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1. Developing a unifying theory of data mining 

2. Scaling up for high dimensional data/high speed streams 

3. Mining sequence data and time series data  

4. Mining complex knowledge from complex data 

5. Data mining in a network setting 

6. Distributed data mining and mining multi-agent data

7. Data mining for biological and environmental problems 

8. Data-mining-process related problems 

9. Security, privacy and data integrity 

10. Dealing with non-static, unbalanced and cost-sensitive data

10 challenging problems in data mining         
(IEEE ICDM’05)

1. Developing a unifying theory of data mining 

2. Scaling up for high dimensional data/high speed streams 

3. Mining sequence data and time series data  

4. Mining complex knowledge from complex data

5. Data mining in a network setting 

6. Distributed data mining and mining multi-agent data

7. Data mining for biological and environmental problems 

8. Data-mining-process related problems 

9. Security, privacy and data integrity 

10. Dealing with non-static, unbalanced and cost-sensitive data



5

Kernel methods: a bit of history

Aronszajn (1950) and Parzen (1962) were some of the first to employ 
positive definite kernels in statistics.

Aizerman et al. (1964) used positive definite kernels in a way closer 
to the kernel trick.

Boser et al. (1992) constructed the SVMs, a generalization of optimal 
hyperplane algorithm worked for vectorial data.

Scholkopf (1997): kernels can work with nonvectorial data by 
providing a vectorial representation of the data in the feature space.  

Schoolkopf et al. (1998): kernels can be used to build generalizations 
of any algorithm that can be carried out in terms of dot products.

A large number of “kernelizations” of various algorithms since last 5 
years.
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The issue of data representation

Let S = (x1, …, xn) a set of n objects to be analyzed.

Suppose that each object xi is an element of a set X, which may be 
images, molecules, texts, etc.

Majority of data analysis methods represent S by: 

defining a representation φ(x) ∈ F for each object x ∈ X, where φ(x)
can be a real-valued vector (F = ℜp) or a finite-length string, or more 
complex representation.

representing S by a set of representations of the objects                 

φ(S) = (φ(x1), …, φ(xn))
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Kernel representation: idea

Data are not represented individually anymore, but only through a 
set of pairwise comparisons. 

Instead of using a mapping φ: X → F to represent each object x ∈ X
by φ(x) ∈ F, a real-valued “comparison function” (called kernel)      
k: X x X → ℜ is used, and the data set S is represented by the          
nxn matrix (Gram matrix) of pairwise comparisons ki,j = k(xi, xj).

A main question is how to find a                                
kernel k such that, in the new space,                                   
problem solving is easier (e.g. linear).

All kernel methods have two parts:                                                
(1) find such a kernel k, and                                                           
(2) process such Gram matrices. 
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Kernel representation: idea

X is the set of all oligonucleotides, S consists of three oligonucleoides. 

Traditionally, each oligonucleotide is represented by a sequence of 
letters. 

In kernel methods, S is represented as a matrix of pairwise similarity 
between its elements.
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Prerequisite 1. Dot product and Hilbert space

A vector space (linear space) H of “vectors” over the reals ℜ if two operations, 
vector addition: H × H → H denoted v + w, where v, w ∈ H, and 
scalar multiplication: ℜ × H → H denoted λv, where λ ∈ ℜ and v ∈H

such that some axioms are satisfied (http://www.answers.com/topic/vector-space).

Dot product (inner, scalar product) on H is a symmetric bilinear form                    
〈.,.〉: H x H → ℜ, (x, x’) |→ 〈x, x’〉 that is strictly positive definite, i.e.,          
∀x ∈ H, 〈x, x〉 ≥ 0 with equality only for x = 0.

Norm ⎟⎜x⎟⎜:= 〈x, x 〉1/2  (⎟⎜.⎟⎜: H ℜ+), p-norm:

An dot product space (inner product space) H is a vector space endowed with 
a dot product. The dot product space allows us to introduce geometrical 
notions such as angles and lengths of vectors:
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Prerequisite 1. Dot product and Hilbert space

A Hilbert space H is a dot product space with the additional properties that 
it is separable and complete. 

