[I216e] Computational Complexity and Discrete Mathematics

Ryuhei Uehara, and Eiichiro Fujisaki

Japan Advanced Institute of Science and Technology

November 20th, 2017.

I216e (Computational Complexity and Discrete Math): Discrete Math

- URL: http://www.jaist.ac.jp/~fujisaki/index-e.html
- Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
- Room: Room I-2
- Office Hour: Monday 13:30 15:10
- Reference (参考図書)
 - 「代数概論」森田康夫著,裳華房.
 - "Abstract Algebra," David Dummit and Richard Foote, Prentice Hall.
 - 「代数学入門」松本眞, Free eBook URI:
 - http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/
 - "A Computational Introduction to Number Theory and Algebra,"
 Victor Shoup, Cambridge University Press.
 - Free eBook URL: http://www.shoup.net/ntb/

What will you study in the part of Discrete Math.?

From Algebra (抽象代数)

- Axioms of Groups (群), Rings (環), Fields (体)
- Equvalent class (同值類)
 - Equivalent relation (同値関係), Congruence (合同)
- Lagrange's Theorem (ラグランジェの定理)
 - ullet Lagrange's Theorem o Fermat's little Theorem, and Euler's Theorem
- Fundamental Homomorphism Theorem(s) (準同型定理)
 - Normal subgroup (正規部分群), Residue class group (剰余類群) (= Quotient group (商群))
 - Fundamental Homomorphism Theorem \rightarrow Chinese Reminder Theorem (CRT).
- Ring Fundamental Homomorphism Theorem (環準同型定理)
 - Ideal; Ideal (for ring) \iff Normal subgroup (for group).
 - Residue class ring (剰余類環) (= Quotient ring (商環))

What will you study (cont.)

Number Theory (初等整数論)

- Generalization of Integers (Informal)
 - Integral Domain (整域): Euclidean domain (ユークリッド整域),
 Principal ideal domain (PID) (単項イデアル整域), Unique factorization domain (UFD) (一意分解整域).
 - Euclidean domain ⊂ PID ⊂ UFD.
- Extended Euclidean Algorithm (拡張ユークリッドの互除法)
 - Solution for:
 - linear Diophantine equation (一次ディオファントス方程式), and
 - computing the inverse of an (invertible) element in (residue class) ring $\mathbb{Z}/n\mathbb{Z}$.

Application: RSA public-key cryptosystem. Related to:

- Euler's totient function $\phi(n)$, Euler's Theorem
- Structure of $\mathbb{Z}/n\mathbb{Z}$
- Chinese Remainder Theorem

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- 🕡 Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

How to Define Binary Operation on Quotient Set?

Let H be a subgroup of (G, \circ) . Define a new operation \star on G/H as follows:

$$aH \star bH \triangleq \{(a \circ h_i) \circ (b \circ h_j) | h_i, h_j \in H\}.$$

We want \star to be a binary operation. So, we want to hold

$$cH = aH * bH$$

for some $c \in G$. However, it is not the case (for arbitrary group G and subgroup H).

Normal Subgroup (正規部分群)

Definition 1 (Normal Subgroup)

Let H be a subgroup of G. We say that H is a normal subgroup of G if for all $a \in G$, it holds that

$$aH = Ha$$
.

We often write $H \triangleleft G$ to denote that H is a normal subgroup of G.

By definition, left coset (左剰余類) aH and right coset (右剰余類) Ha are the same subset of G if H is a normal subgroup. Hence, G/H and $G\backslash H$ are the same partition of G.

More importantly, it holds that (proven later)

$$aH \star bH = (a \circ b)H$$
,

and hence, ★ is a binary operation!

[Note] We often write a normal subgroup as N (instead of H) and often abusely use \circ as \star on G/H.

Property of Normal Subgroup (1)

Theorem 1

Let N be a subgroup of G. Then, all the following conditions are equivalent:

- $oldsymbol{0}$ N is a normal subgroup of G.
- 2 For all $a \in G$, aN = Na.
- **③** For all a ∈ G, aN ⊂ Na.
- **4** For all $a \in G$, $Na \subset aN$.
- **1** For all $a \in G$, $N \subset aNa^{-1}$.
- **②** For a ∈ G, $aNa^{-1} ⊂ N$.

Property of Normal Subgroup (2)

Show that if aN = Na for all $a \in G$, then $N = aNa^{-1}$.

Proof.

• $\forall n \in \mathbb{N}, \exists n' \in \mathbb{N},$

$$n = (a \circ a^{-1}) \circ n \circ (a \circ a^{-1}) = a \circ n' \circ a^{-1} \circ a \circ a^{-1} = a \circ n' \circ a^{-1} \in aNa^{-1}.$$

Hence, $N \subset aNa^{-1}$

• $\forall n \in \mathbb{N}, \exists n' \in \mathbb{N},$

$$a \circ n \circ a^{-1} = n' \circ a \circ a^{-1} = n \in \mathbb{N}.$$

Hence, $aNa^{-1} \subset N$.

Therefore, it holds $N = aNa^{-1}$.

Try to prove all the remaining directions by yourself.

Residue Class Group (剰余類群)

Let N be a normal subgroup of G. Then $G/N = G \setminus N$, because aN = Na for all $a \in G$. We say that aN (= Na) is a coset or residue class of G.

