
Predictive Labeling

Nao Hirokawa and Aart Middeldorp

Institute of Computer Science

University of Innsbruck

6020 Innsbruck, Austria

{nao.hirokawa,aart.middeldorp}@uibk.ac.at

Abstract. Semantic labeling is a transformation technique for proving

the termination of rewrite systems. The semantic part is given by a

quasi-model of the rewrite rules. In this paper we present a variant of

semantic labeling in which the quasi-model condition is only demanded

for the usable rules induced by the labeling. Our variant is less powerful

in theory but maybe more useful in practice.

1 Introduction

Numerous methods are available for proving the termination of term rewrite sys-
tems, ranging from simplification orders like the Knuth-Bendix order [10], poly-
nomial interpretations [12, 3], and path orders [4, 9], via transformation methods
like semantic labeling [18] and the dependency pair method [1], to recent meth-
ods based on results from automata theory [5, 6].

In this paper we revisit the semantic labeling method of Zantema [18]. In-
vented back in 1995, only recently the method has become available in tools
that aim to prove termination automatically. Zantema implemented a version
with a binary (quasi-)model in his termination prover TORPA [19] for string
rewrite systems. The termination prover TPA [11] developed by Koprowski for
term rewrite systems, additionally employs natural numbers as semantics and
labels. As shown by the performance of TPA in the TRS category of the 2005
termination competition,1 this is surprisingly powerful.

We present a variant of semantic labeling which comes with less constraints
on the part of the semantics. More precisely, our variant does not require that
all rewrite rules of the rewrite system that we want to prove terminating need to
be considered when checking the quasi-model condition. To make the discussion
more concrete, let us consider the following example.

Example 1. Consider the TRS R consisting of the following rewrite rules:

fact(0) → s(0) 0 + y → y

fact(s(x)) → fact(p(s(x))) × s(x) s(x) + y → s(x + y)

p(s(0)) → 0 0 × y → 0

p(s(s(x))) → s(p(s(x))) s(x) × y → (x × y) + y

1 http://www.lri.fr/~marche/termination-competition/2005



This is the leading example from [18] extended with the rule fact(0) → s(0)
and recursive rules for addition and multiplication. These additional rules cause
no problems for the “standard” semantic labeling proof, which employs natural
numbers as semantics and as labels for the function symbol fact, using the natural
interpretations 0N = 0, sN(x) = x + 1, pN(x) = max {x − 1, 0}, x +N y = x + y,
x ×N y = x × y, factN(x) = x! and the labeling function factℓ(x) = x. Note that
the resulting algebra is a model of the rewrite rules of R. By replacing the two
rules

fact(0) → s(0) fact(s(x)) → fact(p(s(x))) × s(x)

with the infinitely many rules

fact0(0) → s(0) facti+1(s(x)) → facti(p(s(x))) × s(x) (∀ i > 0)

the labeled TRS Rlab is obtained. The rules of this TRS are oriented from left
to right by the lexicographic path order induced by the well-founded precedence

facti+1 > facti > · · · > fact0 > × > + > p > s

and hence Rlab is terminating. The soundness of semantic labeling guarantees
that R is terminating, too.

Semantic labeling requires that the algebra defining the semantics is a (quasi-)
model of all rewrite rules of the TRS that we want to prove terminating. This
entails that we need to define semantics for all function symbols occurring in the
TRS. In the variant we present in this paper, we need to define the semantics of
the function symbols that appear below a function symbol that we want to label
as well as the function symbols that depend on them, and the (quasi-)model
condition is required only for the rules that define these function symbols. In
our example, the interpretations of the function symbols +, ×, and fact may be
ignored. Furthermore, the (quasi-)model condition needs to be checked for the
two rules

p(s(0)) → 0 p(s(s(x))) → s(p(s(x)))

only. We prove that this is sound provided an additional condition on the algebras
that may be used in connection with our variant of semantic labeling is imposed.
This condition makes our variant less powerful in theory but maybe more useful
in practice. Our variant is certainly more difficult to prove correct since the
standard proof of transforming a presupposed infinite rewrite sequence into an
infinite labeled rewrite sequence will not work without further ado due to a
lack of semantic information. In the correctness proof we predict this missing
information, which is why we call our variant predictive labeling.

The remainder of the paper is organized as follows. In the next section we
recapitulate the formal definition of semantic labeling. In Section 3 we present
our main result. Some more examples are presented in Section 4 and we conclude
with mentioning some open issues in Section 5.

