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- Hign nay, tdi dang nghign ciru mat wai chwong triinh cwc ky phic tap co
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Ulmann, Data Sructures and Algorithms,1983)




What are emerging trends?

m Our research environment greatly
changed with computer networks,
Web, digital library, etc.

400+
350+

m Difficult to being up-to-date 300

250

= JAIST has 4700 online journals, 200]
282,000 papers per year, reading >
1%/year = reading 2820 papers/yr s

= reading 8 papers/day. ""lo04 1095 1096 1097 1098 1999
Keyword “XML” in INSREC® database

Emerging Trend: a topic that is growing In
Interest and utility overtime.
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To find new and
useful knowledge
from large datasets

= ACM SIGKDD since
1995, PKDD and
PAKDD since 1997
(PAKDD’05 In Hanot),
IEEE ICDM and SIAM
DM since 2000, etc.
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Machine learning and data mining

What are emerging
trends In machine

learning and data
mining research?

(topics that are growing Iin
Haterest and utility overtime) 4

¥+ ICDM and SIAM
DM since 2000, etc.
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Outline

m Discriminative random fields
m Kernel methods

Some | Our recent
emerging work In these
trends trends
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Data schemas vs. learning/mining methods

Types of data Mining tasks and methods
m Flat data tables m Classification/Prediction
m Relational database > Decision trees
m Temporal & Spatial > Neural network
m Transactional databases > Rule induction
= Multimedia data > Support vector machines
m Genome databases > Hidden Markov Model
m Materials science data > etc.
m Textual data m Description
m \Web data A o Ivsi
. ete > ssoma_tlon analysis
> Clustering
2> Summarization
> etc.

Different data schemas
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10 challenging problems in data mining

(ICDM’05

Developing a unifying theory of data mining

Scaling up for high dimensional dataZhigh speed streams
Mining sequence data and time series data

Mining complex knowledge from complex data

Data mining in a network setting

Distributed data mining and mining multi-agent data
Data mining for biological and environmental problems

Data-mining-process related problems

© 00 N O 01 A W N PP

Security, privacy and data integrity
10. Dealing with non-static, unbalanced and cost-sensitive data
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Complexly structured data

Relational databases
XML databases
Sequences, molecules,
Graphs and trees
others
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Explosion of biological data

EMBL Database Growth

DBGET Database Links . | . total nucieo.lld_as _(ggat_:as.esj‘.l _____
KEGG ” 1:
- Pathway ——| Glyean \\LdeLND "
Eflxprle ] [—— : < 10,267,507,282
| S R : - bases in
LinkDB L :

_ G . z
N, A \\ & 9,092,760
DBGET// 4/ °records.
RefS PREF PMD CarbBank 2
‘ L. ; : ______.__________-lll

PubMed GenBank PIR é'*@“’@r" FEF & PGP 8 P

q.h______q |

Pl'otem
LITDB EMBL UmPrnt PDBSTR —~ AAindex
OMIM rosite  NotifDic Pfam - s & R
Blocks ProDom PRINTS # 2 ¥ Genes contain
= : ; 2 instructions
. A " AT YR A T L s for making

protains

Bioinformatics problems:

. 'i; roteins . ) . =, s, T
" Sequence analysis ;3.-'5"*; 7Y ; s
u G en O m I CS F‘r-:!leirrs a.l::.;lnnz
| Proteo m | CS r-u:rl-:l;r‘l; :l-:t-r-y-:.l.'llulrlr

functions

" Others (e.g., systems biology) From Genes to Proteins
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How biological data look like?

A portion of the DNA sequence, consisting of 1.6 million
characters, Is given as follows (about 350 characters,
4570 times smaller):

. TACATTAGTTATTACATTGAGAAACTTTATAATTAAAAAAGATTCATGT
AAAI [TCTTATT IGTTTATTTAGAGGTTTTAAATTTAATTTCTAAGGGTT
TGCTGGTTTCATTGTTA

(=1

3= View - ecoli_functions.pl[1]

| File Edit View Help

TGAAAATTAG GATTAA function(ecoli®az,5,1,4,insB_4"" 181 protein [nsB’). 2
function{ecoli®a3,?,0,0,b098%" " cold shock—like protein’).