Theorem 2

 $G/N(=G\backslash N)$ is a group, which is called a residue class group.

See \star is a binary operation on G/H. Indeed, $aN \star bN$ turns out $(a \circ b)N$ as follows:

• $\forall h, h' \in N, \exists \hat{h} \in N,$

$$(a \circ h) \circ (b \circ h') = a \circ (h \circ b) \circ h' = a \circ (b \circ \hat{h}) \circ h' \in (a \circ b)N.$$

Hence, $aN \star bN \subset (a \circ b)N$.

 $(a\circ b)N=a\circ (bN)=a\circ e\circ bN\subset aN\star bN$ Hence, $(a\circ b)N\subset aN\star bN$.

Therefore, $aN \star bN = (a \circ b)N$.

Proof of Theorem 2.

 $G/H(=G\backslash H)$ is a group, because:

- G_0 : \star is a binary operation on G/N. (Already shown!)
- G₁: The associative law (結合法則) holds. (Omit)
- G_2 : eN is the identity of G/N, because

$$aN \star eN = (a \circ e)N = aN$$

• G_3 : The inverse of aN is $a^{-1}N$, because

$$aN \star a^{-1}N = (a \circ a^{-1})N = eN$$

Prove by yourself that the associative law holds.

The Integers Modulo $n: \mathbb{Z}/n\mathbb{Z}$, again

As a residue class group: $(\mathbb{Z}/n\mathbb{Z}, +)$.

• Binary operation, addition "+", on $\mathbb{Z}/n\mathbb{Z}$:

$$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \triangleq \{a + \alpha + b + \beta \mid \alpha, \beta \in n\mathbb{Z}\},$$

- $(\mathbb{Z}/n\mathbb{Z},+)$ is an additive group. So, $n\mathbb{Z}$ is a normal subgroup of \mathbb{Z} .
- Hence, $(a + n\mathbb{Z}) + (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z}$.
- Note: $(a+b) + n\mathbb{Z} = (a+b \mod n) + n\mathbb{Z}$.

As a partition of \mathbb{Z} : $\mathbb{Z}/n\mathbb{Z} = \{a + n\mathbb{Z}\}_{a \in \mathbb{Z}n}$ where $\mathbb{Z}n = \{0, 1, \dots, n-1\}$ is called a complete system of representatives (for the coset of $n\mathbb{Z}$ in \mathbb{Z}) (完全代表系).

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- 🕡 Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Group Homomorphism (群準同型)

Let (G, \circ) and (G', \cdot) be groups. Let $f : G \to G'$ be a map from G to G'. Let e, e' be the identities of G, G', respectively.

Definition 2 (Homomorphism (準同型写像))

We say that $f: G \to G'$ is *homomorphic* if for all $x, y \in G$, it holds that $f(x \circ y) = f(x) \cdot f(y)$.

Property of Group Homomorphism

Proposition 1

Let e and e' be the identities of G and G', respectively. If $f:G\to G'$ is homomorphic, then f(e)=e'.

Proposition 2

If $f:G\to G'$ is homomorphic, then for all $x\in G$, it holds that $f(x^{-1})=f(x)^{-1}$.

Proposition 3

If $f: G \to G'$ is homomorphic, then Im(f) is a subgroup of G'.

Proofs

Proof of Propostion 1.

Since $e \circ e = e$ and f is homomorphic, $f(e) = f(e \circ e) = f(e) \cdot f(e)$. Act $f(e)^{-1}$ on the both sides, then e' = f(e).

Proof of Proposition 2.

By definition, $x \circ x^{-1} = e$ for all $x \in G$. Hence, $f(x \circ x^{-1}) = f(x) \cdot f(x^{-1}) = f(e) = e'$. Then act $f(x)^{-1}$ from the left on the both sides of $f(x) \cdot f(x^{-1}) = e'$. Then, we have $f(x^{-1}) = f(x)^{-1}$. \square

Proof of Proposition 3.

Omit. Prove by yourself.

Group Isomorphism (群の同型)

Let (G, \circ) and (G', \cdot) be groups.

Definition 3 (Isomorphism Map (同型写像))

 $f: G \to G'$ is *isomorphic* if $f: G \to G'$ is bijective and homomorphic. Then, we say that G and G' are isomorphic, denote by $G \cong G'$.

Definition 4 (Kernel (核))

Let $Ker(f) \triangleq \{x \in G \mid f(x) = e' \in G'\}$, which is called *the kernel* of f.

Proposition 4

A homomorphism map $f: G \to G'$ is isomorphic if Im(f) = G' and $Ker(f) = \{e\}$.

Proof of Proposition 4

It surfices to show that homomorphic f is bijective. f is surjective because of Im(f) = G'. f is injective if

$$\forall x_1, x_2 \in G \quad \Big(f(x_1) = f(x_2) \implies x_1 = x_2 \Big)$$

which can be shown as follows: By f being homomorphic and the fact that $f(x^{-1}) = f(x)^{-1}$, the above condition is equivalent to

$$\forall x_1, x_2 \in G \quad \left(f(x_1 \circ x_2^{-1}) = e' \implies x_1 \circ x_2^{-1} = e \right).$$

This implies that (let $x_1 = x$ and $x_2 = e$)

$$\forall x \in G \quad \Big(f(x) = e' \implies x = e \Big)$$

This condition is equivalent to $Ker(f) = \{e\}.$

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- 🕡 Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Fundamental Homomorphism Theorem (群の準同型定理)

Theorem 3 (Fundamental Homomorphism Theorem)

Let $f: G \to G'$ be a homomorphism map from group G to group G'. Then, all the followings hold.

