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John E. Hopcroft (Hanoi, 10.8.2004)

(Aho, Hopcroft, Ulmann, Data Structures and Algorithms,1983)
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Our research environment greatly 
changed with computer networks, 
Web, digital library, etc.

Difficult to being up-to-date
JAIST has 4700 online journals, 
282,000 papers per year, reading 
1%/year = reading 2820 papers/yr             
= reading 8 papers/day.

Emerging Trend: a topic that is growing in 
interest and utility overtime.

What are emerging trends?
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Machine learning and data mining

Machine learning
To build computer 
systems that learn as 
well as humans do 
(learning from data).

ICML since 1982         
(23th ICML in 2006), 
ECML since 1989

ECML/PKDD since 2001 

Data mining          
To find new and 

useful knowledge 
from large datasets  

ACM SIGKDD since 
1995, PKDD and 

PAKDD since 1997 
(PAKDD’05 in Hanoi),

IEEE ICDM and SIAM 
DM since 2000, etc.
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Machine learning and data mining

Machine learning
To build computer 
systems that learn as 
well as humans do 
(learning from data).

ICML since 1982         
(23th ICML in 2006), 
ECML since 1989

ECML/PKDD since 2001 

Data mining          
To find new and 

useful knowledge 
from large datasets  

ACM SIGKDD since 
1995, PKDD and 

PAKDD since 1997 
(PAKDD’05 in Hanoi),

IEEE ICDM and SIAM 
DM since 2000, etc.

What are emerging 
trends in machine 
learning and data 
mining research?

(topics that are growing in 
interest and utility overtime)
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Some 
emerging 
trends

Our recent 
work in these 
trends 

Outline

Discriminative random fields
Kernel methods
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Types of data
Flat data tables
Relational database
Temporal & Spatial 
Transactional databases
Multimedia data
Genome databases
Materials science data 
Textual data
Web data
etc.

Mining tasks and methods
Classification/Prediction

Decision trees
Neural network
Rule induction
Support vector machines
Hidden Markov Model
etc.

Description
Association analysis
Clustering
Summarization
etc.

Different data schemas

Data schemas vs. learning/mining methods
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10 challenging problems in data mining 
(ICDM’05)

1. Developing a unifying theory of data mining 

2. Scaling up for high dimensional data/high speed streams 

3. Mining sequence data and time series data  

4. Mining complex knowledge from complex data 

5. Data mining in a network setting 

6. Distributed data mining and mining multi-agent data

7. Data mining for biological and environmental problems 

8. Data-mining-process related problems 

9. Security, privacy and data integrity 

10. Dealing with non-static, unbalanced and cost-sensitive data

1. Developing a unifying theory of data mining 

2. Scaling up for high dimensional data/high speed streams 

3. Mining sequence data and time series data  

4. Mining complex knowledge from complex data

5. Data mining in a network setting 

6. Distributed data mining and mining multi-agent data

7. Data mining for biological and environmental problems 

8. Data-mining-process related problems 

9. Security, privacy and data integrity 

10. Dealing with non-static, unbalanced and cost-sensitive data
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Complexly structured data

Relational databases
XML databases
Sequences, molecules,
Graphs and trees
others
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10,267,507,282 
bases in 
9,092,760 
records. 

Explosion of biological data

Bioinformatics problems:
Sequence analysis
Genomics
Proteomics
Others (e.g., systems biology) 
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A portion of the DNA sequence, consisting of 1.6 million 
characters, is given as follows (about 350 characters, 
4570 times smaller): 

How biological data look like?

…TACATTAGTTATTACATTGAGAAACTTTATAATTAAAAAAGATTCATGT
AAATTTCTTATTTGTTTATTTAGAGGTTTTAAATTTAATTTCTAAGGGTT
TGCTGGTTTCATTGTTAGAATATTTAACTTAATCAAATTATTTGAATTTT
TGAAAATTAGGATTAATTAGGTAAGTAAATAAAATTTCTCTAACAAATAA
GTTAAATTTTTAAATTTAAGGAGATAAAAATACTACTCTGTTTTATTATG
GAAAGAAAGATTTAAATACTAAAGGGTTTATATATATGAAGTAGTTACC
CTTAGAAAAATATGGTATAGAAAGCTTAAATATTAAGAGTGATGAAGTA
TATTATGT…
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Web link data

