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1216e (Computational Complexity and Discrete Math):

Discrete Math

e URL: http://www. jaist.ac.jp/~fujisaki/index-e.html
e Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
@ Room: Room I-2
o Office Hour: Monday 13:30 — 15:10
o Reference (%)
o NEMm, ARMIHERE, HiEHE.
o “Abstract Algebra,” David Dummit and Richard Foote, Prentice Hall.
o REAAFM, IAE,
Free eBook URL:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/
e "A Computational Introduction to Number Theory and Algebra,”

Victor Shoup, Cambridge University Press.
Free eBook URL: http://www.shoup.net/ntb/
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What will you study in the part of Discrete Math.?

From Algebra (fi5fU2X)
@ Axioms of Groups (#f), Rings (¥%), Fields ({4)
e Equvalent class ([FIfiEi%H)
o Equivalent relation ([FIfER4$%), Congruence (£1Al)
e Lagrange's Theorem (7 7' 7 v ¥ = DEHE)
o Lagrange's Theorem — Fermat’s little Theorem, and Euler's Theorem
@ Fundamental Homomorphism Theorem(s) (¥#[F] Y& #H)
o Normal subgroup (IE#LEZTHE), Residue class group (RIRERE) (=
Quotient group (Fi#f))
e Fundamental Homomorphism Theorem — Chinese Reminder Theorem
(CRT).
@ Ring Fundamental Homomorphism Theorem (& [H] 7 Bl )
o ldeal; Ideal (for ring) <= Normal subgroup (for group).
o Residue class ring (FIREER) (= Quotient ring (FiER))
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What will you study (cont.)

Number Theory (#5555 5m)

o Generalization of Integers (Informal)

o Integral Domain (#1%): Euclidean domain (2 —7 V) v F#&),
Principal ideal domain (PID) (HLH{A 7 7 )L H&8K), Unique factorization
domain (UFD) (— =/ fifHEN).

e Euclidean domain C PID C UFD.

@ Extended Euclidean Algorithm (#A5R2—72 V v F D HFRik)

e Solution for:

o linear Diophantine equation (—X7 4 % 7 7 v b A /iR, and

e computing the inverse of an (invertible) element in (residue class) ring
Z/nZ.

Application: RSA public-key cryptosystem. Related to:
e Euler's totient function ¢(n), Euler's Theorem
e Structure of Z/nZ

@ Chinese Remainder Theorem
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Today's Contents

o Remindar:Groups, Ring, and Fields
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Group (#¥)

Definition 1 (Axiom of Group)

Let G be a set and o be a binary operation on G. (G, o) is called a group
if the it satisfies the following axioms:

e Gy (ZJHJHHE) o: G x G — G is a binary operation on G.

o G (f&¥EHI) Va,b,ce G [(aob)oc=ao(boc)].

o Gy (BJLDOHTE) Je€ G,Vae G [ace=eoca=al

o G3 (BTCHMIL) Vac G,Jat € G [acal=aloa=e¢.

@ Gp: Magma (¥ 7<)
@ Gy, Gi: Semi-group (GE#F)
@ Gy, Gy, Go: Monoid (HAZEHE)

JHEE: BT (Identiy); TIE (invertible element, or unit (FiJ0)); WG (inverse).
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Abelian Group (or Commutative Group)

Definition 2

Group (G, o) is called abelian or commutative if the following holds:
o G, (Wiaflt) Va,be G [aob=boal

An Abelian group (or a commutative group (FI#2#F)) is also known as the
name of an additive group (JIiE#F) with binary operation +, instead of o.
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Ring (3%)

Definition 3 (Axiom of Ring)

A ring (R,+,) is called a ring if R is a set with two binary operations, +
and -, on R, and satisfies the following axioms:

@ Ri: (R,+) is an Abelian group (or an additive group).
@ Ry: (R,-) is a sem-group, i.e., Va,be R [(a-b)-c=a-(b- )]
o R3 [/7BCiEHI]: For all a, b, c € R, the following holds:

(a+b)-c=(a-c)+(b-c)anda-(b+c)=(a-b)+(a-c)

Conventions:
@ (+,-) are often called addition (/li) and multiplication (%i%), respectively.
@ Denote by 0 the identiy of (R, +).
@ Denote by 1 the identity of (R, ) (if it exists).
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Commutative Ring (FI#ER)

Definition 4

A ring (R, +,") is called commutative if (R, -) is commutative, i.e.,

Va,be G [a-b=b-a|

For commutative ring (R, +, ), the distibuted law R3 (Z7HCiZH) is
simplified as

Va,b,ce R [(a+b)-c=(a-c)+(b-c)]
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Field (1K)

Definition 5

A commutative ring (K, +,-) is called a field if
e (K —{0},-) is a commutative group (FI##F),
where 0 denotes the identy of (K, +).