- Im(f) is a subgroup of G'.
- \bigcirc Ker(f) is a normal subgroup of G.
- **3** $\bar{f}: x \circ \operatorname{Ker}(f) \in G/\operatorname{ker}(f) \mapsto f(x) \in G'$ is homomorphic, and it holds that

$$G/\operatorname{Ker}(f) \cong \operatorname{Im}(f)$$

In particular, when Im(f) = G' (surjective), $G/Ker(f) \cong G'$.

Proof.

- **1** Im(f) is a subgroup of G'. Omit.
- ② Ker(f) is a normal subgroup of G, because: For all $a \in G$, all $x \in Ker(f)$,

$$f(a \circ x \circ a^{-1}) = f(a) \cdot f(x) \cdot f(a^{-1}) = f(a) \cdot e' \cdot f(a)^{-1} = e'.$$

Hence, for all $a \in G$, it holds that $a \circ \operatorname{Ker}(f) \circ a^{-1} \subset \operatorname{Ker}(f)$. This implies that $\operatorname{Ker}(f)$ is a normal subgroup of G.

Go to next page.

Proof (Cont.)

Since N := Ker(f) is a normal subgroup,

$$\bar{f}: xN \in G/N \mapsto f(x) \in G'$$

is homomorphic, because

$$\bar{f}((xN)\circ(yN))=\bar{f}((x\circ y)N)=f(x\circ y)=f(x)\cdot f(y).$$

Think of $\bar{f}(xN) = \bar{f}(yN) \Leftrightarrow f(x) = f(y) \Leftrightarrow f(x \circ y^{-1}) = e' \Leftrightarrow x \circ y^{-1} \in N(:= \text{Ker}(f)) \Leftrightarrow x \in yN \Leftrightarrow xN = yN$. Hence,

$$\bar{f}(xN) = \bar{f}(yN) \Longrightarrow xN = yN,$$

which means \bar{f} is injective and hence, $G/\mathrm{Ker}(f)\cong \mathrm{Im}(f)$. In particular if $\mathrm{Im}(f)=G'$, then $G/\mathrm{Ker}(f)\cong G'$. Quod erat demonstrandum (Q.E.D.)

Direct Product of Groups (群の直積)

Let $(G_1, \cdot_1), \dots, (G_n, \cdot_n)$ be groups. Define the direct product of G_1, \dots, G_2 as

$$G_1 \times \cdots \times G_n \triangleq \{(x_1, \dots, x_n) \mid x_1 \in G_1, \dots, x_n \in G_n\}.$$

Define a binary operation \circ on $G_1 \times \cdots \times G_n$ as

$$(x_1,\ldots,x_n)\circ(x'_1,\ldots,x'_n)\triangleq(x_1\cdot_1x'_1,\ldots,x_n\cdot_nx'_n).$$

Then, $G_1 \times \cdots \times G_n$ turns out a group (under binary operation \circ).

Applications (1)

In general, it is not easy to show two groups are isomorphic. The Fundamental Homomorphism Theorem is a very useful tool for investigating such problems.

• From a map $x \in \mathbb{Z} \mapsto i^x \in \mathbb{C}^\times (= \mathbb{C} - \{0\})$, it is shown that

$$\mathbb{Z}/4\mathbb{Z}\cong\langle i\rangle,$$

where $\mathbb{Z}/4\mathbb{Z}$ is an additive group under +. Generally speaking, if the order of a is n where a is an element in some group,

$$\mathbb{Z}/n\mathbb{Z} \cong \langle a \rangle$$
.

ullet By $x\mapsto e^{2\pi\imath x}$, define a map from $(\mathbb{R},+)$ to $(\mathbb{C}^{ imes},\cdot)$.

$$\mathbb{R}/\mathbb{Z} \cong T := \{ z \in \mathbb{C}^{\times} \mid |z| = 1 \}.$$

Applications (2)

• Let $M_n(\mathbb{R})$ be the set of $n \times n$ matrices whose entries are real numbers. Let $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det(A) \neq 0\}$, and $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det(A) = 1\}$. By $\det: M_n(\mathbb{R}) \to \mathbb{R}^{\times}$, it holds that

$$GL_n(\mathbb{R})/SL_n(\mathbb{R})\cong \mathbb{R}^{\times}.$$

ullet Define a map from $(\mathbb{Z},+)$ to $(\mathbb{Z}/p_i\mathbb{Z},+)$ as

$$x \mapsto (x \mod p_i) + p_i \mathbb{Z}.$$

Let $n = n_1 \cdot n_2 \cdots n_\ell$, where n_1, \dots, n_ℓ are relatively prime to the others. Then, it holds that

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \times \mathbb{Z}/n_\ell\mathbb{Z},$$

where $\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n_1\mathbb{Z}, \dots, \mathbb{Z}/n_\ell\mathbb{Z}$ are additive groups under +.

