods,” in Advances in Large
Margin Classifiers, Cambridege, MA: MIT
Press, 2000.

B. Scholkopf et al, “Comparing Support Vec-
tor Machines with Gausian Kernels to Radius
Basis Function Classifers”, IEEE Trans. Sig-
nal Procesing, 45, pp. 2758-2765, 1997.

