
Uncurrying for Termination?

Nao Hirokawa1, Aart Middeldorp2, and Harald Zankl2

1 School of Information Science
Japan Advanced Institute of Science and Technology, Japan

hirokawa@jaist.ac.jp
2 Institute of Computer Science
University of Innsbruck, Austria

{aart.middeldorp,harald.zankl}@uibk.ac.at

Abstract. First-order applicative term rewrite systems provide a natu-
ral framework for modeling higher-order aspects. In this paper we present
a transformation from untyped applicative term rewrite systems to func-
tional term rewrite systems that preserves and reflects termination. Our
transformation is less restrictive than other approaches. In particular,
head variables in right-hand sides of rewrite rules can be handled. To
further increase the applicability of our transformation, we present a
version for dependency pairs.

1 Introduction

In this paper we are concerned with proving termination of first-order applicative
term rewrite systems. These systems provide a natural framework for modeling
higher-order aspects found in functional programming languages. The signature
of an applicative term rewrite system consists of constants and a single binary
function symbol called application and denoted by the infix and left-associative
symbol ◦. Proving termination of applicative term rewrite systems is challenging
because the rewrite rules lack sufficient structure. As a consequence, simplifica-
tion orders are not effective as ◦ is the only function symbol of non-zero arity.
Moreover, the dependency pair method is of little help as ◦ is the only defined
non-constant symbol.

The main contribution of this paper is a new transformation that recovers
the structure in applicative rewrite rules. Our transformation can deal with par-
tial applications as well as head variables in right-hand sides of rewrite rules.
The key ingredient is the addition of sufficiently many uncurrying rules to the
transformed system. These rules are also crucial for a smooth transition into
the dependency pair framework. Unlike the transformation of applicative depen-
dency pair problems presented in [10, 17], our uncurrying processor preserves
minimality (cf. Section 6), which means that it can be used at any node in a
modular (non-)termination proof attempt.
? This research is supported by FWF (Austrian Science Fund) project P18763, Grant-

in-Aid for Young Scientists 20800022 of the Ministry of Education, Culture, Sports,
Science and Technology of Japan, and STARC.



The remainder of this paper is organised as follows. After recalling existing
results in Section 2, we present a new uncurrying transformation and prove that
it is sound and complete for termination in Section 3. Despite its simplicity, the
transformation has some subtleties which are illustrated by several examples.
Two extensions to the dependency pair framework are presented in Section 4.
Our results are empirically evaluated in Section 5 and we conclude with a dis-
cussion of related work in Section 6. Parts of Section 3 were first announced
in a note by the first two authors that was presented at the 3rd International
Workshop on Higher-Order Rewriting (Seattle, 2006).

2 Preliminaries

We assume familiarity with term rewriting [5] in general and termination [20] in
particular.

Definition 1. An applicative term rewrite system (ATRS for short) is a TRS
over a signature that consists of constants and a single binary function symbol
called application denoted by the infix and left-associative symbol ◦. In examples
we often use juxtaposition instead of ◦.

Every ordinary TRS can be transformed into an applicative rewrite system
by currying.

Definition 2. Let F be a signature. The currying system C(F) consists of the
rewrite rules fi+1(x1, . . . , xi, y) → fi(x1, . . . , xi) ◦ y for every n-ary function
symbol f ∈ F and every 0 6 i < n. Here fn = f and, for every 0 6 i < n, fi is
a fresh function symbol of arity i.

The currying system C(F) is confluent and terminating. Hence every term t
has a unique normal form t↓C(F).

Definition 3. Let R be a TRS over the signature F . The curried system R↓C(F)

is the ATRS consisting of the rules l↓C(F) → r↓C(F) for every l → r ∈ R. The
signature of R↓C(F) contains the application symbol ◦ and a constant f0 for every
function symbol f ∈ F .

In the following we write R↓C for R↓C(F) whenever F can be inferred from
the context or is irrelevant. Moreover, we write f for f0.

Example 4. The TRSR = {0+y → y, s(x)+y → s(x+y)} is transformed into the
ATRS R↓C = {+ 0 y → y,+ (s x) y → s (+ x y)}. Every rewrite sequence in R
can be transformed into a sequence in R↓C , but the reverse does not hold. For
instance, with respect to the above example, the rewrite step + (s (+ 0)) 0 →
s (+ (+ 0) 0) in R↓C does not correspond to a rewrite step in R. Nevertheless,
termination of R implies termination of R↓C .

Theorem 5 (Kennaway et al. [15]). A TRS R is terminating if and only if R↓C
is terminating. ut

2



As an immediate consequence we get the following transformation method
for proving termination of ATRSs.

Corollary 6. An ATRS R is terminating if and only if there exists a terminat-
ing TRS S such that S↓C = R (modulo renaming). ut

In [10] this method is called transformation A. As can be seen from the
following example, the method does not handle partially applied terms and,
more seriously, head variables. Hence the method is of limited applicability as it
cannot cope with the higher-order aspects modeled by ATRSs.

