I216e Discrete Math (for Review)

Nov 22nd, 2017

To check your understanding. Proofs of $*$ do not appear in the exam.

1 Monoid

Let (G, \circ) be a monoid.
Proposition 1 (Uniquness of Identity) An idenity e is unique, i.e., If there are two identies, e, e^{\prime}, then $e=e^{\prime}$.

Proposition 2 (Uniqueness of Inverse) An inverse of a, a^{-1}, is unique if a is an invertible element.

The above does not always hold for a magma (G, \circ), which does not hold the associative law.

Proposition 3 For an invertible element $a \in G$, the solution of $a \circ x=b$ is unique, in addition $x=a^{-1} \circ b$.

Proposition 4 The inverse of identity e is e.
Proposition 5 If $a, b \in G$ are both invertible, $a \circ b$ is also invertible, and

$$
(a \circ b)^{-1}=b^{-1} \circ a^{-1} .
$$

Proposition 6 If $a \in G$ is invertible, then a^{-1} is also invertible, and $\left(a^{-1}\right)^{-1}=a$.
Proposition $7\left(G^{\times}, \circ\right)$ turns out a group.
NOTE: Propositions, $1-7$, hold in any group because a group is a monoid. (The only difference is that $G^{\times}=G$ when (G, \cdot) is a group.)

2 Group

Let G be a group.

Theorem $1 H$ is a subgroup of G if and only if

$$
\forall a, b \in H \quad\left[a \circ b^{-1} \in H\right]
$$

3 Equivalence Class

Proposition $8{ }^{*}$ Let $C(a)$ be the equivalence class of a in set S by equivalence relation \sim.

- $a \in C(a)$.
- If $b \in C(a)$, then $C(b)=C(a)$.
- If $C(a) \neq C(b)$, then $C(a) \bigcap C(b)=\emptyset$.

4 Lagrange's Theorem

Theorem 2 (Lagrange's Theorem) Let H be a subgroup of G. Then,

- $|G|=[G: H]|H|$.
- Let G be a finite group. Then, the order of H divides the order of G, i.e., $|H|$ divides $|G|$.

5 Normal Subgroup and Residue Class Group

Theorem 3 Let N be a subgroup of G. Then, all the following conditions are equivalent:

1. N is a normal subgroup of G.
2. For all $a \in G, a N=N a$.
3. For all $a \in G, a N \subset N a$.
4. For all $a \in G, N a \subset a N$.
5. For all $a \in G, N=a N a^{-1}$.
6. For all $a \in G, N \subset a N a^{-1}$.
7. For $a \in G, a N a^{-1} \subset N$.

Proposition 9 Let N be a normal subgroup of G. Then $G / N=G \backslash N$ as partition
of G.
Theorem 4 (Residue Class Group) Let N be a normal subgroup of G. Define (appropriate) binary operations on G / N and $G \backslash N$, respectively. Then $G / N=$ $G \backslash N$ as group.

6 Group Homomorphisim

Proposition 10 Let e and e^{\prime} be the identities of G and G^{\prime}, respectively. If f : $G \rightarrow G^{\prime}$ is homomorphic, then $f(e)=e^{\prime}$.

Proposition 11 If $f: G \rightarrow G^{\prime}$ is homomorphic, then for all $x \in G$, it holds that $f\left(x^{-1}\right)=f(x)^{-1}$.

Proposition 12 If $f: G \rightarrow G^{\prime}$ is homomorphic, then $\operatorname{Im}(f)$ is a subgroup of G^{\prime}.
Proposition 13 A homomorphism map $f: G \rightarrow G^{\prime}$ is isomorphic if $\operatorname{Im}(f)=G^{\prime}$ and $\operatorname{Ker}(f)=\{e\}$.

Theorem 5 (Fundamental Homomorphism Theorem) Let $f: G \rightarrow G^{\prime}$ be a homomorphism map from group G to group G^{\prime}. Then, all the followings hold.

1. $\operatorname{Im}(f)$ is a subgroup of G^{\prime}.
2. $\operatorname{Ker}(f)$ is a normal subgroup of G.
3. $\bar{f}: x \circ \operatorname{Ker}(f) \in G / \operatorname{ker}(f) \mapsto f(x) \in G^{\prime}$ is homomorphic, and it holds that

$$
G / \operatorname{Ker}(f) \cong \operatorname{Im}(f)
$$

In particular, when $\operatorname{Im}(f)=G^{\prime}$ (surjective), $G / \operatorname{Ker}(f) \cong G^{\prime}$.

7 Ring

Proposition $14\left(R_{1} \times \cdots \times R_{n}\right)^{\times}=R_{1}^{\times} \times \cdots \times R_{n}^{\times}$.
Generally, for monoid $G_{1}, \ldots, G_{n},\left(G_{1} \times \cdots \times G_{n}\right)^{\times}=G_{1}^{\times} \times \cdots \times G_{n}^{\times}$.
Proposition 15 If $R \cong R_{1} \times \cdots \times R_{n}$, then $R^{\times}=R_{1}^{\times} \times \cdots \times R_{n}^{\times}$.
Proposition $16\left(0_{R_{1}}, \ldots, R_{i}, \ldots, 0_{R_{n}}\right)$ is an ideal in product ring $\left(R_{1} \times \cdots \times R_{n}\right)$.

Even for non-commutative $R_{1}, \cdots, R_{n},\left(0_{R_{1}}, \ldots, R_{i}, \ldots, 0_{R_{n}}\right)$ is a (two-sided) ideal.