2



2 Preliminaries

We assume that the reader is familiar with term rewriting [2, 14]. Let R be a
TRS over a signature F and let A = (A, {fA}f∈F) be an F -algebra. A labeling

ℓ for A consists of sets of labels Lf ⊆ A for every f ∈ F together with mappings
ℓf : An → Lf for every n-ary function symbol f ∈ F with Lf 6= ∅. The labeled
signature Flab consists of n-ary function symbols fa for every n-ary function
symbol f ∈ F and label a ∈ Lf together with all function symbols f ∈ F such
that Lf = ∅. The mapping ℓf determines the label of the root symbol f of a
term f(t1, . . . , tn) based on the values of the arguments t1, . . . , tn. Let V be the
set of variables. For every assignment α : V → A the mapping labα : T (F ,V) →
T (Flab,V) is inductively defined as follows:

labα(t) =











t if t is a variable,

f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅,

fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf 6= ∅

where a denotes the label ℓf ([α]A(t1), . . . , [α]A(tn)). The labeled TRS Rlab over
the signature Flab consists of the rewrite rules

labα(l) → labα(r)

for all rules l → r ∈ R and assignments α : V → A.

Theorem 2 (Zantema [18]). Let R be a TRS. Let the algebra A be a non-empty

model of R and let ℓ be a labeling for A. The TRS R is terminating if and only

if the TRS Rlab is terminating. ⊓⊔

The condition that A is a model is somewhat restrictive. A stronger (in the
sense that more terminating TRSs can be transformed into TRSs that can be
proved terminating by simple methods) result is obtained by equipping A with
a well-founded order such that all algebra operations and all labeling functions
are weakly monotone in all coordinates.

A well-founded weakly monotone F -algebra (A, >) consists of a non-empty
F -algebra A = (A, {fA}f∈F) and a well-founded order > on the carrier A of A
such that every algebra operation is weakly monotone in all coordinates, i.e., if
f ∈ F has arity n > 1 then

fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an)

for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai > b. The relation >A on
T (F ,V) is defined as follows: s >A t if [α]A(s) > [α]A(t) for all assignments α.
We say that (A, >) is a quasi-model of a TRS R if R ⊆ >A.

A labeling ℓ for A is called weakly monotone if all labeling functions ℓf are
weakly monotone in all coordinates. The TRS Dec consists of all rewrite rules

fa(x1, . . . , xn) → fb(x1, . . . , xn)

with f an n-ary function symbol, a, b ∈ Lf such that a > b, and x1, . . . , xn

pairwise different variables.

3



Theorem 3 (Zantema [18]). Let R be a TRS, (A, >) a well-founded weakly

monotone quasi-model for R, and ℓ a weakly monotone labeling for (A, >). The

TRS R is terminating if and only if the TRS Rlab ∪ Dec is terminating. ⊓⊔

In [13] it is shown how Theorem 3 can be used to transform any terminating
TRS into a so-called precedence terminating TRS, which are defined as having
the property that there exists a well-founded precedence ⊐ such that root(l) ⊐

f for every rewrite rule l → r and every function symbol f ∈ Fun(r). This
condition ensures that the rewrite rules can be oriented from left to right by
the lexicographic path order induced by the precedence. Needless to say, this
particular transformation is not effective.

We conclude this preliminary section with a simple but useful fact that un-
derlies the dependency pair method [1]. This fact is used to obtain the main
result presented in the next section. The easy proof can be found in [8]. Here
T∞ denotes the set of minimal non-terminating terms in T (F ,V), minimal in
the sense that all arguments are terminating.

Lemma 4. For every term t ∈ T∞ there exists a rewrite rule l → r, a substitu-

tion σ, and a non-variable subterm u of r such that t
>ǫ
−−→∗ lσ

ǫ
−→ rσ D uσ and

lσ, uσ ∈ T∞. ⊓⊔

In the following we do not use the fact that all steps in the rewrite sequence
from t to lσ take place below the root.

3 Predictive Labeling

Our aim is to weaken the quasi-model condition R ⊆ >A in Theorem 3 by
replacing R with the usable rules of the labeling ℓ. The concept of usable rules
originates from [1]. We extend the definition to labelings.

Definition 5. For function symbols f and g we write f �d g if there exists a

rewrite rule l → r ∈ R such that f = root(l) and g is a defined function symbol

in Fun(r). Let ℓ be a labeling and t a term. We define

Gℓ(t) =











∅ if t is a variable,

Fun(t1)
∗ ∪ · · · ∪ Fun(tn)∗ if t = f(t1, . . . , tn) and Lf 6= ∅,

Gℓ(t1) ∪ · · · ∪ Gℓ(tn) if t = f(t1, . . . , tn) and Lf = ∅

where F ∗ denotes the set {g | f �
∗
d

g for some f ∈ F}. Furthermore we define

Gℓ(R) =
⋃

l→r∈R

Gℓ(l) ∪ Gℓ(r).

The set of usable rules for ℓ is defined as U(ℓ) = {l → r ∈ R | root(l) ∈ Gℓ(R)}.

In the following we simply write Gℓ for Gℓ(R).

