Completion and Reduction Orders

Nao Hirokawa

JAIST

July 19, 2021

Completion and Reduction Orders

1/86

Definition

Definition

TRS \mathcal{R} is **terminating** if there is no infinite rewrite sequence $t_0 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

Definition

TRS \mathcal{R} is **terminating** if there is no infinite rewrite sequence $t_0 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

TRS \mathcal{R} is **confluent** if

Definition

TRS \mathcal{R} is **terminating** if there is no infinite rewrite sequence $t_0 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

TRS \mathcal{R} is **confluent** if

Definition

TRS \mathcal{R} is **terminating** if there is no infinite rewrite sequence $t_0 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

TRS \mathcal{R} is **confluent** if

TRS is complete if it is terminating and confluent

Definition

TRS \mathcal{R} is **terminating** if there is no infinite rewrite sequence $t_0 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

■ TRS *R* is **confluent** if

- TRS is complete if it is terminating and confluent
- complete TRS \mathcal{R} is complete presentation of equational system \mathcal{E} if $\leftrightarrow_{\mathcal{E}}^* = \leftrightarrow_{\mathcal{R}}^*$

Definition

TRS \mathcal{R} is **terminating** if there is no infinite rewrite sequence $t_0 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$

- TRS is complete if it is terminating and confluent
- complete TRS \mathcal{R} is complete presentation of equational system \mathcal{E} if $\leftrightarrow_{\mathcal{E}}^* = \leftrightarrow_{\mathcal{R}}^*$

Fact
$$s \approx_{\mathcal{E}} t \iff s \downarrow_{\mathcal{R}} = t \downarrow_{\mathcal{R}}$$
if \mathcal{R} is complete presentation of \mathcal{E}

Knuth-Bendix Completion Procedure (1970)

```
equational system {\cal E} and reduction order >
input:
output: complete presentation \mathcal{R} of \mathcal{E}'
\mathcal{R} := \emptyset : C := \mathcal{E}:
while C \neq \emptyset do
         choose s \approx t \in C:
         C := C \setminus \{s \approx t\}:
         normalize s and t to s' and t' with respect to \mathcal{R}:
         if s' \not> t' and s' \neq t' and t' \not> s' then failure: fi:
         \mathcal{S} := \{ s' \to t', t' \to s' \} \cap >;
         C := C \cup \mathsf{CP}(\mathcal{R}, \mathcal{S}) \cup \mathsf{CP}(\mathcal{S}, \mathcal{R}) \cup \mathsf{CP}(\mathcal{S});
         \mathcal{R} := \mathcal{R} \cup \mathcal{S}
od
```

$$\mathcal{E} = \begin{cases} \mathbf{0} + x \approx x\\ (-x) + x \approx \mathbf{0}\\ (x+y) + z \approx x + (y+z) \end{cases}$$

$$\mathcal{E} = \begin{cases} 0 + x \approx x \\ (-x) + x \approx 0 \\ (x + y) + z \approx x + (y + z) \end{cases}$$
reduction order $\succ \longrightarrow$
COMPLETION

Goal: Complete Commuting Group Endomorphisms Automatically

consider equation system known as CGE_2 :

$$\begin{aligned} \mathbf{e} + x &\approx x\\ \mathbf{i}(x) + x &\approx \mathbf{e}\\ (x+y) + z &\approx x + (y+z) \end{aligned}$$

$$f(x + y) \approx f(x) + f(y)$$

$$g(x + y) \approx g(x) + g(y)$$

$$F(x) + g(y) \approx g(y) + f(x)$$

Goal: Complete Commuting Group Endomorphisms Automatically

consider equation system known as CGE₂:

$$\begin{array}{ll} \mathsf{e} + x \approx x & \mathsf{f}(x+y) \approx \mathsf{f}(x) + \mathsf{f}(y) \\ \mathsf{i}(x) + x \approx \mathsf{e} & \mathsf{g}(x+y) \approx \mathsf{g}(x) + \mathsf{g}(y) \\ (x+y) + z \approx x + (y+z) & \mathsf{f}(x) + \mathsf{g}(y) \approx \mathsf{g}(y) + \mathsf{f}(x) \end{array}$$

CGE₂ admits 20-rule complete TRS (Stump and Löchner, 2006)

$$\begin{array}{ccc} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} \\ \mathsf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) \\ \mathsf{i}(x) + (x + y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) \\ (x + y) + z \to x + (y + z) \end{array}$$

$$\begin{split} \mathsf{i}(x+y) &\to \mathsf{i}(y) + \mathsf{i}(x) \\ \mathsf{f}(x) + \mathsf{f}(y) &\to \mathsf{f}(x+y) \\ \mathsf{g}(x) + \mathsf{g}(y) &\to \mathsf{g}(x+y) \\ \mathsf{f}(x) + \mathsf{g}(y) &\to \mathsf{g}(y) + \mathsf{f}(x) \\ \mathsf{f}(x) + (\mathsf{f}(y) + z) &\to \mathsf{f}(x+y) + z \\ \mathsf{g}(x) + (\mathsf{g}(y) + z) &\to \mathsf{g}(x+y) + z \\ \mathsf{f}(y) + (\mathsf{g}(x) + z) &\to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{split}$$

Modern Completion Tools

$$\mathcal{E} = \left\{ \begin{array}{ccc} \mathbf{e} + x \approx x & \mathbf{f}(x+y) \approx \mathbf{f}(x) + \mathbf{f}(y) \\ \mathbf{i}(x) + x \approx \mathbf{e} & \mathbf{g}(x+y) \approx \mathbf{g}(x) + \mathbf{g}(y) \\ (x+y) + z \approx x + (y+z) & \mathbf{f}(x) + \mathbf{g}(y) \approx \approx \mathbf{g}(y) + \mathbf{f}(x) \end{array} \right\}$$
termination tool/predicate
$$\begin{array}{c} \mathbf{COMPLETION} \\ \mathbf{k} \\ \mathbf{$$

Tools and Approaches

Tools and Approaches

Slothrop

Wehrman, Stump, and Westbrook, 2006

incremental completion with termination tools

Tools and Approaches

- Slothrop Wehrman, Stump, and Westbrook, 2006 incremental completion with termination tools
- mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013 multi-completion with termination tools

Tools and Approaches

- Slothrop Wehrman, Stump, and Westbrook, 2006 incremental completion with termination tools
- mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013 multi-completion with termination tools
- KBCV

incremental 2-completion with termination tools

Sternagel and Zankl, 2012

Tools and Approaches

- Slothrop Wehrman, Stump, and Westbrook, 2006 incremental completion with termination tools
- mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013 multi-completion with termination tools
- KBCV incremental 2-completion with termination tools
- MaxcompDP maximal completion with dependency pair method