@ We write K* to denote the set of the invertible elements in monoid (K, -).
o (K,+,-) is a field if and only if K* = K — {0}.

@ (K*,-)is called the multicative group (FIERE) (of field (K, +,-)).

@ Let 1 be the identiy of (K*,-). Then, 1 # 0 by definition.
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Today's Contents

© Group Theory: Monoid and Its Properties
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Monoid (HANZHYEE), Just reminder

Definition 6 (Semi-group (*:#F))

(G, o) is called a semi-group if G is a set accociated with binary operation
0:G x G — G and the following holds.

o Gy (FH&IEHN) :Va,b,ce G [(aob)oc=ao(boc).

N,

Definition 7 (Monoid (HLAZIIFHE))
A semi-group (G, o) is called a monoid (HLAZIVERE) if:
e Gy (HfZJL) : it has an identiy e € G.

A\

Let's see what properties can be induced by a monoid.
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From Monoid (1)

Let (G, o) be a monoid.

Proposition 1 (Uniquness of Identity)

An idenity e is unique,
i.e., If there are two identies, e, e/, then e = €'

Proposition 2 (Uniqueness of Inverse)

1

An inverse of a, a~ -, is unique if a is an invertible element.

The above does not always hold for a magma (G, o), which does not hold the
associative law (#& kAN

Proposition 3

For an invertible element a € G, the solution of a o x = b is unique, in
addition x = a~! o b.
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From Monoid (2)

Let (G, o) be a monoid.

Proposition 4

The inverse of identity e is e.

Proposition 5

| \

If a, b € G are both invertible, a o b is also invertible, and

(aob)y t=btloal

| A\

Proposition 6

If a € G is invertible, then a=! is also invertible, and (a71)~! = a.
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From Monoid (3)

Let (G, o) be a monoid.
Let G* be the set of the invertible elements in G.

Proposition 7

(G*,0) turns out a group.

Definition 8

(G*,0) is called the unit group (HIGHE).

NOTE: Propositions, 1 — 7, hold in any group because a group is a
monoid. (The only difference is that G* = G when (G, ) is a group.)
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Today's Contents

© Group Theory: Subgroup (847%f) and Residue Class (Fl43%)
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Subgroup (F77 1)

(H, o) is called a subgroup of group (G, o) if:
o HC G (i.e., His a subset of G).
e Va,be H [aobe H](ie., ois a binary operation on H).
eVacH [aleH].

From now on, | often omit to write a binary operation if not confused.

Theorem 10

H is a subgroup of G if and only if

Va,bc H [aob™!ecH]
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Residue class (F43%H) or Coset (f%5%)

Definition 11
Let H be a subgroup of G. For a € G, define

aH :={aohlh e H}
Ha := {hoalh € H}.

Then aH is called a left coset of H (in G), and Ha is called a right coset
of H (in G).

@ In Japanese, a left (resp. right) coset is called ZERIR¥H (resp. FiBIAH).
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Partitioning (77%)

Let H be a subgroup of G. Later (not today!), prove that

o (Left coset) aH = bH <= (a € bH or b € aH)
<= (a € bH and b € aH).

o (Right coset) Ha = Hb <= (a € Hb or b € Ha)
<= (a € Hb and b € Ha).

That is to say, there is a subset A of G such that {aH},ca is a partition of
G,ie, foralla,be A(a#b),

aHﬂbH:Q) and G = UaH.

acA

Similarly, there is a subset B of G such that {Hb},cp is a partition of G.
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(Informal) Lagrange’s Theorem

Let H be a subgroup of G. By |G| (resp. |H|), denote the order of G

e, |H|||G].

(resp. H). Then, it holds that |G| is divided by |H

This is led by the statement that when {aH},cx is a partition of G, it
holds that |aH| = |H| for all a € A.

Similarly, |Hb| = |H| for any partition {Hb}cp and any b € B.
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Today's Contents

0 Examples of Groups
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Examples of Groups

e (Z,+), (nZ,+), (Z/nZ,+),..
o (Z,x), (Z/nZ)%, x), (Q@%, x)...

@ Triangle rotation group, symmetric group..
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