4



Example 6. With respect to the TRS R and the labeling ℓ restricted to fact in
Example 1 we have Gℓ = {0, p, s}. Since 0 and s are constructors, U(ℓ) consists
of the two rules p(s(0)) → 0 and p(s(s(x))) → s(p(s(x))) that define the function
symbol p.

In our version of semantic labeling we require U(ℓ) ⊆ >A instead of R ⊆ >A.
Moreover, we only need to define semantics for the function symbols in Gℓ.
Without further ado, this would be unsound, as can be seen from the following
example.

Example 7. Consider the non-terminating TRS R (from [16])

f(a, b, x) → f(x, x, x) g(x, y) → x g(x, y) → y

We want to distinguish the two occurrences of the function symbol f. This can
be achieved by an algebra A consisting of the carrier {0, 1, a, b} equipped with
the well-founded order > = {(1, 0)} and the interpretations aA = a and bA = b,
together with the weakly monotone labeling function

ℓf(x, y, z) =

{

1 if x = a and y = b

0 otherwise

We have Gℓ = {a, b} and U(ℓ) = ∅. Obviously U(ℓ) ⊆ >A. The transformed
TRS Rlab ∪ Dec

f1(a, b, x) → f0(x, x, x) g(x, y) → x g(x, y) → y

f1(x, y, z) → f0(x, y, z)

is terminating.

Definition 8. Let A = (A, {fA}f∈F) be an algebra equipped with a proper order

> on its carrier A. We say that (A, >) is a ⊔-algebra if for all finite subsets

X ⊆ A there exists a least upper bound
⊔

X of X in A. We denote
⊔

∅ by ⊥.

Since every element of A is an upper bound of ∅, it follows that ⊥ is the
minimum element of A. This is used in the proof of Lemma 13 below. Note that
the algebra in Example 7 is not a ⊔-algebra as the set {a, b} has no upper bound.

In the remainder of this section we assume that R is a finitely branching

TRS over a signature F , (A, >) with A = (A, {fA}f∈F) a well-founded weakly
monotone ⊔-algebra, and ℓ a weakly monotone labeling for (A, >) such that
U(ℓ) ⊆ >A and fA(a1, . . . , an) = ⊥ for all f /∈ Gℓ and a1, . . . , an ∈ A. The latter
assumption is harmless because function symbols in F \Gℓ are not involved when
computing Rlab or verifying U(ℓ) ⊆ >A.

The if-direction of Theorem 3 is proved in [18] by transforming a presupposed
infinite rewrite sequence in R into an infinite rewrite sequence in Rlab ∪ Dec.
This transformation is achieved by applying the labeling function labα(·) (for an
arbitrary assignment α) to all terms in the infinite rewrite sequence of R. The
key property is that

labα(s) →+

Rlab∪Dec
labα(t)

5



whenever s →R t. In our setting this approach does not work since we lack
sufficient semantic information to label arbitrary terms.

In the following definition an interpretation function [α]∗A(·) is given for all
terminating terms in T (F ,V) which provides more information than the stan-
dard interpretation function [α]A(·). We write SN for the subset of T (F ,V)
consisting of all terminating terms.

Definition 9. Let t ∈ SN and α an assignment. We define the interpretation

[α]∗A(t) inductively as follows:

[α]∗A(t) =











α(x) if t is a variable,

fA([α]∗A(t1), . . . , [α]∗A(tn)) if t = f(t1, . . . , tn) and f ∈ Gℓ,
⊔

{[α]∗A(u) | t →+

R
u} if t = f(t1, . . . , tn) and f /∈ Gℓ.

Note that the recursion in the definition of [α]∗A(·) terminates because the
union of →+

R
and the proper superterm relation ⊲ is a well-founded relation on

SN . Further note that the operation
⊔

is applied only to finite sets as R is
assumed to be finitely branching. The definition of [α]∗A(t) can be viewed as a
semantic version of a transformation of Gramlich [7, Definition 3], which is used
for proving the modularity of collapsing extending (CE) termination of finite
branching TRSs. Here R is CE -terminating if R ∪ {g(x, y) → x, g(x, y) → y}
with g a fresh function symbol is terminating. We remark that every ⊔-algebra
(A, >) satisfies g(x, y) >A x and g(x, y) >A y by taking the interpretation
gA(x, y) =

⊔

{x, y}. Variations of Gramlich’s definition have been more recently
used in [17, 8, 15] to reduce the constraints originating from the dependency pair
method.

The induced labeling function can be defined for terminating and for minimal
non-terminating terms but not for arbitrary terms in T (F ,V).

Definition 10. Let t ∈ SN ∪ T∞ and α an assignment. We define the labeled

term lab∗α(t) inductively as follows:

lab∗α(t) =











t if t is a variable,

f(lab∗α(t1), . . . , lab
∗
α(tn)) if Lf = ∅,

fa(lab∗α(t1), . . . , lab
∗
α(tn)) if Lf 6= ∅

where a = ℓf ([α]∗A(t1), . . . , [α]∗A(tn)).