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- 🕡 Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Reminder: Ring (環)

Definition 5 (Axiom of Ring)

A $ring(R, +, \cdot)$ is called a ring if R is a set with two binary operations, + and \cdot , on R, and satisfies the following axioms:

- R_1 : (R, +) is an Abelian group (or an additive group).
- R_2 : (R, \cdot) is a sem-group with the multiplicative identity 1 (i.e., a monoid).
- R_3 [Distributive]: For all $a, b, c \in R$, the following holds:

$$(a+b)\cdot c = (a\cdot c) + (b\cdot c)$$
 and $a\cdot (b+c) = (a\cdot b) + (a\cdot c)$

Conventions:

- ullet $(+,\cdot)$ are often called addition (加法) and multiplication (乗法), respectively.
- Denote by 0 the identity of (R, +), the additive identity.
- Denote by 1 the identity of (R, \cdot) , the multiplicative identity.

Reminder: Commutative Ring (可換環)

Definition 6

A ring $(R, +, \cdot)$ is called *commutative* if (R, \cdot) is commutative, i.e.,

$$\forall a, b \in G \quad [a \cdot b = b \cdot a].$$

For commutative ring $(R,+,\cdot)$, the distibuted law R_3 (分配法則) is simplified as

$$\forall a, b, c \in R \quad [(a+b) \cdot c = (a \cdot c) + (b \cdot c)].$$

Property of Ring

Let $(R, +, \cdot)$ be a ring and 0 denotes the identity of (R, +).

Proposition 5

Fro all $r \in R$, it holds that

$$r \cdot 0 = 0 \cdot r = 0$$
.

For all $a \in R$, a + 0 = a. Hence, $r \cdot (a + 0) = r \cdot a + r \cdot 0$ and $r \cdot (a + 0) = r \cdot a$, which implies $r \cdot a + r \cdot 0 = r \cdot a$. By adding $-(r \cdot a)$ in both sides, we have $r \cdot 0 = 0$. Similarly, by 0 + a = a, we have $0 \cdot r = 0$.

Ideal (イデアル)

Definition 7 (イデアル)

A subset I of ring $(R,+,\cdot)$ is called a *left ideal* (左イデアル) if it satisfies (1) and (2), a right ideal (右イデアル) if it does (1) and (3), or a (two-sided) ideal ((両側) イデアル) if it does (1), (2), and (3).

- \bullet (I,+) is a subgroup of (R,+).
- - If R is a commutative ring, then any left or right ideal of R is trivially a two-sided ideal.
 - $n\mathbb{Z}$ is an ideal of ring \mathbb{Z} , because
 - $(n\mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$ and for any $a\in\mathbb{Z}$ and $x\in n\mathbb{Z}$, it holds that $a\cdot x=x\cdot a\in n\mathbb{Z}$.
 - $\{0\}$ and R are always two-sided ideals of any ring R.

Subring (部分環)

Definition 8 (Subring (部分環))

Let S be a subset of ring $(R, +, \cdot)$. S is called a *subring* of R if the following conditions hold:

- (S, +) is a subgroup of (R, +),
- · is a binary operation on S, i.e., $a, b \in S \implies a \cdot b \in S$, and
- 1 ∈ S.
- If (two-sided) ideal I is a subring of R, then I = R, because $1 \in I$.
 - For instance, ideal $n\mathbb{Z}$.
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} ($\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$) are all subrings of \mathbb{C} .

Define Multiplication on R/I

Let I be a left (or right) ideal of R. Then (I,+) is a normal subgroup of (R,+), because (R,+) is an additive group. So, R/I is a residue class group, where $r+I \triangleq \{r+i \mid i \in I\} \ (r \in R)$ is a coset (or a residue class). Define a multiplication operation \cdot on R/I as

$$(r+I)\cdot(s+I)\triangleq\{(r+i)\cdot(s+i')\,|\,i,i'\in I\}.$$

We want to hold for all $r, s \in R$, there is $t \in R$ such that

$$(r+I)\cdot(s+I)=t+I,$$

which implies \circ is a binary operation on R/I. If I is a two-sided ideal of R, then we indeed have

$$(r+1)\cdot(s+1)=(r\cdot s)+1.$$

Residue Class Ring (剰余類環)

Theorem 4 (Residue Class Ring (剰余類環))

Let I be an ideal of ring $(R, +, \cdot)$. Since (R, +) is a normal subgroup of (I, +), R/I is a residue class group. Define the multiplication on R/I as

$$(r+I)\cdot(s+I)\triangleq\{(r+i)\cdot(s+i')\,|\,i,i'\in I\}.$$

Then, it holds $(r+I) \cdot (s+I) = r \cdot s + I$, and R/I is a ring, called *a residue class ring* (剰余類環).

• The addition on R/I is defined as

$$(r+I)+(s+I) \triangleq \{(r+i)+(s+i') | i,i' \in I\},$$

and it holds (r + I) + (s + I) = (r + s) + I.

• If R is commutative, then R/I is also commutative.

The Integers Modulo n: $\mathbb{Z}/n\mathbb{Z}$, again and again

As a residue class ring $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$.

