[l216e] Computational Complexity and <u>Discrete Mathematics</u>

Ryuhei Uehara, and Eiichiro Fujisaki

Japan Advanced Institute of Science and Technology

November 6, 2017.

Eiichiro Fujisaki (JAIST)

Comp. Complexity and Discrete Math.

Nov. 6, 2017 1 / 20

I216e (Computational Complexity and Discrete Math): Discrete Math

- URL: http://www.jaist.ac.jp/~fujisaki/index-e.html
- Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
- Room: Room I-2
- Office Hour: Monday 13:30 15:10
- Reference (参考図書)
 - 「代数概論」森田康夫著,裳華房.
 - "Abstract Algebra," David Dummit and Richard Foote, Prentice Hall.
 - 「代数学入門」松本眞, Free eBook URL:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/

 "A Computational Introduction to Number Theory and Algebra," Victor Shoup, Cambridge University Press. Free eBook URL: http://www.shoup.net/ntb/

What will you study in the part of Discrete Math.?

From Algebra (抽象代数)

- Axioms of Groups (群), Rings (環), Fields (体)
- Equvalent class (同値類)
 - Equivalent relation (同値関係), Congruence (合同)
- Lagrange's Theorem (ラグランジェの定理)
 - $\bullet\,$ Lagrange's Theorem \to Fermat's little Theorem, and Euler's Theorem
- Fundamental Homomorphism Theorem(s) (準同型定理)
 - Normal subgroup (正規部分群), Residue class group (剰余類群) (= Quotient group (商群))
 - Fundamental Homomorphism Theorem \rightarrow Chinese Reminder Theorem (CRT).
- Ring Fundamental Homomorphism Theorem (環準同型定理)
 - Ideal; Ideal (for ring) \iff Normal subgroup (for group).
 - Residue class ring (剰余類環) (= Quotient ring (商環))

What will you study (cont.)

Number Theory (初等整数論)

- Generalization of Integers (Informal)
 - Integral Domain (整域): Euclidean domain (ユークリッド整域), Principal ideal domain (PID) (単項イデアル整域), Unique factorization domain (UFD) (一意分解整域).
 - Euclidean domain \subset PID \subset UFD.
- Extended Euclidean Algorithm (拡張ユークリッドの互除法)
 - Solution for:
 - linear Diophantine equation (一次ディオファントス方程式), and
 - computing the inverse of an (invertible) element in (residue class) ring $\mathbb{Z}/n\mathbb{Z}.$

Application: RSA public-key cryptosystem. Related to:

- Euler's totient function $\phi(n)$, Euler's Theorem
- Structure of $\mathbb{Z}/n\mathbb{Z}$
- Chinese Remainder Theorem

2 Basic Axioms of Groups, Rings, and Fields

Eiichiro Fujisaki (JAIST)

Comp. Complexity and Discrete Math.

Nov. 6, 2017 5 / 20

The integers modulo $n: \mathbb{Z}/n\mathbb{Z}$

- A main actor in this course.
- Called "zed over en zed" (or "zi over en zi").
- For convenience, regard $\mathbb{Z}/n\mathbb{Z}$ as the set $\{0, 1, \ldots, n-1\}$, where *n* is a positive integer.
- Define two binary operations, addition "+" and multiplication "·", for $a, b \in \mathbb{Z}/n\mathbb{Z}$ as:

$$a + b := a + b \mod n$$

 $a \cdot b := a \cdot b \mod n$

Then, $\mathbb{Z}/n\mathbb{Z}$ is close under addition "+" and multiplication ".".

- $(\mathbb{Z}/n\mathbb{Z}, +)$: Group.
- $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$: Ring.
- $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$: Field (if *n* is prime).

The Extended Euclidean Algorithm

- The Euclidean Algorithm: is an algorithm to output the greatest common divisor (GCD) of a, b ∈ Z (i.e., d := (a, b))
- The Extended Euclidean Algorithm (Ext EA): is an algorithm to output (X, Y, d), where X, Y ∈ Z and the GCD d, such that

$$aX + bY = d$$

for $a, b \in \mathbb{Z}$.

- Note: The Ext EA computes a^{-1} for $a \in \mathbb{Z}/n\mathbb{Z}$ if a^{-1} exists.
- Note: a^{-1} exists for $a \in \mathbb{Z}/n\mathbb{Z}$ if and only if there are integers (X, Y) such that aX + nY = 1.
- Note: There exist integers (X, Y) such that aX + nY = 1 if and only if (a, n) = 1.

• For $a \in \mathbb{Z}$ and prime p, it holds that

$$a^{p-1} = 1 \pmod{p}.$$

Easily led by Lagrange's Theorem.

Chinese Remainder Theorem (中国人の剰余定理)

• In Sunzi Suanjing (「孫子算経」): What is that integer when divided by 3 is remainder 2; divided by 5 is remainder 3; and divided by 7 is remainder 2.