GTTAAATTTTTAAATTT functioniecoli%a4d, 7,00, cspG’, low—temperature—regponsive gene analog of Cepd and CspB homolog of Salmonella

Alcold shock protein’).

GAAAGAAAGATTTAAA functioniecoli%as,?,0,0,"sfa","suppresses fab4 and ts growth mutation’). 1
functionlecoli®4.0,0,0.b0992" "orf' ),

CTTAGAAAAATATGGTAfuncTion(ecoli%?,S,S,E,’TorS',’sensor protein tors  (3rd module transmitter domain (Pkinase) interacts with torr)”).
functioniecoli9as,3,5,2, torT " part of regulation of tor operon periplasmic{1st module)™).

TATTATGT L function(ecoli9é9,5,5,2, torR", response franscriptional requlator for tord  (sensor TorS){1st module)™).
function(ecoli®70,3,5,2, torC", trimethylamine M -oxide reductase cytochrome c—type subunit also has activity as
neqativer requlator of tor operoni{lst madule)’).
functioniecoli9?1,3,5,2, tord”, frimethvlamine N-oxide reductase subunit').
functioniecoli??2,3,5,2 " torD","part of trimethylamine—N-oxide oxidoreductase’).
functioniecoli??3,0,0,0, vceD""orf). v
324,027 bytes
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Web link data

Predecessors Successors

/B

The Social Structure of “Countryside™ School District

Foints Colored by Race C While
® Black

® Mixed/Other

o

[Moody '01]

g i
LEsL TG etk T INternet Map
ISR 27 lumeta.com)

Food Web of Smallmouth Bass
Little Rock Lake (Cannibal)

Food Web
[Martinez '91]

1st Tropic Level
Mostly Phytoplankton 2nd Trophic Level

Many Zooplankton
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Labeling sequence data problem

m X IS a random variable over data sequences

m Y Is a random variable over label sequences whose labels
are assumed to range over a finite label alphabet A

m Problem: Learn how to give labels from a closed set Y to
a data sequence X

Xq X X3
X:  |Thinking is being
Y: noun verb noun

Y1 Yo Y3

III

= POS tagging, phrase types, etc. (NLP), KARIIRYFYNA KAGLC QTFCRAKRNNFESAED

X
= Named entity recognition (IE) Y | nnnnnnnnnTTECEnnnnnnnnTEE Ennnnnn
» Modeling protein sequences (CB)

* [mage segmentation, object recognition (PR)
= etc.
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Generative vs. discriminative methods

Training classifiers involves estimating f: X =2 Y, or P(Y|X).
Examples: P(apple | red A round), P(noun | “ca”)

Generative classifiers Discriminative classifiers
> Assume some functional > Assume some functional form
form for P(X]Y), P(Y) for P(Y]X)
2 Estimate parameters of > Estimate parameters of
P(X]Y), P(Y) directl =
from training data, Vi p
and use Bayes rule to
S (bl p(y | X) = PEIYP(Y)
calculate P(Y | X = x;) P(X)
. S,
> HMM, Markov random fiel g
Bayesian networks, B e e P(red A round | apple) P(apple) | ’
Gaussians, Naive Bayes, & P(red A round)

(ca: fish, to bet)
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Generative vs. discriminative methods

Generative approach Discriminative approach

m Try to build models for m Try to learn to minimize an utility

the underlying patterns function (e.g. classification error)
m Can be learned, but not to model, represent, or
adapted, and “unc!e_rstand” the pattern |
generalized with small explicitly (detect 99.99% faces In
data. real images and do not “know”

that a face has two eyes).

m Often need large training data,
say 100,000 labeled examples,
and can hardly be generalized.
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Finite state machines (FSM): a bit of history

