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1216e (Computational Complexity and Discrete Math):

Discrete Math

e URL: http://www. jaist.ac.jp/~fujisaki/index-e.html
e Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
@ Room: Room I-2
o Office Hour: Monday 13:30 — 15:10
o Reference (%)
o NEMm, ARMIHERE, HiEHE.
o “Abstract Algebra,” David Dummit and Richard Foote, Prentice Hall.
o REAAFM, IAE,
Free eBook URL:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/
e "A Computational Introduction to Number Theory and Algebra,”

Victor Shoup, Cambridge University Press.
Free eBook URL: http://www.shoup.net/ntb/
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What will you study in the part of Discrete Math.?

From Algebra (fi5fU2X)
@ Axioms of Groups (#f), Rings (¥%), Fields ({4)
e Equvalent class ([FIfiEi%H)
o Equivalent relation ([FIfER4$%), Congruence (£1Al)
e Lagrange's Theorem (7 7' 7 v ¥ = DEHE)
o Lagrange's Theorem — Fermat’s little Theorem, and Euler's Theorem
@ Fundamental Homomorphism Theorem(s) (¥#[F] Y& #H)
o Normal subgroup (IE#LEZTHE), Residue class group (RIRERE) (=
Quotient group (Fi#f))
e Fundamental Homomorphism Theorem — Chinese Reminder Theorem
(CRT).
@ Ring Fundamental Homomorphism Theorem (& [H] 7 Bl )
o ldeal; Ideal (for ring) <= Normal subgroup (for group).
o Residue class ring (FIREER) (= Quotient ring (FiER))
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What will you study (cont.)

Number Theory (#5555 5m)

o Generalization of Integers (Informal)

o Integral Domain (#1%): Euclidean domain (2 —7 V) v F#&),
Principal ideal domain (PID) (HLH{A 7 7 )L H&8K), Unique factorization
domain (UFD) (— =/ fifHEN).

e Euclidean domain C PID C UFD.

@ Extended Euclidean Algorithm (#A5R2—72 V v F D HFRik)

e Solution for:

o linear Diophantine equation (—X7 4 % 7 7 v b A /iR, and

e computing the inverse of an (invertible) element in (residue class) ring
Z/nZ.

Application: RSA public-key cryptosystem. Related to:
e Euler's totient function ¢(n), Euler's Theorem
e Structure of Z/nZ

@ Chinese Remainder Theorem
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Today's Contents

© Equivalence Class ([FIfiEi%H), Partition (43%l), and Quotient Set (74
£5)
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Equivalence Relation ([FIfiEEI{R)

Definition 1 (Binary Relation (B£%))

A binary relation on set S is a subset R of S x S (R C S x S) and we
write a ~ b if (a, b) € R.

Definition 2 (Equivalence Relation)

We say that relation (on set S), ~, is an equivalence relation (on S) if for
all a,b,c € S, the following conditions hold.

o (Reflexive) a ~ a.
o (Symmetric) If a ~ b, then b ~ a.

o (Transitive) If a~ b and b ~ ¢, then a ~ c.
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Equivalence Class ([FIfiei%H)

Definition 3 (Equivalence Class)

Let ~ be an equivalence relation on S. We define by
C(a) = {x € S|x ~ a} the equivalence class of a (with respects to

(S5;~))-

Proposition 1

e ac (C(a).

e If b e C(a), then C(b) = C(a).
e If C(a) # C(b), then C(a)( C(b) = 0.
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Partition (77#)

Definition 4 (Partition)

Let / be some index set. A collection {S;|i € I};e; of subsets of S is called
a partition of S if

o Foralli,jel (i#])), SiNS =0.

The notions of an equivalence relation on S and a partition of S are the same:

Proposition 2

@ Let ~ be an equivalence relation on S. Then, {C(a)}.cs, where
C(a) = {x|x ~ a}, is a partition of S.
o If {Sj|i € I}ie is a partition of S, then there is an equivalence

relation ~ on S, such that the equivalence classes are precisely
{Siliel}'s(iel).
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More,

Proposition 3
Let ~ be an equivalence relation on S and let C(a) = {x € S| x ~ a} be
the equivalence class of a. Then, there is a subset A of S (A C S) such
that

@ {C(a)}asen is a partition of S, and

@ Forall a,be A (a+#b), C(a)()C(b)=0. )

@ The partition of S defined by ~, i.e., {C(a)}aes, is unique.

@ In other word, {C(a)}.ea and {C(a)}acs are the same partition,
regardless of the choice of A (where A is not unique).
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Quotient Set (FFE)

Definition 5 (Quotient Set)

We write S/~ to denote the partition of S defined by ~, and call it the
quotient set of S by ~.
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Today's Contents

© Congruence (#d) and Residue Class (FI4%)
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Congruence (£517])

Definition 6 (Congruence)

For n € N, we say that a is congruentto bmod n (ald nZ¥EE L Th &
AIFATH %) if n divides (a — b), i.e., n|(a — b). Also write

a=b (modn) ifandonlyif n|(a—b)

@ Note that the congruence mod n defines an equivalence relation ~,
on Z:
a=b (modn) <= a~pb

@ The equivalence classes of Z by ~,, are
nZ,1+nZ, ..., (n—1)+ nZ

We write Z/nZ to denote the quotient set (of Z by ~,), i.e., Z/~p.
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Residue class (F43%H) or Coset (f%5%)

Definition 7 (Reminder)
Let H be a subgroup of G. For a € G, define

aH = {ao hlh € H}

Ha = {hoalh € H}.
We call aH a left coset (Z£FIRHH) of H and Ha a right coset (£ HI4%H)
of H.

