[1216e]
 Computational Complexity and Discrete Mathematics

Ryuhei Uehara, and Eiichiro Fujisaki
Japan Advanced Institute of Science and Technology

November 6, 2017.

I216e（Computational Complexity and Discrete Math）： Discrete Math

－URL：http：／／www．jaist．ac．jp／～fujisaki／index－e．html
－Date： $11 / 6,11 / 8,11 / 13,11 / 15,11 / 20$（twice）， $11 / 22,11 / 27$（test）
－Room：Room I－2
－Office Hour：Monday 13：30－15：10

- Reference（参考図書）
- 「代数概論」森田康夫著，裳華房。
－＂Abstract Algebra，＂David Dummit and Richard Foote，Prentice Hall．
－「代数学入門」松本眞， Free eBook URL：
http：／／www．math．sci．hiroshima－u．ac．jp／～m－mat／TEACH／
－＂A Computational Introduction to Number Theory and Algebra，＂ Victor Shoup，Cambridge University Press．

Free eBook URL：http：／／www．shoup．net／ntb／

What will you study in the part of Discrete Math．？

From Algebra（抽象代数）

- Axioms of Groups（群），Rings（環），Fields（体）
- Equvalent class（同値類）
- Equivalent relation（同値関係），Congruence（合同）
- Lagrange＇s Theorem（ラグランジェの定理）
－Lagrange＇s Theorem \rightarrow Fermat＇s little Theorem，and Euler＇s Theorem
- Fundamental Homomorphism Theorem（s）（準同型定理）
- Normal subgroup（正規部分群），Residue class group（剰余類群）（＝ Quotient group（商群））
－Fundamental Homomorphism Theorem \rightarrow Chinese Reminder Theorem （CRT）．
－Ring Fundamental Homomorphism Theorem（環準同型定理）
－Ideal；Ideal（for ring）\Longleftrightarrow Normal subgroup（for group）．
－Residue class ring（剰余類環）（＝Quotient ring（商環））

What will you study（cont．）

Number Theory（初等整数論）
－Generalization of Integers（Informal）
－Integral Domain（整域）：Euclidean domain（ユークリッド整域）， Principal ideal domain（PID）（単項イデアル整域），Unique factorization domain（UFD）（一意分解整域）．
－Euclidean domain \subset PID \subset UFD．
－Extended Euclidean Algorithm（拡張ユークリッドの互除法）
－Solution for：
－linear Diophantine equation（一次ディオファントス方程式），and
－computing the inverse of an（invertible）element in（residue class）ring $\mathbb{Z} / n \mathbb{Z}$ ．

Application：RSA public－key cryptosystem．Related to：
－Euler＇s totient function $\phi(n)$ ，Euler＇s Theorem
－Structure of $\mathbb{Z} / n \mathbb{Z}$
－Chinese Remainder Theorem

Today's Lecture

(1) Introduction

(2) Basic Axioms of Groups, Rings, and Fields

The integers modulo $n: \mathbb{Z} / n \mathbb{Z}$

- A main actor in this course.
- Called "zed over en zed" (or "zi over en zi").
- For convenience, regard $\mathbb{Z} / n \mathbb{Z}$ as the set $\{0,1, \ldots, n-1\}$, where n is a positive integer.
- Define two binary operations, addition "+" and multiplication ".", for $a, b \in \mathbb{Z} / n \mathbb{Z}$ as:

$$
\begin{aligned}
a+b & :=a+b \bmod n \\
a \cdot b & :=a \cdot b \bmod n
\end{aligned}
$$

Then, $\mathbb{Z} / n \mathbb{Z}$ is close under addition " + " and multiplication ".".

- $(\mathbb{Z} / n \mathbb{Z},+)$: Group.
- $(\mathbb{Z} / n \mathbb{Z},+, \cdot)$: Ring.
- ($\mathbb{Z} / n \mathbb{Z},+, \cdot)$: Field (if n is prime).