Sternagel and Zankl, 2012

Sato and Winkler, 2015

Tools and Approaches

- Slothrop Wehrman, Stump, and Westbrook, 2006 incremental completion with termination tools
- mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013 multi-completion with termination tools
- KBCV incremental 2-completion with termination tools
- MaxcompDP maximal completion with dependency pair method

Sternagel and Zankl, 2012

Sato and Winkler, 2015

Points

Tools and Approaches

- Slothrop Wehrman, Stump, and Westbrook, 2006 incremental completion with termination tools
- mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013 multi-completion with termination tools
- KBCV incremental 2-completion with termination tools
- MaxcompDP maximal completion with dependency pair method

Sternagel and Zankl, 2012

Sato and Winkler, 2015

Points

good: great termination proving power

Tools and Approaches

- Slothrop Wehrman, Stump, and Westbrook, 2006 incremental completion with termination tools
- mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013 multi-completion with termination tools
- KBCV incremental 2-completion with termination tools
- MaxcompDP maximal completion with dependency pair method

Sternagel and Zankl, 2012

Sato and Winkler, 2015

Points

- good: great termination proving power
- bad: orientation of equations consumes considerable time

Our Approach

simply use powerful reduction orders to complete CGE_2

Our Approach

simply use powerful reduction orders to complete CGE_2

Rest of Talk

Our Approach

simply use powerful reduction orders to complete CGE_2

Rest of Talk

1 termination: semantic labeling as order extension

Our Approach

simply use powerful reduction orders to complete CGE_2

Itermination: semantic labeling as order extension Confluence: new critical pair criterion

Our Approach

simply use powerful reduction orders to complete CGE_2

Rest of Talk 1 termination: semantic labeling as order extension 2 confluence: new critical pair criterion 3 completion: Sato and Winkler's method and maximal completion

Termination

How To Prove Termination?

complete presentation of CGE_2 :

$$\begin{array}{lll} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} & \mathsf{i}(x+y) \to \mathsf{i}(y) + \mathsf{i}(x) \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} & \mathsf{f}(x) + \mathsf{f}(y) \to \mathsf{f}(x+y) \\ \mathsf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} & \mathsf{g}(x) + \mathsf{g}(y) \to \mathsf{g}(x+y) \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x & \mathsf{f}(x) + \mathsf{g}(y) \to \mathsf{g}(y) + \mathsf{f}(x) \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) & \mathsf{f}(x) + (\mathsf{f}(y) + z) \to \mathsf{f}(x+y) + z \\ \mathsf{i}(x) + (x+y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) & \mathsf{g}(x) + (\mathsf{g}(y) + z) \to \mathsf{g}(x+y) + z \\ (x+y) + z \to x + (y+z) & \mathsf{f}(y) + (\mathsf{g}(x) + z) \to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{array}$$

it is not orientable by KBO, LPO, matrix interpretations, ...

Definition (labeled terms)

let ${\mathcal M}$ be algebra, t term, and α assignment

$$\mathsf{lab}(t,\alpha) = \begin{cases} x & \text{if } t \text{ is variable} \\ f_a(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \in \mathcal{G} \\ f(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \notin \mathcal{G} \end{cases}$$

where, $a = [\alpha]_{\mathcal{M}}(f^{\sharp}(t_1, \ldots, t_n))$

Definition (labeled terms)

let ${\mathcal M}$ be algebra, t term, and α assignment

$$\mathsf{lab}(t,\alpha) = \begin{cases} x & \text{if } t \text{ is variable} \\ f_a(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \in \mathcal{G} \\ f(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \notin \mathcal{G} \end{cases}$$

where, $a = [lpha]_{\mathcal{M}}(f^{\sharp}(t_1,\ldots,t_n))$

Example

Definition (labeled terms)

let ${\mathcal M}$ be algebra, t term, and α assignment

$$\mathsf{lab}(t,\alpha) = \begin{cases} x & \text{if } t \text{ is variable} \\ f_a(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \in \mathcal{G} \\ f(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \notin \mathcal{G} \end{cases}$$

where, $a = [lpha]_{\mathcal{M}}(f^{\sharp}(t_1,\ldots,t_n))$

Example

• let
$$\mathcal M$$
 be algebra on $\mathbb N$ with $g_{\mathcal M}(x) = 0$, $f_{\mathcal M}(x) = 1$, $f_{\mathcal M}^{\sharp}(x) = x$, and $\alpha(x) = 2$

Definition (labeled terms)

let ${\mathcal M}$ be algebra, t term, and α assignment

$$\mathsf{lab}(t,\alpha) = \begin{cases} x & \text{if } t \text{ is variable} \\ f_a(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \in \mathcal{G} \\ f(\mathsf{lab}(t_1,\alpha),\ldots,\mathsf{lab}(t_n,\alpha)) & \text{if } t = f(t_1,\ldots,t_n) \text{ and } f^{\sharp} \notin \mathcal{G} \end{cases}$$

where, $a = [\alpha]_{\mathcal{M}}(f^{\sharp}(t_1, \ldots, t_n))$

Example

- let \mathcal{M} be algebra on \mathbb{N} with $g_{\mathcal{M}}(x) = 0$, $f_{\mathcal{M}}(x) = 1$, $f_{\mathcal{M}}^{\sharp}(x) = x$, and $\alpha(x) = 2$
- $\blacksquare \ \mathsf{lab}_{\mathcal{M}}(\mathsf{f}(\mathsf{g}(\mathsf{f}(x))), \alpha) = \mathsf{f}_{\mathbf{0}}(\mathsf{g}(\mathsf{f}_{\mathbf{2}}(x)))$

because $[\alpha]_{\mathcal{M}}(\mathsf{f}^\sharp(\mathsf{g}(\mathsf{f}(x)))) = 0$ and $[\alpha]_{\mathcal{M}}(\mathsf{f}^\sharp(x)) = 2$

