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1216e (Computational Complexity and Discrete Math):

Discrete Math

e URL: http://www. jaist.ac.jp/~fujisaki/index-e.html
e Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
@ Room: Room I-2
o Office Hour: Monday 13:30 — 15:10
o Reference (%)
o NEMm, ARMIHERE, HiEHE.
o “Abstract Algebra,” David Dummit and Richard Foote, Prentice Hall.
o REAAFM, IAE,
Free eBook URL:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/
e "A Computational Introduction to Number Theory and Algebra,”

Victor Shoup, Cambridge University Press.
Free eBook URL: http://www.shoup.net/ntb/
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What will you study in the part of Discrete Math.?

From Algebra (fi5fU2X)
@ Axioms of Groups (#f), Rings (¥%), Fields ({4)
e Equvalent class ([FIfiEi%H)
o Equivalent relation ([FIfER4$%), Congruence (£1Al)
e Lagrange's Theorem (7 7' 7 v ¥ = DEHE)
o Lagrange's Theorem — Fermat’s little Theorem, and Euler's Theorem
@ Fundamental Homomorphism Theorem(s) (¥#[F] Y& #H)
o Normal subgroup (IE#LEZTHE), Residue class group (RIRERE) (=
Quotient group (Fi#f))
e Fundamental Homomorphism Theorem — Chinese Reminder Theorem
(CRT).
@ Ring Fundamental Homomorphism Theorem (& [H] 7 Bl )
o ldeal; Ideal (for ring) <= Normal subgroup (for group).
o Residue class ring (FIREER) (= Quotient ring (FiER))
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What will you study (cont.)

Number Theory (#5555 5m)

o Generalization of Integers (Informal)

o Integral Domain (#1%): Euclidean domain (2 —7 V) v F#&),
Principal ideal domain (PID) (HLH{A 7 7 )L H&8K), Unique factorization
domain (UFD) (— =/ fifHEN).

e Euclidean domain C PID C UFD.

@ Extended Euclidean Algorithm (#A5R2—72 V v F D HFRik)

e Solution for:

o linear Diophantine equation (—X7 4 % 7 7 v b A /iR, and

e computing the inverse of an (invertible) element in (residue class) ring
Z/nZ.

Application: RSA public-key cryptosystem. Related to:
e Euler's totient function ¢(n), Euler's Theorem
e Structure of Z/nZ

@ Chinese Remainder Theorem
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Today's Contents

© Today's Summary
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Today's Summary

Generalization of Integers: Integral Domain (#%J%).
Z c ED ¢ PID ¢ UFD c ID C Commutative Ring,

where ED: Euclidean Domain and ID: Integral Domain.

Generalization of Prime Numbers: Prime Ideal (A 7 7 V)

Maximal Ideal (it KA 7 7/V) C Prime Ideal

Let R be a ring and / be a maximal ideal. Then R// is a field. \
In PID R, a prime ideal = a maximal ideal. \
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Today's Summary (Cont.)

Denote by Iy a finite field of order gq. Then, g = p" for some prime p and
integer r(> 1). In addition,

o F,=2Z/pZif qg=p.
o Fo =T,[X]/f(X)if g=p" (r > 2) where f(X) is a monic
polynomial of degree r.

e F,[X]: Polynomial ring over Fp,.
e F,[x] is an Euclidean domain.
@ A polynomial f(X) =ap+ a1 X +---+ a, X" is called monic if a, = 1.

Eiichiro Fujisaki (JAIST) Comp. Complexity and Discrete Math. Nov. 22nd, 2017 7/25



Today's Contents

© Generalization of Integer Ring Z
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Integral Domain (3%J5)

Definition 1 (Zero-Divisor (Z£X1))

Let R be a ring. A non-zero element a € R (a # 0) is called a zero-divisor
(55[K1F) if there is non-zero b € R (b # 0) such that a- b= b-a = 0.

v

Definition 2 (Integral Domain (¥%3%))

A commutative ring (with 1) R is called an integral domain if it has no
zero-divisor.

@ A field is an integral domain.
@ Z is an integral domain.