Archeology of computational linguistics

m1990s-2000s: Statistical learning Trainable parsers
2 algorithms, evaluation, corpora /j

m1980s: Standard resources and tasks
> Penn Treebank, WordNet, MUC

m1970s: Kernel (vector) spaces
> clustering, information retrieval (IR)

m1960s: Representation Transformation J
2 Finite state machines (FSM) and Augmented

transition networks (ATNSs)

m1960s: Representation—beyond the word level
> lexical features, tree structures, networks

rainable FSMs

(E. Hovy, COLING 2004)




Finite state machines (FSM): a bit of history

Archeology of computational linguistics

m1990s—2000s: Statistical learning
> algoritha )
LIRSS s Hidden Markov Models

rainable FSMs
S (HMM, 1960s)
= Maximum Entropy Markov

Models (MEMM, 2000)
= Conditional Random Fields

(CRF, 2001) gmented

Trainable parsers

m1960s: Represente e word level
> lexical features, tree structures, networks

(E. Hovy, COLING 2004) @R EIVZID




= An HMM is a 5-tuple (O, S, A, B, n)

= Observations O = {o,, 0,, ..., Oy}
> States S ={s;, S,, ..., Sy}

= Transition probability P(s,]s;.;)
= Emission probability P(o.]s; )

= Start state probabilities P(s,)

St-l

_transitions

... Observations

Ot+1

m Characteristics
> A direct graphical model, generative
> Locally normalized at each state

2 Applied to a wide variety of problems in speech & text processing,

biology, etc.
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MEMMs [McCallum et al., 2000]

m Features
> Represents the probability of
reaching a state given an Si1 S, Sie1 transitions

observation and the previous state.

2 These conditional probabilities are
specified by exponential models o
based on arbitrary observation O, 0, Oy
features.

m Characteristics
> A direct graphical model
2 Discriminative
> Locally normalized at each state

2 Can represent an array of highly dependent observation features
(of different levels of granularity)

N RIVE 2006




CRFs [Lafferty et al., 2001]

m Solve label bias problem: CRFs drop
the requirement of local
normalization

O, O, Oq

m Globally normalized
(HMM & MEMM: locally normalized)

- P16 =]
m Characteristics Z(0) 1
2 Undirected graphical model, discriminative
> Globally normalized
> Consider the state sequence as a whole (not separated unit)
> Can represent rich-dependent features of training data
> Parameters of a CRF are the feature weight vetor A = {A,, ..., A}

D (8,54)P,(0,8)

N RIVE 2006




Ot—l Ot Ot+1 Ot-l Ot Ot+1 Ot-l Ot Ot+1

HMMs (directed graph, MEMMSs (directed graph, CRFs (undirected graph,
joint, generative) conditional, discriminative) conditional, discriminative)

Using advanced statistical and graphical methods:

Maximum Entropy (Maxent), Hidden Markov Models (HMM), Maximum
Entropy Markov Models (MEMM), Conditional Random Fields (CRF),
Markov Random Fields (MRF), Relational Probabilistic Models (RPM),

etc.
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The Issue of data representation

mLets = (X, ..., X,) asetof nobjects to be analyzed.

m Suppose that each object x; Is an element of a set ¥,
which may be images, molecules, texts, etc.

m Majority of data analysis methods represent S by:

> defining a representation ¢(x) € & for each object X € ¥,
where & can be real-valued vector (& = ‘RP) or finite-

length strings, or more complex representation.

2 representing the objects by a set of their
representations, ¢(S) = (¢(Xy), ..., (X))

| RIVE 2006



Kernel representation: idea

Data are not represented individually anymore, but
only through a set of pairwise comparisons.

Instead of using a mapping ¢: ¥ — & to represent each
object x € ¥ by ¢(X) € &, a real-valued “comparison
function” k: ¥Xx%X — R i1s used (kernel), and the data
set S IS represented by the nxn matrix of pairwise

comparisons k; ; = K(X;j, X;)-

In the new space, the problem solving Is easier (e.qg.
linear)

All kernel methods are designed to process such
sguare matrices.