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]Friendship Network 

[Moody ’01]
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X is a random variable over data sequences
Y is a random variable over label sequences whose labels 
are assumed to range over a finite label alphabet A
Problem: Learn how to give labels from a closed set Y to 
a data sequence X

Thinking is beingX:
x1 x2 x3

noun verb noun
y1 y2 y3

Y:

Labeling sequence data problem

POS tagging, phrase types, etc. (NLP), 
Named entity recognition (IE)
Modeling protein sequences (CB)
Image segmentation, object recognition (PR)
etc.



RIVF 2006 

Discriminative classifiers

Assume some functional form 
for P(Y|X)

Estimate parameters of 
P(Y|X) directly from 
training data

SVM, Logistic regression, 
traditional neural networks, 
nearest neighbors, boosting, 
MEMM, conditional random 
fields, etc. 

Generative vs. discriminative methods

Generative classifiers

Assume some functional 
form for P(X|Y), P(Y)

Estimate parameters of 
P(X|Y), P(Y) directly 
from training data,              
and use Bayes rule to        
calculate P(Y|X = xi) 
HMM, Markov random fields, 
Bayesian networks, 
Gaussians, Naïve Bayes, etc.

Training classifiers involves estimating f: X Y, or P(Y|X).
Examples: P(apple | red ∧ round), P(noun | “cá”)  

)(
)()|()|(

XP
YPYXPXYP =

)(
)()|()|(

roundredP
applePappleroundredProundredappleP

∧
∧

=∧

(cá: fish, to bet)
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Generative vs. discriminative methods

Generative approach

Try to build models for 
the underlying patterns

Can be learned, 
adapted, and 
generalized with small 
data.

Discriminative approach

Try to learn to minimize an utility 
function (e.g. classification error) 
but not to model, represent, or 
“understand” the pattern 
explicitly (detect 99.99% faces in 
real images and do not “know”
that a face has two eyes).

Often need large training data, 
say 100,000 labeled examples, 
and can hardly be generalized.
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Finite state machines (FSM): a bit of history
Archeology of computational linguistics

1990s–2000s: Statistical learning
algorithms, evaluation, corpora

1980s: Standard resources and tasks
Penn Treebank, WordNet, MUC

1970s: Kernel (vector) spaces
clustering, information retrieval (IR) 

1960s: Representation Transformation
Finite state machines (FSM) and Augmented 
transition networks (ATNs)

1960s: Representation—beyond the word level
lexical features, tree structures, networks 

Trainable FSMs

Trainable parsers

(E. Hovy, COLING 2004)
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Finite state machines (FSM): a bit of history
Archeology of computational linguistics

1990s–2000s: Statistical learning
algorithms, evaluation, corpora

1980s: Standard resources and tasks
Penn Treebank, WordNet, MUC

1970s: Kernel (vector) spaces
clustering, information retrieval (IR) 

1960s: Representation Transformation
Finite state machines (FSM) and Augmented 
transition networks (ATNs)

1960s: Representation—beyond the word level
lexical features, tree structures, networks 

Trainable FSMs

Trainable parsers

Hidden Markov Models 
(HMM, 1960s)
Maximum Entropy Markov 
Models (MEMM, 2000)
Conditional Random Fields 
(CRF, 2001)

(E. Hovy, COLING 2004)
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An HMM is a 5-tuple (O, S, A, B, π)
Observations O = {o1, o2, …, oN}
States S = {s1, s2, …, sM}
Transition probability P(st|st-1)
Emission probability P(ot|st )
Start state probabilities P(st)

Hidden Markov models [Baum et al., 60s]

Characteristics
A direct graphical model, generative

Locally normalized at each state

Applied to a wide variety of problems in speech & text processing, 
biology, etc.

transitions

observations

...

...

...

...

St-1 St St+1

Ot-1 Ot Ot+1
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Characteristics
A direct graphical model

Discriminative

Locally normalized at each state

Can represent an array of highly dependent observation features
(of different levels of granularity)

MEMMs [McCallum et al., 2000]

transitions

observations

Features
Represents the probability of 
reaching a state given an 
observation and the previous state.