Example 7. Consider the ATRS R (from [2])

1 : id x→ x 4: map f nil→ nil

2: add 0→ id 5: map f (: x y)→ : (f x) (map f y)
3 : add (s x) y → s (add x y)

Rules 1 and 4 are readily translated into functional form: id1(x) → x and
map2(f, nil) → nil. However, we cannot find functional forms for rules 2 and
3 because the ‘arity’ of add is 1 in rule 2 and 2 in rule 3. Because of the presence
of the head variable f in the subterm f x, there is no functional term t such
that t↓C = : (f x) (map f y). Hence also rule 5 cannot be transformed.

3 Uncurrying

In this section we present an uncurrying transformation that can deal with
ATRSs like in Example 7. Throughout this section we assume that R is an
ATRS over a signature F .

Definition 8. The applicative arity aa(f) of a constant f ∈ F is defined as the
maximum n such that f ◦ t1 ◦ · · · ◦ tn is a subterm in the left- or right-hand side
of a rule in R. This notion is extended to terms as follows:

aa(t) =

{
aa(f) if t is a constant f
aa(t1)− 1 if t = t1 ◦ t2

Note that aa(t) is undefined if the head symbol of t is a variable.

Definition 9. The uncurrying system U(F) consists of the following rewrite
rules fi(x1, . . . , xi) ◦ y → fi+1(x1, . . . , xi, y) for every constant f ∈ F and every
0 6 i < aa(f). Here f0 = f and, for every i > 0, fi is a fresh function symbol
of arity i. We say that R is left head variable free if aa(t) is defined for every
non-variable subterm t of a left-hand side of a rule in R. This means that no
subterm of a left-hand side in R is of the form t1 ◦ t2 where t1 is a variable.

The uncurrying system U(F), or simply U , is confluent and terminating.
Hence every term t has a unique normal form t↓U .

3



Definition 10. The uncurried system R↓U is the TRS consisting of the rules
l↓U → r↓U for every l→ r ∈ R.

Example 11. The ATRS R of Example 7 is transformed into R↓U :

id1(x)→ x map2(f, nil)→ nil

add1(0)→ id map2(f, :2(x, y))→ :2(f ◦ x,map2(f, y))
add2(s1(x), y)→ s1(add2(x, y))

The TRS R↓U is an obvious candidate for S in Corollary 6. However, as can
be seen from the following example, the rules of R↓U are not enough to simulate
an arbitrary rewrite sequence in R.

Example 12. The non-terminating ATRS R = {id x→ x, f x→ id f x} is trans-
formed into the terminating TRS R↓U = {id1(x) → x, f1(x) → id2(f, x)}. Note
that R↓U↓C = {id1 x→ x, f1 x→ id2 f x} is different from R.

In the above example we need rules that connect id2 and id1 as well as f1 and
f. The natural idea is now to add U(F). In the following we write U+(R,F) for
R↓U(F) ∪U(F). If F can be inferred from the context or is irrelevant, U+(R,F)
is abbreviated to U+(R).

Example 13. Consider the ATRS R in Example 12. We have aa(id) = 2 and
aa(f) = 1. The TRS U+(R) consists of the following rules

id1(x)→ x id ◦ x→ id1(x) f ◦ x→ f1(x)
f1(x)→ id2(f, x) id1(x) ◦ y → id2(x, y)

and is easily shown to be terminating.

As the above example shows, we do not yet have a sound transformation. The
ATRSR admits the cycle f x→ id f x→ f x. In U+(R) we have f1(x)→ id2(f, x)
but the term id2(f, x) does not rewrite to f1(x). It would if the rule id x y → x y
were present in R. This inspires the following definition.

Definition 14. Let R be a left head variable free ATRS. The η-saturated ATRS
Rη is the smallest extension of R such that l ◦ x → r ◦ x ∈ Rη whenever
l→ r ∈ Rη and aa(l) > 0. Here x is a variable that does not appear in l→ r.

The rules added during η-saturation do not affect the termination behaviour
of R, according to the following lemma whose straightforward proof is omitted.
Moreover, Rη is left head variable free if and only if R is left head variable free.

Lemma 15. If R is a left head variable free ATRS then →R =→Rη . ut

We can now state the main result of this section.

Theorem 16. A left head variable free ATRS R is terminating if U+(Rη) is
terminating.

4



It is important to note that the applicative arities used in the definition of
U+(Rη) are computed before η-saturation.

Example 17. The non-terminating ATRS R = {f → g a, g → f} is transformed
into U+(Rη) = {f → g1(a), g→ f, g1(x)→ f◦x, g◦x→ g1(x)} because aa(f) = 0.
The resulting TRS is non-terminating. Uncurrying with aa(f) = 1 produces the
terminating TRS {f → g1(a), g→ f, g1(x)→ f1(x), g ◦ x→ g1(x), f ◦ x→ f1(x)}.

Before presenting the proof of Theorem 16, we revisit Example 7.