N RIVE 2006



Kernel representation: idea

m X Is the set of all oligonucleotides, & consists of three
oligonucleoides.

m Traditionally, each oligonucleotide is represented by a
sequence of letters.

m In kernel methods, & Is represented as a matrix of
pairwise similarity between its elements.

- RIVE 2006




More about kernels

A kernel k(Xx,y)

= Is a similarity measure
> defined by an implicit mapping ¢

= from the original space to a
vector space (feature space)

such that: k(x,y)=6(X)=d(y)

> Different kernels for different
data types

= Vector space kernel for text

= Spectrum kernel for sequential
data

= Diffusion kernels for graph

= etC.

Principles governing
kernel design

= Invariance or other a priori
knowledge

=2 Simpler structure (linear
representation of the data)

= The class of functions the
solution Is taken from

= Possibly infinite dimension
(hypothesis space for learning)

= ... but still computational
efficiency when computing k(x,y)

3 RIVF 2006




Examples of kernels (1)

Polynomial

o ©° kernel (n=2) \

©
©)

RBF kernel L
(n=2)

(Jean-Michel Renders, ICFT'04)




Kernel methods: a bit of history

Aronszajn (1950) and Parzen (1962): employ positive finite
kernels in statistics.

Aizerman et al. (1964): positive definite kernel is identical
to a dot product in another space in which their algorithm
reduced to perceptron algorithm.

Boser et al. (1992): optimal hyperplane algorithm (SVM).

Scholkopf (1997): work with nonvectorial data; (1999):
kernels can be used to construct generalizations of any
algorithm that can be carried out in terms of dot products.

Haussler (1999) and Watkins (2000): first examples of
nontrivial kernels defined on nonvectorial data.

Since 2000: large number of “kernelizations" of various
algorithms, various applications.

) RIVF 2006




ML and statistical methods in NLP

1992 ACL 1994 ACL 1996 ACL

24% 35% 39%
(8/34 (14/40 (16/41)

1999 ACL 2001 NAACL 2005 ACL

87%
(27/131)

96%
(TA/TT)

B some ML/Stat no ML/Stat

(Marie Claire, ECML/PKDD 2005) B RIVF 2006 )




91-
94

95-
96

(Marie Claire, ECML/PKDD 2005)

1999 2001 2005

B re-ranking
B CRFs
B MaxEnt
RL
SVM's/LM
B Class comb.
B Rule learning
INB
B EBL/EBG
mCOLT
Dlists
" Dtrees
HIBL/MBL
W ANNs
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Observed from ICML 2004

Honorable Mention
& for Outstanding Paper Award

o Hultipleal‘l‘lil‘lg, Conic Duality, and
the SMO Algorithm

« Francis Bach, Gert Lanckriet, Michael Jordan

= Efficient Hierarchical MCMC for Policy Search
x Malcolm Strens

= Authorship Verification as a One-Class
Classification Problem
« Moshe Koppel, Jonathan Schier

36

(Russ Greiner, ICML'04 PC co-chair)
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ICML 2006 (720 abstracts)

Kernel methods & 166 Eg

SVM i

Probabilistic, 146 0T -

graphical models = = ‘

Unsupervised 128 = = =

learning, clusterin oy L]
R ! ks b

Statistical models 121 > | N[ o =

Language, Text & 638 & o :

web = 5

Learning in 45 8

bioinformatics T 3

ANN 29 f & o

S £
ILP 9 “’é 3
CRF 13 8
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Outline

Some | Our recent
emerging work In these
trends trends
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summary

Improving prediction performance of CRFs (KDD’05)

m High-performance training of CRFs for large-scale
applications (HPCS’06, ICML’06)

m Sentence reduction (in text summarization) by SVM
(COLING’04)

m Simplifying support vector machines (ICML’05, IEEE Trans.
Neural Network)

m Prediction and analysis of B-turns in protein structures
(GIW?03, JBCB’05) and histone modifications by SVM
(GIW’05) and CRFs (ICMLB’06)

m Manifolds in imbalanced data learning (ICML’06)
m Model for emerging trend detection (PAKDD’06, KSSJ)




