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Abstract. This paper is concerned with the fundamental role of two math-
ematical theories in some clustering problems. Formal concept analysis pro-
vides the algebraic structure and properties of possible concepts from a given
context, and rough set theory provides a mathematical tool to deal with im-
precise and incomplete data. Based on these theories, we developed models
and algorithms for solving three clustering problems: conceptual clustering,
approximate conceptual clustering, and text clustering.

1 Formal Concept Analysis and Rough Set
Theory

A theory of concept lattices has been studied under the name formal concept
analysis (FCA) by Wille and his colleagues [1, 11]. Considers a context as
a triple (O, D, R) where O be a set of objects, D be a set of primitive de-
scriptors and R be a binary relation between O and D, i.e., R C O x D and
(0,d) € R is understood as the fact that object o has the descriptor d. For
any object subset X C O, the largest tuple common to all objects in X is
denoted by A(X). For any tuple S € T, the set of all objects satisfying S is
denoted by p(S). A tuple S is closed if A(p(S)) = S. Formally, a concept C
in the classical view is a pair (X,S), X C O and § C 7, satisfying p(S) = X
and A(X) = S. X and S are called extent and intent of C, respectively.
Concept (X3, S2) is a subconcept of concept (X;,51) if Xo € Xy which is
equivalent to Sy O S1, and (X1, S1) is then a superconcept of (Xs, S2).

It was shown that A and p define a Galois connection between the power sets
p(O0) and p(D), i.e., they are two order-reversing one-to-one operators. As
a consequence, the following properties hold which will be exploited in the
learning process:
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The basic theorem in formal concept analysis [11] states that the set of all
possible concepts from a context (O, D, R) is a complete lattice’ £, called
Galois lattice, in which infimum and supremum can be described as follows:
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Rough set theory, a mathematical tool to deal with uncertainty introduced
by Pawlak in early 1980s [10]. The starting point of this theory is the as-
sumption that our “view” on elements of a set of objects O depends on some
equivalence relation £ on O. An approrimation space is a pair (O, E) con-
sisting of @ and an equivalence relation £ C O x O.

The key notion of the rough set theory is the lower and wupper approxima-
tions of any subset X C O which consist of all objects surely and possibly
belonging to X, respectively. The lower approximation F,(X) and the upper
approximation E*(X) are defined by

E.X)={0o€eO:ole C X} (3)

EX(X)={0€O:[olgNX £ 0} (4)

where [0]g denotes the equivalence class of objects indiscernible with o with
respect to the equivalence relation F.

2 FCA-based Conceptual Clustering

Conceptual clustering concerns mainly with symbolic data [9]. Tt does simul-
taneously two tasks: (i) hierarchical clustering (i.e., finding a hierarchy of
useful subsets of unlabelled instances); and (ii) characterization (i.e., finding
an intensional definition for each of these instance subsets). An important
feature of conceptual clustering is that a partitioning of data is viewed as

LA lattice £ is complete when each of its subsetf X has a least upper bound and a
greatest lower bound in L.



Table 1: Scheme of OSHAM conceptual clustering

Input concept hierarchy H and an existing splittable concept C.
Result H formed gradually.
Top-level call OSHAM(root concept, 0).

1. While C}, is still splittable, find a new subconcept of it that corresponds to
the hypothesis minimizing the quality function ¢(C}) among 1 hypotheses
generated by the following steps

(a) Find a “good” attribute-value pair concerning the best cover of Cj.

(b) Find a closed attribute-value subset S containing this attribute-value
pair.

(¢) Form a subconcept Ci, with the intent is S.

(d) Evaluate the quality function with the new hypothesized subconcept.

Form intersecting concepts corresponding to intersections of the extent of the
new concept with the extent of existing concepts excluding its superconcepts.

2. If one of the following conditions holds then C} is considered as unsplittable

(a) There exist not any closed proper feature subset.
(b) The local instances set C}, is too small.
(¢) The local instances set C}, is homogeneous enough.

3. Apply recursively the procedure to concepts generated in step 1.

‘good’ if and only if each cluster has a ‘good’ conceptual interpretation. In
this sense, FCA is a good tool for conceptual clustering as it formalizes the
duality between objects and their properties by Galois connections. Based on
FCA, we have developed a conceptual clustering method OSHAM with some
additional components to the concept representation by extent and intent.
The key idea here to enrich the concept representation in FCA by adding
several components based on the probabilistic and exemplar views on con-
cepts that allow dealing better with typical or unclear cases in the region
boundaries. The conceptual clustering method OSHAM to form a concept
hierarchy in the framework of concept lattices is introduced and described in
[2]. OSHAM searches to extract a good concept hierarchy by exploiting the
structure of Galois lattice of concepts as the hypothesis space.



Instead of characterizing a concept only by its intent and extent, OSHAM
represents each concept C}, in a concept hierarchy H by a 10-tuple

<I(Ci), f(Cr),5(Ch),i(Cy), e(Cr), d(Cr), p(Cr),d(CL), p(CE|Cr), q(Ch,) %
5

where

- I(Cy) is the level of Cy, in H;

- f(Cy) is the list of direct superconcepts of C;

- 8(Ck) is the list of direct subconcepts of C;

- 1(C%) is the intent of C}, (set of all common properties of instances
of Ck i;

- e(Cy) 1s the extent of Cy, (set of all instances satisfying properties
of i(Ck));

- d(C4) is the dispersion between instances of C;

- p(Cy) is the occurrence probability of C;

- d(C}) is the dispersion of local instances of C}, which are not
classified into subconcepts of Cy;

- p{C7|Cy) is the conditional probability of these unclassified
instances of C;

- q(Cf) is the quality estimation of splitting C}, into subconcepts C, .

Table 1 represents the essential idea of algorithm OSHAM that allows discov-
ering both disjoint and overlapping concepts depending on the user’s interests
by refining the condition 1.(a) and the intersection operation. In short, OS-
HAM combines the concept intent, hierarchical structure information, prob-
abilistic estimations and the nearest neighbors of unknown instances. A
experimental comparative evaluation of OSHAM is given in [2].

3 Approximate Conceptual Clustering

Kent[7] has pointed out common features between formal concept analysis
and rough set theory, and formulated the rough concept analysis (RCA).
For the sake of simplicity, we restrict ourselves here to present the basic
idea of presenting approximate concepts in case of binary attributes where
D is identical to the set A of all attributes a. Saying that a given formal
context (O, A, R) is not obtained completely and precisely means that the
relation R is incomplete and imprecise. Let (O, E) be any approximation
space on objects O, we wish to approximate R in terms of E. The lower
approximation R.g and the upper approximation R*F of R w.r.t. E can be
defined element-wise as



equal concepts). Note that approximate contexts of (O, A, R) in (O, E) vary
according to the equivalence relation E. In [3] we introduce algorithm A-
OSHAM for learning approximate concepts in the framework of rough con-
cept analysis. Essentially, A-OSHAM induces a concept hierarchy in which
each induced concept is associated with a pair of its lower and upper approx-
imations. A-OSHAM generates concepts with their approximations recur-
sively and gradually, once a level of the hierarchy is formed the procedure is
repeated for each class.

4 Document clustering based on a Tolerance
Rough Set Model

Given a set D of M full text documents. Our method of generating a hierar-
chical structure of this document collection consists of two phases. The first