@ 7/15Z is not an integral domain, because 3,5 are zero-divisors of
Z/157.
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Divisor (fJ7T) and Multiple (f%7L)

Integral Domain: A generalization of Z.

Definition 3

Let R be an integral domain. For a,b € R, we write a|b if there is x € R
such that a- x = b. The element a is called a divisor of b and the element
b a multiple of a.

o Z: divisor (%), multiple (ffF£)
vs Integral domain R: divisor (fJ75), multiple (f475)

° x € R* < x|1.
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Prime Element (3%70) and Irreducible Element (BE#J7T)

Let R be an integral domain.

@ An element p in R is called a prime element if the following holds:

Vp,a,b€e R (ngRX/\p]ab — p[aorp|b>.

An element g in R is called an irreducible element if the following
holds:

Vq,x,y € R <q¢Rx/\q:xy — XGRXoryGRX>.

v

@ Any prime element is irreducible, but not vice versa, i.e., Prime C Irreducible.
@ The set of the prime elements (Prime) in Z is {p | p: prime }.
@ In Z (or UFD), Prime = Irreducible (NOTE: Z* = {£1}).
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Euclidean Domain (21— 7V v F#&H)

Definition 5 (Euclidean Domain)

An integral domain R is called an Euclidean domain if there is a map
A R — 720 such that

e For all non-zero x € R, A\(0) < A(x).

@ For all non-zero x # R and all d € R, there exist g, r € R such that
x=q-d+rand A(r) < A(d).

e 7 is Euclidean with A(x) = |x|.
@ A polynomial ring K[X] over field K is Euclidean. For f € K[X],
define \(f) = deg(f).
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Principal Ideal (F1¥HA 7 7 V) and Prime Ideal (84 7 7

V)

Let R be an integral domain (= a commputative ring with no zero-divisor).

Definition 6 (Principal Ideal)

For a € R, define (a) = {r-a|r € R}. (a) is called a principal ideal in R.

Definition 7 (Prime ldeal)

An ideal / such that /| C R is called a prime ideal in R if

va,beR(a-be/ — ae/orbe/).

| N\

Proposition 1

Let R be an integral domain.
a € R is a prime element <= (a) is a prime ideal in R.
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Principal Ideal Domain (FLHA 7 7 LV E&IH)

Definition 8 (Principal Ideal Domain (PID))

Let R be an integral domain. If every ideal in R is a principal ideal, then R
is called a principal ideal domain.

@ Euclidean Domain (. —72 Y v F#45) C Principal Ideal Domain (HUHA 7 7 )L %
1.
@ In a PID, a prime element (%JL) = an irreducible element (BEFITL).
e Ina PID R,
a € R: an irreducible element < a € R: a prime element < (a) C R:
a prime ideal.

@ In Z, any ideal is of the form (n) = nZ; pZ is a prime ideal for any prime p; if I is
a prime ideal, there is a prime p such that | = pZ.

NOTE: Unique Factorization Domain (UFD, —X&rfi##h%). Euclidean Domain C PID C UFD.

In a UFD, a prime element = an irreducible element, and a factorization is unique and hence, so is in a PFD.

14 / 25
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NOTE: Principal Ideal

@ For commutative ring R,
A
(a1,...yan)={n-a1+---+r-anln,....meR}

is an ideal. When R is a PID, by definition, there exists a € R such
that
(a1,...,an) = (a).
Here, a is called the greatist common divisor (GCD) of a1, ..., an.
e NOTE: (1) = R.
@ In the case of (a1,...,an) = (1), by definition, there are
r,...,r € R such that

Rean et rean=1.

[Corollary] For a1,...,an, € Z, if (a1,...,an) = 1, there are
n,...,rm € Z such that

n-a+---+r-a,=1
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Reminder: Field (&)

Definition 9

A commutative ring (K, +,-) is called a field if
e (K —{0},-) is a commutative group (FI##F),
where 0 denotes the identy of (K, +).

@ We write K* to denote the set of the invertible elements in monoid (K, -).
o (K,+,-) is a field if and only if K* = K — {0}.

@ (K*,-)is called the multicative group (FIERE) (of field (K, +,-)).

