[l216e] Computational Complexity and <u>Discrete Mathematics</u>

Ryuhei Uehara, and Eiichiro Fujisaki

Japan Advanced Institute of Science and Technology

November 8th, 2017.

Eiichiro Fujisaki (JAIST)

Comp. Complexity and Discrete Math.

Nov. 8th, 2017 1 / 22

I216e (Computational Complexity and Discrete Math): Discrete Math

- URL: http://www.jaist.ac.jp/~fujisaki/index-e.html
- Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
- Room: Room I-2
- Office Hour: Monday 13:30 15:10
- Reference (参考図書)
 - 「代数概論」森田康夫著,裳華房.
 - "Abstract Algebra," David Dummit and Richard Foote, Prentice Hall.
 - 「代数学入門」松本眞, Free eBook URL:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/

 "A Computational Introduction to Number Theory and Algebra," Victor Shoup, Cambridge University Press. Free eBook URL: http://www.shoup.net/ntb/

What will you study in the part of Discrete Math.?

From Algebra (抽象代数)

- Axioms of Groups (群), Rings (環), Fields (体)
- Equvalent class (同値類)
 - Equivalent relation (同値関係), Congruence (合同)
- Lagrange's Theorem (ラグランジェの定理)
 - $\bullet\,$ Lagrange's Theorem \to Fermat's little Theorem, and Euler's Theorem
- Fundamental Homomorphism Theorem(s) (準同型定理)
 - Normal subgroup (正規部分群), Residue class group (剰余類群) (= Quotient group (商群))
 - Fundamental Homomorphism Theorem \rightarrow Chinese Reminder Theorem (CRT).
- Ring Fundamental Homomorphism Theorem (環準同型定理)
 - Ideal; Ideal (for ring) \iff Normal subgroup (for group).
 - Residue class ring (剰余類環) (= Quotient ring (商環))

What will you study (cont.)

Number Theory (初等整数論)

- Generalization of Integers (Informal)
 - Integral Domain (整域): Euclidean domain (ユークリッド整域), Principal ideal domain (PID) (単項イデアル整域), Unique factorization domain (UFD) (一意分解整域).
 - Euclidean domain \subset PID \subset UFD.
- Extended Euclidean Algorithm (拡張ユークリッドの互除法)
 - Solution for:
 - linear Diophantine equation (一次ディオファントス方程式), and
 - computing the inverse of an (invertible) element in (residue class) ring $\mathbb{Z}/n\mathbb{Z}.$

Application: RSA public-key cryptosystem. Related to:

- Euler's totient function $\phi(n)$, Euler's Theorem
- Structure of $\mathbb{Z}/n\mathbb{Z}$
- Chinese Remainder Theorem

1 Remindar: Groups, Ring, and Fields

- 2 Group Theory: Monoid and Its Properties
- **3** Group Theory: Subgroup (部分群) and Residue Class (剰余類)
- 4 Examples of Groups

Eiichiro Fujisaki (JAIST)

Definition 1 (Axiom of Group)

Let G be a set and \circ be a binary operation on G. (G, \circ) is called a *group* if the it satisfies the following axioms:

- G_0 (二項演算) $\circ: G \times G \to G$ is a binary operation on G.
- G1(結合法則) ∀a, b, c ∈ G [(a ∘ b) ∘ c = a ∘ (b ∘ c)].
- G_2 (単位元の存在) $\exists e \in G, \forall a \in G \quad [a \circ e = e \circ a = a].$
- G_3 (全て可逆元) $\forall a \in G, \exists a^{-1} \in G \quad [a \circ a^{-1} = a^{-1} \circ a = e].$
- G₀: Magma (マグマ)
- G₀, G₁: Semi-group (半群)
- G₀, G₁, G₂: Monoid (単位的半群)

用語: 単位元 (Identiy); 可逆元 (invertible element, or unit (単元)); 逆元 (inverse).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Group (G, \circ) is called *abelian* or *commutative* if the following holds: • G_4 (可換律) $\forall a, b \in G$ $[a \circ b = b \circ a]$.

An Abelian group (or a commutative group (可換群)) is also known as the name of an *additive* group (加法群) with binary operation +, instead of \circ .

Definition 3 (Axiom of Ring)

A ring $(R, +, \cdot)$ is called a ring if R is a set with two binary operations, + and \cdot , on R, and satisfies the following axioms:

- R_1 : (R, +) is an Abelian group (or an additive group).
- R_2 : (R, \cdot) is a sem-group, i.e., $\forall a, b \in R$ $[(a \cdot b) \cdot c = a \cdot (b \cdot c)]$.
- R_3 [分配法則]: For all $a, b, c \in R$, the following holds:

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$
 and $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

Conventions:

- (+,·) are often called *addition* (加法) and *multiplication* (乗法), respectively.
- Denote by 0 the identiy of (R, +).
- Denote by 1 the identity of (R, \cdot) (if it exists).

< ロ > < 同 > < 回 > < 回 > <

A ring $(R, +, \cdot)$ is called *commutative* if (R, \cdot) is commutative, i.e.,

$$\forall a, b \in G \quad [a \cdot b = b \cdot a].$$

For commutative ring $(R, +, \cdot)$, the distibuted law R_3 (分配法則) is simplified as

$$\forall a, b, c \in R \quad [(a+b) \cdot c = (a \cdot c) + (b \cdot c)].$$

A commutative ring $(K, +, \cdot)$ is called a *field* if • $(K - \{0\}, \cdot)$ is a commutative group (可換群),

where 0 denotes the identy of (K, +).