Example 18. Consider again the ATRS R of Example 7. Proving termination of
the transformed TRS U+(Rη)

id1(x)→ x : ◦ x→ :1(x) id ◦ x→ id1(x)
add1(0)→ id :1(x) ◦ y → :2(x, y) add ◦ x→ add1(x)

add2(0, y)→ id1(y) add1(x) ◦ y → add2(x, y)
add2(s1(x), y)→ s1(add2(x, y)) s ◦ x→ s1(x)

map2(f, nil)→ nil map ◦ x→ map1(x)
map2(f, :2(x, y))→ :2(f ◦ x,map2(f, y)) map1(x) ◦ y → map2(x, y)

is straightforward with the dependency pair method (recursive SCC algorithm
with three applications of the subterm criterion).

The following two lemmata state factorisation properties which are used in
the proof of Theorem 16. The easy induction proofs are omitted.

Lemma 19. Let s and t be terms. If aa(s) > 0 then s↓U ◦ t↓U →∗U (s ◦ t)↓U . If
aa(s) 6 0 or if aa(s) is undefined then s↓U ◦ t↓U = (s ◦ t)↓U . ut

For a substitution σ, we write σ↓U for the substitution {x 7→ σ(x)↓U | x ∈ V}.

Lemma 20. Let σ be a substitution. For every term t, t↓Uσ↓U →∗U (tσ)↓U . If t
is head variable free then t↓Uσ↓U = (tσ)↓U . ut

Proof (of Theorem 16). We show that s↓U →+
U+(Rη) t↓U whenever s→Rη t. This

entails that any infinite Rη derivation is transformed into an infinite U+(Rη)
derivation. The theorem follows from this observation and Lemma 15. Let s =
C[lσ] and t = C[rσ] with l → r ∈ Rη. We use induction on the size of the
context C.

– If C = 2 then s↓U = (lσ)↓U = l↓Uσ↓U and r↓Uσ↓U →∗U (rσ)↓U = t↓U by
Lemma 20. Hence s↓U →+

U+(Rη) t↓U .
– Suppose C = 2 ◦ s1 ◦ · · · ◦ sn and n > 0. Since Rη is left head variable free,

aa(l) is defined. If aa(l) = 0 then

s↓U = (lσ ◦ s1 ◦ · · · ◦ sn)↓U = lσ↓U ◦ s1↓U ◦ · · · ◦ sn↓U
= l↓Uσ↓U ◦ s1↓U ◦ · · · ◦ sn↓U

5



and

r↓Uσ↓U ◦ s1↓U ◦ · · · ◦ sn↓U →∗U (rσ)↓U ◦ s1↓U ◦ · · · ◦ sn↓U
→∗U (rσ ◦ s1 ◦ · · · ◦ sn)↓U = t↓U

by applications of Lemmata 19 and 20. Hence s↓U →+
U+(Rη) t↓U . If aa(l) > 0

then l ◦ x → r ◦ x ∈ Rη for some fresh variable x. We have s = C ′[(l ◦ x)τ ]
and t = C ′[(r ◦x)τ ] for the context C ′ = 2◦s2 ◦ · · · ◦sn and the substitution
τ = σ ∪ {x 7→ s1}. Since C ′ is smaller than C, we can apply the induction
hypothesis which yields the desired result.

– In the remaining case C = s1 ◦ C ′. The induction hypothesis yields

C ′[lσ]↓U →+
U+(Rη) C

′[rσ]↓U

If aa(s1) 6 0 or if aa(s1) is undefined then s↓U = s1↓U ◦ C ′[lσ]↓U and
t↓U = s1↓U ◦C ′[rσ]↓U by Lemma 19. If aa(s1) > 0 then s1↓U = fi(u1, . . . , ui)
for the head symbol f of s1 and some terms u1, . . . , ui. So

s↓U = fi+1(u1, . . . , ui, C
′[lσ]↓U )

and
t↓U = fi+1(u1, . . . , ui, C

′[rσ]↓U )

Hence in both cases we obtain s↓U →+
U+(Rη) t↓U . ut

The next example shows that the left head variable freeness condition cannot
be weakened to the well-definedness of aa(l) for every left-hand side l.

Example 21. Consider the non-terminating ATRSR = {f (x a)→ f (g b), g b→
h a}. The transformed TRS U+(Rη) consists of the rules

f1(x ◦ a)→ f1(g1(b)) f ◦ x→ f1(x) h ◦ x→ h1(x)
g1(b)→ h1(a) g ◦ x→ g1(x)

and is terminating because its rules are oriented from left to right by the lex-
icographic path order with precedence ◦ � g1 � f1 � h1 � a � b. Note that
aa(f (x a)) = 0.

The uncurrying transformation is not always useful.

Example 22. Consider the one-rule TRS R = {C x y z u → x z (x y z u)}
from [7]. The termination of R is proved by the lexicographic path order with
empty precedence. The transformed TRS U+(Rη) consists of

C4(x, y, z, u)→ x ◦ z ◦ (x ◦ y ◦ z ◦ u)
C ◦ x→ C1(x) C2(x, y) ◦ z → C3(x, y, z)

C1(x) ◦ y → C2(x, y) C3(x, y, z) ◦ u→ C4(x, y, z, u)

None of the tools that participated in the termination competitions between
2005 and 2007 is able to prove the termination of this TRS.