The Extended Euclidean Algorithm

- The Euclidean Algorithm: is an algorithm to output the greatest common divisor (GCD) of $a, b \in \mathbb{Z}$ (i.e., $d:=(a, b)$)
- The Extended Euclidean Algorithm (Ext EA): is an algorithm to output (X, Y, d), where $X, Y \in \mathbb{Z}$ and the GCD d, such that

$$
a X+b Y=d
$$

for $a, b \in \mathbb{Z}$.

- Note: The Ext EA computes a^{-1} for $a \in \mathbb{Z} / n \mathbb{Z}$ if a^{-1} exists.
- Note: a^{-1} exists for $a \in \mathbb{Z} / n \mathbb{Z}$ if and only if there are integers (X, Y) such that $a X+n Y=1$.
- Note: There exist integers (X, Y) such that $a X+n Y=1$ if and only if $(a, n)=1$.

Fermat＇s little Theorem（フェルマーの小定理）

－For $a \in \mathbb{Z}$ and prime p ，it holds that

$$
a^{p-1}=1 \quad(\bmod p) .
$$

Easily led by Lagrange＇s Theorem．

Chinese Remainder Theorem（中国人の剰余定理）

－In Sunzi Suanjing（「孫子算経」）：What is that integer when divided by 3 is remainder 2 ；divided by 5 is remainder 3 ；and divided by 7 is remainder 2.

$$
\begin{aligned}
& x=2 \bmod 3 \\
& x=3 \bmod 5 \\
& x=2 \bmod 7
\end{aligned}
$$

－For $n=p_{1} p_{2} \cdots p_{k}$（such that for every $\left.p_{i}, p_{j}(i \neq j),\left(p_{i}, p_{j}\right)=1\right)$ ， it holds

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / p_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{k} \mathbb{Z} . \quad \text { (isomorphism) }
$$

The CRT gives the concrete map ψ ．

$$
\psi: \mathbb{Z} / p_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{k} \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}
$$

Finite Field $\mathbb{F}_{p^{n}}$（有限体）

－Also known as $G F\left(p^{n}\right)$（in coding theory）．
－p is a prime number，and $n \in \mathbb{N}$ ．
－The order（位数）of $\mathbb{F}_{p^{n}}$ is p^{n} ，where the order means the number of the elements in $\mathbb{F}_{p^{n}}$ ．
－ \mathbb{F}_{p} is called a prime field，and $\mathbb{F}_{p} \cong \mathbb{Z} / p \mathbb{Z}$（isomorphism）．
－Can represent an element in $\mathbb{F}_{p^{n}}$ as that in $\mathbb{Z} / p \mathbb{Z}[X]$ ，such that for some $f(x)$ ，addition + and multiplication \cdot are defined as：

$$
\begin{gathered}
a(X)+b(X)=a(X)+b(X) \bmod f(X) \\
a(X) \cdot b(X)=a(X) \cdot b(X) \bmod f(X)
\end{gathered}
$$

where $a(X), b(X) \in \mathbb{Z} / p \mathbb{Z}[X]$ ．

Today's Lecture

(1) Introduction

(2) Basic Axioms of Groups, Rings, and Fields

Binary Operation（二項演算）and Magma

Definition 1

A binary operation \circ on set S is a function $\circ: S \times S \rightarrow S$ ．For any $a, b \in S$ ，we shall write $a \circ b$ ．
－The usual addition and multiplication，,$+ \times$ ，on the set of natural numbers \mathbb{N} are binary operations．
－Are the addition + ，subtraction－，and \times on \mathbb{Z} and \mathbb{R} binary operation？
－How about addition，subtraction，product on the $n \times n$ square matrices ？

Definition 2

A set S associated with binary operation \circ ，denoted (S, \circ) ，is called a magma．

Semi－group（半群）and Monoid（単位的半群）

Definition 3

Magma（ G, \circ ）is called a semi－group if
－G_{1}（結合法則）：$\forall a, b, c \in G[(a \circ b) \circ c=a \circ(b \circ c)]$ i．e．，○ is associative．

Definition 4

An element $e \in G$ for semi－group（ G, \circ ）is called an identity（単位元）if
－$\forall a \in G[a \circ e=e \circ a=a]$ ．

Definition 5

A seme－group (G, o) is called a monoid if it has an identity e ．

Uniquness of Identity

Proposition 1

An idenity e is unique if semi-group (G, \circ) has e, i.e., If there are two identies, e, e^{\prime}, then $e=e^{\prime}$.