Sentence reduction by SVM

(Minh et al., COLING’04)

Parsing al Ilsentences

Generatingltraining data

SVM |learning

A rule shows relation of a
context and an action

parsingl

transforming l

generatingl

m Input list, CSTACK, RSTACK

m Actions: SHIFT, REDUCE, DROP,
ASSIGN TYPE, RESTORE

m Transforming tree is a
sequence of actions

:

{a, b, c, d, e}

{b, e, a}

RIVF 2006




Prediction of B-turns & y-turns by SVM

Hoan et al., GIW’03, JBCB’05

Protein sequence

RPDFCLEPPYTGPCKARI | RYFYNAKAGL
COTFVYGGCRAKRNNFKSAEDCVRT CGGA

Predict

B-turns

RPDFCLEPPYTGPCKARI | RYFYNAKAGL
nnnnnnnnnnnnnnnnnnnnnnlTtttn

QT FVYGCGECRAKRNNFKSAEDCMRT CGGA
annnnnnnnn Tt £ t nnnnnnNNNNnNnNn

1 RIVF 2006




Manifold for imbalanced data learning

Hao & Bao, ICML’06

m Flexible assumption: Data having manifold structures.

m Up sampling data to make it exhibit manifold structures
—> give rise to patterns of interest.

m Our algorithms outperform SVMs and SMOTE (Chawla et
al, JAIR’02).

In-class sampling Out-class sampling

| RIVE 2006




High-performance CRFs

(Hieu et al., HPCS’06

m Training CRFs (i.e., estimating parameters for CRFs on
the training data D= {(0",19)}2L, is to maximize the
log-likelihood function:

N ,
L=>) log (peil':ﬂlﬂ':ﬂ}) - D 55
' k

=1

T

1
pa(slo) = 5 sexp (Z Fls, n,ﬂ)

t=1

where

m Problem: very expensive due to the computation of
partition function Z(0)

m Solution: Training CRFs on massively parallel
computers

N RIVE 2006




High-performance CRFs

(Hieu et al., HPCS’06

m Experimental environment:

2 Massively parallel computer
(Cray XT3): 90 nodes, each
node has four 2.4GHz
processors, 32GB RAM (total:
90 x 4 x 2.4GHz processors,
2.88TB RAM)

=2 Linux OS and MPI library

m Experimental data:

2 Wall Street Journal corpus of
Penn TreeBank

2 Text chunking and Part-of-speech
tagging




Computational linguistics

Lexical / Morphological Analysis

Tagging
Chunking
Syntactic Analysis

Grammatical Relation Finding

Named Entity Recognition

Word Sense Disambiguation

Semantic Analysis
Reference Resolution

Discourse Analysis

text

A

4

meaning

The woman will give Mary a book

l POS tagging

The/Det woman/NN will/MD give/VB
Mary/NNP a/Det book/NN

l chunking

[The/Det woman/NN],, [will/MD give/VB];
[Mary/NNP],» [a/Det book/NN],

l relation finding
subject '

[The Woman] [W|II glve] [Mary] [a book]

I- object object

f RIVF 2006




High-performance CRFs

(Hieu et al., HPCS’06

m Contributions:

> Investigate the learning power of CRFs on large-scale dataset

state-of-the-art

2 Reduce the training time dramatically
accuracy
22.93% error reduction

m Text chunking result:
.. _ rate in comparison
> Training: 39,832 sentences of the sections | \,iih the orevious work

