
I216e Discrete Math (for Review)

Nov 22nd, 2017

To check your understanding. Proofs of ∗ do not appear in the exam.

1 Monoid

Let (G, ◦) be a monoid.

Proposition 1（Uniquness of Identity） An idenity e is unique,

i.e., If there are two identies, e, e′, then e = e′.

Proposition 2（Uniqueness of Inverse） An inverse of a, a−1, is unique if a is an

invertible element.

The above does not always hold for a magma (G, ◦), which does not hold the

associative law.

Proposition 3 For an invertible element a ∈ G, the solution of a◦x = b is unique,

in addition x = a−1 ◦ b.

Proposition 4 The inverse of identity e is e.

Proposition 5 If a, b ∈ G are both invertible, a ◦ b is also invertible, and

(a ◦ b)−1 = b−1 ◦ a−1.

Proposition 6 If a ∈ G is invertible, then a−1 is also invertible, and (a−1)−1 = a.

Proposition 7 (G×, ◦) turns out a group.

NOTE: Propositions, 1 – 7, hold in any group because a group is a monoid.

(The only difference is that G× = G when (G, ·) is a group.)

2 Group

Let G be a group.
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Theorem 1 H is a subgroup of G if and only if

∀a, b ∈ H [a ◦ b−1 ∈ H]

3 Equivalence Class

Proposition 8 * Let C(a) be the equivalence class of a in set S by equivalence

relation ∼.

• a ∈ C(a).

• If b ∈ C(a), then C(b) = C(a).

• If C(a) ̸= C(b), then C(a)
∩
C(b) = ∅.

4 Lagrange’s Theorem

Theorem 2（Lagrange’s Theorem） Let H be a subgroup of G. Then,

• |G| = [G : H]|H|.
• Let G be a finite group. Then, the order of H divides the order of G, i.e.,

|H| divides |G|.

5 Normal Subgroup and Residue Class Group

Theorem 3 Let N be a subgroup of G. Then, all the following conditions are

equivalent:

1. N is a normal subgroup of G.

2. For all a ∈ G, aN = Na.

3. For all a ∈ G, aN ⊂ Na.

4. For all a ∈ G, Na ⊂ aN .

5. For all a ∈ G, N = aNa−1.

6. For all a ∈ G, N ⊂ aNa−1.

7. For a ∈ G, aNa−1 ⊂ N .

Proposition 9 Let N be a normal subgroup of G. Then G/N = G\N as partition
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of G.

Theorem 4（Residue Class Group） Let N be a normal subgroup of G. Define

(appropriate) binary operations on G/N and G\N , respectively. Then G/N =

G\N as group.

6 Group Homomorphisim

Proposition 10 Let e and e′ be the identities of G and G′, respectively. If f :

G → G′ is homomorphic, then f(e) = e′.

Proposition 11 If f : G → G′ is homomorphic, then for all x ∈ G, it holds that

f(x−1) = f(x)−1.

Proposition 12 If f : G → G′ is homomorphic, then Im(f) is a subgroup of G′.

Proposition 13 A homomorphism map f : G → G′ is isomorphic if Im(f) = G′

and Ker(f) = {e}.

Theorem 5（Fundamental Homomorphism Theorem） Let f : G → G′ be a homo-

morphism map from group G to group G′. Then, all the followings hold.

1. Im(f) is a subgroup of G′.

2. Ker(f) is a normal subgroup of G.

3. f̄ : x ◦ Ker(f) ∈ G/ker(f) 7→ f(x) ∈ G′ is homomorphic, and it holds that

G/Ker(f) ∼= Im(f)

In particular, when Im(f) = G′ (surjective), G/Ker(f) ∼= G′.

7 Ring

Proposition 14 (R1 × · · · ×Rn)
× = R×

1 × · · · ×R×
n .

Generally, for monoid G1, . . . , Gn, (G1 × · · · ×Gn)
× = G×

1 × · · · ×G×
n .

Proposition 15 If R ∼= R1 × · · · ×Rn, then R× = R×
1 × · · · ×R×

n .

Proposition 16 (0R1
, . . . , Ri, . . . , 0Rn

) is an ideal in product ring (R1× · · ·×Rn).
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Even for non-commutative R1, · · · , Rn, (0R1
, . . . , Ri, . . . , 0Rn

) is a (two-sided)

ideal.

