[l216e] Computational Complexity and <u>Discrete Mathematics</u>

Ryuhei Uehara, and Eiichiro Fujisaki

Japan Advanced Institute of Science and Technology

November 13th, 2017.

Eiichiro Fujisaki (JAIST)

Comp. Complexity and Discrete Math.

Nov. 13th, 2017 1 / 28

I216e (Computational Complexity and Discrete Math): Discrete Math

- URL: http://www.jaist.ac.jp/~fujisaki/index-e.html
- Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
- Room: Room I-2
- Office Hour: Monday 13:30 15:10
- Reference (参考図書)
 - 「代数概論」森田康夫著,裳華房.
 - "Abstract Algebra," David Dummit and Richard Foote, Prentice Hall.
 - 「代数学入門」松本眞, Free eBook URL:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/

 "A Computational Introduction to Number Theory and Algebra," Victor Shoup, Cambridge University Press. Free eBook URL: http://www.shoup.net/ntb/

What will you study in the part of Discrete Math.?

From Algebra (抽象代数)

- Axioms of Groups (群), Rings (環), Fields (体)
- Equvalent class (同値類)
 - Equivalent relation (同値関係), Congruence (合同)
- Lagrange's Theorem (ラグランジェの定理)
 - $\bullet\,$ Lagrange's Theorem \to Fermat's little Theorem, and Euler's Theorem
- Fundamental Homomorphism Theorem(s) (準同型定理)
 - Normal subgroup (正規部分群), Residue class group (剰余類群) (= Quotient group (商群))
 - Fundamental Homomorphism Theorem \rightarrow Chinese Reminder Theorem (CRT).
- Ring Fundamental Homomorphism Theorem (環準同型定理)
 - Ideal; Ideal (for ring) \iff Normal subgroup (for group).
 - Residue class ring (剰余類環) (= Quotient ring (商環))

What will you study (cont.)

Number Theory (初等整数論)

- Generalization of Integers (Informal)
 - Integral Domain (整域): Euclidean domain (ユークリッド整域), Principal ideal domain (PID) (単項イデアル整域), Unique factorization domain (UFD) (一意分解整域).
 - Euclidean domain \subset PID \subset UFD.
- Extended Euclidean Algorithm (拡張ユークリッドの互除法)
 - Solution for:
 - linear Diophantine equation (一次ディオファントス方程式), and
 - computing the inverse of an (invertible) element in (residue class) ring $\mathbb{Z}/n\mathbb{Z}.$

Application: RSA public-key cryptosystem. Related to:

- Euler's totient function $\phi(n)$, Euler's Theorem
- Structure of $\mathbb{Z}/n\mathbb{Z}$
- Chinese Remainder Theorem

Equivalence Class (同値類), Partition (分割), and Quotient Set (商 集合)

2 Congruence (合同) and Residue Class (剰余類)

3 Lagrange's Theorem

4 Fermat's Little Theorem and Euler's Theorem

5 Appendix (Reminder)

Definition 1 (Binary Relation (関係))

A binary relation on set S is a subset R of $S \times S$ ($R \subset S \times S$) and we write $a \sim b$ if $(a, b) \in R$.

Definition 2 (Equivalence Relation)

We say that relation (on set S), \sim , is an *equivalence relation* (on S) if for all $a, b, c \in S$, the following conditions hold.

- (Reflexive) $a \sim a$.
- (Symmetric) If $a \sim b$, then $b \sim a$.
- (Transitive) If $a \sim b$ and $b \sim c$, then $a \sim c$.

Definition 3 (Equivalence Class)

Let \sim be an equivalence relation on *S*. We define by $C(a) \triangleq \{x \in S \mid x \sim a\}$ the equivalence class of *a* (with respects to (S, \sim)).

Proposition 1

- $a \in C(a)$.
- If $b \in C(a)$, then C(b) = C(a).
- If $C(a) \neq C(b)$, then $C(a) \cap C(b) = \emptyset$.

Partition (分割)

Definition 4 (Partition)

Let I be some index set. A collection $\{S_i | i \in I\}_{i \in I}$ of subsets of S is called a partition of S if

•
$$S = \bigcup_{i \in I} S_i$$
, and

• For all $i, j \in I$ $(i \neq j), S_i \cap S_j = \emptyset$.

The notions of an equivalence relation on S and a partition of S are the same:

Proposition 2

- Let \sim be an equivalence relation on S. Then, $\{C(a)\}_{a \in S}$, where $C(a) = \{x \mid x \sim a\}$, is a partition of S.
- If {S_i | i ∈ I}_{i∈I} is a partition of S, then there is an equivalence relation ~ on S, such that the equivalence classes are precisely {S_i | i ∈ I}'s (i ∈ I).

Proposition 3

Let \sim be an equivalence relation on S and let $C(a) = \{x \in S \mid x \sim a\}$ be the equivalence class of a. Then, there is a subset A of S (A \subset S) such that

- $\{C(a)\}_{a\in A}$ is a partition of S, and
- For all $a, b \in A$ $(a \neq b)$, $C(a) \cap C(b) = \emptyset$.