Semantic Labeling

let $(\mathcal{M}, >)$ be weakly monotone well-founded algebra

Semantic Labeling

let $(\mathcal{M},>)$ be weakly monotone well-founded algebra

Definition
let $(\mathcal{M},>)$ be weakly monotone well-founded algebra

Definition

• $s \ge_{\mathcal{M}} t$ if $[\alpha]_{\mathcal{M}}(s) \ge [\alpha]_{\mathcal{M}}(t)$ for all assignments α

let $(\mathcal{M},>)$ be weakly monotone well-founded algebra

Definition

- $s \ge_{\mathcal{M}} t$ if $[\alpha]_{\mathcal{M}}(s) \ge [\alpha]_{\mathcal{M}}(t)$ for all assignments α
- $\blacksquare \mathcal{R}_{\mathsf{lab}} = \{\mathsf{lab}(\ell, \alpha) \to \mathsf{lab}(r, \alpha) \mid \ell \to r \in \mathcal{R} \text{ and } \alpha \text{ is assignment}\}$

let $(\mathcal{M},>)$ be weakly monotone well-founded algebra

Definition

- $s \ge_{\mathcal{M}} t$ if $[\alpha]_{\mathcal{M}}(s) \ge [\alpha]_{\mathcal{M}}(t)$ for all assignments α
- $\blacksquare \ \mathcal{R}_{\mathsf{lab}} = \{\mathsf{lab}(\ell, \alpha) \to \mathsf{lab}(r, \alpha) \mid \ell \to r \in \mathcal{R} \text{ and } \alpha \text{ is assignment}\}$

let $(\mathcal{M},>)$ be weakly monotone well-founded algebra

Definition

•
$$s \ge_{\mathcal{M}} t$$
 if $[\alpha]_{\mathcal{M}}(s) \ge [\alpha]_{\mathcal{M}}(t)$ for all assignments α

•
$$\mathcal{R}_{\mathsf{lab}} = \{\mathsf{lab}(\ell, \alpha) \to \mathsf{lab}(r, \alpha) \mid \ell \to r \in \mathcal{R} \text{ and } \alpha \text{ is assignment}\}$$

Theorem (Zantema 1995)

 $\text{if } \mathcal{R} \subseteq \geqslant_{\mathcal{M}} \text{then:} \qquad \mathcal{R} \text{ is terminating } \iff \mathcal{R}_{\mathsf{lab}} \cup \mathcal{D}\mathsf{ec}(>) \text{ is terminating}$

consider TRS $\mathcal{R} = \{f(f(x)) \rightarrow f(g(f(x)))\}$

consider TRS $\mathcal{R} = \{f(f(x)) \rightarrow f(g(f(x)))\}$

 $\fbox{1}$ weakly monotone well-founded algebra $\mathcal M$ on $\mathbb N$ with

$$f_{\mathcal{M}}(x) = 1$$
 $g_{\mathcal{M}}(x) = 0$ $f_{\mathcal{M}}^{\sharp}(x) = x$

satisfies $\mathcal{R} \subseteq \geqslant_{\mathcal{M}}$

consider TRS $\mathcal{R} = \{f(f(x)) \rightarrow f(g(f(x)))\}$

 $\fbox{1}$ weakly monotone well-founded algebra $\mathcal M$ on $\mathbb N$ with

$$f_{\mathcal{M}}(x) = 1$$
 $g_{\mathcal{M}}(x) = 0$ $f_{\mathcal{M}}^{\sharp}(x) = x$

satisfies $\mathcal{R}\subseteq \geqslant_\mathcal{M}$

2 termination of $\mathcal{R}_{\mathsf{lab}} \cup \mathcal{D}\mathsf{ec}(>)$

$$\begin{aligned} \mathsf{f}_1(\mathsf{f}_a(x)) &\to \mathsf{f}_0(\mathsf{g}(\mathsf{f}_a(x))) & (a \in \mathbb{N}) \\ \mathsf{f}_a(x) &\to \mathsf{f}_b(x) & (a, b \in \mathbb{N} \text{ with } a > b) \end{aligned}$$

is shown by LPO with precedence: $\dots\succ\mathsf{f}_2\succ\mathsf{f}_1\succ\mathsf{f}_0\succ\mathsf{g}$

Completion and Reduction Orders

consider TRS $\mathcal{R} = \{f(f(x)) \rightarrow f(g(f(x)))\}$

1 weakly monotone well-founded algebra $\mathcal M$ on $\mathbb N$ with

$$f_{\mathcal{M}}(x) = 1$$
 $g_{\mathcal{M}}(x) = 0$ $f_{\mathcal{M}}^{\sharp}(x) = x$

satisfies $\mathcal{R}\subseteq \geqslant_\mathcal{M}$

2 termination of $\mathcal{R}_{\mathsf{lab}} \cup \mathcal{D}\mathsf{ec}(>)$

$$\begin{split} & \mathsf{f}_1(\mathsf{f}_a(x)) \to \mathsf{f}_0(\mathsf{g}(\mathsf{f}_a(x))) & (a \in \mathbb{N}) \\ & \mathsf{f}_a(x) \to \mathsf{f}_b(x) & (a, b \in \mathbb{N} \text{ with } a > b) \end{split}$$

is shown by LPO with precedence: $\dots\succ \mathsf{f}_2\succ \mathsf{f}_1\succ \mathsf{f}_0\succ \mathsf{g}$

 $\fbox{3}$ hence, $\mathcal R$ is terminating

Completion and Reduction Orders

 \blacksquare let $(\mathcal{M},>)$ be weakly monotone well-founded algebra

- \blacksquare let $(\mathcal{M},>)$ be weakly monotone well-founded algebra
- \blacksquare let \succ be reduction order on labeled terms

- \blacksquare let $(\mathcal{M},>)$ be weakly monotone well-founded algebra
- let \succ be reduction order on labeled terms

Definition

 $s \succ^{\mathcal{M}} t$ if $s \ge_{\mathcal{M}} t$ and $\mathsf{lab}(s, \alpha) \succ \mathsf{lab}(t, \alpha)$ for all assignments α

- \blacksquare let $(\mathcal{M},>)$ be weakly monotone well-founded algebra
- let \succ be reduction order on labeled terms

Definition

$$s \succ^{\mathcal{M}} t$$
 if $s \ge_{\mathcal{M}} t$ and $\mathsf{lab}(s, \alpha) \succ \mathsf{lab}(t, \alpha)$ for all assignments α

Corollary

 $\succ^{\mathcal{M}}$ is reduction order if $\mathcal{D}ec(>)\subseteq\succ$

- \blacksquare let $(\mathcal{M},>)$ be weakly monotone well-founded algebra
- let \succ be reduction order on labeled terms

Definition

$$s \succ^{\mathcal{M}} t$$
 if $s \ge_{\mathcal{M}} t$ and $\mathsf{lab}(s, \alpha) \succ \mathsf{lab}(t, \alpha)$ for all assignments α