6



We show that the converse of Theorem 16 also holds. Hence the uncurrying
transformation is not only sound but also complete for termination. (This does
not contradict the preceding example.)

Definition 23. For a term t over the signature of the TRS U+(R), we denote
by t↓C′ the result of identifying different function symbols in t↓C that originate
from the same function symbol in F . The notation ↓C′ is extended to TRSs and
substitutions in the obvious way.

Example 24. For the ATRS R of Example 12 we have R↓U↓C′ = R.

Lemma 25. For every t, C, and σ, C[tσ]↓C′ = C↓C′ [t↓C′σ↓C′ ].
Proof. Straightforward induction on C and t. ut
Lemma 26. Let R be a left head variable free ATRS. If s and t are terms over
the signature of U+(R) then s→Rη↓U t if and only if s↓C′ →Rη t↓C′ .
Proof. This follows from Lemma 25 and the fact that Rη↓U↓C′ = Rη. ut
Lemma 27. Let R be a left head variable free ATRS. If s and t are terms over
the signature of U+(R) and s→U t then s↓C′ = t↓C′ .
Proof. This follows from Lemma 25 in connection with the observation that all
rules in U↓C′ have equal left- and right-hand sides. ut
Theorem 28. If a left head variable free ATRS R is terminating then U+(Rη)
is terminating.

Proof. Assume that U+(Rη) is non-terminating. Since U is terminating, any
infinite rewrite sequence has the form s1 →Rη↓U t1 →∗U s2 →Rη↓U t2 →∗U · · · .
Applications of Lemmata 26 and 27 transform this sequence into s1↓C′ →Rη
t1↓C′ = s2↓C′ →Rη t2↓C′ = · · · . It follows that Rη is non-terminating. Since
→R =→Rη by Lemma 15, we conclude that R is non-terminating. ut

We conclude this section by describing a trivial mirroring technique for TRSs.
This technique can be used to eliminate some of the left head variables in an
ATRS.

Definition 29. Let t be a term. The term tM is defined as follows: tM = t if
t is a variable and tM = f(tMn , . . . , t

M
1 ) if t = f(t1, . . . , tn). Moreover, if R is a

TRS then RM = {lM → rM | l→ r ∈ R}.
We obviously have s→R t if and only if sM →RM tM . This gives the following

result.

Theorem 30. A TRS R is terminating if and only if RM is terminating. ut
Example 31. Consider the one-rule ATRSR = {x (a a a)→ a (a a) x}. WhileR
has a head variable in its left-hand side, the mirrored versionRM = {a (a a) x→
x (a a a)} is left head variable free. The transformed TRS U+((RM )η)

a2(a1(a), x)→ x ◦ a2(a, a) a ◦ x→ a1(x) a1(x) ◦ y → a2(x, y)

is easily proved terminating with dependency pairs and a linear polynomial in-
terpretation.

7



4 Uncurrying with Dependency Pairs

In this section we incorporate the uncurrying transformation into the dependency
pair framework [4,9,11,13,17]. LetR be a TRS over a signature F . The signature
F is extended with dependency pair symbols f ] for every symbol f ∈ {root(l) |
l → r ∈ R}, where f ] has the same arity as f , resulting in the signature F ]. If
l→ r ∈ R and t is a subterm of r with a defined root symbol that is not a proper
subterm of l then the rule l] → t] is a dependency pair ofR. Here l] and t] are the
result of replacing the root symbols in l and t by the corresponding dependency
pair symbols. The set of dependency pairs of R is denoted by DP(R). A DP
problem is a pair of TRSs (P,R) such that the root symbols of the rules in P
do neither occur in R nor in proper subterms of the left- and right-hand sides
of rules in P. The problem is said to be finite if there is no infinite sequence
s1

ε−→P t1 →∗R s2
ε−→P t2 →∗R · · · such that all terms t1, t2, . . . are terminating

with respect to R. Such an infinite sequence is said to be minimal. The main
result underlying the dependency pair approach states that termination of a
TRS R is equivalent to finiteness of the DP problem (DP(R),R).

In order to prove a DP problem finite, a number of DP processors have
been developed. DP processors are functions that take a DP problem as input
and return a set of DP problems as output. In order to be employed to prove
termination they need to be sound, that is, if all DP problems in a set returned
by a DP processor are finite then the initial DP problem is finite. In addition,
to ensure that a DP processor can be used to prove non-termination it must
be complete which means that if one of the DP problems returned by the DP
processor is not finite then the original DP problem is not finite.

In this section we present two DP processors that uncurry applicative DP
problems, which are DP problems over applicative signatures containing two
application symbols: ◦ and ◦].

4.1 Uncurrying Processor

Definition 32. Let (P,R) be an applicative DP problem. The DP processor U1

is defined as

(P,R) 7→

{
{(P↓U(F),U+(Rη,F))} if P ∪R is left head variable free
{(P,R)} otherwise

where F consists of all function symbols of P ∪R minus the root symbols of P.

