[I486S]

暗号プロトコル理論

藤﨑 英一郎

北陸先端科学技術大学院大学

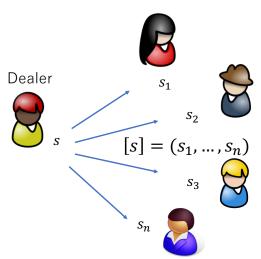
2020年5月19日

本日の講義の内容

- 1 Shamir 秘密分散
- 2 線形性と足し算
- 3 掛け算
- 4 耐受動的攻撃安全なマルチパーティ計算(t < n/2 の場合)
- 5 付録

秘密分散

情報理論的安全な MPC での基本技術。秘密を分割して参加者間で保持。 t 人では秘密が全く漏れない。t+1 人以上で秘密を復元できる。



$$[s] = (s_1, \dots, s_n)$$

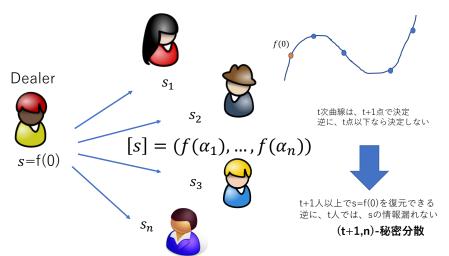
Dealer により、 (n人の) 参 加者にシェアが分配された状 態を示す

t+1人以上でsを復元できる

(t+1,n)-秘密分散

Shamir 秘密分散

Dealer は、多項式 f を s = f(0) かつ deg(f) = t となる条件でランダムに選ぶ。

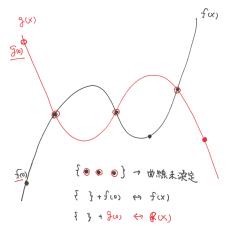


藤崎英一郎 (JAIST) 2020 年 5 月 19 日 4 / 31

多項式の決定から

f(X) の決定 \iff 曲線の $\deg(f) + 1$ 点の決定

- (f(0) 以外の) $\deg(f)$ 点が漏れる \Longrightarrow 秘密 f(0) の情報全くなし
- \bullet $\deg(f)+1$ 点を公開 $\Longrightarrow f(X)$ が決定するので f(0) が決定



Shamir 秘密分散 (formal)

Shamir 秘密分散 SS = (Share, Recon, $\Gamma_{t+1,n}$). $\alpha_1, \ldots, \alpha_n \in K$ はシステムで予め定められた異なる値。

Shamir SS

- Share(*s*):
 - $a_0 := s$ の条件のもと K 係数のランダムな t 次多項式 $f(X) = \sum_{i=0}^t a_i X^i$ を選ぶ。

$$f(X) \leftarrow_R K[X]$$
 such that $\deg(f) = t$ and $a_0 = s$.

- $[s] = (f(\alpha_1), \ldots, f(\alpha_n))$ を出力する。
- Recon(S_Q) ($S_Q = \{f(\alpha_i) | i \in Q \text{ s.t. } Q \in \Gamma_{t+1,n}\}$): s を出力。

$$s = \sum_{i \in Q} \lambda_{i,Q} f(\alpha_i) \text{ where } \lambda_{i,Q} = \prod_{j \in Q \setminus \{i\}} \left(\frac{\alpha_j}{\alpha_j - \alpha_i}\right).$$

Reconstruction vector $(\lambda_{1,Q},...,\lambda_{\#Q,Q})$ は、 S_Q のみで決定することに注意

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ めぬ◎

本日の講義の内容

- 1 Shamir 秘密分散
- 2 線形性と足し算
- ③ 掛け算
- 4 耐受動的攻撃安全なマルチパーティ計算 (t < n/2) の場合)
- 5 付録

線型秘密分散 (Linear Secret Sharing)

 $SS = (Share, Recon, \Gamma_{t+1,n})$ が<mark>線型</mark>秘密分散とは、次の条件を満たすものである。

Linearlity

- SS が秘密分散かつ、
- (Linearlity) 全ての $a, b, \lambda, \rho \in K$, $[a] \leftarrow \text{Share}(a)$, $[b] \leftarrow \text{Share}(b)$, $[\lambda a + \rho b] \leftarrow \text{Share}(\lambda a + \rho b)$ に対して、

$$[\lambda \mathbf{a} + \rho \mathbf{b}] = \lambda[\mathbf{a}] + \rho[\mathbf{b}]$$