Proof.

Homework or at this lecture.

Inverse（逆元）and Invertible Element（可逆元）

Definition 6

Let (G, \circ) be a monoid with identy $e . a^{\prime} \in G$ is called an inverse of $a \in G$ if $a \circ a^{\prime}=a^{\prime} \circ a=e$ ．Then，$a \in G$ is called an invertible element or an unit （単元）．

By a^{-1} ，denote the inverse of a ．
Note that the inverse of a is unique if (G, o) is a monoid．

Group（群）

Definition 7

Let (G, \circ) be a monoid．Then，(G, \circ) is called a group（群）if all elements in G are invertible．

Equivalently，

Definition 8

Let G be a set and o be a binary operation on $G(G, \circ)$ is called a group （群）if the it satisfies the following axioms：

- G_{1}（結合法則）$\forall a, b, c \in G \quad[(a \circ b) \circ c=a \circ(b \circ c)]$ ．
- G_{2}（単位元の存在）$\exists e \in G, \forall a \in G \quad[a \circ e=e \circ a=a]$ ．
- G_{3}（逆元の存在）$\forall a \in G, \exists a^{-1} \in G \quad\left[a \circ a^{-1}=a^{-1} \circ a=e\right]$ ．

Abelian Group（Abel 群）or Commutative Group（可換群）

Definition 9

A group（ G, \circ ）is called commutative or abelian if
－G_{4}（可換律）$\forall a, b \in G \quad[a \circ b=b \circ a]$ ．
－For an Abelian group，often represent \circ as + ，and call $(G,+)$ an additive group（加法群）．
－(G, \circ) is called a finite group if G is a finite set．
－The number of elements in a group（resp．ring，or field）is called the order（位数）of the group（resp．the ring，or the field）．

Ring（環）

Definition 10

A ring R is a set together with two binary operations，+ and \cdot ，denoted by $(R,+, \cdot)$ ，satisfying the following axioms：
－$R_{1}:(R,+)$ is an Abelian group（or an additive group）．That is：
－G_{1} ：For all $a, b, c \in R,(a+b)+c=a+(b+c)$ ．
－G_{2} ：For all $a \in R$ ，there is the identity 0 such that $a+0=0+a$ ．
－G_{3} ：For all $a \in R$ ，there is the inverse $(-a)$ such that $a+(-a)=(-a)+a=0$ ．
－G_{4} ：For all $a, b \in R, a+b=b+a$ ．
－$R_{2}:(R, \cdot)$ is a sem－group，i．e．，$(a \cdot b) \cdot c=a \cdot(b \cdot c)$ ．
－R_{3}［distributed law（分配法則）］：For all $a, b, c \in R$ ，

$$
\begin{aligned}
& (a+b) \cdot c=(a \cdot c)+(b \cdot c) \\
& a \cdot(b+c)=(a \cdot b)+(a \cdot c)
\end{aligned}
$$

Field（体）

Definition 11

A ring $(K,+, \cdot)$ is called a field if
－（ $K-\{0\}, \cdot)$ is a commutative group（可換群）．
－We write K^{\times}to denote the set of invertible elements in monoid (K, \cdot) ．
－$(K,+, \cdot)$ is a field if and only if $K^{\times}=K-\{0\}$ and $\left(K^{\times},+\right)$is commutative．
－Let 1 be the identiy of group $\left(K^{\times}, \cdot\right)$ ．Then， $1 \neq 0$ by definition．
－$\left(K^{\times}, \cdot\right)$ is called the multicative group（乗法群）of field $(K,+, \cdot)$ ．

Consider examples：

－Magma（マグマ）

- Semi－group（半群）
- Monoid（単位的半群）
- Group（群）
- Commutative（可換）
- Non－commutative（非可換）
- Ring（環）
- Field（体）