These conditional probabilities are 
specified by exponential models 
based on arbitrary observation 
features.

...

...

...

...

St-1 St St+1

Ot-1 Ot Ot+1
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Characteristics
Undirected graphical model, discriminative
Globally normalized
Consider the state sequence as a whole (not separated unit)
Can represent rich-dependent features of training data
Parameters of a CRF are the feature weight vetor λ = {λ1, …, λK}

CRFs [Lafferty et al., 2001]

Solve label bias problem: CRFs drop 
the requirement of local 
normalization

Globally normalized
(HMM & MEMM: locally normalized)
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Using advanced statistical and graphical methods: 

Maximum Entropy (Maxent), Hidden Markov Models (HMM), Maximum 
Entropy Markov Models (MEMM), Conditional Random Fields (CRF), 
Markov Random Fields (MRF), Relational Probabilistic Models (RPM), 
etc.

...

...

HMMs (directed graph, 
joint, generative)

MEMMs (directed graph, 
conditional, discriminative)

CRFs (undirected graph, 
conditional, discriminative)

Trainable finite state machines

...

...

... ...

......

...

...

...

...

St-1 St St+1 St-1 St St+1 St-1 St St+1

Ot-1 Ot Ot+1 Ot-1 Ot Ot+1Ot-1 Ot Ot+1
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The issue of data representation

Let S = (x1, …, xn) a set of n objects to be analyzed.

Suppose that each object xi is an element of a set X, 
which may be images, molecules, texts, etc.

Majority of data analysis methods represent S by: 

defining a representation φ(x) ∈ F for each object x ∈ X, 
where F can be real-valued vector (F = ℜp) or finite-
length strings, or more complex representation.

representing the objects by a set of their 
representations, φ(S) = (φ(x1), …, φ(xn))
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Kernel representation: idea

Data are not represented individually anymore, but 
only through a set of pairwise comparisons. 

Instead of using a mapping φ: X → F to represent each 
object x ∈ X by φ(x) ∈ F, a real-valued “comparison 
function” k: X x X → ℜ is used (kernel), and the data 
set S is represented by the nxn matrix of pairwise
comparisons ki,j = k(xi, xj). 

In the new space, the problem solving is easier (e.g. 
linear)

All kernel methods are designed to process such 
square matrices. 
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Kernel representation: idea

X is the set of all oligonucleotides, S consists of three 
oligonucleoides. 

Traditionally, each oligonucleotide is represented by a 
sequence of letters. 

In kernel methods, S is represented as a matrix of 
pairwise similarity between its elements.
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More about kernels

A kernel k(x,y)
is a similarity measure 

defined by an implicit mapping φ 

from the original space to a 
vector space (feature space) 

such that: k(x,y)=φ(x)•φ(y)

Different kernels for different 
data types

Vector space kernel for text

Spectrum kernel for sequential 
data

Diffusion kernels for graph

etc.

Principles governing 
kernel design

Invariance or other a priori 
knowledge

Simpler structure (linear 
representation of the data)

The class of functions the 
solution is taken from

Possibly infinite dimension 
(hypothesis space for learning)

… but still computational 
efficiency when computing k(x,y)
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Examples of kernels (III)

Polynomial 
kernel (n=2)

φ

RBF kernel 
(n=2)

(Jean-Michel Renders, ICFT’04)
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Kernel methods: a bit of history

Aronszajn (1950) and Parzen (1962): employ positive finite 
kernels in statistics. 

Aizerman et al. (1964): positive definite kernel is identical 
to a dot product in another space in which their algorithm 
reduced to perceptron algorithm.

Boser et al. (1992): optimal hyperplane algorithm (SVM).

Schölkopf (1997): work with nonvectorial data; (1999): 
kernels can be used to construct generalizations of any 
algorithm that can be carried out in terms of dot products.

Haussler (1999) and Watkins (2000): first examples of 
nontrivial kernels defined on nonvectorial data.

Since 2000: large number of “kernelizations" of various 
algorithms, various applications.  
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ML and statistical methods in NLP

some ML/Stat         no ML/Stat

(Marie Claire, ECML/PKDD 2005)



RIVF 2006 

Why they can be viewed as emerging trends?