Theorem 33. The DP processor U1 is sound and complete.

Proof. Let F be the set of function symbols of P ∪ R minus the root symbols
of P. We first show soundness. Let (P,R) be an applicative DP problem with
the property that P ∪ R is left head variable free. Suppose the DP problem
(P↓U ,U+(Rη)) is finite. We have to show that (P,R) is finite. Suppose to the

8



contrary that (P,R) is not finite. So there exists a minimal rewrite sequence

s1
ε−→P t1 →∗R s2

ε−→P t2 →∗R · · · (1)

By Lemmata 15 and 20 together with the claim in the proof of Theorem 16, this
sequence can be transformed into s1↓U

ε−→P↓U u1 →∗U t1↓U →∗U+(Rη) s2↓U
ε−→P↓U

u2 →∗U t2↓U →∗U+(Rη) · · · . It remains to show that all terms u1, u2, . . . are
terminating with respect to U+(Rη). Fix i. We have ui↓C′ = ti↓U↓C′ = ti. Due
to the minimality of (1), ti is terminating with respect to R and, according to
Lemma 15, also with respect to Rη. Hence, due to the proof of Theorem 28, ui
is terminating with respect to U+(Rη).

Next we show completeness of the DP processor U1. So let (P,R) be an
applicative DP problem with the property that P ∪ R is left head variable free
and suppose that the DP problem (P↓U ,U+(Rη)) is not finite. So there exists a
minimal rewrite sequence s1

ε−→P↓U t1 →
∗
U+(Rη) s2

ε−→P↓U t2 →
∗
U+(Rη) · · · . Using

Lemmata 26 and 27 this sequence can be transformed into s1↓C′
ε−→P t1↓C′ →∗Rη

s2↓C′
ε−→P t2↓C′ →∗Rη · · · . In order to conclude that the DP problem (P,R) is

not finite, it remains to show that the terms t1↓C′ , t2↓C′ , . . . are terminating
with respect to Rη. This follows from the assumption that the terms t1, t2, . . .
are terminating with respect to U+(Rη) in connection with Lemma 26. ut

The following example from [17] shows that the A transformation of [10] is
not sound because it does not preserve minimality.3

Example 34. Consider the applicative DP problem (P,R) with P consisting of
the rewrite rule (g x) (h y) ] z → z z ] z and R consisting of the rules

c x y → x c (g x) y → c (g x) y
c x y → y c x (g y)→ c x (g y)

The DP problem (P,R) is not finite because of the following minimal rewrite
sequence:

(g x) (h x) ] (c g h x) ε−→P (c g h x) (c g h x) ] (c g h x)

→R (g x) (c g h x) ] (c g h x)

→R (g x) (h x) ] (c g h x)

Applying the DP processor U1 produces (P↓U ,U+(Rη)) with P↓U consisting of
the rewrite rule g1(x) ◦ h1(y) ◦] z → z ◦ z ◦] z and U+(Rη) consisting of the rules

c2(x, y)→ x c2(g1(x), y)→ c2(g1(x), y) g ◦ x→ g1(x)
c2(x, y)→ y c2(x, g1(y))→ c2(x, g1(y)) h ◦ x→ h1(x)

c ◦ x→ c1(x) c1(x) ◦ y → c2(x, y)

3 Since minimality is not part of the definition of finite DP problems in [10], this does
not contradict the results in [10].

9



This DP problem is not finite:

g1(x) ◦ h1(x) ◦] (c2(g, h) ◦ x) ε−→P↓U (c2(g, h) ◦ x) ◦ (c2(g, h) ◦ x) ◦] (c2(g, h) ◦ x)

→∗U+(Rη) (g ◦ x) ◦ (h ◦ x) ◦] (c2(g, h) ◦ x)

→∗U+(Rη) g1(x) ◦ h1(x) ◦] (c2(g, h) ◦ x)

Note that c2(g, h) ◦ x is terminating with respect to U+(Rη).
The uncurrying rules are essential in this example, even though in the original

DP problem all occurrences of each constant have the same number of arguments.
Indeed, the A transformation leaves out the uncurrying rules, resulting in a DP
problem that admits infinite rewrite sequences but no minimal ones since one
has to instantiate the variable z in g1(x) ◦ h1(y) ◦] z → z ◦ z ◦] z by a term
that contains a subterm of the form c2(g1(s), t) or c2(s, g1(t)) and the rules
c2(g1(x), y) → c2(g1(x), y) and c2(x, g1(y)) → c2(x, g1(y)) ensure that these
terms are non-terminating.

4.2 Freezing

A drawback of U1 is that dependency pair symbols are excluded from the uncur-
rying process. Typically, all pairs in P have the same root symbol ◦]. The next
example shows that uncurrying root symbols of P can be beneficial.

Example 35. After processing the ATRS consisting of the rule a x a→ a (a a) x
with the recursive SCC algorithm and U1, the rule a1(x) ◦] a → a1(a1(a)) ◦] x
must be oriented. This cannot be done with a linear polynomial interpretation.
If we transform the rule into a]2(x, a)→ a]2(a1(a), x) this becomes trivial.