• Binary operation, addition "+", on $\mathbb{Z}/n\mathbb{Z}$:

$$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \triangleq \{a + \alpha + b + \beta \mid \alpha, \beta \in n\mathbb{Z}\},$$

which results in $(a + n\mathbb{Z}) + (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z}$, because $n\mathbb{Z} \triangleleft \mathbb{Z}$.

- Note: $(a+b) + n\mathbb{Z} = (a+b \mod n) + n\mathbb{Z}$.
- Binary operation, multiplication " \cdot ", on $\mathbb{Z}/n\mathbb{Z}$:

$$(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) \triangleq \{(a + \alpha) \cdot (b + \beta) \mid \alpha, \beta \in n\mathbb{Z}\},\$$

which results in $(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) = (a \cdot b) + n\mathbb{Z}$, since $n\mathbb{Z}$ is an *ideal*.

• Note: $(a \cdot b) + n\mathbb{Z} = (a \cdot b \mod n) + n\mathbb{Z}$.

Ring Product

Let R_1, \ldots, R_n be rings. Define the product of them as

$$R_1 \times \cdots \times R_n \triangleq \{(x_1, \dots, x_n) \mid x_1 \in R_1, \dots, x_n \in R_n\}.$$

Define binary operations on it as

$$(x_1,\ldots,x_n)+(x_1',\ldots,x_n')\triangleq(x_1+x_1',\ldots,x_n+x_n')$$

$$(x_1,\ldots,x_n)\cdot(x_1',\ldots,x_n')\triangleq(x_1\cdot x_1',\ldots,x_n\cdot x_n')$$

Then it is a ring.

The zero element 0 in $R_1 \times \cdots \times R_n$ is $(0_{R_1}, \dots, 0_{R_n})$. If each ring, R_i , has 1_i , The product also has 1, which is $(1_{R_1}, \dots, 1_{R_n})$.

Properties of Ring Product

Proposition 6

$$(R_1 \times \cdots \times R_n)^{\times} = R_1^{\times} \times \cdots \times R_n^{\times}.$$

Generally, for monoid G_1, \ldots, G_n , $(G_1 \times \cdots \times G_n)^{\times} = G_1^{\times} \times \cdots \times G_n^{\times}$.

Proposition 7

If
$$R \cong R_1 \times \cdots \times R_n$$
, then $R^{\times} = R_1^{\times} \times \cdots \times R_n^{\times}$.

Show $R^{\times} \cong (R_1 \times \cdots \times R_n)^{\times}$. Then it holds by Proposition (6).

Proposition 8

$$(0_{R_1},\ldots,R_i,\ldots,0_{R_n})$$
 is an ideal in product ring $(R_1\times\cdots\times R_n)$.

Even for non-commutative R_1, \dots, R_n , $(0_{R_1}, \dots, R_i, \dots, 0_{R_n})$ is a (two-sided) ideal.

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- 🕡 Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Ring Homomorphism (環の準同型)

Let R and R' be rings with multicative identities, 1 and 1', respectively. Let $f: R \to R'$ be a map from R to R'.

Definition 9 (Ring Homomorphism)

for all $x, y \in R$, if

$$f(x + y) = f(x) + f(y), \quad f(x \cdot y) = f(x) \cdot f(y), \text{ and } f(1) = 1',$$

then f is called a ring homomorphism map. In particular, f is called an isomorphism map (同型写像) if it is bijective. If $f:R\to R'$ is isomorphic, we say that R,R' are isomorphic, denote by $R\cong R'$.

- NOTE: It is not led by the first two equations that f(1) = 1'. Hence needed.
- $Im(f) = \{f(x) | x \in R\}$ is the image of f.
- $\operatorname{Ker}(f) = \{x \in R \mid f(x) = 0' \in R'\}$ is the kernel of f.

Fundamental Ring Homomorphism Theorem (環の準同型 定理)

Theorem 5 (Fundamental Ring Homomorphism Theorem)

Let $f: R \to R'$ be ring homomorphic. Then,

- ② $Ker(f) = \{x \in R \mid f(x) = 0' \in R'\}$ is a (two-sided) ideal of R.
- **3** $\bar{f}: x + \operatorname{Ker}(f) \in R/\operatorname{ker}(f) \mapsto f(x) \in R'$ is ring homomorphic and it holds that

$$R/\operatorname{Ker}(f) \cong \operatorname{Im}(f)$$
.

If Im(f) = R' (全射), then $G/Ker(f) \cong R'$.

$\mathbb{Z}/n\mathbb{Z}$

Let $n = p_1 \cdots p_\ell$, where $p_1 \dots p_\ell$ are relatively prime.

For $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/p_1\mathbb{Z}$, ..., $\mathbb{Z}/p_\ell\mathbb{Z}$, by Fundamental Homomorphism Theorem and Proposition 7,

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1\mathbb{Z} \times \cdots \times \mathbb{Z}/p_\ell\mathbb{Z}$$

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_\ell\mathbb{Z})^{\times}$$

Therefore, for

$$x \in (\mathbb{Z}/n\mathbb{Z})^{\times} \leftrightarrow (x_1, \dots, x_{\ell}) \in (\mathbb{Z}/p_1\mathbb{Z})^{\times} \times \dots \times (\mathbb{Z}/p_{\ell}\mathbb{Z})^{\times}$$

and

$$y \in (\mathbb{Z}/n\mathbb{Z})^{\times} \leftrightarrow (y_1, \dots, y_{\ell}) \in (\mathbb{Z}/p_1\mathbb{Z})^{\times} \times \dots \times (\mathbb{Z}/p_{\ell}\mathbb{Z})^{\times},$$

it holds that

$$x \cdot y \leftrightarrow (x_1 \cdot y_1, \ldots, x_\ell \cdot y_\ell).$$

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- 🕡 Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Reminder: Chinese Remainder Theorem (中国人の剰余定理)