Completeness means every Cauchy sequence {hn}n≥1 of elements of H
converges to an element h ∈ H, where a Cauchy sequence is one satisfying  

H is separable if for any ε > 0 there is a finite set of elements h1, …, hN of H
such that for all h ∈ H, 

Importance: As all elements of a Hilbert space H are linear functions in H
via the dot product: for a point z the corresponding function is fz(x) = 〈z, x〉. 
Our target is to learn linear functions represented by a weight vector in the 
feature space. Finding the weight vector is therefore equivalent to 
identifying an appropriate point of the feature space. 
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Kernel methods: the scheme

Map the data from X into a (high-dimensional) vector space, the feature space F, by 
applying the feature map φ on the data points x.

Find a linear (or other easy) pattern in F using a well-known algorithm (that works on 
the Gram matrix).

By applying the inverse map, the linear pattern in F can be found to correspond to a 
complex pattern in X.

This implicitly by only making use of inner products in F (kernel trick)

x1 x2

…
xn-1 xn

φ(x)
φ(x1)

φ(x2)

φ(xn-1)
φ(xn)

...

inverse map φ-1

k(xi,xj) = φ(xi).φ(xj)

Gram matrix Knxn

Input space X Feature space F

kernel function k: XxX R kernel-based algorithm on K
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Kernel representation: comments

The representation as a square matrix does not depend on the nature
of the objects to be analyzed. 

an algorithm developed to process such a matrix can analyze images as 
well as molecules, if valid functions k can be defined. 

a complete modularity exists between the design of a function k to 
represent data and the design of an algorithm to process the data 
representations → utmost importance in field where data of different 
nature need to be integrated and analyzed in a unified framework.

The size of the matrix used to represent a dataset of n objects is 
always nxn, whatever the nature or the complexity of the objects. 

Comparing objects is an easier task in many cases than finding an 
explicit representation for objects that a given algorithm can process. 



15

Valid kernels

Most kernel methods can only process symmetric positive definite
matrix: ki,j = kj,i for all i, j and cTkc ≥ 0, for any c ∈ ℜp.

Definition 1: A function k: X x X → ℜ is called a positive definite 
kernel if it is symmetric (that is, k(x, x’) = k(x’, x) ∀ x, x’∈ X), and 
positive definite, that is for any n > 0, any choice of n objects x1, …, 
xn ∈ X, and any choice of real number c1, …, cn ∈ ℜ

A positive definite kernel k is called a valid kernel (or simply kernel). 

Mercer’s theorem: Any positive definite function can be written as an 
inner product in some feature space.
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Prerequisite 2: Regularization (1/6)

Classification is one inverse problem (induction):             
Data → Model parameters 

Inverse problems are typically ill posed, as 
opposed to the well-posed problems typically 
when modeling physical situations where the 
model parameters or material properties are 
known (a unique solution exists that depends 
continuously on the data). 

To solve these problems numerically one            
must introduce some additional information 
about the solution, such as an assumption          
on the smoothness or a bound on the norm.
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Prerequisite 2: Regularization (2/6)

Input of the classification problem: m pairs of training data (xi, yi) 
generated from some distribution P(x,y), xi ∈ X, yi ∈ C = {C1, C2, …, Ck} 
(training data).

Task: Predict y given x at a new location, i.e., to find a function f
(model) to do the task, f: X C. 

Training error (empirical risk): Average of a loss function on the 
training data, for example

Target: (risk minimization) to find a function f that minimizes the    
test error (expected risk)
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Prerequisite 2: Regularization (3/6)

Problem: Small Remp[f] does not always ensure small R[f] (overfitting), i.e.,     
we may get small

Fact 1: Statistical learning theory says that the difference is small if F is small.

Fact 2: Practical work says the difference is small if f is smooth.