> Testing: 1,921 sentences of the section 00

o NP | /Al

. B-MP  BYF B-MP I-MP OI-MP B-VE YR L. ldethods Fao: Fao
T Curs (majority voting among 16 CHEz) EIE.'.'Aﬁ 96 .33
PRE - VBZ PRPE NNP NN TO 0 VB .o 1 5re (CREs, about 1.314 - 1.51 featurez) | 96.59 | 96.18

p-2 P-1 o 1 4

it iexpects itz LLS sales to iremain ...
. WLl WD WA Wi

Kude & Matzumeto 2001 (veoting SV 1) 85,
Kudo & llatsumeto 2001 {5V 1)

Sang 2000 {system combination)

sliding window (size = 8)
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High-performance CRFs

(Hieu et al., HPCS’06

m Experiments for POS tagging
> 24 sections of WSJ (Penn TreeBank): about 1,000,000 words (more

than 40,000 English sentences) Comparative results
> Achieved competitive results Devel. | Tt
Methods AccTh | AccB

Toutanova et al. 2003 (Dependency IMet.) a7.15 a7.24

Ours (Second-order CREs (3D Rep.)) 97.05 | 97.16
Ours (First-order CREs) 096.92 | 96.92
3500 - 45 -
3000 - 40 4
g 35 -
Ernali o a0
= e C jonal speed
£, 2000 4 it omputational speed-up
@ T 20 4
£ 1500 - =
= L5
= 1000 w —— perfect speed-up
_% 10 ratio
= 500 4 5 —8— real speed-up
ratio
I:I T T T T T T T T T 1 I:I i I 1 1 I I I T T T 1
1 & 10 148 20 25 30 35 40 44 1 5 1015 20 25 30 35 40 45

# parallel processes # parallel processes
P P P Y - RIVF 2006




SVMs simplification

DucDung & Bao, ICML'05, IEEE Trans. NN

To replace original machine

Bottom-up approach
that finds solution in a
univariable function
Instead of multivariable
ones in previous o

~__ methods %
\ ifar 'G

.
||IIE!.
S

E.
Iﬁq ]

2%
Bl

3 | RIVE 2006




SVMs si r’ﬁ"[f)"l*if_-_gication: evaluation

# of SVs Phase 1 Errors Phase 2 Errors

0.0 4538 88(4.4%) 88(4.4%)

3024 88(4.4%) 88(4.4%)

. 2269 91(4.5%) 88(4.4%)

0.5 1114 93(4.6%) 89(4.4%)

0.7 795 104(5.2%) 89(4.4%)

ﬂ[ﬂ_l 1.0 522 110(5.5%) 91(4.5%)

-10.8 112 151 4127 -141 -

m 397 116(5.8%) 93(4.6%)

1.5 270 147(7.3%) 95(4.7%)
EL1 11E: =115 T4 =354 -BE2 1B 4442 4245 -280 SRV +EE9 2329 =545 4BZ -E5d
F]ﬁ Erl E'I[-“IE - i1 A IR AT =1

soseo o= w @ Reduced vectors keep well original shape

Different machines require a different
deaB8l® number of reduced vectors

i]E][-] ﬂﬂi—‘]i Simpler machine requires fewer number

8.9 2 =141

FIEIBIE 1P IR G Of reduced vectors

-J56 +1031-663 -TE0 -41E6 -163 +757 -B5d +022-23.5 -1.E +3d4.3
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“beads-on-a-string”
form of chromatin

DIGESTS

NUCLEASE
LINKER DMA,

DISSOCIATION
WITH HIGH
COMNCENTRATION
OF SALT

B oS

actameric T146-nucleotide-pair
histone core DMA double helix

|

DISSOCIATION
A
fiii) )
IR Ty o6 By

H2A H2B H3

146 pairs of DNA
In nucleosomes

are wrapped I T
around a core of

histone proteins, me o

-Vﬁ(ESHHMKGK-COOH

Histone octamer
consists of 8
proteins: a H3-H4

= ~
tetramer and two Ay .
H2A-H2B dimers ‘8% %ﬁ, £4a%8
p s 4 iy 5
e '(_.z’ A - f-— A —1 :

3
H2A:H2E dirmer H2AHIB iy HI-Hd tetramer

From Molecular biology of the Cell.
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Prediction of histone modifications

About histone modification

Histone modifications: Some amino acids of histone proteins (H3,
H4, H2A, H2B) in nucleosomes are modified by added methyl group
(methylation), acetyl group (acetylation), or other chemical groups.
Most of them are in N-terminal tails that are highly conserved.