• In Sunzi Suanjing (「孫子算経」): What is that integer when divided by 3 is remainder 2; divided by 5 is remainder 3; and divided by 7 is remainder 2.

$$x = 2 \mod 3$$

$$x = 3 \mod 5$$

$$x = 2 \mod 7$$

• For $n = p_1 p_2 \cdots p_k$ (such that for every p_i, p_j $(i \neq j), (p_i, p_j) = 1$), it holds

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k\mathbb{Z}$$
. (isomorphism)

The CRT gives the concrete map ψ .

$$\psi: \mathbb{Z}/p_1\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}.$$

CRT

Thanks to Fundamental Ring Homomorphism theorem, we can show

$$\mathbb{Z}/105\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}.$$

• Define $f: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ as

$$f(x) := ([x]_3, [x]_5, [x]_7),$$

where $[x]_n \triangleq x + n\mathbb{Z}$.

- Show *f* is ring homomorphic.
- Show $Im(f) = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ and $Ker(f) = 105\mathbb{Z}$ (105 = 3 · 5 · 7).
- Then, the above holds.

Solution

For $n=p_1\cdot p_2\cdots p_\ell$ such that each p_i is relatively prime, let χ_1,\ldots,χ_ℓ be integers such that

$$\frac{n}{\rho_1}\chi_1 + \frac{n}{\rho_2}\chi_2 + \dots + \frac{n}{\rho_\ell}\chi_\ell = 1 \tag{1}$$

In general, for any $a_1, \ldots, a_n \in \mathbb{Z}$ such that $(a_1, \ldots, a_n) = 1$, the following equation has a solution of integers,

$$a_1X_1+\cdots+a_nX_n=1.$$

Since each p_i is relatively prime, it holds that $(\frac{n}{p_1}, \dots, \frac{n}{p_\ell}) = 1$ and hence, there are $\chi_1, \dots, \chi_\ell \in \mathbb{Z}$, satisfying (1).

Then, $f^{-1}: \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_\ell\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is led by

$$f^{-1}(x_1,\ldots,x_\ell) = x_1 \frac{n}{p_1} \chi_1 + x_2 \frac{n}{p_2} \chi_2 + \cdots + x_n \frac{n}{p_\ell} \chi_\ell.$$

Solution (Cont.)

 f^{-1} is indeed the inverse map of f.

$$x \in \mathbb{Z}/n\mathbb{Z}$$
 \xrightarrow{f} $(x_1, \dots, x_\ell) \in \mathbb{Z}/p_1\mathbb{Z} \times \dots \times \mathbb{Z}/p_\ell\mathbb{Z}$

It can be shown as follows: Since

$$\frac{n}{p_i}\chi_i = 1 \pmod{p_i}, \qquad \frac{n}{p_j}\chi_j = 0 \pmod{p_i} \quad (j \neq i),$$

it holds that

$$x_i \equiv x_1 \frac{n}{p_1} \chi_1 + \dots + x_i \frac{n}{p_i} \chi_i + \dots + x_n \frac{n}{p_\ell} \chi_\ell \pmod{p_i}$$

Therefore, for $x = x_1 \frac{n}{p_1} \chi_1 + x_2 \frac{n}{p_2} \chi_2 + \dots + x_i \frac{n}{p_i} \chi_i + \dots + x_n \frac{n}{p_\ell} \chi_\ell$, it holds that $f(x) = ([x_1]_{p_1}, \dots, [x_\ell]_{p_\ell})$.

Solution of Sunzi Suanjing

Let $f: \mathbb{Z}/105\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ be a canonical isomorphism map. Then, f^{-1} is shown as

$$f^{-1}(x_3, x_5, x_7) = \left[-35x_3 + 21x_5 + 15x_7 \right]_{105}$$

where we use $35 \cdot (-1) + 21 \cdot 1 + 15 \cdot 1 = 1$.

Since
$$x_3 = 2$$
, $x_5 = 3$, $x_7 = 2$,

$$f^{-1}(2,3,2) = [23]_{105} = 23 + 105\mathbb{Z}.$$

Extension

Let X be an integer such that divided by 3 is remainder 2; divided by 5 is remainder 3; divided by 7 is remainder 2. Let Y be an integer such that divided by 3 is remainder 1; divided by 5 is remainder 2; divided by 7 is remainder 5. Then, what is XY mod 105?

Extension

Let X be an integer such that divided by 3 is remainder 2; divided by 5 is remainder 3; divided by 7 is remainder 2. Let Y be an integer such that divided by 3 is remainder 1; divided by 5 is remainder 2; divided by 7 is remainder 5. Then, what is XY mod 105 ?

By Fundamental Ring Homomorphism Theorem, it can be easily computed.