が成り立つ。ここで、 $\lambda[a]:=(\lambda a_1,\ldots,\lambda a_n),\ [a]+[b]:=(a_1+b_1,\ldots,a_n+b_n)$ と定義。

すなわち、 P_1, \ldots, P_n 間で秘密 a, b をシェア状態 [a], [b] であるとき、各 P_i がローカルに 手元で $\lambda a_i + \rho b_i$ を計算して(λ, ρ は既知)新たにシェアされる

 $(\lambda a_1 + \rho b_1, \dots, \lambda a_n + \rho b_n)$ が秘密 $\lambda a + \rho b$ をシェアした状態 $[\lambda a + \rho b]$ になることを意味する。

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ● りへ○

Shamir 秘密分散は線型

 $f,g \in K[X]$ $(\deg(f),\deg(g) \leq t)$ に対して次のことは明らか。

線型性

$$[\alpha f(0) + \beta g(0)] = \alpha [f(0)] + \beta [g(0)]$$
 where $\alpha, \beta \in K$.

$$f(X) = a_0 + a_1 X + \dots a_t X^t$$
 および $g(X) = b_0 + b_1 X + \dots b_t X^t$
とする。 $h(X) \triangleq \alpha f(X) + \beta g(X)$ と定義すると、 $\deg(h) \leq t$ で、
$$[h(0)] = (h(\alpha_1), \dots, h(\alpha_n))$$
$$= (\alpha f(\alpha_1) + \beta g(\alpha_1), \dots, \alpha f(\alpha_n) + \beta g(\alpha_n))$$
$$= \alpha [f(0)] + \beta [g(0)]$$

<ロ > < 部 > < き > < き > のQで

Shamir SS の足し算

線形性から簡単に計算できる。

addition

[a], [b]: $a, b \in K$ が P_1, \ldots, P_n 間でシェアされた状態

$$[a] + [b] = [a + b]$$

f,g をそれぞれ a,b をシェアする時の t 次多項式とする。 $f_0 = a, g_0 = b$ で、

$$f(X) = f_0 + f_1 X + \ldots + f_t X^t$$
, and $g(X) = g_0 + g_1 X + \ldots + g_t X^t$.

$$h(X) = f(X) + g(X)$$
 と置くと、 $h(0) = a + b$ と $deg(h) = t$ より

$$[a+b]=(h(\alpha_1),\ldots,h(\alpha_n))$$

 $h(\alpha_i) = f(\alpha_i) + g(\alpha_i)$ であるから、各 P_i がローカルに自分のシェアを足し算すれば、[a+b] と言う状態になる。

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

線型性

本日の講義の内容

- 1 Shamir 秘密分散
- ② 線形性と足し算
- ③ 掛け算
- 4 耐受動的攻撃安全なマルチパーティ計算 (t < n/2) の場合)
- 5 付録

Shamir SSの掛け算(試み)

掛け算は少し工夫がいる。

multiplication

 $[a]_{(t)}, [b]_{(t)}$: $a, b \in K$ が P_1, \ldots, P_n 間で (t+1, n)-SS でシェアされた状態.

$$[a]_{(t)} \cdot [b]_{(t)} = [ab]_{(2t)}$$

が成り立つ。ただし、 $[a] \cdot [b] := (a_1b_1, \ldots, a_nb_n)$ と定義(各 P_i がローカルに自分のシェアを掛け合わせた状態)。

f,g をそれぞれ a,b をシェアする時の t 次多項式とする。 $f_0 = a, g_0 = b$ で、

$$f(X) = f_0 + f_1 X + \ldots + f_t X^t$$
, and $g(X) = g_0 + g_1 X + \ldots + g_t X^t$.

$$h(X) = f(X)g(X)$$
 と置くと、 $h(0) = ab$ と $deg(h) = 2t$ より

$$[ab]_{(2t)} = (f(\alpha_1)g(\alpha_1), \dots, f(\alpha_n)g(\alpha_n))$$

よって、 P_1, \ldots, P_n 間で ab をシェアした状態になるが、2t+1 個のシェアが集まらない ab が復元できない。

4□ > 4回 > 4 = > 4 = > = 90 P

Shamir SSの掛け算(アイデア)

multiplication

Lagrange と線型性により

$$[ab] = [h(0)] = \left[\sum_{i=1}^{n} \lambda_{i,n} h(\alpha_i)\right] = \sum_{i=1}^{n} \lambda_{i,n} [h(\alpha_i)]$$