8 Ideal and Residue Class Ring

Proposition 17

• If R is a commutative ring, left and right ideals of R are two-sided ideals.

• nZ is an ideal of ring Z.
• {0} and R are always ideals of any ring R.

Theorem 6（Residue Class Ring） Let I be an ideal of ring R. Then, R/I is a ring,

with appropriate additive and multiplicative operations. R/I is called a residue

class ring.

9 Fundamental Ring Homormorphism Theorem

Theorem 7（Fundamental Ring Homomorphism Theorem） * Let f : R → R′ be

ring homomorphic. Then,

1. Im(f) = {f(x) |x ∈ R} is a subring of R′.

2. Ker(f) = {x ∈ R | f(x) = 0′ ∈ R′} is a (two-sided) ideal of R.

3. f̄ : x + Ker(f) ∈ R/ker(f) 7→ f(x) ∈ R′ is ring homomorphic and it holds

that
R/Ker(f) ∼= Im(f).

If Im(f) = R′, then G/Ker(f) ∼= R′.

10 Fermat’s Little Theorem

Theorem 8（Fermat’s Little Theorem） Let p be a prime. For a ∈ N, the following
holds.

ap−1 ≡ 1 (mod p)
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11 Euler’s Theorem

ϕ(n) ≜ {x ∈ N | 1 ≤ x ≤ n and (x, n) = 1} is called Euler’s ϕ function or

Euler’s totient function. Equivalently, Euler’s totient function ϕ(n) is the number

of positive integers up to n that are relatively prime to n.

Proposition 18 *

• For (m,n) = 1, it holds that ϕ(mn) = ϕ(m)ϕ(n).

• For prime p and positive integer e, it holds that ϕ(pe) = pe−1(p− 1).

• Let n =
∏s

i=1 p
ei
i . Then, it holds that

ϕ(n) = n
s∏

i=1

(1− 1

pi
).

Theorem 9（Euler’s Theorem） For a, n ∈ N,

aϕ(n) ≡ 1 (mod n)

12 Integral Domain and Finite Field

Proposition 19 * Let R be an integral domain. a ∈ R is a prime element ⇐⇒ (a)

is a prime ideal in R.

Proposition 20 *

• Euclidean Domain (ユークリッド整域) ⊂ Principal Ideal Domain (単項イデ
アル整域).

• In a PID, a prime element (素元) = an irreducible element.

– In a PID R,

a ∈ R: an irreducible element ⇔ a ∈ R: a prime element ⇔ (a) ⊂ R:

a prime ideal.

• In Z, any ideal is of the form (n) = nZ; pZ is a prime ideal for any prime

p; if I is a prime ideal, there is a prime p such that I = pZ.

Theorem 10 * For an ideal I in R, it holds that

I is a maximal ideal. ⇐⇒ R/I is a field.
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Theorem 11 * When R is a PID, I is a prime ideal ⇔ I is a maximal ideal.

Proposition 21 * Let K be a field. Then the polynomial ring in X over K,

denoted K[X], is an Euclidean domain with λ(f) = deg(f).

Proposition 22 *

• f(X) is an irreducible polynomial in K[X].

• f(X) is a prime element in K[X].

• (f(X)) is a prime ideal.

• (f(X)) is a maximal ideal.

• K[X]/(f(X)) is a field.

Theorem 12 *

• When q = p (prime), then Fp
∼= Z/pZ.

• When q = pr, for any monic irreducible f(X) ∈ Fp[X] of deg(f) = r,

Fq
∼= Fp[X]/f(X).

13 Calculation

Problem 1 Find (X,Y ) ∈ Z2 such that 7X + 12Y = 1.

Problem 2 Find the inverse of 7 (or more presicely 7 + 12Z) in Z/12Z.

Problem 3 Find (X,Y ) ∈ Z2 such that 117X + 71Y = (117, 71).

Problem 4 Compute 3722 mod 1001 (where 1001 = 7× 11× 13).

Problem 5 Find integers X such that X5 ≡ 8 (mod 21).

Problem 6 What are those integers when divided by 5 is remainder 1; divided by

7 is remainder 3; and divided by 11 is remainder 5.

x =1 mod 5

x =3 mod 7

x =5 mod 11
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