We illustrate the above definitions on a concrete rewrite sequence with respect
to the factorial example of the introduction.

Example 11. Consider the TRS R and the labeling ℓ restricted to fact of Ex-
ample 1. We assume that fN(x1, . . . , xn) = 0 for all function symbols f ∈
{fact, +,×} and all x1, . . . , xn ∈ N. Consider the rewrite sequence

fact(s(0) + fact(0)) → fact(s(0 + fact(0))) → fact(s(fact(0))) → fact(s(s(0)))

6



and let α be an arbitrary assignment. (Since we deal with ground terms, the
assignment does not matter.) We have

[α]∗N(s(0)) = 1

[α]∗
N
(s(s(0))) = 2

[α]∗N(fact(0)) = [α]∗N(0 + s(0)) =
⊔

{[α]∗N(s(0))} =
⊔

{1} = 1

[α]∗
N
(s(fact(0))) = sN([α]∗

N
(fact(0))) = 1 + 1 = 2

[α]∗N(0 + fact(0)) =
⊔

{[α]∗N(fact(0)), [α]∗N(0 + s(0)), [α]∗N(s(0))} =
⊔

{1} = 1

[α]∗
N
(s(0 + fact(0))) = sN([α]∗

N
(0 + fact(0))) = 1 + 1 = 2

[α]∗
N
(s(0) + fact(0)) =

⊔

{ · · · } = 2

and hence by applying lab∗α(·) to all terms in the above rewrite sequence we
obtain the sequence

fact2(s(0) + fact0(0)) → fact2(s(0 + fact0(0))) → fact2(s(fact0(0)))

→ fact2(s(s(0)))

in Rlab.

The following lemma compares the predicted semantics of an instantiated
terminating term to the original semantics of the uninstantiated term, in which
the substitution becomes part of the assignment.

Definition 12. Given an assignment α and a substitution σ such that σ(x) ∈
SN for all variables x, the assignment α∗

σ is defined as [α]∗A ◦ σ and the substi-

tution σlab∗

α

as lab∗α ◦ σ.

Lemma 13. If tσ ∈ SN then [α]∗A(tσ) > [α∗
σ]A(t). If in addition Fun(t) ⊆ Gℓ

then [α]∗A(tσ) = [α∗
σ]A(t).

Proof. We use structural induction on t. If t is a variable then

[α]∗A(tσ) = ([α]∗A ◦ σ)(t) = [α∗
σ]A(t).

Suppose t = f(t1, . . . , tn). We distinguish two cases.

1. If f ∈ Gℓ then

[α]∗A(tσ) = fA([α]∗A(t1σ), . . . , [α]∗A(tnσ))

> fA([α∗
σ]A(t1), . . . , [α

∗
σ]A(tn))

= [α∗
σ]A(t)

where the inequality follows from the induction hypothesis (note that tiσ ∈
SN for all i = 1, . . . , n) and the weak monotonicity of fA. If Fun(t) ⊆ Gℓ

then Fun(ti) ⊆ Gℓ and the inequality is turned into an equality.

7



2. If f /∈ Gℓ then fA(a1, . . . , an) = ⊥ for all a1, . . . , an ∈ A and thus

[α]∗A(tσ) > ⊥ = [α∗
σ]A(t)

In this case Fun(t) ⊆ Gℓ does not hold, so the second part of the lemma
holds vacuously. ⊓⊔

The next two lemmata do the same for labeled terms. Since the label of a
function symbol depends on the semantics of its arguments, we can deal with
minimal non-terminating terms.

Lemma 14. Let tσ ∈ SN ∪ T∞. If Fun(t1) ∪ · · · ∪ Fun(tn) ⊆ Gℓ when t =
f(t1, . . . , tn) then lab∗α(tσ) = labα∗

σ

(t)σlab∗

α

.

Proof. We use structural induction on t. If t is a variable then

lab∗α(tσ) = tσlab∗

α

= labα∗

σ

(t)σlab∗

α

.

Suppose t = f(t1, . . . , tn). The induction hypothesis yields

lab∗α(tiσ) = labα∗

σ

(ti)σlab∗

α

for i = 1, . . . , n. We distinguish two cases.

1. If Lf = ∅ then

lab
∗
α(tσ) = f(lab∗α(t1σ), . . . , lab∗α(tnσ))

= f(labα∗

σ

(t1)σlab∗

α

, . . . , labα∗

σ

(tn)σlab∗

α

)

= f(labα∗

σ

(t1), . . . , labα∗

σ

(tn))σlab∗

α

= labα∗

σ

(f(t1, . . . , tn))σlab∗

α

.