To this end we introduce a simple variant of freezing [19].

Definition 36. A simple freeze is a partial mapping ^ that assigns to a function
symbol of arity n > 0 an argument position i ∈ {1, . . . , n}. Every simple freeze
^ induces the following partial mapping on non-variable terms t = f(t1, . . . , tn),
also denoted by ^:

– if ^(f) is undefined or n = 0 then ^(t) = t,
– if ^(f) = i and ti = g(u1, . . . , um) then

^(t) = ^
f
g (t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn)

where ^fg is a fresh m+ n− 1-ary function symbol,
– if ^(f) = i and ti is a variable then ^(t) is undefined.

We denote {^(l)→ ^(r) | l→ r ∈ R} by ^(R).

Now uncurrying for dependency pair symbols is formulated with the sim-
ple freeze ^(◦]) = 1, transforming fn(t1, . . . , tn) ◦] tn+1 to ^◦

]

fn
(t1, . . . , tn, tn+1).

Writing f ]n+1 for ^◦
]

fn
, we obtain the uncurried term f ]n+1(t1, . . . , tn, tn+1). In

Example 35 we have ^({a1(x)◦] a→ a1(a1(a))◦]x}) = {a]2(x, a)→ a]2(a1(a), x)}.

10



Definition 37. A term t is strongly root stable with respect to a TRS R if
tσ →∗R ·

ε−→R u does not hold for any substitution σ and term u. Let ^ be a
simple freeze. A DP problem (P,R) is ^-stable if ^(P) is well-defined and ti is
strongly root stable for R whenever s→ f(t1, . . . , tn) ∈ P and ^(f) = i.

Definition 38. Let (P,R) be a DP problem and ^ a simple freeze. The DP
processor ^ is defined as

(P,R) 7→

{
{(^(P),R)} if (P,R) is ^-stable
{(P,R)} otherwise

Furthermore, the DP processor U2 is defined as the composition ^ ◦ U1, where
^(◦]) = 1.

Theorem 39. The DP processor ^ is sound and complete.

Proof. We show that every minimal rewrite sequence s1
ε−→P t1 →∗R s2

ε−→P
t2 →∗R · · · can be transformed into the minimal sequence ^(s1) ε−→^(P) ^(t1)→∗R
^(s2) ε−→^(P) ^(t2)→∗R · · · and vice versa. This follows from the following three
observations.

si
ε−→P ti if and only if ^(si)

ε−→^(P) ^(ti)
We have si

ε−→P ti if and only if si = lσ and ti = rσ with l → r ∈ P. Since
^(P) is well-defined, the latter is equivalent to ^(si) = ^(lσ) = ^(l)σ ε−→^(P)

^(r)σ = ^(rσ) = ^(ti).
ti →∗R si+1 if and only if ^(ti)→∗R ^(si+1)

Since ti and si+1 have the same root symbol we can write ti = f(u1, . . . , un)
and si+1 = f(u′1, . . . , u

′
n). If ^(f) is undefined or n = 0 then ^(si) = si →∗R

ti = ^(ti). Suppose ^(f) = k. Since ti is an instance of a right-hand side
of a pair in P and ^(P) is well-defined, uk cannot be a variable. Write
uk = g(v1, . . . , vm). According to ^-stability, uk is root stable and thus
u′k = g(v′1, . . . , v

′
m). Hence

ti = f(u1, . . . , uk−1, g(v1, . . . , vm), uk+1, . . . , un)
si+1 = f(u′1, . . . , u

′
k−1, g(v′1, . . . , v

′
m), u′k+1, . . . , u

′
n)

and

^(ti) = ^
f
g (u1, . . . , uk−1, v1, . . . , vm, uk+1, . . . , un)

^(si+1) = ^
f
g (u′1, . . . , u

′
k−1, v

′
1, . . . , v

′
m, u

′
k+1, . . . , u

′
n)

Consequently, ti →∗R si+1 if and only if uj →∗R u′j for 1 6 j 6 n with j 6= k
and vj →∗R v′j for 1 6 j 6 m if and only if ^(ti)→∗R ^(si+1).

ti terminates wrt R if and only if ^(ti) terminates wrt R
This follows immediately from the observation above that all reductions in
ti take place in the arguments uj or vj . ut

Corollary 40. The DP processor U2 is sound and complete. ut

11



The next example shows that ^-stability is essential for soundness.

Example 41. Consider the non-terminating ATRS R consisting of the two rules
f a → g a and g → f, which induces the infinite DP problem (P,R) with P
consisting of the rules f ] a → g ] a and f ] a → g]. Since P↓U = P and U1 is
sound, the DP problem (P,U+(Rη)) is also infinite. The set ^(P↓U ) consists of
f]1(a)→ g]1(a) and f]1(a)→ g]. Clearly, the DP problem (^(P),U+(Rη)) is finite.
Note that (P,U+(Rη)) is not ^-stable as g

ε−→U+(Rη) f.