Remp[f1] = 0Remp[f2] = 3/40Remp[f2] = 5/40

}][][{supProb ε<−∈ fRfRempf F
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Prerequisite 2: Regularization (4/6)

Regularization is the restriction of a class F of possible minimizers (with f∈F) 
of the empirical risk functional Remp[f] such that F becomes a compact set.

Key idea: Add a regularization (stabilization) term Ω[f] such that small Ω[f] 
corresponds to smooth f (or otherwise simple f) and minimize

Rreg[f]: regularized risk functionals; 
Remp[f]: empirical risk; 
Ω[f]: regularization term; and 
λ: regularization parameter that specifies the trade-off between 
minimization of Remp[f] and the smoothness or simplicity enforced by small 
Ω[f] (i.e., complexity penalty).

We need someway to measure if the set FC = {f | Ω[f] < C} is a “small” class of 
functions.

][][:][ ffRfR empreg Ω+= λ
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Prerequisite 2: Regularization (5/6)

Representer theorem: In many cases, the expansion of f in terms of 
k(xi, x), where the xi are training data, contains the minimizer of 
Remp[f] + λΩ[f]. 

Maximization of the margin of classification in feature space by using 
the regularizing term ½⎟⎜w⎟⎜2, and thus minimizing

Rewriting the above risk functional in terms of the reproducing kernel 
Hilbert space (RKHS) H associated with k, and we equivalently 
minimize
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Prerequisite 2: Regularization (6/6)

Reproducibility is one of the main principles of the scientific 
method.

An experimental description (thought experiment) produced by a 
particular researcher or group of researchers is generally evaluated 
by other independent researchers by attempting to reproduce it; 
they repeat the same experiment themselves and see if it gives 
equal results as reported by the original group.
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Fundamental properties of kernels:               
Kernels as inner product (1/3)

Suppose X = ℜp and x = (x1, …, xp)T. Comparing such vectors by inner 
product, for any x, x’∈ ℜp, 

This function is a kernel as it is symmetric and positive definite,  
usually called linear kernel.

Limitation: can only defined when data represented as vectors.

One systematic way to define kernels for general objects: 

1. representing each object x ∈ X as a vector φ(x) ∈ ℜp

2. defining a kernel for any x, x’∈ X as inner product k(x,x’) = φ(x)Tφ(x’) (2)
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Fundamental properties of kernels:              
Kernels as inner product (2/3)

Any φ: X → ℜp for some p ≥ 0 results in a valid kernel through (2). 

Whether there exist more general kernels than these? At least, it is 
possible if replacing ℜp by an infinite-dimensional Hilbert space.

Theorem 2: For any kernel k on a space X, there exists a Hilbert 
space F and a mapping φ: X → F such that        

k(x, x’) = 〈φ(x), φ(x’)〉, for any x, x’∈ X,      

where 〈u, v〉 represents the dot product in the Hilbert space between 
any two points u, v ∈ F.
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Fundamental properties of kernels:            
Kernels as inner product (3/3)

Kernels can all be thought of as dot products in some space F, called 
the feature space. Using a kernel boils down to representing each 
object x ∈ X as a vector φ(x) ∈ F, and computing dot products.

We don’t need to compute explicitly φ(x) for each point in S, but only 
the pairwise dot products. F usually is infinite-dimensional, and φ(x) is 
tricky to represent though the kernel is simple to compute. 

Most kernel methods possess such an interpretation when the points      
x ∈ X are viewed as points φ(x) in the feature space.

Any kernel on a space X can be 
represented as an inner product after 
the space X is mapped to a Hilbert 
space F, called feature space. 
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Kernels are often presented as measures of similarity, in the sense 
that k(x, x’) is “large” when x and x’ are “similar”.

This motivates the design of kernels for particular types of data or 
applications, because particular prior knowledge might suggest a 
relevant measure of similarity in a given context.