2. If Lf 6= ∅ then

lab∗α(tσ) = fa(lab∗α(t1σ), . . . , lab∗α(tnσ))

= fa(labα∗

σ

(t1)σlab∗

α

, . . . , labα∗

σ

(tn)σlab∗

α

)

= fa(labα∗

σ

(t1), . . . , labα∗

σ

(tn))σlab∗

α

and

labα∗

σ

(t)σlab∗

α

= fb(labα∗

σ

(t1), . . . , labα∗

σ

(tn))σlab∗

α

with a = ℓf([α]∗A(t1σ), . . . , [α]∗A(tnσ)) and b = ℓf([α∗
σ ]A(t1), . . . , [α

∗
σ]A(tn)).

Because Fun(ti) ⊆ Gℓ, Lemma 13 yields [α]∗A(tiσ) = [α∗
σ]A(ti), for all i =

1, . . . , n. Hence a = b and therefore lab∗α(tσ) = labα∗

σ

(t)σlab∗

α

as desired. ⊓⊔

Lemma 15. If tσ ∈ SN ∪ T∞ then lab∗α(tσ) →∗
Dec labα∗

σ

(t)σlab∗

α

.

Proof. We use structural induction on t. If t is a variable then we obtain lab∗α(tσ)
= labα∗

σ

(t)σlab∗

α

from Lemma 14. Suppose t = f(t1, . . . , tn). Note that t1, . . . , tn ∈
SN . The induction hypothesis yields lab∗α(tiσ) →∗

Dec labα∗

σ

(ti)σlab∗

α

for all i =
1, . . . , n. We distinguish two cases.

8



1. If Lf = ∅ then

lab∗α(tσ) = f(lab∗α(t1σ), . . . , lab∗α(tnσ))

→∗
Dec f(labα∗

σ

(t1)σlab∗

α

, . . . , labα∗

σ

(tn)σlab∗

α

)

= f(labα∗

σ

(t1), . . . , labα∗

σ

(tn))σlab∗

α

= labα∗

σ

(f(t1, . . . , tn))σlab∗

α

.

2. If Lf 6= ∅ then

lab∗α(tσ) = fa(lab∗α(t1σ), . . . , lab∗α(tnσ))

→∗
Dec fa(labα∗

σ

(t1)σlab∗

α

, . . . , labα∗

σ

(tn)σlab∗

α

)

and

labα∗

σ

(t)σlab∗

α

= fb(labα∗

σ

(t1), . . . , labα∗

σ

(tn))σlab∗

α

= fb(labα∗

σ

(t1)σlab∗

α

, . . . , labα∗

σ

(tn)σlab∗

α

)

with a = ℓf([α]∗A(t1σ), . . . , [α]∗A(tnσ)) and b = ℓf([α∗
σ ]A(t1), . . . , [α

∗
σ]A(tn)).

Lemma 13 yields [α]∗A(tiσ) > [α∗
σ]A(ti) for all i = 1, . . . , n. Because the

labeling function ℓf is weakly monotone in all its coordinates, a > b. If a > b
then Dec contains the rewrite rule fa(x1, . . . , xn) → fb(x1, . . . , xn) and thus
(also if a = b)

fa(labα∗

σ

(t1)σlab∗

α

, . . . , labα∗

σ

(tn)σlab∗

α

) →=
Dec labα∗

σ

(t)σlab∗

α

.

We conclude that lab∗α(tσ) →∗
Dec labα∗

σ

(t)σlab∗

α

. ⊓⊔

The next lemma states that the rewrite sequence in Lemma 15 is empty when
t is a subterm of the right-hand side of a rule.

Lemma 16. If l → r ∈ R and t E r such that tσ ∈ SN ∪ T∞ then lab∗α(tσ) =
labα∗

σ

(t)σlab∗

α

.

Proof. We use structural induction on t. If t is a variable then we obtain

lab∗α(tσ) = labα∗

σ

(t)σlab∗

α

from Lemma 14. Suppose t = f(t1, . . . , tn). The induction hypothesis yields
lab∗α(tiσ) = labα∗

σ

(ti)σlab∗

α

for all i = 1, . . . , n. If Lf = ∅ then we obtain
lab∗α(tσ) = labα∗

σ

(t)σlab∗

α

as in the proof of Lemma 14. If Lf 6= ∅ then Fun(t1)∪
· · · ∪ Fun(tn) ⊆ Gℓ by the definition of Gℓ. Since tiσ ∈ SN , we have tσ ∈ T∞
and therefore Lemma 14 yields lab∗α(tσ) = labα∗

σ

(t)σlab∗

α

. ⊓⊔

We are now ready for the key lemma, which states that rewrite steps between
terminating and minimal non-terminating terms can be labeled.

Lemma 17. Let s, t ∈ SN ∪ T∞. If s →R t then lab∗α(s) →+

Rlab∪Dec
lab∗α(t).