 $(\lambda_{1,n},\ldots,\lambda_{n,n})$ は $\{\alpha_1,\ldots,\alpha_n\}$ のみから決まる。

h(X) = f(X)g(X) であるから、 $h(\alpha_i) = f(\alpha_i)g(\alpha_i)$. よって、[a], [b] の状態から、[ab] を作るには各 P_i がローカルに $a_ib_i = f(\alpha_i)g(\alpha_i)$ を計算した後、その値のシェアを他の参加者に (t+1,n)-線型秘密分散で配り $[f(\alpha_i)g(\alpha_i)]$ という状態を作り出せば良い。後は線型性からローカルな計算で [ab] の状態に持っていく。

Shamir SSの掛け算(まとめ)

- Input: [a],[b]: a,b がそれぞれ P_1,\ldots,P_n 間でシェアされている
- Output: [ab]: ab が P_1, \ldots, P_n 間でシェアされる
- ① 各 P_i が $c_i = a_i b_i$ をローカルに計算
- ② 各 P_i が c_i を P_1, \ldots, P_n 間で線型秘密分散。 $[c_1], \ldots, [c_n]$ の状態になる。 P_i は、 $c_{1,i}, \ldots, c_{i,i}, \ldots, c_{n,i}$ を、 $[c_1], \ldots, [c_n]$ の自分のシェアとして持つ。
- ③ $i=1,\ldots,n$ に対して、 $\lambda_{i,n}=\prod_{j\neq i}rac{lpha_i}{lpha_j-lpha_i}$ を計算する。
- **4** 各 P_i が $d_i = \sum_{j=1} \lambda_{j,n} c_{j,i}$ を計算する。
- **⑤** $[ab] = (d_1, \ldots, d_n)$ なので、[ab] の状態になる。

[a], [b] の状態から

Shamir SSによるMPCの線型和と積

初期状態 $[a] = (a_1, \ldots, a_n)$, $[b] = (b_1, \ldots, b_n)$: すなわち $a, b \in K$ が P_1, \ldots, P_n 間でシェアされた状態.

線形和と積

$$[a] + [b] = [a + b], -[a] = [-a]$$

線型性から、各 P_i がローカルに a_i+b_i を計算すれば、[a+b] という状態になる。また 各 P_i が $-a_i$ を計算すれば [-a] になる。

$$[ab] = [\sum_{i=1}^{n} \lambda_{i,n} a_i b_i] = \sum_{i=1}^{n} \lambda_{i,n} [a_i b_i].$$

 $(\lambda_{1,n},\ldots,\lambda_{n,n})$ は $\{\alpha_1,\ldots,\alpha_n\}$ のみから決まる。各 P_i がローカルに a_ib_i を計算後、その値を (t+1,n)-線型秘密分散で $[a_ib_i]$ を行う。後は線型性からローカルな計算で [ab] という状態にできる.

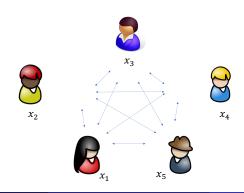
- (ロ) (部) (注) (注) (注) (注) のQの

本日の講義の内容

- 1 Shamir 秘密分散
- 2 線形性と足し算
- ③ 掛け算
- 4 耐受動的攻撃安全なマルチパーティ計算 (t < n/2) の場合)
- 5 付録

マルチパーティ計算

- 参加者: P₁,...,Pn.
- 各 P_i への秘密の入力: $x_i \in \{0,1\}^{\lambda}$
- 全参加者への入力(公開情報): 関数 $F: \{0,1\}^{n\lambda} \to \{0,1\}^*$.
- 各 P_i への出力: $F(x_1,...,x_n)$. より一般的には、参加者ごとに違う出力をすることも許す.
- ネットワーク: Pair-wise private & synchronized.



Secure MPC against Passive Adversaries

- 参加者: P₁,...,P_n.
- 各 P_i への秘密の入力: x_i ∈ {0,1}^λ
- 全参加者への入力: 関数 $F: \{0,1\}^{n\lambda} \to \{0,1\}^*$.
- 各 P_i への出力: F(x₁,...,x_n).
- パラメータ: t, n (t < n/2)
- 不正者:passive, $\mathcal{A}_{t,n}(\triangleq \{A \subset \{1,\ldots,n\} \mid \#A \leq t\})$.