The dot product does not always fit one's intuition of similarity. There 
are cases where these notions coincide, e.g., Gaussian RBK kernel. 

For a general kernel k, where Hilbert distance d(u,v)2 = 〈(u-v), (u,v)〉, 
⎟⎜.⎟⎜is Hilbert norm (i.e.,⎟⎜u⎟⎜2 = 〈u, u〉), the following holds for any     
x, x’∈ F

Fundamental properties of kernels:               
Kernels as measures of similarity (1/2)
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k(x, x’) measures the similarity  
between x and x’ as the opposite 
of the square distance 
d(φ(x),φ(x’))2 between their 
images, up to square of their 
norms. 
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For more general kernels, one should keep in mind the slight gap
between the notion of dot product and similarity.

It is generally relevant to think of a kernel as a measure of 
similarity, in particular when it is constant on the diagonal.

This intuition is useful in designing kernels and in understanding 
kernel methods.

Fundamental properties of kernels:                
Kernels as measures of similarity (2/2)
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Let k be a kernel on a space X, we show that k is associated with a set         
Hk = {f: X → ℜ} of real-valued functions on X, and Hk is endowed with a 
structure of Hilbert space (a dot product and a norm). 

Understand the functional space Hk and the norm associated with a kernel 
often helps in understanding kernel methods and in designing new kernels.

Example: linear kernel on X = ℜp, i.e., k(x, x’) = xTx’ = ∑ xixi
’. Hk is the 

space of linear functions f: ℜp → ℜ and associated norm

Hk = {f(x) = wTx: w∈ℜp} and⎟⎜f⎟⎜Hk =⎟⎜w⎟⎜for f(x) = wTx.

The norm ⎟⎜f⎟⎜Hk decreases if the “smoothness” of f increases, where the 
definition of smoothness depends on the kernel (for linear kernel it relates to 
function slope: smooth ≡ flat). The notion of smoothness is dual to that of 
similarity: a function is “smooth” when it varies slowly between “similar”
points.

Fundamental properties of kernels:                
Kernels as measures of function regularity (1/4)



28

The question is how to systematic construct Hk from k? We define Hk as the set 
of functions f: X → ℜ in Hk for n > 0, a finite number of points x1, …, xn∈ X
and weights α1, …, αn∈ ℜ as  

One can prove that Hk is a Hilbert space, and the dot product for two functions

Interesting property: the value f(x) of f ∈ Hk at a point x ∈ X can be expressed 
as a dot product in Hk, i.e., if we take g = k(x, .)
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Taking f(.) = k(x’,.), we derive the reproducing property valid for 
any x, x’∈ X:

Fundamental properties of kernels:                
Kernels as measures of function regularity (3/4)

k(x, x’) = 〈k(x,.), k(x’,.)〉 (3)

Hk is usually called the reproducing kernel Hilbert space (RKHS) 
associated with k. Hk is one possible feature space associated with k
when considering φ: X → Hk defined by φ(x) := k(x, .)

A general Hilbert space usually contains many non-smooth functions. 
RKHS contains smooth functions, and is “smaller” than a general 
Hilbert space.
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We should keep in mind the connection between kernels and norms 
on functional spaces. Most kernel methods have an interpretation in 
terms of functional analysis. 

Many kernel methods, including SVMs, can be defined as algorithm 
that, given a set S of objects, return a function that solves 

Fundamental properties of kernels:               
Kernels as measures of function regularity (4/4)

(4)          ),(  min
kk
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∈

Where R(f,S) is small when f “fits” the data well, and the term 
⎟⎜f⎟⎜Hk ensures the solution of the above equation is “smooth”.
In fact, besides fitting the data well and being smooth, the solution 
of the above equation turns out to have special properties that are 
useful for computational reasons (representer theorem).
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The kernel trick (1/5)

Two concepts that underlie most kernel methods: the kernel trick
and the representer theorem.

The kernel trick is a simple and general principle based on the 
property that kernels can be thought of as inner product:       
Any positive definite kernel k(x, y) can be expressed as a dot 
product in a high-dimensional space.