9



Proof. Write s = C[lσ] and t = C[rσ]. We use structural induction on the
context C. If C = 2 then

lab∗α(s) = lab∗α(lσ) →∗
Dec labα∗

σ

(l)σlab∗

α

→Rlab
labα∗

σ

(r)σlab∗

α

= lab∗α(rσ)

using Lemmata 15 and 16. Let C = f(s1, . . . , C
′, . . . , sn). The induction hypoth-

esis yields lab∗α(C′[lσ]) →+

Rlab∪Dec
lab∗α(C′[rσ]). We distinguish two cases.

1. If Lf = ∅ then

lab
∗
α(s) = f(lab∗α(s1), . . . , lab

∗
α(C′[lσ]), . . . , lab∗α(sn))

→+

Rlab∪Dec
f(lab∗α(s1), . . . , lab

∗
α(C′[rσ]), . . . , lab∗α(sn))

= lab∗α(t).

2. If Lf 6= ∅ then

lab∗α(s) = fa(lab∗α(s1), . . . , lab
∗
α(C′[lσ]), . . . , lab∗α(sn))

→+

Rlab∪Dec
fa(lab∗α(s1), . . . , lab

∗
α(C′[rσ]), . . . , lab∗α(sn))

with
a = ℓf ([α]∗A(s1), . . . , [α]∗A(C′[lσ]), . . . , [α]∗A(sn))

and

lab∗α(t) = fb(lab
∗
α(s1), . . . , lab

∗
α(C′[rσ]), . . . , lab∗α(sn))

with
b = ℓf ([α]∗A(s1), . . . , [α]∗A(C′[rσ]), . . . , [α]∗A(sn))

If we can show that

[α]∗A(C′[lσ]) > [α]∗A(C′[rσ]) (1)

then a > b by weak monotonicity of ℓf and thus

fa(lab∗α(s1), . . . , lab
∗
α(C′[rσ]), . . . , lab∗α(sn)) →=

Dec lab
∗
α(t).

We prove (1) by structural induction on C′.
(a) First assume that C′ = 2. We distinguish two cases. If root(lσ) =

root(l) ∈ Gℓ then l → r ∈ U(ℓ) and Fun(r) ⊆ Gℓ according to the
definition of Gℓ. Hence

[α]∗A(lσ) > [α∗
σ]A(l)

by Lemma 13,
[α∗

σ]A(l) > [α∗
σ]A(r)

since l >A r due to the assumption U(ℓ) ⊆ >A, and

[α∗
σ]A(r) = [α]∗A(rσ)

10



by another application of Lemma 13. The combination yields the desired
[α]∗A(lσ) > [α]∗A(rσ). If root(lσ) = root(l) /∈ Gℓ then

[α]∗A(lσ) =
⊔

{[α]∗A(u) | lσ →+

R
u}

Because lσ →R rσ, [α]∗A(rσ) ∈ {[α]∗A(u) | lσ →+

R
u} and thus also in

this case [α]∗A(lσ) > [α]∗A(rσ).
(b) Next assume that C′ = g(u1, . . . , C

′′, . . . , um). The induction hypothesis
yields [α]∗A(C′′[lσ]) > [α]∗A(C′′[rσ]). If g ∈ Gℓ then

[α]∗A(C′[lσ]) = gA([α]∗A(u1), . . . , [α]∗A(C′′[lσ]), . . . , [α]∗A(um))

and

[α]∗A(C′[rσ]) = gA([α]∗A(u1), . . . , [α]∗A(C′′[rσ]), . . . , [α]∗A(um))

and thus [α]∗A(C′[lσ]) > [α]∗A(C′[rσ]) by the weak monotonicity of gA. If
g /∈ Gℓ then

[α]∗A(C′[lσ]) =
⊔

{[α]∗A(u) | C′[lσ] →+

R
u}

Because C′[lσ] →R C′[rσ], [α]∗A(C′[rσ]) ∈ {[α]∗A(u) | C′[lσ] →+

R
u} and

thus [α]∗A(C′[lσ]) > [α]∗A(C′[rσ]). ⊓⊔

We now have all the ingredients to prove the soundness of predictive labeling.

Theorem 18. Let R be a TRS, (A, >) a well-founded weakly monotone ⊔-

algebra, and ℓ a weakly monotone labeling for (A, >) such that U(ℓ) ⊆ >A.

If Rlab ∪ Dec is terminating then R is terminating.

Proof. According to Lemma 4 for every term t ∈ T∞ there exist a rewrite rule
l → r ∈ R, a substitution σ, and a subterm u of r such that

t
>ǫ
−−→∗ lσ

ǫ
−→ rσ D uσ

and lσ, uσ ∈ T∞. Let α be an arbitrary assignment. We will apply lab∗α to the
terms in the above sequence. From Lemma 17 we obtain

lab∗α(t) →∗
Rlab∪Dec lab∗α(lσ).

Since rσ need not be an element of T∞, we cannot apply Lemma 17 to the step
lσ

ǫ
−→ rσ. Instead we use Lemma 15 to obtain

lab∗α(lσ) →∗
Dec labα∗

σ

(l)σlab∗

α

.