Corollary

 $\succ^{\mathcal{M}}$ is reduction order if $\mathcal{D}ec(>)\subseteq\succ$

Remark

 $\succ^{\mathcal{M}}_{\mathsf{mpo}}$ is very similar to monotonic semantic path order

Completion and Reduction Orders

 $\mathsf{consider}\ \mathsf{TRS}$

 $\mathsf{f}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{g}(\mathsf{f}(x)))$

consider TRS

 $\mathsf{f}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{g}(\mathsf{f}(x)))$

1 take weakly monotone well-founded algebra \mathcal{M} on \mathbb{N} and LPO with:

 $\dots\succ\mathsf{f}_{2}\succ\mathsf{f}_{1}\succ\mathsf{f}_{0}\succ\mathsf{g}$

consider TRS

 $\mathsf{f}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{g}(\mathsf{f}(x)))$

1 take weakly monotone well-founded algebra \mathcal{M} on \mathbb{N} and LPO with:

 $\dots\succ\mathsf{f}_{2}\succ\mathsf{f}_{1}\succ\mathsf{f}_{0}\succ\mathsf{g}$

 $2 \succ_{\mathsf{Ipo}}^{\mathcal{M}}$ is reduction order since $\mathcal{D}ec(>) \subseteq \succ_{\mathsf{Ipo}}$

consider TRS

 $\mathsf{f}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{g}(\mathsf{f}(x)))$

1 take weakly monotone well-founded algebra \mathcal{M} on \mathbb{N} and LPO with:

 $\dots\succ\mathsf{f}_2\succ\mathsf{f}_1\succ\mathsf{f}_0\succ\mathsf{g}$

2
$$\succ_{\mathsf{lpo}}^{\mathcal{M}}$$
 is reduction order since $\mathcal{D}\mathsf{ec}(>) \subseteq \succ_{\mathsf{lpo}}$

 $\begin{array}{l} \fbox{1.5} f(f(x)) \succ_{\mathsf{lpo}}^{\mathcal{M}} f(\mathsf{g}(\mathsf{f}(x))) \text{ because} \\ \\ f(\mathsf{f}(x)) \geqslant_{\mathcal{M}} f(\mathsf{g}(\mathsf{f}(x))) & \qquad \mathsf{f}_1(\mathsf{f}_a(x)) \succ_{\mathsf{lpo}} \mathsf{f}_0(\mathsf{g}(\mathsf{f}_a(x))) & (a \in \mathbb{N}) \end{array} \end{array}$

Completion and Reduction Orders

consider TRS

 $\mathsf{f}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{g}(\mathsf{f}(x)))$

1 take weakly monotone well-founded algebra \mathcal{M} on \mathbb{N} and LPO with:

 $\dots\succ\mathsf{f}_2\succ\mathsf{f}_1\succ\mathsf{f}_0\succ\mathsf{g}$

$$2 \succ_{\mathsf{lpo}}^{\mathcal{M}}$$
 is reduction order since $\mathcal{D}ec(>) \subseteq \succ_{\mathsf{lpo}}$

3 $f(f(x)) \succ_{lpo}^{\mathcal{M}} f(g(f(x)))$ because

 $\mathsf{f}(\mathsf{f}(x)) \geqslant_{\mathcal{M}} \mathsf{f}(\mathsf{g}(\mathsf{f}(x))) \qquad \quad \mathsf{f}_1(\mathsf{f}_a(x)) \succ_{\mathsf{lpo}} \mathsf{f}_0(\mathsf{g}(\mathsf{f}_a(x))) \quad (a \in \mathbb{N})$

4 hence, TRS is terminating

Completion and Reduction Orders

Termination of TRS for CGE_2

$e + x \to x$	$f(e) \to e$
$x+e\to x$	$g(e) \to e$
$i(x) + x \to e$	$i(e)\toe$
$x+i(x)\toe$	$i(i(x)) \to x$
$x + (i(x) + y) \to y$	$i(f(x)) \rightarrow f(i(x))$
$i(x) + (x+y) \to y$	$i(g(x)) \to g(i(x))$
$(x+y) + z \to x +$	(y+z)

$$\begin{split} \mathsf{i}(x+y) &\to \mathsf{i}(y) + \mathsf{i}(x) \\ \mathsf{f}(x) + \mathsf{f}(y) &\to \mathsf{f}(x+y) \\ \mathsf{g}(x) + \mathsf{g}(y) &\to \mathsf{g}(x+y) \\ \mathsf{f}(x) + \mathsf{g}(y) &\to \mathsf{g}(y) + \mathsf{f}(x) \\ \mathsf{f}(x) + (\mathsf{f}(y) + z) &\to \mathsf{f}(x+y) + z \\ \mathsf{g}(x) + (\mathsf{g}(y) + z) &\to \mathsf{g}(x+y) + z \\ \mathsf{f}(y) + (\mathsf{g}(x) + z) &\to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{split}$$

Termination of TRS for CGE_2

$$\begin{array}{lll} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} & \mathsf{i}(x+y) \to \mathsf{i}(y) + \mathsf{i}(x) \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} & \mathsf{f}(x) + \mathsf{f}(y) \to \mathsf{f}(x+y) \\ \mathbf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} & \mathsf{g}(x) + \mathsf{g}(y) \to \mathsf{g}(x+y) \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x & \mathsf{f}(x) + \mathsf{g}(y) \to \mathsf{g}(y) + \mathsf{f}(x) \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) & \mathsf{f}(x) + (\mathsf{f}(y) + z) \to \mathsf{f}(x+y) + z \\ \mathbf{i}(x) + (x+y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) & \mathsf{g}(x) + (\mathsf{g}(y) + z) \to \mathsf{g}(x+y) + z \\ (x+y) + z \to x + (y+z) & \mathsf{f}(y) + (\mathsf{g}(x) + z) \to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{array}$$

termination is shown by KBO extended by algebra $\mathcal M$ on $\mathbb N$ with

$$\mathbf{e}_{\mathcal{M}} = 0 \quad \mathbf{f}_{\mathcal{M}}(x) = 0 \quad \mathbf{g}_{\mathcal{M}}(x) = 1 \quad \mathbf{i}_{\mathcal{M}}(x) = x \quad x + \mathcal{M} \ y = x + y \quad x +^{\sharp}_{\mathcal{M}} \ y = x$$
$$w_0 = w(\mathbf{g}) = w(\mathbf{f}) = w(\mathbf{e}) = 1 \quad w(\mathbf{i}) = w(+_a) = 0$$
$$\mathbf{i} \succ \mathbf{f} \succ \cdots \succ +_2 \succ +_1 \succ +_0 \succ \mathbf{e} \succ \mathbf{g}$$