AQ/IethylatioD >

H3:R3,K4,K9,K27
H4:K20;

X1

Adding one, two or three

-CH; 'sto a.a.

Nucleosome
modifications ' ‘ Acetylation )—*

Adding acetyl (CH,C)O

H3:K9,K14,K16,
K23,K27
H4:K5,K8,K12;
etc.

Phosphory-
lation

Adding -PO4to a.a.

H3:510,525
H4:S1;
H2A:S1

hesicne-foid

damain
H3
|
M
REK § K K K K S5
349

L
f:
o
10 14 18 23 27 28 .F:
H4 ?— L
M . c
S K K K .9 K
1 &

) 12 16 20

H2A i
N > f ."ll c
5 K i ||'
1 3
N Al/ﬂ —
K K i K
5 12 15 £Z0
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Prediction of histone modifications

Experimental approach

m Recent experimental
studies on relative
occupancy and modification Lo m R
state of nucleosomes .
(Bernstein, 2002; Kurdistani,
2004; Humphrey, 2004; Lee,
2004; Kurdistani, 2004;
Pokholok et al., Cell,
8.2005)

m Quantitative
measurements of histone
occupancy and modifications  invivo
at positions in DNA
sequences with different
resolution levels.

Limitations of
experimental
methods: tedious,
labor-intensive, high
false positive, high
false negative rates.

serimental method
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Prediction of histone modifications

Research objective: Computational solution?

From DNA sequences
CACTRCGOGCCTOTOTACATTCTGCOCGACATTCACCCABTGTGCABTGTGABAGGTACAGBTGGLGCATOTOGTGTRCGCCACACACHTTOOCACE

To computationally predict: To find characteristics of areas at
- H3, H4 occupancy which H3, H4 occupancy, histone
- Acetylation state acetylation and methylation are at
- Methylation state high and low levels.

In our work, we define two state classes of H3, H4
occupancy, acetylation, methylation: high and low.
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Prediction of histone modifications

Convert a DNA sequence Into vector using k-grams

[0 I ]

(=
=1
= = mm

H O OO0 oo OoOo0o0o0O« WiEekodooodoodd s

L R R - = Bl e B I RN

[ I T o Y T S i S S

L
am - '_I. mm
P S e T I I I S

b -

=
]

B G ogy Al -] v BB DD BB
wE L L) E wE LIS L) E e LIS L) LR
D e e B B DD G e L) e
o e O =] L) W L L L) LW

B
o
5 s L) w8

[ R I o TR s o
-IIII-III-I-IIII-IIN

[ S = B = T A R R

B i i b [ b B owe [ i es
=] o 0 -] o o N

L DA W B B s oss [N ss

e ] wmm =t =m mm mm
[ ]

8]
Ln

L L T T - T

T Y R |

@8 s ss ss w8 ) ss s
Ly o 2 = DD s 2 we
0 =) = 00

5 21:8 23:1 28:1 29:1 31:1
11 15:3 18:1 19:2 21:1 22:2
10:4 11:2 12:4 13:1 14:1 15:2
] ! ' 12:3 1e:1 27:1
12 15:1 16:1
13:1 14:3 1
5:3 16:2 1
1 15:3 1
T2 18:1
1 2621 30
1:2 34:2
e 2211 27
27:1 28:1
16:1 18:1 19:
14:2 15:2 18:1
e 12:2 14:1 15:3
2:3 15:3 16:1 17:2 20:1
14:3 15:2 16:2 20:1 28:1 31:1 3
1:2 12:2 14:1 19:1 24:1 26:1 27:
2 11:1 12:1 14:1 17:9 1lg:2 19:3
4:2 15:3 16:1 18:2 21:1 23:2 25
4 11:1 14:1 15:1 16:1 17:1 18:2
3 13:1 14:1 15:1 16:3 16:1 22:1