Since ^-stability is undecidable in general, for automation we need to ap-
proximate strong root stability. We present a simple criterion which is based
on the term approximation TCAP from [10], where it was used to give a better
approximation of dependency graphs.

Definition 42 ([10]). Let R be a TRS and t a term. The term TCAPR(t) is
inductively defined as follows. If t is a variable, TCAPR(t) is a fresh variable.
If t = f(t1, . . . , tn) then we let u = f(TCAPR(t1), . . . ,TCAPR(tn)) and define
TCAPR(t) to be u if u does not unify with the left-hand side of a rule in R, and
a fresh variable otherwise.

Lemma 43. A term t is strongly root stable for a TRS R if TCAPR(t) /∈ V.

Proof. The only possibility for TCAPR(t) /∈ V is when t = f(t1, . . . , tn) and
u = f(TCAPR(t1), . . . ,TCAPR(tn)) does not unify with a left-hand side of a
rule in R. Assume to the contrary that t is not strongly root stable. Then there
are a substitution σ and a left-hand side l of a rule in R such that tσ >ε−−→∗R lτ .
Write l = f(l1, . . . , ln). We have tσ = f(t1σ, . . . , tnσ) with tiσ →∗R liτ for
1 6 i 6 n. Hence TCAPR(ti)δi = liτ for some substitution δi ([10, proof of
Theorem 13]). Since the terms TCAPR(t1), . . . ,TCAPR(tn) are linear and do not
share variables, it follows that u unifies with l, contradicting the assumption. ut

Example 44. Consider the DP problem (P↓U ,U+(Rη)) of Example 35 with P↓U
= {a1(x) ◦] a → a1(a1(a)) ◦] x} and U+(Rη) = {a ◦ x → a1(x), a1(x) ◦ y →
a2(x, y), a2(x, a) → a2(a1(a), x)}. Since TCAPU+(Rη)(a1(a1(a))) = a1(a1(a)) is
not a variable, a1(a1(a)) is strongly root stable. Hence (P↓U ,U+(Rη)) is ^-stable.

5 Experiments

The results of this paper are implemented in the termination prover TTT2.4

For experimentation the 195 ATRSs from the termination problem data base
(TPDB)5 have been employed. All tests have been performed on a single core of
a server equipped with eight dual-core AMD Opteron R© processors 885 running
at a clock rate of 2.6GHz and 64GB of main memory. Comprehensive details
of the experiments6 give evidence that the proposed transformations can be
4 http://colo6-c703.uibk.ac.at/ttt2/
5 http://www.lri.fr/~marche/tpdb/
6 http://colo6-c703.uibk.ac.at/ttt2/uncurry/

12

http://colo6-c703.uibk.ac.at/ttt2/
http://www.lri.fr/~marche/tpdb/
http://colo6-c703.uibk.ac.at/ttt2/uncurry/


Table 1. Experimental results.

direct as processor
6 16 16+30 none A U1 U2

subterm criterion 1 47 48 41 – 41 58

matrix (dimension 1) 4 90 101 66 71 95 101

matrix (dimension 2) 7 108 131 108 115 136 138

implemented very efficiently, e.g., for the most advanced strategy all 195 systems
are analyzed within about 15 seconds. We considered two popular termination
methods, namely the subterm criterion [13] and matrix interpretations [8] of
dimensions one and two and with coefficients ranging over {0, 1}. Both methods
are integrated within the dependency pair framework using dependency graph
reasoning and usable rules as proposed in [10–12].

Table 1 differentiates between applying the transformations as a preprocess-
ing step (direct) or within the dependency pair framework (as processor). The
direct method of Corollary 6 (Theorem 16, Theorems 16 and 30) applies to 10
(141, 170) systems. If used directly, the numbers in the table refer to the sys-
tems that could be proved terminating in case of a successful transformation.
Mirroring (when termination of the original system could not be proved) does
increase applicability of our (direct) transformation significantly. The right part
of Table 1 states the number of successful termination proofs for the processors
A (transformation A from [10, 17]), U1 (Definition 32), and U2 (Definition 38)
which shows that the results of this paper really increase termination proving
power for ATRSs. Since transformation A does not preserve minimality (Ex-
ample 34) one cannot use it together with the subterm criterion. (In [17] it is
shown that minimality is preserved when the transformation A is fused with
the reduction pair and usable rules processors.) It is a trivial exercise to extend
mirroring to DP problems. Our experiments revealed that (a) mirroring works
better for the direct approach (hence we did not incorporate it into the right
block of the table) and (b) the uncurrying processors should be applied before
other termination processors.

Although Theorem 16 and the processor U2 are incomparable in power we
recommend the usage of the processor. One reason is the increased strength and
another one the modularity which allows to prevent pitfalls like Example 22. Last
but not least, the processors U1 and U2 are not only sound but also complete
which makes them suitable for non-termination analysis. Unfortunately TTT2
does only support trivial methods for detecting non-termination of TRSs but
we anticipate that these processors ease the job of proving non-termination of
ATRSs considerably.