Completion and Reduction Orders

16/86

■ 1498 problems from Termination Problem Database (TPDB version 10.6)

- 1498 problems from Termination Problem Database (TPDB version 10.6)
- \blacksquare ELPO and EKBO denote $\succ^{\mathcal{M}}_{lpo}$ and $\succ^{\mathcal{M}}_{kbo}$ respectively

- 1498 problems from Termination Problem Database (TPDB version 10.6)
- \blacksquare ELPO and EKBO denote $\succ_{\sf lpo}^{\mathcal{M}}$ and $\succ_{\sf kbo}^{\mathcal{M}}$ respectively
- $f_{\mathcal{M}}(x_1,\ldots,x_n)$ is of form $a_1x_1+\cdots a_nx_n+b$ with $a_i\in\{0,1\}$ and $b\in\mathbb{N}$

- 1498 problems from Termination Problem Database (TPDB version 10.6)
- \blacksquare ELPO and EKBO denote $\succ^{\mathcal{M}}_{lpo}$ and $\succ^{\mathcal{M}}_{kbo}$ respectively
- $f_{\mathcal{M}}(x_1,\ldots,x_n)$ is of form $a_1x_1+\cdots a_nx_n+b$ with $a_i\in\{0,1\}$ and $b\in\mathbb{N}$
- order constraints are solved by SMT solver Z3

- 1498 problems from Termination Problem Database (TPDB version 10.6)
- \blacksquare ELPO and EKBO denote $\succ^{\mathcal{M}}_{lpo}$ and $\succ^{\mathcal{M}}_{kbo}$ respectively
- $f_{\mathcal{M}}(x_1,\ldots,x_n)$ is of form $a_1x_1+\cdots a_nx_n+b$ with $a_i\in\{0,1\}$ and $b\in\mathbb{N}$
- order constraints are solved by SMT solver Z3

LPO KBO ELPO EKBO ELPO+EKBO # termination proofs 144 102 247 136 272

Result

semantic labeling can be regarded as order extension

Result

semantic labeling can be regarded as order extension

Facts

Result

semantic labeling can be regarded as order extension

Facts

 (basic) dependency pair method can be seen as simple semantic path order (Dershowitz 2013)

Result

semantic labeling can be regarded as order extension

Facts

- (basic) dependency pair method can be seen as simple semantic path order (Dershowitz 2013)
- usable rules can be captured by predictive labeling (Hirokawa and Middeldorp 2006)

Result

semantic labeling can be regarded as order extension

Facts

 (basic) dependency pair method can be seen as simple semantic path order (Dershowitz 2013)

 usable rules can be captured by predictive labeling (Hirokawa and Middeldorp 2006)

Open Question

what about dependency graphs?

Completion and Reduction Orders

Confluence

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Q: is following terminating TRS \mathcal{R} confluent?

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

A: confluence follows from joinability of **5** critical pairs:

Completion and Reduction Orders

20/86

Aim

reduce number of critical pairs for showing confluence of terminating TRSs

Aim

reduce number of critical pairs for showing confluence of terminating TRSs

Outline

Aim

reduce number of critical pairs for showing confluence of terminating TRSs

Outline

1 abstract confluence criterion

Aim

reduce number of critical pairs for showing confluence of terminating TRSs

Outline

1 abstract confluence criterion

2 prime critical pair criterion

Aim

reduce number of critical pairs for showing confluence of terminating TRSs

Outline

1 abstract confluence criterion

2 prime critical pair criterion

3 new critical pair criterion

Definition

Definition

ARS \mathcal{B} is rewrite strategy for ARS \mathcal{A} if $\rightarrow_{\mathcal{B}} \subseteq \rightarrow_{\mathcal{A}}^+$ and $NF(\mathcal{A}) = NF(\mathcal{B})$

Fact

for every TRS ${\mathcal R}$ following relations are rewrite strategies

Definition

Definition

Definition

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}}\leftarrow\cdot\rightarrow_{\mathcal{A}}\subseteq\downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

terminating ARS A is confluent if (and only if) ${}_{\mathcal{B}}\leftarrow \cdot \rightarrow_{\mathcal{A}} \subseteq \downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}}\leftarrow\cdot\rightarrow_{\mathcal{A}}\subseteq\downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}}\leftarrow\cdot\rightarrow_{\mathcal{A}}\subseteq\downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}}\leftarrow\cdot\rightarrow_{\mathcal{A}}\subseteq\downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

Proof.

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}} \leftarrow \cdot \rightarrow_{\mathcal{A}} \subseteq \downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

Proof.

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}} \leftarrow \cdot \rightarrow_{\mathcal{A}} \subseteq \downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

Proof.

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}} \leftarrow \cdot \rightarrow_{\mathcal{A}} \subseteq \downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

Proof.

terminating ARS \mathcal{A} is confluent if (and only if) $_{\mathcal{B}} \leftarrow \cdot \rightarrow_{\mathcal{A}} \subseteq \downarrow_{\mathcal{A}}$ for some strategy \mathcal{B}

Proof.

by induction on $a \text{ wrt} \rightarrow^+_{\mathcal{A}}$

Prime Critical Pairs

Notation

 $\mathcal{S} \leftarrow \rtimes \xrightarrow{\epsilon} \mathcal{R}$ is set of critical pairs originating from $\mathcal{S} \leftarrow \cdot \xrightarrow{\epsilon} \mathcal{R}$

Prime Critical Pairs

Notation

 $\mathcal{S} \leftarrow \rtimes \stackrel{\epsilon}{\to}_{\mathcal{R}}$ is set of critical pairs originating from $\mathcal{S} \leftarrow \cdot \stackrel{\epsilon}{\to}_{\mathcal{R}}$

Theorem (Kapur, Musser and Narendran, 1988)

terminating TRS \mathcal{R} is confluent if and only if $\mathcal{R} \xleftarrow{i} \rtimes \xleftarrow{\epsilon}_{\mathcal{R}} \subseteq \downarrow_{\mathcal{R}}$

Prime Critical Pairs

Notation

$$\mathcal{S} \leftarrow \rtimes \stackrel{\epsilon}{\to}_{\mathcal{R}}$$
 is set of critical pairs originating from $\mathcal{S} \leftarrow \cdot \stackrel{\epsilon}{\to}_{\mathcal{R}}$