@ Let 1 be the identiy of (K*,-). Then, 1 # 0 by definition.
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Characteristic of Field (fAD5%))

Definition 10 (Characteristic)

The characteristic of field K, denoted chr(K), is defined to be the
smallest positive integer p such that

P
—
14...+1=0.

If there is no such positive integer, then define chr(K) = 0.

@ The characteristics of Q, R, C are 0.
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Maximal Ideal (HKA 7 7 )V)

Let R be a ring (with 1).

Definition 11 (Maximal Ideal)

An ideal | in R is called a maximal ideal if | # B and the only i~dea|s
containing / are / and R, i.e., there is no ideal / such that / C / C R.

| \

Theorem 1

For an ideal / in R, it holds that

| is a maximal ideal. <= R/l is a field.

When R is a PID, / is a prime ideal < [ is a maximal ideal.

Hence, in a PID R,
p: irreducible < p: a prime element < (p): a prime ideal < (p): a maximal ideal
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Today's Contents

© Finite Field (5IR{F)
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Polynomial Ring (%MH\ER)

Proposition 2

Let K be a field. Then the polynomial ring in X over K, denoted K[X], is
an Euclidean domain with A(f) = deg(f).

Since an Euclidean domain is a PID, the following conditions are all equivalent:
@ f(X) is an irreducible polynomial in K[X].

f(X) is a prime element in K[X].

(f(X)) is a prime ideal.

(f(X)) is a maximal ideal.

K[X]/(f(X)) is a field.
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Finite Field (5 [R{K) T,

@ The order of Iy, q, satisfies g = p” where p is prime and r is a
positive Integer.

The characteristic of Fy is p, i.e., chr(Fy) = p.

[F, is often written as GF(q) in the area of the coding theory.

[y is called a prime field and F, = Z/pZ.

When g = p", for any monic irreducible f(X) € F,[X] of deg(f) =r,

Fq = Fp[X]/£(X).

o (which implies that) any element in F, can be represented as a
polynomial of r — 1 degree in F,[X]. The addition and multiplication
operations can be defined as

a(X) + b(X) = a(X) + b(X) mod f(X), and
a(X) - b(X) £ a(X) - b(X) mod f(X),

respectively.
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Today's Contents

@ Appendix (Reminder)
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Reminder: Ring (¥%)

Definition 12 (Axiom of Ring)

A ring (R,+,) is called a ring if R is a set with two binary operations, +
and -, on R, and satisfies the following axioms:
@ Ri: (R,+) is an Abelian group (or an additive group).

@ Ry: (R,-) is a sem-group with the multiplicative identity 1 (i.e., a
monoid).

e Rj3 [Distributive]: For all a, b, c € R, the following holds:

(a+b)-c=(a-c)+(b-c)anda-(b+c)=(a-b)+(a-c)

Conventions:
@ (+,) are often called addition (J¥%) and multiplication (&%), respectively.
@ Denote by 0 the identiy of (R, +), the additive identity.
@ Denote by 1 the identity of (R, ), the multiplicative identity.
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Reminder: Commutative Ring (FJ#E)

Definition 13

A ring (R, +,") is called commutative if (R, -) is commutative, i.e.,

Va,be G [a-b=b-a|

For commutative ring (R, +, ), the distibuted law R3 (Z7HCiZH) is
simplified as

Va,b,ce R [(a+b)-c=(a-c)+(b-c)]
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Reminder: Ideal (£ 7 7 V)

Definition 14 (£ 7 7 V)

A subset | of ring (R,+,") is called a left ideal (/A 7 7 V) if it satisfies
(1) and (2), a right ideal (£i4 7 7 V) if it does (1) and (3), or a
(two-sided) ideal ((Mifll) £ 77 V) if it does (1), (2), and (3).

@ (/,+) is a subgroup of (R,+).

Q@ reR xel = r-xel.

Q@ reR xel = x-rel.

@ If R is a commutative ring, then any left or right ideal of R is trivially a two-sided
ideal.

@ nZ is an ideal of ring Z, because

e (nZ,+) is a subgroup of (Z,+) and for any a € Z and x € nZ, it holds
that a-x =x-a € nZ.

@ {0} and R are always two-sided ideals of any ring R.
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