Theorem 1

There is an efficient MPC protocol to evaluate any efficiently computable function F such that the following conditions hold:

- (Perfect Correctness) All players receive $F(x_1, ..., x_n)$ with prob. 1.
- (Perfect Privacy) Any passive $A_{t,n}$ -adversary with t < n/2 learns no information beyond $\{x_i\}_{i \in A_{t,n}}$ and $F(x_1, \ldots, x_n)$ from executing the protocol regardless of their computing power and memory.

藤崎英一郎 (JAIST) 2020 年 5 月 19 日 20 / 31

MPC の構成(準備)

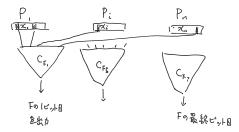
準備

- $F: \{0,1\}^{n\lambda} \to \{0,1\}^*$: 多項式時間計算可能関数
- C_F : F を計算する多項式サイズの AND, OR, NOT で構成された論理 同路
- K: n < #K な有限体
- C_F の論理演算子への入力 $b \in \{0,1\}$ を $b \in \{0,1\}$ $\subset K$ と K の元とみなす。
- AND, OR, NOT の論理ゲートを K 上の演算に置き換える。
 - $b \wedge b' \iff b \cdot b' \in K$.
 - $b \lor b' \iff b + b b \cdot b' \in K$.
 - $\neg b \iff 1 b \in K$.

線形性と ShamirSS の性質があると

関数 F の回路

回路上分解



MPC の構成

- Input sharing phase: 各参加者 P_i は、x_i の各ビット bを (t+1,n)-Shamir SS を使い [b] の状態にする。この結果、全ての参加者の秘密の全てのビットが(線型)秘密分散される。
- Computation phase: 各論理ゲートを秘密分散した形で実行
 - [a] + [b] = [a + b]
 - 1 [a] = [1 a]
 - $[ab] = \sum_{i=1}^n \lambda_{i,n} [a_i b_i]$
- Output reconstruction phase: 出力ゲート結果が秘密分散された状態になっているので、各 P_i は自分の出力ゲート結果に関するシェアを他の参加者に公開(全員に送る)。各 P_i は、出力結果を復元する。

本日の講義の内容

- 1 Shamir 秘密分散
- ② 線形性と足し算
- 3 掛け算
- 4 耐受動的攻撃安全なマルチパーティ計算 (t < n/2) の場合)
- 5 付録

Perfect Privacy I

- 以下の $(f(\alpha_1),\ldots,f(\alpha_n))$ は完全同分布.
 - Original: D は $s := a_0$ とし、 a_1, \ldots, a_t をランダムに決定(f(X) が決定)。D は、 $f(\alpha_1), \ldots, f(\alpha_n)$ を P_1, \ldots, P_n にそれぞれ配る。
 - Dist $_{(\alpha_{i_1},...,\alpha_{i_t})}$: D は s:=f(0) とし、 $f(\alpha_{i_1}),...,f(\alpha_{i_t})$ をランダムに決定 (f(X) が決定). D は、 $f(\alpha_1),...,f(\alpha_n)$ を $P_1,...,P_n$ にそれぞれ配る。
- 任意の $\{\alpha_{i_1}, \dots, \alpha_{i_t}\}$ ($\subset \{\alpha_1, \dots, \alpha_n\}$) に対して $S_T = \{f(\alpha_{i_1}), \dots, f(\alpha_{i_t})\}$ は、s = f(0) と無関係かつ独立になり、よって、これらの値が漏れてもsの情報を含まない。

Perfect Privacy II

(証明) 秘密 s が、 S_T (ここで、 $T \not\in \Gamma_{t+1,n}$)と独立なら良い。 a_1,\ldots,a_t は独立にランダムに選ばれているので、 $i=1,\ldots,t$ ($\ell \leq t$) に対して、 $f(\alpha_i)$ は、f(0) を

$$K_i = \sum_{j=1}^t \alpha_i^j a_j$$

というランダムな値で one-time pad した

$$f(\alpha_i) = f(0) + K_i$$

形になる。さらに K_1, \ldots, K_ℓ は互いに独立になる

$$\begin{pmatrix} f(\alpha_1) \\ \vdots \\ f(\alpha_t) \end{pmatrix} = \begin{pmatrix} f(0) \\ \vdots \\ f(0) \end{pmatrix} + \begin{pmatrix} \alpha_1 & \alpha_1^2 & \dots & \alpha_1^t \\ \dots & \dots & \dots \\ \alpha_\ell & \alpha_\ell^2 & \dots & \alpha_\ell^t \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_t \end{pmatrix}$$