Theorem (Kapur, Musser and Narendran, 1988)

terminating TRS \mathcal{R} is confluent if and only if $\mathcal{R} \xleftarrow{i} \rtimes \stackrel{\epsilon}{\to} \mathcal{R} \subseteq \downarrow_{\mathcal{R}}$

Proof.

$$\xrightarrow{i}_{\mathcal{R}}$$
 is rewrite strategy, and $_{\mathcal{R}} \xleftarrow{i} \cdot \xrightarrow{\epsilon}_{\mathcal{R}} \subseteq \downarrow_{\mathcal{R}}$ holds

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

$$(-0) + 0$$

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

Example for Prime Critical Pair Criterion

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

confluence follows from joinability of **3** prime critical pairs:

Example for Prime Critical Pair Criterion

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

confluence follows from joinability of **3** prime critical pairs:

Example for Prime Critical Pair Criterion

consider terminating TRS \mathcal{R} :

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

confluence follows from joinability of **3** prime critical pairs:

Completion and Reduction Orders

26/86

Leftmost Innermost Critical Pairs (New)

Theorem

terminating TRS \mathcal{R} is confluent if and only if $_{\mathcal{R}} \xleftarrow{\text{li}} \rtimes \stackrel{\epsilon}{\to}_{\mathcal{R}} \subseteq \downarrow_{\mathcal{R}}$

Leftmost Innermost Critical Pairs (New)

Theorem

terminating TRS \mathcal{R} is confluent if and only if $\mathcal{R} \xleftarrow{\text{li}} \rtimes \stackrel{\circ}{\to} \mathcal{R} \subseteq \downarrow_{\mathcal{R}}$

Proof.

$$\stackrel{\mathsf{li}}{\to}_{\mathcal{R}}$$
 is rewrite strategy and $_{\mathcal{R}} \xleftarrow{\mathsf{li}} \cdot \stackrel{\epsilon}{\to}_{\mathcal{R}} \subseteq \downarrow_{\mathcal{R}}$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

$$(-0) + 0$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -0 \rightarrow 0 & x + 0 \rightarrow x \\ (-x) + x \rightarrow 0 & (-x) + (-x) \rightarrow 0 \end{array}$$

consider terminating TRS

$$\begin{array}{ccc} -\mathbf{0} \to \mathbf{0} & x + \mathbf{0} \to x \\ (-x) + x \to \mathbf{0} & (-x) + (-x) \to \mathbf{0} \end{array}$$

confluence follows from joinability of 2 leftmost innermost critical pairs:

Completion and Reduction Orders

$$\begin{array}{lll} \mathbf{e} + x \rightarrow x & \mathbf{f}(\mathbf{e}) \rightarrow \mathbf{e} & \mathbf{i}(x+y) \rightarrow \mathbf{i}(y) + \mathbf{i}(x) \\ x + \mathbf{e} \rightarrow x & \mathbf{g}(\mathbf{e}) \rightarrow \mathbf{e} & \mathbf{f}(x) + \mathbf{f}(y) \rightarrow \mathbf{f}(x+y) \\ \mathbf{i}(x) + x \rightarrow \mathbf{e} & \mathbf{i}(\mathbf{e}) \rightarrow \mathbf{e} & \mathbf{g}(x) + \mathbf{g}(y) \rightarrow \mathbf{g}(x+y) \\ x + \mathbf{i}(x) \rightarrow \mathbf{e} & \mathbf{i}(\mathbf{i}(x)) \rightarrow x & \mathbf{f}(x) + \mathbf{g}(y) \rightarrow \mathbf{g}(y) + \mathbf{f}(x) \\ x + (\mathbf{i}(x) + y) \rightarrow y & \mathbf{i}(\mathbf{f}(x)) \rightarrow \mathbf{f}(\mathbf{i}(x)) & \mathbf{f}(x) + (\mathbf{f}(y) + z) \rightarrow \mathbf{f}(x+y) + z \\ \mathbf{i}(x) + (x+y) \rightarrow y & \mathbf{i}(\mathbf{g}(x)) \rightarrow \mathbf{g}(\mathbf{i}(x)) & \mathbf{g}(x) + (\mathbf{g}(y) + z) \rightarrow \mathbf{g}(x+y) + z \\ (x+y) + z \rightarrow x + (y+z) & \mathbf{f}(y) + (\mathbf{g}(x) + z) \rightarrow \mathbf{g}(x) + (\mathbf{f}(y) + z) \end{array}$$

$$\begin{array}{lll} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} & \mathsf{i}(x+y) \to \mathsf{i}(y) + \mathsf{i}(x) \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} & \mathsf{f}(x) + \mathsf{f}(y) \to \mathsf{f}(x+y) \\ \mathsf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} & \mathsf{g}(x) + \mathsf{g}(y) \to \mathsf{g}(x+y) \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x & \mathsf{f}(x) + \mathsf{g}(y) \to \mathsf{g}(y) + \mathsf{f}(x) \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) & \mathsf{f}(x) + (\mathsf{f}(y) + z) \to \mathsf{f}(x+y) + z \\ \mathsf{i}(x) + (x+y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) & \mathsf{g}(x) + (\mathsf{g}(y) + z) \to \mathsf{g}(x+y) + z \\ (x+y) + z \to x + (y+z) & \mathsf{f}(y) + (\mathsf{g}(x) + z) \to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{array}$$

TRS is confluent, as all leftmost innermost critical pairs are joinable

$$\begin{array}{lll} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} & \mathsf{i}(x+y) \to \mathsf{i}(y) + \mathsf{i}(x) \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} & \mathsf{f}(x) + \mathsf{f}(y) \to \mathsf{f}(x+y) \\ \mathsf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} & \mathsf{g}(x) + \mathsf{g}(y) \to \mathsf{g}(x+y) \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x & \mathsf{f}(x) + \mathsf{g}(y) \to \mathsf{g}(y) + \mathsf{f}(x) \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) & \mathsf{f}(x) + (\mathsf{f}(y) + z) \to \mathsf{f}(x+y) + z \\ \mathsf{i}(x) + (x+y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) & \mathsf{g}(x) + (\mathsf{g}(y) + z) \to \mathsf{g}(x+y) + z \\ (x+y) + z \to x + (y+z) & \mathsf{f}(y) + (\mathsf{g}(x) + z) \to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{array}$$