The kernel trick is obvious but has huge practical consequences that 
were only recently exploited.

Proposition 3. Any algorithm for vectorial data that can be 
expressed only in terms of dot products between vectors can be 
performed implicitly in the feature space associated with any 
kernel, by replacing each dot product by a kernel evaluation.
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The kernel trick (2/5)

Kernelization: Transforming linear methods nonlinear methods

Kernel trick can be first used to transform linear methods (e.g., 
linear discriminant analysis or PCA) into non-linear methods by 
simply replacing the classic dot product by a more general kernel, 
such as the Gaussian RBF kernel. 

Nonlinearity is obtained at no computational cost, as the algorithm 
remains exactly the same. 

Non-vectorial data: 

The combination of the kernel trick with kernels defined on non-
vectorial data permits the application of many classic algorithms on 
vectors to virtually any type of data as long as kernel can be defined. 

Examples: to perform PCA on a set of sequences or graphs thanks to 
the availability of kernels for sequences and for graphs.
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Recall that the kernel can be expressed as k(x, x’) = 〈φ(x), φ(x’)〉
in a dot product space F  for some mapping φ: X → F.

Given x1, x2 ∈ X, mapped to φ(x1), φ(x2) ∈ F. We define distance  
d(x1, x2) as Hilbert distance between their images        

Given a space X endowed with a kernel, a 
distance can be defined between points of 
X mapped to the feature space F
associated with the kernel. This distance 
can be computed without knowing the 
mapping φ thank to the kernel trick.

)()(:),( 2121 xxxx φφ −=d

The kernel trick (3/5)
Example: Computing distances between objects
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The kernel trick (4/5)
Example: Computing distances between objects

The following equality shows the distance can be expressed in terms 
of dot products in F:
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The example shows the effect of the kernel trick: it is possible to 
perform operations implicitly in the feature space. 

A more general question: Let S = (x1, …, xn) be a fixed finite set of 
objects, and x ∈ X a generic object. Is it possible to assess how 
“close” the object x is to the set of objects S?
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The kernel trick (5/5)
Example: Computing distances between objects
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The representer theorem

Theorem (Kimeldoft, Wahba, 1971): If the problem

satisfies (1) C is pointwise; i.e., C(f,{xi, yi}) = C({xi, yi, f(xi)}) which only 
depends on {f(xi)}) and (2) Ω(.) is monotonically increasing, then every 
minimizer of the problem admits a representation of the form

The quantity ⎟⎜.⎟⎜Hk included in the function to optimize is a penalization 
that forces the solution to be smooth and usually a powerful protection 
against over-fitting of the data. 

Meaning: Instead of finding optimal solution in infinite-dimensional space, 
(5) can be reformulated as a n-dimensional optimization problem, by 
plugging (6) into (5) and optimizing over (α1, …, αn) ∈ ℜp.
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Kernel principal component analysis (kernel PCA)

PCA: Given x1, …, xm ∈ Rp. Find: x’1, …, x’m ∈ Rd, d << p  
so that x’1, …, x’m preserve most information.

PCA finds the principal axes by diagonalizing the 
covariance matrix C with singular value decomposition

All solutions v with λ≠0 lie in the span of x1,..,xm,,i.e.
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Kernel principal component analysis (kernel PCA)

Do PCA in feature space? The covariance matrix

can be diagonalized with nonnegative eigenvalues satisfying

As V lie in the span of φ(xi), so we have
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Kernel principal component analysis (kernel PCA)

Apply kernel trick, we have  
K(xi, xj) = 〈φ(xi), φ(xj)〉

And we can finally write the 
expression as the eigenvalue
problem

Kα = λα

For a test pattern x, we extract 
a nonlinear component via
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Linear classifiers

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

w
x

+ 
b=

0
w x + b<0

w x + b>0

The illustrated slides (p.42-48) are taken from Prof. Andrew Moore’s SVM tutorial
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denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

Linear classifiers
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denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

Linear classifiers
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denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Any of these 
would be fine..