- We write K^{\times} to denote the set of the invertible elements in monoid (K, \cdot) .
- $(K, +, \cdot)$ is a field if and only if $K^{\times} = K \{0\}$.
- (K^{\times}, \cdot) is called the multicative group ($\mathfrak{K}\mathfrak{K}\mathfrak{R}$) (of field $(K, +, \cdot)$).
- Let 1 be the identiy of (K^{\times}, \cdot) . Then, $1 \neq 0$ by definition.

Remindar:Groups, Ring, and Fields

2 Group Theory: Monoid and Its Properties

3 Group Theory: Subgroup (部分群) and Residue Class (剰余類)

4 Examples of Groups

Eiichiro Fujisaki (JAIST)

Definition 6 (Semi-group (半群))

 (G, \circ) is called a semi-group if G is a set accociated with binary operation $\circ : G \times G \rightarrow G$ and the following holds.

• G_1 (結合法則): $\forall a, b, c \in G$ [$(a \circ b) \circ c = a \circ (b \circ c)$].

Definition 7 (Monoid (単位的半群))

A semi-group (G, \circ) is called a monoid (单位的半群) if:

• G_2 (単位元): it has an identiy $e \in G$.

Let's see what properties can be induced by a monoid.

From Monoid (1)

Let (G, \circ) be a monoid.

Proposition 1 (Uniquness of Identity)

An idenity *e* is *unique*, i.e., If there are two identies, e, e', then e = e'.

Proposition 2 (Uniqueness of Inverse)

An inverse of a, a^{-1} , is *unique* if a is an invertible element.

The above does not always hold for a magma (G, \circ) , which does not hold the associative law (結合法則).

Proposition 3

For an invertible element $a \in G$, the solution of $a \circ x = b$ is unique, in addition $x = a^{-1} \circ b$.

Eiichiro Fujisaki (JAIST)

Comp. Complexity and Discrete Math.

Nov. 8th, 2017 13 / 22

From Monoid (2)

Let (G, \circ) be a monoid.

Proposition 4

The inverse of identity e is e.

Proposition 5

If $a, b \in G$ are both invertible, $a \circ b$ is also invertible, and

$$(a \circ b)^{-1} = b^{-1} \circ a^{-1}.$$

Proposition 6

If $a \in G$ is invertible, then a^{-1} is also invertible, and $(a^{-1})^{-1} = a$.

From Monoid (3)

Let (G, \circ) be a monoid. Let G^{\times} be the set of the invertible elements in G.

Proposition 7

 (G^{\times}, \circ) turns out a group.

Definition 8

 (G^{\times}, \circ) is called the *unit group* (単元群).

NOTE: Propositions, 1 - 7, hold in any group because a group is a monoid. (The only difference is that $G^{\times} = G$ when (G, \cdot) is a group.)

Remindar:Groups, Ring, and Fields

2 Group Theory: Monoid and Its Properties

3 Group Theory: Subgroup (部分群) and Residue Class (剰余類)

Examples of Groups

Eiichiro Fujisaki (JAIST)

 (H, \circ) is called a *subgroup* of group (G, \circ) if:

- $H \subseteq G$ (i.e., H is a subset of G).
- $\forall a, b \in H$ $[a \circ b \in H]$ (i.e., \circ is a binary operation on H).

•
$$\forall a \in H \quad [a^{-1} \in H].$$

From now on, I often omit to write a binary operation if not confused.

Theorem 10

H is a subgroup of G if and only if

$$\forall a, b \in H \quad [a \circ b^{-1} \in H]$$

Let *H* be a subgroup of *G*. For $a \in G$, define

 $aH := \{a \circ h | h \in H\}$ $Ha := \{h \circ a | h \in H\}.$

Then aH is called a *left coset* of H (in G), and Ha is called a *right coset* of H (in G).

• In Japanese, a left (resp. right) coset is called 左剰余類 (resp. 右剰余類).

Partitioning (分割)

Let H be a subgroup of G. Later (not today!), prove that

That is to say, there is a subset A of G such that $\{aH\}_{a\in A}$ is a *partition* of G, i.e., for all $a, b \in A$ ($a \neq b$),

$$aH \bigcap bH = \emptyset$$
 and $G = \bigcup_{a \in A} aH$.

Similarly, there is a subset B of G such that $\{Hb\}_{b\in B}$ is a partition of G.

Theorem 12

Let H be a subgroup of G. By |G| (resp. |H|), denote the order of G (resp. H). Then, it holds that |G| is divided by |H|, i.e., |H|||G|.

This is led by the statement that when $\{aH\}_{a \in A}$ is a partition of *G*, it holds that |aH| = |H| for all $a \in A$.

Similarly, |Hb| = |H| for any partition $\{Hb\}_{b \in B}$ and any $b \in B$.

Remindar:Groups, Ring, and Fields

2 Group Theory: Monoid and Its Properties

3 Group Theory: Subgroup (部分群) and Residue Class (剰余類)

4 Examples of Groups

Eiichiro Fujisaki (JAIST)

- $(\mathbb{Z}, +)$, $(n\mathbb{Z}, +)$, $(\mathbb{Z}/n\mathbb{Z}, +)$,...
- (\mathbb{Z}, \times) , $((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$, (Q^{\times}, \times) ,...
- Triangle rotation group, symmetric group..