- The partition of S defined by \sim , i.e., $\{C(a)\}_{a\in S}$, is unique.
- In other word, {C(a)}_{a∈A} and {C(a)}_{a∈S} are the same partition, regardless of the choice of A (where A is not unique).

Definition 5 (Quotient Set)

We write S/\sim to denote the partition of S defined by \sim , and call it *the quotient set* of S by \sim .

Equivalence Class (同値類), Partition (分割), and Quotient Set (商 集合)

2 Congruence (合同) and Residue Class (剰余類)

3 Lagrange's Theorem

4 Fermat's Little Theorem and Euler's Theorem

5 Appendix (Reminder)

Definition 6 (Congruence)

For $n \in \mathbb{N}$, we say that *a* is *congruent* to *b* mod *n* (*a* は *n* を法として *b* と 合同である) if *n* divides (*a* – *b*), i.e., *n*|(*a* – *b*). Also write

 $a \equiv b \pmod{n}$ if and only if n|(a-b)|

Note that the congruence mod n defines an equivalence relation ∼n on Z:

$$a \equiv b \pmod{n} \iff a \sim_n b$$

• The equivalence classes of $\mathbb Z$ by \sim_n are

$$n\mathbb{Z}, 1 + n\mathbb{Z}, \ldots, (n-1) + n\mathbb{Z}.$$

We write $\mathbb{Z}/n\mathbb{Z}$ to denote the quotient set (of \mathbb{Z} by \sim_n), i.e., \mathbb{Z}/\sim_n .

Definition 7 (Reminder)

Let *H* be a subgroup of *G*. For $a \in G$, define

 $aH \triangleq \{a \circ h | h \in H\}$ $Ha \triangleq \{h \circ a | h \in H\}.$

We call *aH* a left coset (左剰余類) of *H* and *Ha* a right coset (右剰余類) of *H*.

If G is commutative ($\overline{\Pi}$), then aH = Ha.

Equivalence Relation from Residue Class

Let H be a subset of G and aH be a left coset (左剰余類).

Proposition 4

For $a, b \in G$, define

$$a \sim b$$
 by $aH = bH$.

Then, \sim turns out an equivalence relation on G.

Proof.

- aH = aH.
- If aH = bH, then bH = aH.
- If aH = bH and bH = cH, then aH = cH.

Similarly, the right coset of *H* defines an equivalence relation. Note that $aH \neq Ha$ in general.

Eiichiro Fujisaki (JAIST)

Proposition 5

For $a, b \in G$, it holds that

$$aH = bH \iff a^{-1}b \in H.$$

So, we can also define $a \sim b$ by $a^{-1}b \in H$, instead of aH = bH. We say that *a is left congruent to b mod H*.

$$a \equiv b \pmod{H} \iff a^{-1}b \in H$$

We can similarly define the right congruence mod H.

This is a generalization of the congruence mod integer n.

Congruence and Residue Class, Cont.

• The congruence mod integer n: For $a, b \in \mathbb{Z}$,

$$a \equiv b \pmod{n} \iff a - b \in n\mathbb{Z}$$

• The (left) congruence mod subgroup H: For $a, b \in G$,

$$a \equiv b \pmod{H} \iff a^{-1} \circ b \in H$$

• The (right) congruence mod subgroup H: For $a, b \in G$,

$$a \equiv b \pmod{H} \iff a \circ b^{-1} \in H$$

Note $n\mathbb{Z}$ is a subgroup of \mathbb{Z} . The congruence mod a subgroup forms an equivalence class.

Equivalence Class (同値類), Partition (分割), and Quotient Set (商 集合)

Congruence (合同) and Residue Class (剰余類)

3 Lagrange's Theorem

4 Fermat's Little Theorem and Euler's Theorem

5 Appendix (Reminder)

Definition 8

Let H be a subset of G.

- We write G/H to denote $\{aH\}_{a\in G}$.
- We write $G \setminus H$ to denote $\{Ha\}_{a \in G}$.

Index (指数) of Subgroup

Theorem 9

 $|G/H| = |G \setminus H|.$

If G is commutative, then trivial. However, the above holds even for any group G and any subgroup H.

Proof. a ∈ G ↦ a⁻¹ ∈ G is bijective (全単射) (due to the uniquenss of inverse in Monoid). So, ah ↦ (ah)⁻¹ = h⁻¹ ∘ a⁻¹ is bijective and hence aH = Ha⁻¹. There is a subset A of G such that {aH}_{a∈A} partitions G and for all a, b ∈ A (a ≠ b), aH ∩ bH = Ø. By aH = Ha⁻¹, {Ha⁻¹}_{a∈A} also partions G. Since aH = Ha⁻¹, {aH}_{a∈A} and {Ha⁻¹}_{a∈A} are the same partion of G. Hence, |A| = |G/H| = |G \ H|. Regardless of the choice of A, G / H and G \ H are unique.