よって、f(0) と S_T は互いに独立。

◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ● り Q C

多項式補間

Theorem 2

Kを体とする。任意の $\{(\alpha_i, y_i)\}_{i=1}^n$ $(\alpha_i, y_i \in K)$ に対して(ただし $\alpha_i \neq \alpha_j$)、

- $y_i = F(\alpha_i)$ for i = 1, ..., n
- $\deg(F(X)) \leq n-1$

となる多項式関数 Y = F(X) が一意に定まる。

この定理(と証明)から

- n 点から補間される Lagrange 多項式 F(X) の次数は n-1 以下(見せかけの次数は n-1)。
- $\deg(f(X)) = t < n-1$ とする。 $\{(\alpha_i, f(\alpha_i)\}_{i=1}^n$ から補間された Lagrange 多項式を F(X) とすると、 $F(X) \equiv f(X)$ (Reconstruction の一意性)。

◆ロト ◆個ト ◆意ト ◆意ト · 意 · からぐ

Theorem 2の証明

 $Q=\{1,\ldots,n\}$ とする。全ての x_i $(i\in Q)$ に対して、 $F(\alpha_i)=y_i$ となるような多項式を一つ考える。 $F(X)=\sum_i \lambda_{i,Q}(X)\cdot y_i$ とおくと

$$\lambda_{i,Q}(\alpha_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

なら条件を満たす。そのような $\lambda_{i,Q}(X)$ は、

$$\lambda_{i,Q}(X) = \frac{\prod_{j \in Q \setminus \{i\}} (X - \alpha_j)}{\prod_{j \in Q \setminus \{i\}} (\alpha_i - \alpha_j)}$$

$$= \frac{(X - \alpha_1) \dots (X - \alpha_{i-1}) \cdot (X - \alpha_i) \cdot (X - \alpha_{i+1}) \dots (X - \alpha_n)}{(\alpha_i - \alpha_1) \dots (\alpha_i - \alpha_{i-1}) \cdot (\alpha_i - \alpha_i) \cdot (\alpha_i - \alpha_{i+1}) \dots (\alpha_i - \alpha_n)}$$

が条件を満たす。さらに、 $\deg(\lambda_{i,Q}) \leq n-1$ より、 $\deg(F) \leq n-1$.

Theorem 2の証明 (続き)

F(X) 以外にも条件を満たす t 次(以下の)多項式 G(X) が存在すると仮定。すなわち

- $y_i = F(\alpha_i) = G(\alpha_i)$ for i = 1, ..., n
- $\deg(F(X)), \deg(G(X)) \leq n-1$

今、H(X) riangleq F(X) - G(X) を考えると、全て $i \in Q$ に対して、 $H(\alpha_i) = 0$. H の次数は 高々 n-1 であるから、n 個の α_i を根に持つためには、 $H(X) \equiv 0$ が必要。よって、 $F(X) \equiv G(X)$ であり、このような多項式は、n-1 次以下では一意に決定する。

<ロ > ← □ ト ← □ ト ← □ ト ← □ ● ・ りへで

Perfect Reconstruction

Lagrange 補間公式から Reconstruction algorithm を構成。

f(X) を次数 $\deg(f)=t$ の多項式とする。任意の $n(\geq t+1)$ の異なる点 α_1,\ldots,α_n の関数値を $f(\alpha_1),\ldots,f(\alpha_n)$ とすると、f(X) は

$$f(X) = \sum_{i=1}^{n} \lambda_{i,n}(X) \cdot f(\alpha_i) \text{ where } \lambda_{i,n}(X) = \prod_{j=1, j \neq i}^{n} \left(\frac{X - \alpha_j}{\alpha_i - \alpha_j} \right)$$

と、 $n(\geq t+1)$ の個数と α_1,\ldots,α_n の選び方によらず一意に復元される。

$$\lambda_i(\alpha_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

かつ、

$$s = f(0) = \sum_{i=1}^{n} \lambda_{i,n}(0) f(\alpha_i)$$

に注意。 $(\lambda_{1,n},\ldots,\lambda_{n,n}):=(\lambda_{1,n}(0),\ldots,\lambda_{n,n}(0))$ を、Shamir SS の α_1,\ldots,α_n での reconstruction vector と呼ぶ.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (や)