..but which is 
best?

Linear classifiers
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denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

Misclassified
to +1 class

Linear classifiers
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denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the 
margin of a 
linear classifier 
as the width 
that the 
boundary could 
be increased by 
before hitting a 
datapoint.

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Classifier margin
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denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the 
maximum margin.

This is the 
simplest kind of 
SVM (called an 
LSVM)

Support vectors 
are those 
datapoints that 
the margin 
pushes up 
against

1. Maximizing the margin is good according to 
intuition and PAC theory 

2. Implies that only support vectors are important; 
other training examples are ignorable.

3. Empirically it works very very well.

Maximum margin
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Summary
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Each point correctly classified with large confidence (yf(x) > 1) has a 
null multiplier. Other points are called support vector. They can be 
on the boundary., in which case the multiplier satisfies 0 ≤ α ≤ C, or 
on the wrong side of this boundary, in which case a = C.

Soft margin problem Equivalent to dual problem
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SVMs in practice

Many free and commercial software: SVMlight, LIBSVM, mySVM, etc.

Multiclass problems
SVM implemented for multiclass problem (just for few classes)
Combination of binary SVMs by one-against-all scheme

Kernel normalization
Vectors: linearly scale each attribute to zero mean and unit 
variance and use Gaussian RBF is usually effective.
Strings and graphs: k’ij = kij/(kiikjj)1/2

Parameter setting
The regularization parameter C of the SVM
The kernel (γ) and its parameters

Use cross-validation 
to choose C and γ
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Kernels for vectors

The linear kernels kL = (x, x’) = xTx’

kL is a particular case of polynomial kernels defined for d ≥ 0

kPoly1 = (x, x’) = (xTx’)d or kPoly1 = (x, x’) = (xTx’)d

they yields with d = 2 {x1
2, x1 x2, x2

2}, and {1, x1, x2, x1
2, x1 x2, x2

2}

The Gaussian RBF kernel
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⎟
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exp)',(
σ
xx

xxGk

The sigmoid kernel k(x, x’)  =   tanh(kxTx’ + θ)
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Kernels for strings

Lodhi et al. (2002) in the NLP context. Basic idea: 

Count the number of subsequences up to length n in a sequence. 
Compose a high-dimensional feature vector by these counts. 
Kernel = dot product between such feature vectors.

Σ = set of symbols; a string s = s1, …, s|s| ∈ Σ|s| . X = ∪i=0,…,∞ Σi

An index set i of length l is an l-tuple of positions in s

i = (i1, …, il),    1 ≤ i1 < … < il < |s|

Denoted by s[i] = si1, …, sil the subsequence of s corresponding to i. 

Define weight of i by λl(i), where l(i) = il − i1 + 1, λ < 1.
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Kernels for strings

For u ∈ Σk, k is fixed, we define Φu: X → ℜ.
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Considering all sequences u of length n, we map each s ∈ X to a
|Σ|n−dimensional feature space by s → (Φu(s))u∈Σ

n.

We can then define a kernel for strings as the dot product between 
these representations
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The Fisher kernel

Probabilistic models are convenient to represent families of complex 
objects that arise in computational biology.

Hidden Markov models (HMMs) are a central tool for modeling protein 
families or finding genes from DNA sequences (Durbin et al., 1998). 
More complicated models called stochastic context-free grammars 
(SCFGs) are useful for modeling RNA sequences (Sakakibara et al., 
1994).

The Fisher kernel (Jaakkola and Haussler, 1999) provides a general 
principle to design a kernel for objects well modeled by a 
probabilistic distribution, or more precisely a parametric statistical 
model. 
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There is no absolute rules for choosing the right kernel, adapted to a 
particular problem

Kernel design can start from the desired feature space, from 
combination or from data

Some considerations are important:
Use kernel to introduce a priori (domain) knowledge

Be sure to keep some information structure in the feature space

Experimentally, there is some “robustness” in the choice, if the chosen 
kernels provide an acceptable trade-off between 

– simpler and more efficient structure (e.g. linear separability), 
which requires some “explosion”

– Information structure preserving, which requires that the 
“explosion” is not too strong.