8 Ideal and Residue Class Ring

Proposition 17

- If R is a commutative ring, left and right ideals of R are two-sided ideals.
- $n \mathbb{Z}$ is an ideal of ring \mathbb{Z}.
- $\{0\}$ and R are always ideals of any ring R.

Theorem 6 (Residue Class Ring) Let I be an ideal of ring R. Then, R / I is a ring, with appropriate additive and multiplicative operations. R / I is called a residue class ring.

9 Fundamental Ring Homormorphism Theorem

Theorem 7 (Fundamental Ring Homomorphism Theorem) * Let $f: R \rightarrow R^{\prime}$ be ring homomorphic. Then,

1. $\operatorname{Im}(f)=\{f(x) \mid x \in R\}$ is a subring of R^{\prime}.
2. $\operatorname{Ker}(f)=\left\{x \in R \mid f(x)=0^{\prime} \in R^{\prime}\right\}$ is a (two-sided) ideal of R.
3. $\bar{f}: x+\operatorname{Ker}(f) \in R / \operatorname{ker}(f) \mapsto f(x) \in R^{\prime}$ is ring homomorphic and it holds that

$$
R / \operatorname{Ker}(f) \cong \operatorname{Im}(f) .
$$

If $\operatorname{Im}(f)=R^{\prime}$, then $G / \operatorname{Ker}(f) \cong R^{\prime}$.

10 Fermat's Little Theorem

Theorem 8 (Fermat's Little Theorem) Let p be a prime. For $a \in \mathbb{N}$, the following holds.

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

11 Euler＇s Theorem

$\phi(n) \triangleq\{x \in \mathbb{N} \mid 1 \leq x \leq n$ and $(x, n)=1\}$ is called Euler＇s ϕ function or Euler＇s totient function．Equivalently，Euler＇s totient function $\phi(n)$ is the number of positive integers up to n that are relatively prime to n ．

Proposition 18 ＊

－For $(m, n)=1$ ，it holds that $\phi(m n)=\phi(m) \phi(n)$ ．
－For prime p and positive integer e ，it holds that $\phi\left(p^{e}\right)=p^{e-1}(p-1)$ ．
－Let $n=\prod_{i=1}^{s} p_{i}^{e_{i}}$ ．Then，it holds that

$$
\phi(n)=n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}}\right)
$$

Theorem 9 （Euler＇s Theorem）For $a, n \in \mathbb{N}$ ，

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

12 Integral Domain and Finite Field

Proposition $19{ }^{*}$ Let R be an integral domain．$a \in R$ is a prime element $\Longleftrightarrow(a)$ is a prime ideal in R ．

Proposition 20 ＊
－Euclidean Domain（ユークリッド整域）\subset Principal Ideal Domain（単項イデ アル整域）
－In a PID，a prime element（素元）$=$ an irreducible element．
－In a PID R ，
$a \in R$ ：an irreducible element $\Leftrightarrow a \in R$ ：a prime element $\Leftrightarrow(a) \subset R$ ：
a prime ideal．
－In \mathbb{Z} ，any ideal is of the form $(n)=n \mathbb{Z} ; p \mathbb{Z}$ is a prime ideal for any prime p ；if I is a prime ideal，there is a prime p such that $I=p \mathbb{Z}$ ．

Theorem $10 *$ For an ideal I in R ，it holds that

$$
I \text { is a maximal ideal. } \Longleftrightarrow R / I \text { is a field. }
$$

Theorem $11 *$ When R is a PID, I is a prime ideal $\Leftrightarrow I$ is a maximal ideal.
Proposition $21{ }^{*}$ Let K be a field. Then the polynomial ring in X over K, denoted $K[X]$, is an Euclidean domain with $\lambda(f)=\operatorname{deg}(f)$.

Proposition 22 *

- $f(X)$ is an irreducible polynomial in $K[X]$.
- $f(X)$ is a prime element in $K[X]$.
- $(f(X))$ is a prime ideal.
- $(f(X))$ is a maximal ideal.
- $K[X] /(f(X))$ is a field.

Theorem 12 *

- When $q=p$ (prime), then $\mathbb{F}_{p} \cong \mathbb{Z} / p \mathbb{Z}$.
- When $q=p^{r}$, for any monic irreducible $f(X) \in \mathbb{F}_{p}[X]$ of $\operatorname{deg}(f)=r$,

$$
\mathbb{F}_{q} \cong \mathbb{F}_{p}[X] / f(X)
$$

13 Calculation

Problem 1 Find $(X, Y) \in \mathbb{Z}^{2}$ such that $7 X+12 Y=1$.
Problem 2 Find the inverse of 7 (or more presicely $7+12 \mathbb{Z}$) in $\mathbb{Z} / 12 \mathbb{Z}$.
Problem 3 Find $(X, Y) \in \mathbb{Z}^{2}$ such that $117 X+71 Y=(117,71)$.
Problem 4 Compute $3^{722} \bmod 1001($ where $1001=7 \times 11 \times 13)$.
Problem 5 Find integers X such that $X^{5} \equiv 8(\bmod 21)$.
Problem 6 What are those integers when divided by 5 is remainder 1 ; divided by 7 is remainder 3 ; and divided by 11 is remainder 5 .

$$
\begin{aligned}
& x=1 \bmod 5 \\
& x=3 \bmod 7 \\
& x=5 \bmod 11
\end{aligned}
$$