Since labα∗

σ

(l) → labα∗

σ

(r) ∈ Rlab,

labα∗

σ

(l)σlab∗

α

→Rlab
labα∗

σ

(r)σlab∗

α

.

11



Because u is a subterm of r, labα∗

σ

(r)σlab∗

α

D labα∗

σ

(u)σlab∗

α

. Lemma 16 yields
labα∗

σ

(u)σlab∗

α

= lab∗α(uσ). Putting everything together, we obtain

lab∗α(t) →+

Rlab∪Dec
· D lab∗α(uσ).

Now suppose that R is non-terminating. Then T∞ is non-empty and thus there
is an infinite sequence

t1
>ǫ
−−→∗ ·

ǫ
−→ · D t2

>ǫ
−−→∗ ·

ǫ
−→ · D t3

>ǫ
−−→∗ ·

ǫ
−→ · D · · ·

By the above argument, this sequence is transformed into

lab∗α(t1) →
+

Rlab∪Dec
· D lab∗α(t2) →

+

Rlab∪Dec
· D lab∗α(t3) →

+

Rlab∪Dec
· D · · ·

By introducing appropriate contexts, the latter sequence gives rise to an infinite
rewrite sequence in Rlab ∪ Dec, contradicting the assumption that the latter
system is terminating. ⊓⊔

We conclude this section by showing that, due to the least upper bound
condition on the algebras that may be used in connection with Theorem 18,
predictive labeling does not succeed in transforming every terminating TRS into
a precedence terminating TRS.

Example 19. The one-rule TRS R = {f(a, b, x) → f(x, x, x)} is terminating but
not precedence terminating. Suppose R can be transformed by predictive la-
beling into a precedence terminating TRS. This is only possible if the two
occurrences of f get a different label. Let A = (A, {fA, aA, bA}) be a well-
founded weakly monotone ⊔-algebra and ℓ a weakly monotone labeling such
that U(ℓ) ⊆ >A and Rlab ∪ Dec is precedence terminating. Since Lf 6= ∅, the
labeling function ℓf exists and we must have ℓf(aA, bA, x) 6= ℓf(x, x, x) for all
x ∈ A. Take x =

⊔

{aA, bA}. Since x > aA and x > bA, we obtain

a = ℓf(x, x, x) > ℓf(aA, bA, x) = b

from the weak monotonicity of ℓf . Since we cannot have a = b, a > b must
hold. Hence Dec contains the rule fa(x, y, z) → fb(x, y, z) whereas Rlab contains
the rule fb(a, b, x) → fa(x, x, x) It follows that Rlab ∪ Dec cannot be precedence
terminating, contradicting our assumption.

4 Examples

In this section we present two more examples.

Example 20. Consider the TRS R consisting of the following rewrite rules:

1 : x − 0 → x 6: gcd(0, y) → y

2: s(x) − s(y) → x − y 7: gcd(s(x), 0) → s(x)

3 : 0 ≤ y → true 8: gcd(s(x), s(y)) → ifgcd(y ≤ x, s(x), s(y))

4 : s(x) ≤ 0 → false 9: ifgcd(true, s(x), s(y)) → gcd(x − y, s(y))

5 : s(x) ≤ s(y) → x ≤ y 10: ifgcd(false, s(x), s(y)) → gcd(y − x, s(x))

12



We use the interpretations

0N = trueN = falseN = ≤N(x, y) = 0 sN(x) = x + 1 −N(x, y) = x

and the labeling

ℓgcd(x, y) = x + y ℓifgcd(x, y, z) = y + z

We have Gℓ = {0, s, true, false,≤,−} and thus U(ℓ) = {1, 2, . . . , 5}. One easily
checks that U(ℓ) ⊆ >N. The TRS Rlab consists of the rewrite rules

1 : x − 0 → x

2: s(x) − s(y) → x − y

3: 0 ≤ y → true

4: s(x) ≤ 0 → false

5: s(x) ≤ s(y) → x ≤ y

6′ : gcdj(0, y) → y

7′ : gcdi+1(s(x), 0) → s(x)

8′ : gcdi+j+2(s(x), s(y)) → ifgcdi+j+2(y ≤ x, s(x), s(y))

9′ : ifgcdi+j+2(true, s(x), s(y)) → gcdi+j+1(x − y, s(y))

10′ : ifgcdi+j+2(false, s(x), s(y)) → gcdi+j+1(y − x, s(x))

for all i, j > 0 and the TRS Dec consists of the rules gcdi(x, y) → gcdj(x, y) and
ifgcdi(x, y, z) → ifgcdj(x, y, z) for all i > j > 0. Their union is oriented from left
to right by the lexicographic path order induced by the well-founded precedence

ifgcdi+1 > gcdi+1 > ifgcdi > gcdi > · · · > gcd0 > − > ≤ > true > false

and hence terminating. Theorem 18 yields the termination of R.