1
3
1
1

RIVF 2006




(K) by SVM and CRF

histone modifications

Dataset

acc

CcC

cC

acc

k=5

cC

H3 occupancy

84.93

0.70

85.50

0.71

e The accuracy and correlation coefficient of
gualitative prediction are consistent with
experimental approach.

e The highest prediction of H3 and H4 occupancy
‘ achleved When usmg 4 or 5- gram features

H3K79me3

Sequence length L = 500
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A model for emerging trend detection

(Hoang & Bao, KSS journal)

ETD:

Detecting

topics Topic verification
that are How to define interest
growing in and utility functions and
Interest evaluate their increase
and utility overtime?
overtime FV izt

from a

corpus
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ETD: Topic representation

Time series

ETD: = e
Detecting Define = o e """ @
topics 6 types - it
that are of Zﬁcation erotmeines @) (@) (@) @
growing in Citation information (1) . . ...... .
Interest Citation information (2) . . ...... .

and utility Influence ® & o ')
overtime . Author reputation . . ...... .

from a | . . ...... .
corpus

neural network

t;=NNs | 1998 | 1999 | 2000 | 2001 | 2002 | 2003
t(1) | 0.06 | 0.10 | 0.08 | 0.10 | 0.09 | 0.06
t(2) 020 033]0.28 006011 0.04
t#(3) | 041|040 050 0.12 | 0.07 | 0.32
th(4) | 0.17 | 040 | 0.06 | 0.12 | 0.33 | 0.02
th(5) | 0.65 | 0.55 | 0.13 | 0.24 | 0.67 | 0.11
t(6) | 033 044 | 0.22 | 0.33 | 0.44 | 0.56
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ETD: Topic identification

ETD: . .
Detecting " Bun_d 6 _models corresponding to 6 types
topics of citation

that are = Using HMM, MEMM, an CRF to extract
?r':o""'”g features

interest P (1) = \OW)

and utility 4) > P(0l%)

overtime |

from a _

corpus P(O14) = maxP(s,0|%
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ETD: Topic verification

ETD:

Detecting _ .

topics Topic verlflc_atlon
How to define interest

that are i :

. and utility functions and
QrOW'”g evaluate their increase
' overtime?
INnterest

and utility Growth(t,, j) = growth of time-series {t“(j)}, along the time axis
overtime 1 1
from a Interest f(t)== > Growth(t, j), Utility g(t;)== > Growth(t,, j)

1€{1,3,5,6} j€{2,4,5,6}
COrpus

f '(k):g—i(k) the speed of growing at x = k Speed>0

f"(k)zgj(z (k) the acceleration of growing at x = k d 21 2 YA
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ETD: Evaluation

ETD:
Detecting
topics ) gy @ Machine Learnin Kernel MEHIE[IELS.IE, -
that are e Conditional Randorn Fielc{*s'

: Speech Processing (+0.35, +0.001)
growmg T Neural Networks
IN @ Speech Synthesis Decision Tredee: | | sadil
e ' (-0.05, +0.004)

Text Minin Information Extraction
a';_cll_t Rule-based Systems (+0.23, +0.146) Information Retrieval
utility ~ Planni
overtime @ Expert Systemns @ Reasonir g
(-0.50, -0.74) Scheduling
from a , S
Multi-agent System: Decision Making
corpus Beli .
NL elief Revision
Computer GHnes Computational Linguistics
T Genetic Algorithms , . Natural Language Understanding
= Enowledge Representatior
o = Fuzzy Logic
(-0.19, +0.200)
Fuzzy Modeling
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Conclusion

m Much complexly structured data.

m Two emerging trends in machine learning and
data mining fields: discriminative random
fields and kernel methods.

m And some of our works relating to them.

m Good to deal with complexly structured data
and are today and future technologies.

m Many open and challenging problems.
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