Extension

Let X be an integer such that divided by 3 is remainder 2; divided by 5 is remainder 3; divided by 7 is remainder 2. Let Y be an integer such that divided by 3 is remainder 1; divided by 5 is remainder 2; divided by 7 is remainder 5. Then, what is XY mod 105 ?

By Fundamental Ring Homomorphism Theorem, it can be easily computed.

$$(2 \cdot 1 \mod 3) \cdot (-35) + (3 \cdot 2 \mod 5) \cdot 21 + (2 \cdot 5 \mod 7) \cdot 15$$

=2 \cdot (-35) + 1 \cdot 21 + 3 \cdot 15 = -4.

The answer is $[-4]_{105} = [101]_{105}$.

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- ▼ Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Euclidean Algorithm (ユークリッドの互除法)

The Euclidean Algorithm is a famous algorithm that takes $a,b\in\mathbb{N}$ as input, and outputs (a,b). For all $k\in\mathbb{Z}$ such that $a-kb\geq 0$, it holds that

$$(a,b)=(a-kb,b).$$

By definition, it is obvious that (a, b) = (b, a).

Euclidean Algorithm:

- (Step 0) Take (a, b) $(a \ge b)$.
- (Step 1) Set $(a, b) := (b, a \mod b)$.
- (Step 2) By iterating Step1, a, b go smaller.
- (Step 3) Finally when it goes to (d,0), output d, which is (a,b).

Extended Euclidean Algorithm

It solves aX + bY = d for $a, b \in \mathbb{N}$. There are solution $(X, Y) \in \mathbb{Z}^2$ if and only if d = (a, b).

Extended Euclidean Algorithm

- (Step 0) Take (a, b) $(a \ge b)$ as input. Set $(a_0, b_0) := (a, b)$ and i := 0.
- (Step 1) Set $(X_i, Y_i) = (1, 0)$ and $(X'_i, Y'_i) = (0, 1)$, which implicitly represents $a = a_0 X_i + b_0 Y_i$ (X = 1, Y = 0) and $b = a_0 X'_i + b_0 Y'_i$ (X' = 0, Y' = 1) when i = 0.
- (Step 2) Compute quotient k and remainder $r(=a \mod b)$ such that a = kb + r, which implies $r = a kb = a(X_i kX_i') + b(Y_i kY_i')$. Set (a, b) := (b, r).
- (Step 3) Set as follows:

$$(X,Y) := (X'_i,Y'_i), \quad (X',Y') := (X_i - kX'_i,Y_i - kY'_i)$$

Note that $a = a_0X + b_0Y$, $b = a_0X' + b_0Y'$.

- (Step 4) Set i := i + 1. Set $(X_i, Y_i) := (X, Y)$ and $(X'_i, Y'_i) := (X', Y')$.
- Repeat from (Step 2) to (Step 4). a, b go smaller.
- Finally when (a, b) goes to (d, 0) where d = (a, b), output d along with (X, Y), which satisfying $d = a_0X + b_0Y$.

What Extended Euclidean Algorithm means

What Extended Euclidean Algorithm solves

- Solution of linear equation aX + bY = d for d = (a, b).
- Soultion of the inverse of $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Indeed, X such that $aX \equiv 1 \pmod{n}$ can be obtained by the solution of aX + nY = 1.

It can be extended for the solution of $a_1X_1 + \cdots + a_nX_n = d$ where $d = (a_1, \dots, a_n)$.

- By observing $(a_1,\ldots,a_{n-1},a_n)=\Big((a_1-k_1a_n),\ldots,(a_{n-1}-k_{n-1}a_n),\,a_n\Big)$, you can apply the similar technique to that case.
- Let's set variables as above.

Today's Contents

- ① Normal Subgroup (正規部分群) and Residue Class Group (剰余類群)
- ② Group Homomorphism (群準同型) and Group Isomorphism (群同型)
- ③ Fundamental Homomorphism Theorem (群の準同型定理)
- 4 Ideal (イデアル) and Residue Class Ring (剰余類環)
- 5 Fundamental Ring Homomorphism Theorem (環準同型定理)
- 6 Chinese Remainder Theorem (中国人の剰余定理)
- ▼ Extended Euclidean Algorithm (拡張ユークリッドの互除法)
- 8 Appendix (Reminder)

Group (群)

Definition 10 (Axiom of Group)

Let G be a set associated with a binary operation \circ . G is called a *group* if the it satisfies the following axioms:

- G_0 (Binary Operation) $\circ: G \times G \to G$ is a binary operation on G.
- G_1 (Associative) $\forall a, b, c \in G$ $[(a \circ b) \circ c = a \circ (b \circ c)].$
- G_2 (Identity) $\exists e \in G, \forall a \in G$ $[a \circ e = e \circ a = a]$.
- G_3 (Invertible) $\forall a \in G, \exists a^{-1} \in G \quad [a \circ a^{-1} = a^{-1} \circ a = e].$
- G₀: Magma (マグマ)
- G₀, G₁: Semi-group (半群)
- G₀, G₁, G₂: Monoid (単位的半群)

Definition 11

Group G is called *abelian* or *commutative* if the following condition holds:

• G_4 (Commutative) $\forall a, b \in G$ $[a \circ b = b \circ a]$.