 $x = 2 \mod 3$ $x = 3 \mod 5$ $x = 2 \mod 7$

• For $n = p_1 p_2 \cdots p_k$ (such that for every p_i, p_j $(i \neq j), (p_i, p_j) = 1$), it holds

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k\mathbb{Z}.$$
 (isomorphism)

The CRT gives the concrete map ψ .

$$\psi: \mathbb{Z}/p_1\mathbb{Z}\times\cdots\times\mathbb{Z}/p_k\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}.$$

Finite Field F_pⁿ (有限体)

- Also known as $GF(p^n)$ (in coding theory).
- p is a prime number, and $n \in \mathbb{N}$.
- The order (位数) of F_{pⁿ} is pⁿ, where the order means the number of the elements in F_{pⁿ}.
- \mathbb{F}_p is called a prime field, and $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$ (isomorphism).
- Can represent an element in 𝔽_{pⁿ} as that in ℤ/pℤ[X], such that for some f(x), addition + and multiplication · are defined as:

$$a(X) + b(X) = a(X) + b(X) \mod f(X)$$
$$a(X) \cdot b(X) = a(X) \cdot b(X) \mod f(X)$$

where $a(X), b(X) \in \mathbb{Z}/p\mathbb{Z}[X]$.

2 Basic Axioms of Groups, Rings, and Fields

Binary Operation (二項演算) and Magma

Definition 1

A binary operation \circ on set S is a function $\circ : S \times S \rightarrow S$. For any $a, b \in S$, we shall write $a \circ b$.

- The usual addition and multiplication, +, ×, on the set of natural numbers N are binary operations.
- Are the addition +, subtraction –, and \times on $\mathbb Z$ and $\mathbb R$ binary operation ?
- How about addition, subtraction, product on the *n* × *n* square matrices ?

Definition 2

A set S associated with binary operation \circ , denoted (S, \circ) , is called a *magma*.

< ロ > < 同 > < 回 > < 回 >

э

Semi-group (半群) and Monoid (単位的半群)

Definition 3

Magma (G, \circ) is called a semi-group if

• G_1 (結合法則): $\forall a, b, c \in G[(a \circ b) \circ c = a \circ (b \circ c)]$

i.e., \circ is associative.

Definition 4

An element $e \in G$ for semi-group (G, \circ) is called an *identity* (単位元) if

•
$$\forall a \in G \ [a \circ e = e \circ a = a].$$

Definition 5

A seme-group (G, \circ) is called a *monoid* if it has an identity e.

Proposition 1

An idenity *e* is *unique* if semi-group(G, \circ) has *e*, i.e., If there are two identies, *e*, *e'*, then *e* = *e'*.

Proof.

Homework or at this lecture.

Eiichiro Fujisaki (JAIST)

Definition 6

Let (G, \circ) be a monoid with identy e. $a' \in G$ is called an *inverse* of $a \in G$ if $a \circ a' = a' \circ a = e$. Then, $a \in G$ is called an *invertible element* or an *unit* (\mathring{P} 元).

By a^{-1} , denote *the* inverse of *a*.

Note that the inverse of a is unique if (G, \circ) is a monoid.

Group (群)

Definition 7

Let (G, \circ) be a monoid. Then, (G, \circ) is called a group (#) if all elements in G are invertible.

Equivalently,

Definition 8

Let G be a set and \circ be a binary operation on G. (G, \circ) is called a *group* (\mathfrak{A}) if the it satisfies the following axioms:

- G₁ (結合法則) ∀a, b, c ∈ G [(a ∘ b) ∘ c = a ∘ (b ∘ c)].
- G_2 (単位元の存在) $\exists e \in G, \forall a \in G \quad [a \circ e = e \circ a = a].$
- G_3 (逆元の存在) $\forall a \in G, \exists a^{-1} \in G \quad [a \circ a^{-1} = a^{-1} \circ a = e].$

くロ とくぼ とくほ とくほ とうしょ

Definition 9

A group (G, \circ) is called *commutative* or *abelian* if

• G_4 (可換律) $\forall a, b \in G$ $[a \circ b = b \circ a]$.

- For an Abelian group, often represent \circ as +, and call (G, +) an additive group (加法群).
- (G, \circ) is called a *finite group* if G is a finite set.
- The number of elements in a group (resp. ring, or field) is called the *order* (位数) of the group (resp. the ring, or the field).

Ring (環)

Definition 10

A ring R is a set together with two binary operations, + and \cdot , denoted by $(R, +, \cdot)$, satisfying the following axioms:

- R_1 : (R, +) is an Abelian group (or an additive group). That is:
 - G_1 : For all $a, b, c \in R$, (a + b) + c = a + (b + c).
 - G_2 : For all $a \in R$, there is the identity 0 such that a + 0 = 0 + a.
 - G₃: For all a ∈ R, there is the inverse (-a) such that a + (-a) = (-a) + a = 0.

•
$$G_4$$
: For all $a, b \in R$, $a + b = b + a$.

- R_2 : (R, \cdot) is a sem-group, i.e., $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- R_3 [distributed law (分配法則)]: For all $a, b, c \in R$,

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Definition 11

A ring $(K, +, \cdot)$ is called a *field* if

• $(K - \{0\}, \cdot)$ is a commutative group (可換群).

- We write K^{\times} to denote the set of invertible elements in monoid (K, \cdot) .
- (K, +, ·) is a field if and only if K[×] = K − {0} and (K[×], +) is commutative.
- Let 1 be the identiy of group (K^{\times}, \cdot). Then, $1 \neq 0$ by definition.
- (K^{\times}, \cdot) is called the multicative group (乗法群) of field $(K, +, \cdot)$.

- Magma (マグマ)
- Semi-group (半群)
- Monoid (単位的半群)
- Group (群)
 - Commutative (可換)
 - Non-commutative (非可換)
- Ring (環)
- Field (体)