(Marie Claire, ECML/PKDD 2005)
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Observed from ICML 2004

(Russ Greiner, ICML’04 PC co-chair)
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ICML 2006 (720 abstracts)

13CRF

9ILP

29ANN

45Learning in 
bioinformatics

68Language, Text & 
web

121Statistical models

128Unsupervised 
learning, clustering

146Probabilistic, 
graphical models

166Kernel methods & 
SVM
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ICML 2006 (720 abstracts)

13CRF

9ILP

29ANN

45Learning in 
bioinformatics

68Language, Text & 
web

121Statistical models

128Unsupervised 
learning, clustering

146Probabilistic, 
graphical models

166Kernel methods & 
SVM

CRF and kernel 
methods shown 
to be emerging 
trends?
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Some 
emerging 
trends

Our recent 
work in these 
trends

Outline
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Summary

Improving prediction performance of CRFs (KDD’05)

High-performance training of CRFs for large-scale 
applications (HPCS’06, ICML’06)

Sentence reduction (in text summarization) by SVM 
(COLING’04)

Simplifying support vector machines (ICML’05, IEEE Trans. 
Neural Network)

Prediction and analysis of β-turns in protein structures 
(GIW’03, JBCB’05) and histone modifications by SVM 
(GIW’05) and CRFs (ICMLB’06)

Manifolds in imbalanced data learning (ICML’06)

Model for emerging trend detection (PAKDD’06, KSSJ)

Improving prediction performance of CRFs (KDD’05)

High-performance training of CRFs for large-scale 
applications (HPCS’06, ICML’06)

Sentence reduction (in text summarization) by SVM 
(COLING’04)

Simplifying support vector machines (ICML’05, IEEE Trans. 
Neural Network)

Prediction and analysis of β-turns in protein structures 
(GIW’03, JBCB’05) and histone modifications by SVM 
(GIW’05) and CRFs (ICMLB’06)

Manifolds in imbalanced data learning (ICML’06)

Model for emerging trend detection (PAKDD’06, KSSJ)
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Sentence reduction by SVM              
(Minh et al., COLING’04)

Long sentence

parsing

transforming

generating

Large 
parsed tree

Small 
parsed tree

Short sentence

Corpus

Tree set

Parsing all sentences

Set of contexts 
and actions

Generating training data

SVM  learning

Rules

A rule shows relation of a 
context and an action

{a, b, c, d, e}

{b, e, a}

Input list, CSTACK, RSTACK

Actions: SHIFT, REDUCE, DROP, 
ASSIGN TYPE, RESTORE 

Transforming tree is a 
sequence of actions
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Prediction of β-turns & γ-turns by SVM
(Hoan et al., GIW’03, JBCB’05)

RPDFCLEPPYTGPCKARIIRYFYNAKAGL
nnnnnnnnnnnnnnnnnnnnnnnTTtttn

CQTFVYGGCRAKRNNFKSAEDCMRTCGGA
nnnnnnnnnnnTtttnnnnnnnnnnnnnn

Protein sequence
RPDFCLEPPYTGPCKARIIRYFYNAKAGL
CQTFVYGGCRAKRNNFKSAEDCMRTCGGA

β-turns
Predict
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Manifold for imbalanced data learning
(Hao & Bao, ICML’06)

Flexible assumption: Data having manifold structures.
Up sampling data to make it exhibit manifold structures      

give rise to patterns of interest.
Our algorithms outperform SVMs and SMOTE (Chawla et 
al, JAIR’02).

In-class sampling Out-class sampling
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High-performance CRFs
(Hieu et al., HPCS’06)

Training CRFs (i.e., estimating parameters for CRFs on 
the training data                           is to maximize the 
log-likelihood function:

where 

Problem: very expensive due to the computation of 
partition function Z(o)

Solution: Training CRFs on massively parallel 
computers
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High-performance CRFs
(Hieu et al., HPCS’06)

Experimental environment:

Massively parallel computer          
(Cray XT3): 90 nodes, each 
node has four 2.4GHz 
processors, 32GB RAM (total: 
90 x 4 x 2.4GHz processors, 
2.88TB RAM)

Linux OS and MPI library

Experimental data:

Wall Street Journal corpus of 
Penn TreeBank

Text chunking and Part-of-speech 
tagging
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Lexical / Morphological Analysis

Syntactic Analysis

Semantic Analysis

Discourse Analysis

Tagging

Chunking

Word Sense Disambiguation

Grammatical Relation Finding

Named Entity Recognition

Reference Resolution

Shallow parsing

The woman will give Mary a book

The/Det woman/NN will/MD give/VB
Mary/NNP a/Det book/NN

POS tagging

[The/Det woman/NN]NP [will/MD give/VB]VP
[Mary/NNP]NP [a/Det book/NN]NP

chunking

[The woman] [will give] [Mary] [a book]

relation finding
subject

i-object object

text

meaning

Computational linguistics
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High-performance CRFs
(Hieu et al., HPCS’06)

Contributions:
Investigate the learning power of CRFs on large-scale dataset

Reduce the training time dramatically

Text chunking result:
Training: 39,832 sentences of the sections 02-21 of WSJ

Testing: 1,921 sentences of the section 00

state-of-the-art 
accuracy

22.93% error reduction 
rate in comparison 

with the previous work
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High-performance CRFs
(Hieu et al., HPCS’06)

Experiments for POS tagging

24 sections of WSJ (Penn TreeBank): about 1,000,000 words (more 
than 40,000 English sentences)

Achieved competitive results

Computational time reduction

Computational speed-up

Comparative results
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SVMs simplification                        
(DucDung & Bao, ICML’05, IEEE Trans. NN)

To replace original machine

by a simplified machine

with    NZ < NS

(1) and (2) are similar

{(zi,βj)}j=1,…,Nz – reduced vectors

(1)     ),(
1

⎟
⎠

⎞
⎜
⎝

⎛ += ∑
=

bxxKsigny
Ns

i
iiα

(2)    ),('
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

bxzKsigny
Nz

j
jjβ

Bottom-up approach 
that  finds solution in a 
univariable function 
instead of multivariable 
ones in previous 
methods
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Reduced vectors keep well original shape
Different machines require a different 
number of reduced vectors
Simpler machine requires fewer number 
of reduced vectors

SVMs simplification: evaluation

Phase 2 ErrorsPhase 1 Errors# of SVsMMD

88(4.4%)88(4.4%)45380.0

88(4.4%)88(4.4%)30240.1

88(4.4%)91(4.5%)22690.2

89(4.4%)93(4.6%)11140.5

89(4.4%)104(5.2%)7950.7

91(4.5%)110(5.5%)5221.0

93(4.6%)116(5.8%)3971.2

95(4.7%)147(7.3%)2701.5
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146 pairs of DNA
in nucleosomes
are wrapped 
around a core of 
histone proteins,

Histone octamer
consists of 8 
proteins: a H3-H4 
tetramer and two        
H2A-H2B dimers

From Molecular biology of the Cell.

Histone octamer

Prediction of histone modifications
(Hoan et al., GIW’05)
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Histone modifications: Some amino acids of histone proteins  (H3, 
H4, H2A, H2B) in nucleosomes are modified by added methyl group 
(methylation), acetyl group (acetylation), or other chemical groups. 
Most of them are in N-terminal tails that are highly conserved.

Phosphory-
lation

Acetylation

Methylation

Nucleosome
modifications

H3:R3,K4,K9,K27 
H4:K20; 

H3:K9,K14,K16, 
K23,K27
H4:K5,K8,K12; 
etc. 

H3:S10,S25 
H4:S1;
H2A:S1 

Adding one, two or three
-CH3 ‘s to a.a.

Adding acetyl (CH3C)O

Adding -PO3 to a.a.

Prediction of histone modifications
About histone modification 
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From Pokholok et al, Cell, 8.2005 by experimental method 
in vivo

Limitations of 
experimental 

methods: tedious, 
labor-intensive, high 
false positive, high 

false negative rates.

Prediction of histone modifications
Experimental approach

Recent experimental 
studies on relative 
occupancy and modification 
state of nucleosomes
(Bernstein, 2002; Kurdistani, 
2004; Humphrey, 2004; Lee, 
2004; Kurdistani, 2004;            
Pokholok et al., Cell, 
8.2005)

Quantitative 
measurements of histone
occupancy and modifications 
at positions in DNA 
sequences with different 
resolution levels. 
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Prediction of histone modifications
Research objective: Computational solution?