Example 21. Consider the TRS R consisting of the following rewrite rules:

1 : half(0) → 0 4: bits(0) → 0

2: half(s(0)) → 0 5: bits(s(x)) → s(bits(half(s(x))))

3 : half(s(s(x))) → s(half(x))

We use the interpretations

0N = 0 sN(x) = x + 1 halfN(x) = max {x − 1, 0}

and the labeling ℓbit(x) = x. We have Gℓ = {0, s, half} and U(ℓ) = {1, 2, 3}.
Clearly U(ℓ) ⊆ >N. The TRS Rlab consists of the rewrite rules

1 : half(0) → 0 4′ : bits0(0) → 0

2: half(s(0)) → 0 5′ : bitsi+1(s(x)) → s(bitsi(half(s(x))))

3 : half(s(s(x))) → s(half(x))

13



for all i > 0 and the TRS Dec consists of the rules bitsi(x) → bitsj(x) for all
i > j > 0. Their union is oriented from left to right by the lexicographic path
order induced by the well-founded precedence

bitsi+1 > bitsi > · · · > bits0 > half > s > 0

and thus we conclude that R is terminating.

5 Conclusion

Predictive labeling (Theorem 18) is a variant of the quasi-model version of se-
mantic labeling (Theorem 3). A natural question is whether the usable rules
refinement is also applicable to the model version of semantic labeling (The-
orem 2). This would be interesting not so much because we would get rid of
the rewrite rules in Dec but especially because without the weak monotonicity
condition more labeling functions are possible. The termination prover TORPA
mentioned in the introduction implements both versions of semantic labeling for
that reason. Unfortunately, it is not immediately clear how the definitions and
proofs in Section 3 have to be modified in order to obtain a model version of
predictive labeling.

Although the example at the end of Section 3 shows that predictive labeling
is less powerful than semantic labeling, we believe that predictive labeling may
be more useful when it comes to automation. First note that the algebras used in
the implementations of semantic labeling mentioned in the introduction, {0, 1}
and N equipped with the standard order, are ⊔-algebras. Second, the usable
rules induced by the labeling are often a small subset of the set of all rewrite
rules. Hence the possibility of finding a suitable interpretation increases while
at the same time the search space decreases. The overhead of computing U(ℓ)
is negligible. Therefore we believe that termination provers that incorporate
semantic labeling may benefit from our result. In the version of semantic labeling
implemented in TPA [11] all function symbols are labeled. This entails that most
rewrite rules are usable. As a consequence the termination proving power of TPA
is only modestly increased by predictive labeling (Adam Koprowski, personal
communication).

Acknowledgments

We thank Adam Koprowski, Georg Moser, and the anonymous referees for sev-
eral suggestions to improve the presentation.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.

14



3. A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial

interpretations and its implementation. Science of Computer Programming, 9:137–

159, 1987.

4. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Sci-

ence, 17:279–301, 1982.

5. A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting. Appli-

cable Algebra in Engineering, Communication and Computing, 15:149–171, 2004.

6. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that

certify termination of left-linear term rewriting systems. In Proceedings of the 16th

International Conference on Rewriting Techniques and Applications, volume 3467

of Lecture Notes Computer Science, pages 353–367, 2005.

7. B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-

ing. Applicable Algebra in Engineering, Communication and Computing, 5:131–158,

1994.

8. N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proceedings of the

16th International Conference on Rewriting Techniques and Applications, volume

3091 of Lecture Notes Computer Science, pages 249–268, 2004.

9. S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering. Un-

published manuscript, University of Illinois, 1980.

10. D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,

editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon

Press, 1970.

11. A. Koprowski. TPA: Termination proved automatically. In Proceedings of the 17th

International Conference on Rewriting Techniques and Applications, Lecture Notes

Computer Science, 2006. This volume.

12. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report

MTP-3, Louisiana Technical University, 1979.

13. A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination by self-

labelling. In Proceedings of the 13th International Conference on Automated De-

duction, volume 1104 of Lecture Notes in Artificial Intelligence, pages 373–386,

1996.

14. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.

15. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination

proofs using dependency pairs. In Proceedings of the 2nd International Joint Con-

ference on Automated Reasoning, volume 3097 of Lecture Notes in Artificial Intel-

ligence, pages 75–90, 2004.

16. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Information Processing Letters, 25:141–143, 1987.

17. X. Urbain. Modular & incremental automated termination proofs. Journal of

Automated Reasoning, 32:315–355, 2004.

18. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta

Informaticae, 24:89–105, 1995.

19. H. Zantema. TORPA: Termination of rewriting proved automatically. In Proceed-

ings of the 15th International Conference on Rewriting Techniques and Applica-

tions, Lecture Notes Computer Science, pages 95–104, 2004.

15