If G is commutative (F]#4), then aH = Ha.
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Equivalence Relation from Residue Class

Let H be a subset of G and aH be a left coset (ZEFIFHH).

Proposition 4
For a, b € G, define

a~b by aH=bH.

Then, ~ turns out an equivalence relation on G.

Proof.
@ aH = aH.
o If aH = bH, then bH = aH.
e If aH = bH and bH = cH, then aH = cH.

| \

O

v

Similarly, the right coset of H defines an equivalence relation. Note that
aH # Ha in general.
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Congruence and Residue Class

Proposition 5
For a, b € G, it holds that

aH=bH < albeH.

So, we can also define a~ b by a='b € H, instead of aH = bH. We say
that a is left congruent to b mod H.

a=b (mod H) <= albcH
We can similarly define the right congruence mod H.

This is a generalization of the congruence mod integer n.
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Congruence and Residue Class, Cont.

@ The congruence mod integer n: For a,b € Z,
a=b (modn) <= a—benk
@ The (left) congruence mod subgroup H: For a, b € G,
a=b (modH) <= alobecH
@ The (right) congruence mod subgroup H: For a,b € G,

a=b (modH) <= aoblcH

Note nZ is a subgroup of Z. The congruence mod a subgroup forms an
equivalence class.
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Today's Contents

© Lagrange’s Theorem
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Quotient Set over Left/Right Coset

Definition 8
Let H be a subset of G.

e We write G/H to denote {aH}.cq.
e We write G\ H to denote {Ha},cc.
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Index (#54%) of Subgroup

Theorem 9
|G/H| = |G\H]|.

If G is commutative, then trivial. However, the above holds even for any group G and any subgroup H.

Proof.

o a€ G a—! e Gis bijective (4:Hi4) (due to the uniquenss of inverse in Monoid).
So, ah — (ah)~* = h=1 0 a1 is bijective and hence aH = Ha—!,
There is a subset A of G such that {aH},c o partitions G and for all a, b € A (a # b), aH [ bH = (.

By aH = Ha™ !, {Hafl}aeA also partions G. Since aH = Ha %, {aH},ca and {Hafl}aeA are the same partion
of G.

Hence, |A| = |G/H| = |G\ H|. Regardless of the choice of A, G/H and G\H are unique.

© 000

Definition 10
We say that [G : H] £ |G/H| = |G\H| is the index of H in G.

| D
A\

.
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Lagrange's Theorem

Theorem 11 (Lagrange's Theorem)
Let H be a subset of G. Then,

e |G| =[G : H]|H|.
o Let G be a finite group. Then, the order of H divides the order of G,
i.e., |H| divides |G|.

Let {aH}.ca be the partion of G by the left coset of H such that for all
a,be A(a#b), aH(\bH =0. Then [G: H] = |A|. For all a € A,
h(e H) — ah (€ aH) is bijective. Therefore, |G| =[G : H]|H|. O
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Today's Contents

@ Fermat’s Little Theorem and Euler's Theorem
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Cyclic Group ([HI%F)

n
Let G be a group. For a € G, define a” 230 ---0 a and write
{...,a7 1, a%al,.. .} as (a), i.e., (a) = {a"|n € Z}.

(a) is a subgroup of G.

@ Even for non-commutative G, (a) is a commutative group.
@ (a) is called a cyclic group.

@ ais called a generator of (a). In general, a is not unique.

Definition 13

The smallest positive number n such that a” =1 (where 1 is the identity)
is called the order of a. If such a positive number does not exist, the order
of a is said infinite.

The order of a is equivalent to the order of (a).
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Fermat’'s Little Theorem

Theorem 14 (Fermat's Little Theorem)
Let p be a prime. For a € N, the following holds.

a”?1=1 (mod p)

Proof.

(Z/pZ)* is a group of order p — 1 and (a) is a subgroup of (Z/pZ)*. By
Lagrange's Theorem, the order of a (i.e., the order of (a)) divides p — 1.
Hence, a~! =1 € (Z/pZ)*. O

v

| N
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Euler's Totient Function (4 A 7 —B%X)

Definition 15

p(n) £ {x eN|1 < x < n—1and (x,n) =1} (for 2 < n) is called Euler’s
¢ function or Euler’s totient function. For n =1, we define ¢(1) = 1.

Proposition 6
e For (m,n) =1, it holds that ¢(mn) = ¢(m)¢(n).
e For prime p and positive integer e, it holds that ¢(p¢) = p¢~*(p — 1).
o Let n=[[;_; p{". Then, it holds that

u 1
¢(n) = nil;[l(l - E)'

§
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Euler's Theorem (4 A 7 — DEHH)

Theorem 16 (Euler's Theorem)

Fora,n € N,
a?M =1 (mod n)

From the fact that the order of (Z/nZ)* is ¢(n).
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Today's Contents

© Appendix (Reminder)
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Group (#f)

Definition 17 (Axiom of Group)

Let G be a set associated with a binary operation o. G is called a group if
the it satisfies the following axioms:

e Gy (ZJHJHEL) o: G x G — G is a binary operation on G.

o G (f5&¥EHI) Va,b,ce G [(aob)oc=ao(boc)].

o G (WAIILDFE) Je€ G,Vae G [ace=eoa=al

o G3 (& CHMIL) Vae G,Ja e G [acal=aloa=g¢]

Definition 18

| A\

Group G is called abelian or commutative if the following condition holds:
o Gy (FM#) Va,be G [aob=boal

\
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Subgroup (F77 1)

Definition 19

H is called a subgroup of group G if:
e HC G (i.e., His a subset of G).
e Va,be H [aobe H] (ie., ois a binary operation on H).
eVacH [aleH].

| A

Theorem 20

H is a subgroup of G if and only if

Va,be H [aob !cH|
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