TRS is confluent, as all leftmost innermost critical pairs are joinable

Note

$$\begin{array}{lll} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} & \mathsf{i}(x+y) \to \mathsf{i}(y) + \mathsf{i}(x) \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} & \mathsf{f}(x) + \mathsf{f}(y) \to \mathsf{f}(x+y) \\ \mathsf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} & \mathsf{g}(x) + \mathsf{g}(y) \to \mathsf{g}(x+y) \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x & \mathsf{f}(x) + \mathsf{g}(y) \to \mathsf{g}(y) + \mathsf{f}(x) \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) & \mathsf{f}(x) + (\mathsf{f}(y) + z) \to \mathsf{f}(x+y) + z \\ \mathsf{i}(x) + (x+y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) & \mathsf{g}(x) + (\mathsf{g}(y) + z) \to \mathsf{g}(x+y) + z \\ (x+y) + z \to x + (y+z) & \mathsf{f}(y) + (\mathsf{g}(x) + z) \to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{array}$$

TRS is confluent, as all leftmost innermost critical pairs are joinable

Note

TRS admits 115 critical peaks

$$\begin{array}{lll} \mathsf{e} + x \to x & \mathsf{f}(\mathsf{e}) \to \mathsf{e} & \mathsf{i}(x+y) \to \mathsf{i}(y) + \mathsf{i}(x) \\ x + \mathsf{e} \to x & \mathsf{g}(\mathsf{e}) \to \mathsf{e} & \mathsf{f}(x) + \mathsf{f}(y) \to \mathsf{f}(x+y) \\ \mathsf{i}(x) + x \to \mathsf{e} & \mathsf{i}(\mathsf{e}) \to \mathsf{e} & \mathsf{g}(x) + \mathsf{g}(y) \to \mathsf{g}(x+y) \\ x + \mathsf{i}(x) \to \mathsf{e} & \mathsf{i}(\mathsf{i}(x)) \to x & \mathsf{f}(x) + \mathsf{g}(y) \to \mathsf{g}(y) + \mathsf{f}(x) \\ x + (\mathsf{i}(x) + y) \to y & \mathsf{i}(\mathsf{f}(x)) \to \mathsf{f}(\mathsf{i}(x)) & \mathsf{f}(x) + (\mathsf{f}(y) + z) \to \mathsf{f}(x+y) + z \\ \mathsf{i}(x) + (x+y) \to y & \mathsf{i}(\mathsf{g}(x)) \to \mathsf{g}(\mathsf{i}(x)) & \mathsf{g}(x) + (\mathsf{g}(y) + z) \to \mathsf{g}(x+y) + z \\ (x+y) + z \to x + (y+z) & \mathsf{f}(y) + (\mathsf{g}(x) + z) \to \mathsf{g}(x) + (\mathsf{f}(y) + z) \end{array}$$

TRS is confluent, as all leftmost innermost critical pairs are joinable

Note

- TRS admits 115 critical peaks
- \blacksquare 18 critical peaks are discarded by prime / leftmost innermost critical pairs

Completion and Reduction Orders

Outermost Strategy Cannot be Used

consider terminating TRS

 $\mathsf{f}(\mathsf{f}(x)) \to \mathsf{a}$

Outermost Strategy Cannot be Used

consider terminating TRS

 $f(f(x)) \rightarrow a$

TRS is not confluent because critical pair

is not joinable

Outermost Strategy Cannot be Used

consider terminating TRS

 $f(f(x)) \rightarrow a$

TRS is not confluent because critical pair

is not joinable

•
$$\stackrel{\circ}{\leftarrow} \rtimes \stackrel{\epsilon}{\rightarrow}$$
 is empty

Results

Results

OK innermost critical pairs = prime critical pairs

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

Results

- **OK** innermost critical pairs = prime critical pairs
- **OK** leftmost innermost critical pairs
- **OK** rightmost innermost critical pairs
- NG outermost critical pairs

Results

- OK innermost critical pairs = prime critical pairs
- **OK** leftmost innermost critical pairs
- **OK** rightmost innermost critical pairs
- NG outermost critical pairs
- NG leftmost outermost critical pairs

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

- **OK** rightmost innermost critical pairs
- NG outermost critical pairs
- NG leftmost outermost critical pairs

Future Work

- any other useful strategy?
- to make variants for ordered rewriting, AC rewriting, ...

Completion

Knuth-Bendix Completion (1970)

Knuth-Bendix Completion (1970)

Knuth-Bendix Completion (1970)

Knuth-Bendix Completion Procedure (1970)

```
equational system {\cal E} and reduction order >
input:
output: complete presentation \mathcal{R} of \mathcal{E}'
\mathcal{R} := \emptyset : C := \mathcal{E}:
while C \neq \emptyset do
         choose s \approx t \in C:
         C := C \setminus \{s \approx t\}:
         normalize s and t to s' and t' with respect to \mathcal{R}:
         if s' \not> t' and s' \neq t' and t' \not> s' then failure: fi:
         \mathcal{S} := \{ s' \to t', t' \to s' \} \cap >;
         C := C \cup \mathsf{CP}(\mathcal{R}, \mathcal{S}) \cup \mathsf{CP}(\mathcal{S}, \mathcal{R}) \cup \mathsf{CP}(\mathcal{S});
         \mathcal{R} := \mathcal{R} \cup \mathcal{S}
od
```

Definition (abstract completion, Bachmair, Dershowitz and Hsiang, 1986)

Definition (abstract completion, Bachmair, Dershowitz and Hsiang, 1986)

delete
$$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$$
delete
$$rac{\mathcal{E} \uplus \{s pprox s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$$

$$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}} \quad \text{if } s > t$$

orient

$$\begin{array}{ll} \mbox{delete} & \frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} \\ & \\ \mbox{orient} & \frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \rightarrow t\}} & \mbox{if } s > t \\ & \\ & \frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}} & \mbox{if } t > s \end{array}$$

$$\begin{array}{ll} \mbox{delete} & \frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} & \mbox{deduce} & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}} & \mbox{if } s \xleftarrow{}_{\mathcal{R}} \cdot \xrightarrow{}_{\mathcal{R}} t \\ \\ \mbox{orient} & & \\ \frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \rightarrow t\}} & \mbox{if } s > t \\ & \\ \frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}} & \mbox{if } t > s \end{array}$$

delete	$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$		deduce	$\frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}$	$\text{if } s _{\mathcal{R}} \cdot _{\mathcal{R}} t$
orient	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if s > t	simplify	$\frac{\mathcal{E} \uplus \{ \boldsymbol{s} \approx t \}, \mathcal{R}}{\mathcal{E} \cup \{ \boldsymbol{u} \approx t \}, \mathcal{R}}$	$\text{if }s\xrightarrow[]{\mathcal{R}} u$
	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \to s\}}$	if t > s			