How to choose kernels?
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In general, this mode of kernel design can use both labeled and 
unlabeled data of the training set! Very useful for semi-supervised 
learning

Basic ideas:

Intuitively, kernels define clusters in the feature space, and we want to 
find interesting clusters, i.e. cluster components that can be associated 
with labels.

Convex linear combination of kernels in a given family: find the best 
coefficient of eigen-components of the (complete) kernel matrix by 
maximizing the alignment on the labeled training data. 

Build a generative model of the data, then use the Fischer Kernel.

Kernels built from data
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Designing kernels:
Operations on kernels

The class of kernel functions on X has several useful closure 
properties. It is a convex cone, which means that if k1 and k2 are two 
kernels, then any linear combination, λ1 k1+ λ2k2, with λ1, λ2 ≥ 0 is a 
kernel.

If k1 and k2 are two kernels, then k(x, x’):= k1(x, x’) k2(x, x’) is also a 
kernel. Several other operations are possible.

Some other operations are forbidden: if k is a kernel, then log(k) is 
not positive definite in general, and neither is kβ for 0 < β < 1. 
However, these two operations can be linked.
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When X = ℜp, the class of translation-invariant kernels is defined as 
the class of kernels of the form, for some function ψ : ℜp → ℜ

∀x, x’ ∈ X, k(x, x’) = ψ(x − x’)

More general, if (X, .) is a group, then the group kernels are defined, 
with ψ : X → ℜ, as functions of the form

k(x, x’) = ψ(x−1x’)

Designing kernels:
Translation-invariant kernels and kernels on semi-groups
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Designing kernels:
Combining kernels

Multiple kernel matrices k1, k2, …, kc for the same set of objects are 
available. 

We may design a single kernel k from several basic kernels k1, k2, …, 
kc. A simple way to achieve this is to take the sum of the kernels:
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Multiple kernel matrices k1, k2, …, kc for the same set of objects are 
available. 
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Designing kernels:
From similarity scores to kernels

X be a set and s: X x X → ℜ a measure of similarity. 

Empirical kernel map (Tsuda, 1999): (1) Choosing a finite set of 
objects t1, …, tr ∈ X called templates. (2) x ∈ X is represented by a 
vector of similarity 

x ∈ X → φ(x) = (s(x, t1), …, s(x, tr))T ∈ ℜp 

The kernel is defined as the dot product between two similarity 
vectors
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Summary

Map the data from X into a (high-dimensional) vector space, the feature space F, by 
applying the feature map φ on the data points x.

Find a linear (or other easy) pattern in F using a well-known algorithm (that works 
on the Gram matrix).

By applying the inverse map, the linear pattern in F can be found to correspond to a 
complex pattern in X.

This implicitly by only making use of inner products in F (kernel trick)

x1 x2

…
xn-1 xn

φ(x)
φ(x1)

φ(x2)

φ(xn-1)
φ(xn)

...

inverse map φ-1

k(xi,xj) = φ(xi).φ(xj)

Gram matrix Knxn

Input space X Feature space F

kernel function k: XxX R kernel-based algorithm on K
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Summary

Linear algebra, probability/statistics, functional analysis, optimization

Mercer theorem: Any positive definite function can be written as an inner 
product in some feature space.

Kernel trick: Using kernel matrix instead of inner product in the feature space.

Representer theorem:
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φ(x)
φ(x1)

φ(x2)

φ(xn-1)
φ(xn)

...

inverse map φ-1

k(xi,xj) = φ(xi).φ(xj)

Gram matrix Knxn

Input space X Feature space F

kernel function k: XxX R kernel-based algorithm on K