Definition 10

We say that $[G : H] \triangleq |G/H| = |G \setminus H|$ is the index of H in G.

Eiichiro Fujisaki (JAIST)

Nov. 13th, 2017 19 / 28

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem 11 (Lagrange's Theorem)

Let H be a subset of G. Then,

- |G| = [G : H]|H|.
- Let G be a finite group. Then, the order of H divides the order of G, i.e., |H| divides |G|.

Proof.

Let $\{aH\}_{a \in A}$ be the partial of G by the left coset of H such that for all $a, b \in A$ ($a \neq b$), $aH \bigcap bH = \emptyset$. Then [G : H] = |A|. For all $a \in A$, $h (\in H) \mapsto ah (\in aH)$ is bijective. Therefore, |G| = [G : H]|H|.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equivalence Class (同値類), Partition (分割), and Quotient Set (商 集合)

Congruence (合同) and Residue Class (剰余類)

3 Lagrange's Theorem

Fermat's Little Theorem and Euler's Theorem

5 Appendix (Reminder)

Cyclic Group (巡回群)

Let G be a group. For $a \in G$, define $a^n \triangleq \overbrace{a \circ \cdots \circ a}^n$ and write $\{\ldots, a^{-1}, a^0, a^1, \ldots\}$ as $\langle a \rangle$, i.e., $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}$.

Theorem 12

- $\langle a \rangle$ is a subgroup of G.
 - Even for non-commutative G, $\langle a \rangle$ is a commutative group.
 - $\langle a \rangle$ is called a cyclic group.
 - a is called a generator of $\langle a \rangle$. In general, a is not unique.

Definition 13

The smallest positive number n such that $a^n = 1$ (where 1 is the identity) is called *the order* of a. If such a positive number does not exist, the order of a is said *infinite*.

The order of *a* is equivalent to the order of $\langle a \rangle$.

Eiichiro Fujisaki (JAIST)

Comp. Complexity and Discrete Math.

Nov. 13th, 2017 22 / 28

Theorem 14 (Fermat's Little Theorem)

Let p be a prime. For $a \in \mathbb{N}$, the following holds.

$$a^{p-1} \equiv 1 \pmod{p}$$

Proof.

 $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a group of order p-1 and $\langle a \rangle$ is a subgroup of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. By Lagrange's Theorem, the order of a (i.e., the order of $\langle a \rangle$) divides p-1. Hence, $a^{p-1} = 1 \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Euler's Totient Function (オイラー関数)

Definition 15

 $\phi(n) \triangleq \{x \in \mathbb{N} \mid 1 \le x \le n-1 \text{ and } (x, n) = 1\}$ (for $2 \le n$) is called *Euler's* ϕ function or *Euler's totient function*. For n = 1, we define $\phi(1) = 1$.

Proposition 6

- For (m, n) = 1, it holds that $\phi(mn) = \phi(m)\phi(n)$.
- For prime p and positive integer e, it holds that $\phi(p^e) = p^{e-1}(p-1)$.
- Let $n = \prod_{i=1}^{s} p_i^{e_i}$. Then, it holds that

$$\phi(n)=n\prod_{i=1}^{s}(1-\frac{1}{p_i}).$$

Theorem 16 (Euler's Theorem)

For $a, n \in \mathbb{N}$,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Proof.

From the fact that the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is $\phi(n)$.

э

Equivalence Class (同値類), Partition (分割), and Quotient Set (商 集合)

Congruence (合同) and Residue Class (剰余類)

3 Lagrange's Theorem

4 Fermat's Little Theorem and Euler's Theorem

5 Appendix (Reminder)

Definition 17 (Axiom of Group)

Let G be a set associated with a binary operation \circ . G is called a *group* if the it satisfies the following axioms:

- G_0 (二項演算) $\circ: G \times G \rightarrow G$ is a binary operation on G.
- G_1 (結合法則) $\forall a, b, c \in G$ [$(a \circ b) \circ c = a \circ (b \circ c)$].
- G_2 (単位元の存在) $\exists e \in G, \forall a \in G \quad [a \circ e = e \circ a = a].$
- G_3 (全て可逆元) $\forall a \in G, \exists a^{-1} \in G \quad [a \circ a^{-1} = a^{-1} \circ a = e].$

Definition 18

Group G is called *abelian* or *commutative* if the following condition holds:

• G_4 (可換律) $\forall a, b \in G$ $[a \circ b = b \circ a]$.

くロト くぼト くほト くちょう

Definition 19

H is called a *subgroup* of group G if:

- $H \subseteq G$ (i.e., H is a subset of G).
- $\forall a, b \in H$ $[a \circ b \in H]$ (i.e., \circ is a binary operation on H).
- $\forall a \in H \quad [a^{-1} \in H].$

Theorem 20

H is a subgroup of G if and only if

$$\forall a, b \in H \quad [a \circ b^{-1} \in H]$$