In our work, we define two state classes of H3, H4 
occupancy, acetylation, methylation: high and low.

To computationally predict:
- H3, H4 occupancy
- Acetylation state
- Methylation state

To find characteristics of areas at 
which H3, H4 occupancy, histone
acetylation and methylation are at 
high and low levels.

From DNA sequences
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(1: 2, 2:1, 3: 3, 4:1,…)

Prediction of histone modifications
Convert a DNA sequence into vector using k-grams

AATTTTTATAGGTCGACCAATCTGTCG

We generate a vector of k-gram features by 
using a k-sliding window along the DNA 
sequence.

We tried with various k-grams in order to 
test our method and find  appropriate k-
grams.

………

1TTA4

3TTT3

1ATT2

2AAT1

Occ.Fea.No.

Unsupervied data
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Prediction of histone modifications
Prediction results (K) by SVM and CRF

79.91      0.60

73.37      0.46

65.09      0.30

67.05      0.29

68.29      0.35

69.93      0.39

71.28      0.41

73.64      0.47

87.14      0.74

85.88      0.72

k=4

acc          cc

k=6

acc          cc

k=5

acc            cc

k=3

acc             cc

Dataset

82.15      0.6480.87      0.6178.25        0.56H3K79me3

76.99      0.5474.56      0.4871.74        0.43H3K36me3

71.56      0.4268.06      0.3662.37        0.24H3K4me3

71.14      0.3969.41      0.3566.09        0.27H3K4me2

72.11      0.4370.26      0.3966.21        0.31H3K4me1

74.91      0.4970.79      0.4167.65        0.35H4ac

76.13      0.5173.25       0.4768.64        0.35H3K14ac

77.27      0.5475.58       0.5171.04        0.41H3K9ac

85.95      0.7587.77      0.7585.91        0.71H4 occupancy

85.10      0.7085.50       0.7184.93        0.70H3 occupancy

Sequence length L = 500

• The accuracy and correlation coefficient of 
qualitative prediction are consistent with 
experimental approach. 

• The highest prediction of H3 and H4 occupancy 
achieved when using 4 or 5-gram features.
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M = (D, E, T, TR, TI, TV,  f, g)

A model for emerging trend detection
(Hoang & Bao, KSS journal)

ETD: 
Detecting 
topics
that are 
growing in 
interest
and utility 
overtime
from a 
corpus

Topic verification
How to define interest 

and utility functions and 
evaluate their increase 

overtime?

Topic representation
Which features are 

necessary to 
characterize topics 
(interest and utility 

overtime)?

Topic identification
How to extract these 

features from the 
corpus for each 

topic?
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ETD: Topic representation

ETD: 
Detecting 
topics
that are 
growing in 
interest
and utility 
overtime
from a 
corpus

Topic representation
Which features are 

necessary to 
characterize topics 
(interest and utility 

overtime)?

neural network

Define       
6 types      
of citation
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ETD: Topic identification

ETD: 
Detecting 
topics
that are 
growing
in 
interest
and utility 
overtime
from a 
corpus

Topic identification
How to extract these 

features from the 
corpus for each 

topic?

Build 6 models corresponding to 6 types 
of citation
Using HMM, MEMM, an CRF to extract 
features 

( ) ( )|  = max ,i is
P O P s oλ λ

( ) ( )
( )

i

j
j

P O|
 = 

P O|O iP
λ

λ
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ETD: Topic verification

ETD: 
Detecting 
topics
that are 
growing
in 
interest
and utility 
overtime
from a 
corpus

Topic verification
How to define interest 

and utility functions and 
evaluate their increase 

overtime?
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ETD: Evaluation

ETD: 
Detecting 
topics
that are 
growing
in 
interest
and 
utility 
overtime
from a 
corpus
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Conclusion

Much complexly structured data.

Two emerging trends in machine learning and 
data mining fields: discriminative random 
fields and kernel methods.

And some of our works relating to them.

Good to deal with complexly structured data 
and are today and future technologies.

Many open and challenging problems.
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See you in RIVF’07 in Hanoi
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