6 Related Work

The A transformation of Giesl et al. [10] works only on proper applicative DP
problems, which are DP problems with the property that all occurrences of each

13



constant have the same number of arguments. No uncurrying rules are added
to the processed DP problems. This destroys minimality (Example 34), which
seriously hampers the applicability of the A transformation. Thiemann [17, Sec-
tions 6.2 and 6.3] addresses the loss of minimality by incorporating reduction
pairs, usable rules, and argument filterings into the A transformation. (These
refinements were considered in the column labeled A in Table 1.) In [17] it is
further observed that the A transformation works better for innermost termina-
tion than for termination. A natural question for future work is how U1 and U2

behave for innermost termination.
Aoto and Yamada [1, 2] present transformation techniques for proving ter-

mination of simply typed ATRSs. After performing η-saturation, head variables
are eliminated by instantiating them with ‘template’ terms of the appropriate
type. In a final step, the resulting ATRS is translated into functional form.

Example 45. Consider again the ATRS R of Example 7. Suppose we adopt the
following type declarations: 0 : int, s : int → int, nil : list, (:) : int → list → list,
id : int→ int, add : int→ int→ int, and map : (int→ int)→ list→ list. The head
variable f in the right-hand side : (id x) (map f y) has type int → int. There
are three template terms of this type: s, id, and add z. Instantiating f by these
three terms in Rη produces the ATRS R′:

id x→ x map f nil→ nil

add 0→ id map s (: x y)→ : (s x) (map s y)
add 0 y → id y map id (: x y)→ : (id x) (map id y)

add (s x) y → s (add x y) map (add z) (: x y)→ : (add z x) (map (add z) y)

The TRS R′↓U is terminating because its rules are oriented from left to right
by the lexicographic path order. According to the main result of [2], the simply
typed ATRS R is terminating, too.

The advantage of the simply typed approach is that the uncurrying rules are
not necessary because the application symbol has been eliminated from R′↓U .
This typically results in simpler termination proofs. It is worthwhile to investi-
gate whether a version of head variable instantiation can be developed for the
untyped case. We would like to stress that with the simply typed approach one
obtains termination only for those terms which are simply typed. Our approach,
when it works, provides termination for all terms, irrespective of any typing dis-
cipline. In [3] the dependency pair method is adapted to deal with simply typed
ATRSs. Again, head variable instantiation plays a key role.

Applicative term rewriting is not the only model for capturing higher-order
aspects. The S-expression rewrite systems of Toyama [18] have a richer structure
than applicative systems, which makes proving termination often easier. Recent
methods (e.g. [6,14]) use types to exploit strong computability, leading to pow-
erful termination methods which are directly applicable to higher-order systems.
In [16] strong computability is used to analyse the termination of simply typed
ATRSs with the dependency pair method.

14



References

1. Aoto, T., Yamada, T.: Termination of simply typed term rewriting by translation
and labelling. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 380–394.
Springer (2003)

2. Aoto, T., Yamada, T.: Termination of simply-typed applicative term rewriting
systems. In: HOR 2004. Technical Report AIB-2004-03, RWTH Aachen. pp. 61–65
(2004)

3. Aoto, T., Yamada, T.: Dependency pairs for simply typed term rewriting. In:
Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 120–134. Springer (2005)

4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1-2), 133–178 (2000)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

6. Blanqui, F., Jouannaud, J.P., Rubio, A.: HORPO with computability closure: A
reconstruction. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 138–150. Springer (2007)

7. Dershowitz, N.: 33 Examples of termination. In: French Spring School of Theoret-
ical Computer Science. LNCS, vol. 909, pp. 16–26. Springer (1995)

8. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of rewrite systems. Journal of Automated Reasoning 40(2-3), 195–220
(2008)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer (2004)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol.
3717, pp. 216–231. Springer (2005)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

12. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Infor-
mation and Computation 199(1-2), 172–199 (2005)

13. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Information and Computation 205(4), 474–511 (2007)

14. Jouannaud, J.P., Rubio, A.: Polymorphic higher-order recursive path orderings.
Journal of the ACM 54(1) (2007)

15. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Comparing curried and
uncurried rewriting. Journal of Symbolic Computation 21(1), 15–39 (1996)

16. Kusakari, K., Sakai, M.: Enhancing dependency pair method using strong com-
putability in simply-typed term rewriting. Applicable Algebra in Engineering,
Communication and Computing 18(5), 407–431 (2007)

17. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen (2007). Available as technical report AIB-2007-17

18. Toyama, Y.: Termination of S-expression rewriting systems: Lexicographic path
ordering for higher-order terms. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol.
3091, pp. 40–54. Springer (2004)

19. Xi, H.: Towards automated termination proofs through “freezing“. In: Nipkow, T.
(ed.) RTA 1998. LNCS, vol. 1379, pp. 271–285. Springer (1998)

20. Zantema, H.: Termination. In: Terese (ed.) Term Rewriting Systems 2003. vol. 55
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press
181–259 (2003)

15


	Uncurrying for Termination
	Nao Hirokawa, Aart Middeldorp, and Harald Zankl