Subgroup (部分群)

Definition 12

H is called a *subgroup* of group G if:

- $H \subseteq G$ (i.e., H is a subset of G).
- $\forall a, b \in H$ [$a \circ b \in H$] (i.e., \circ is a binary operation on H).
- $\forall a \in H \quad [a^{-1} \in H].$

Theorem 6

H is a subgroup of G if and only if

$$\forall a, b \in H \quad [a \circ b^{-1} \in H]$$

Cyclic Group (巡回群)

Let G be a group. For $a \in G$, define $a^n \triangleq \overbrace{a \circ \cdots \circ a}$ and write $\{\ldots, a^{-1}, a^0, a^1, \ldots\}$ as $\langle a \rangle$, i.e., $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}$.

Theorem 7

 $\langle a \rangle$ is a subgroup of G.

- Even for non-commutative G, $\langle a \rangle$ is a commutative group.
- $\langle a \rangle$ is called a cyclic group.
- a is called a generator of $\langle a \rangle$. In general, a is not unique.

Definition 13

The smallest positive number n such that $a^n = 1$ (where 1 is the identity) is called *the order* of a. If such a positive number does not exist, the order of a is said *infinite*.

The order of a is equivalent to the order of $\langle a \rangle$.

Left/Right Cosets and Quoticient Sets

Let H be a subgroup of G. For $a \in G$, define

$$aH \triangleq \{a \circ h | h \in H\}$$
$$Ha \triangleq \{h \circ a | h \in H\}.$$

We call aH a left coset (左剰余類) of H and Ha a right coset (右剰余類) of H. The collection of all the left/right cosets of H, $\{aH\}_{a\in G}$ and $\{Ha\}_{a\in G}$, partition G, under the corresponding equivalent relations, $\sim_{H,left}$ and $\sim_{H,right}$.

- $\sim_{H,left} \iff a^{-1} \circ b \in H \text{ (or equivalently } aH = bH).$
- $\sim_{H,right} \iff a \circ b^{-1} \in H$ (or equivalently Ha = Hb).

Then, We write the quotient sets, $G/\sim_{H,left}$ and $G/\sim_{H,right}$ as follows:

- G/H to denote $\{aH\}_{a\in G}$.
- $G \setminus H$ to denote $\{Ha\}_{a \in G}$.

Index (指数) of Subgroup

Theorem 8

$$|G/H| = |G \backslash H|$$
.

If G is commutative, then trivial. However, the above holds even for any group G and any subgroup H.

Proof.

- **1** $a \in G \mapsto a^{-1} \in G$ is bijective (全単射) (due to the uniquenss of inverse in Monoid).
- 2 So, $ah \mapsto (ah)^{-1} = h^{-1} \circ a^{-1}$ is bijective and hence $aH = Ha^{-1}$.
- **3** There is a subset A of G such that $\{aH\}_{a\in A}$ partitions G and for all $a,b\in A$ $(a\neq b)$, $aH\cap bH=\emptyset$.
- ② By $aH = Ha^{-1}$, $\{Ha^{-1}\}_{a \in A}$ also partions G. Since $aH = Ha^{-1}$, $\{aH\}_{a \in A}$ and $\{Ha^{-1}\}_{a \in A}$ are the same partion of G.
- **6** Hence, $|A| = |G/H| = |G \setminus H|$. Regardless of the choice of A, G/H and $G \setminus H$ are unique.

NOTE: A is called a complete system of representatives for the left coset of H in G.

Definition 14

We say that $[G:H] \triangleq |G/H| = |G \setminus H|$ is the index of H in G.

Lagrange's Theorem

Theorem 9 (Lagrange's Theorem)

Let H be a subset of G. Then,

- |G| = [G : H]|H|.
- Let G be a finite group. Then, the order of H divides the order of G, i.e., |H| divides |G|.

Proof.

Let $\{aH\}_{a\in A}$ be the partion of G by the left coset of H such that for all $a,b\in A$ ($a\neq b$), $aH\cap bH=\emptyset$. Then [G:H]=|A|. For all $a\in A$, $h(\in H)\mapsto ah(\in aH)$ is bijective. Therefore, |G|=[G:H]|H|.

Map (写像)

Let S and S' be sets. Denote by $f: S \to S'$ to show a map from S to S'.

Definition 15 (Image (像))

Let $Im(f) \triangleq \{f(x) | x \in S\}$, which is called *the image* of S by f.

By definition, $Im(f) \subseteq S'$.

Definition 16 (Surjective (全射))

If Im(f) = S', f is called *surjective*.

Definition 17 (Injective (単射))

For all $x, x' \in S$ $(x \neq x')$, if $f(x) \neq f(x')$, then f is called *injective*.

Definition 18 (Bijective (全単射))

If f is both surjective and injective, then it is called *bijective*.

Field (体)

Definition 19

A commutative ring $(K, +, \cdot)$ is called a *field* if

• $(K - \{0\}, \cdot)$ is a commutative group (可換群), where 0 denotes the identy of (K, +).

- We write K^{\times} to denote the set of the invertible elements in monoid (K, \cdot) .
- $(K, +, \cdot)$ is a field if and only if $K^{\times} = K \{0\}$.
- (K^{\times}, \cdot) is called the multicative group (乗法群) (of field $(K, +, \cdot)$).
- Let 1 be the identity of (K^{\times}, \cdot) . Then, $1 \neq 0$ by definition.