delete	$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$		deduce	$\frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}$	$\text{if }s \xleftarrow[]{\mathcal{R}} \cdot \xrightarrow[]{\mathcal{R}} t$
orient	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if s > t	simplify	$\frac{\mathcal{E} \uplus \{ \boldsymbol{s} \approx t \}, \mathcal{R}}{\mathcal{E} \cup \{ \boldsymbol{u} \approx t \}, \mathcal{R}}$	$ \text{if } s \xrightarrow[\mathcal{R}]{} u \\$
	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}}$	if t > s		$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}}$	$\text{if } t \xrightarrow[\mathcal{R}]{} u$

delete	$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$		deduce	$\frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}$	$\text{if }s \xleftarrow[]{\mathcal{R}} \cdot \xrightarrow[]{\mathcal{R}} t$
orient	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if s > t	simplify	$\frac{\mathcal{E} \uplus \{ \boldsymbol{s} \approx t \}, \mathcal{R}}{\mathcal{E} \cup \{ \boldsymbol{u} \approx t \}, \mathcal{R}}$	$\text{if }s\xrightarrow[\mathcal{R}]{}u$
	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \to s\}}$	if t > s		$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}}$	$\text{if } t \xrightarrow[\mathcal{R}]{} u$

Theorem

 \mathcal{R}_n is complete presentation of \mathcal{E}_0 if

 $(\mathcal{E}_0, \mathcal{R}_0) \vdash \cdots \vdash (\mathcal{E}_n, \mathcal{R}_n)$ with $\mathcal{R}_0 = \mathcal{E}_n = \varnothing$ and $\mathsf{CP}(\mathcal{R}) \subseteq \mathcal{E}_0 \cup \cdots \cup \mathcal{E}_n$

Completion and Reduction Orders

```
\begin{split} \mathbf{s}(x) + y &\approx \mathbf{s}(x + y) \\ \mathbf{s}(\mathbf{p}(x)) &\approx x \\ \mathbf{p}(\mathbf{s}(x)) &\approx x \end{split}
```

```
use LPO with + \succ s \succ p to complete:
```

```
\begin{split} &\mathsf{s}(x) + y \approx \mathsf{s}(x+y) \\ &\mathsf{s}(\mathsf{p}(x)) \approx x \\ &\mathsf{p}(\mathsf{s}(x)) \approx x \end{split}
```

```
use LPO with + \succ s \succ p to complete:
```

```
\begin{split} \mathsf{s}(x) + y &\to \mathsf{s}(x+y) \\ \mathsf{s}(\mathsf{p}(x)) &\approx x \\ \mathsf{p}(\mathsf{s}(x)) &\approx x \end{split}
```

```
s(x) + y \rightarrow s(x + y)
s(p(x)) \approx x
p(s(x)) \approx x
```

$$\mathbf{s}(x) + y \rightarrow \mathbf{s}(x + y)$$

 $\mathbf{s}(\mathbf{p}(x)) \rightarrow x$
 $\mathbf{p}(\mathbf{s}(x)) \approx x$

$$s(x) + y \rightarrow s(x + y)$$

 $s(p(x)) \rightarrow x$
 $p(s(x)) \approx x$

$$s(x) + y \rightarrow s(x + y)$$

 $s(p(x)) \rightarrow x$
 $p(s(x)) \rightarrow x$

$$\begin{split} \mathbf{s}(x) + y &\to \mathbf{s}(x + y) & \mathbf{p}(\mathbf{s}(\mathbf{p}(x))) \\ \mathbf{s}(\mathbf{p}(x)) &\to x & \begin{pmatrix} \mathbf{p} \\ \mathbf{x} \\ \mathbf$$

 $s(x) + y \rightarrow s(x + y)$ $s(p(x)) \rightarrow x$ $p(s(x)) \rightarrow x$ $x + y \leftarrow s(p(x) + y)$ $p(x + y) \leftarrow p(x) + y$

 $s(x) + y \rightarrow s(x + y)$ $s(p(x)) \rightarrow x$ $p(s(x)) \rightarrow x$ $x + y \leftarrow s(p(x) + y)$ $p(x + y) \leftarrow p(x) + y$

 $s(x) + y \rightarrow s(x + y)$ $s(p(x)) \rightarrow x$ $p(s(x)) \rightarrow x$ $x + y \leftarrow s(p(x) + y)$ $p(x + y) \leftarrow p(x) + y$

 $s(x) + y \rightarrow s(x + y)$ $s(p(x)) \rightarrow x$ $p(s(x)) \rightarrow x$ $x + y \leftarrow s(p(x) + y)$ $p(x + y) \leftarrow p(x) + y$

complete TRS

Completion and Reduction Orders

36/86

Completion with Inter-Reduction

TRS

$$\begin{split} \mathsf{s}(x) + y &\to \mathsf{s}(x+y) \\ \mathsf{s}(\mathsf{p}(x)) &\to x \\ \mathsf{p}(\mathsf{s}(x)) &\to x \\ \mathsf{s}(\mathsf{p}(x) + y) &\to x+y \\ \mathsf{p}(x) + y &\to \mathsf{p}(x+y) \end{split}$$

is complete but not reduced

Completion and Reduction Orders

Completion with Inter-Reduction

TRS

$$\begin{split} \mathsf{s}(x) + y &\to \mathsf{s}(x+y) \\ \mathsf{s}(\mathsf{p}(x)) &\to x \\ \mathsf{p}(\mathsf{s}(x)) &\to x \\ \mathsf{s}(\mathsf{p}(x) + y) &\to x+y \\ \mathsf{p}(x) + y &\to \mathsf{p}(x+y) \end{split}$$

is complete but not reduced

Completion and Reduction Orders

Definition

Definition

■ TRS \mathcal{R} is reduced if for every rule $\ell \to r \in \mathcal{R}$ $r \in NF(\mathcal{R})$ and $\ell \in NF(\mathcal{R} \setminus \{\ell \to r\})$ (modulo renaming)

Definition

• TRS $\mathcal R$ is reduced if for every rule $\ell o r \in \mathcal R$

 $r \in \mathsf{NF}(\mathcal{R})$ and $\ell \in \mathsf{NF}(\mathcal{R} \setminus \{\ell \to r\})$ (modulo renaming)

■ complete TRS is canonical if it is reduced

Definition

• TRS \mathcal{R} is reduced if for every rule $\ell \rightarrow r \in \mathcal{R}$

 $r\in\mathsf{NF}(\mathcal{R})$ and $\ell\in\mathsf{NF}(\mathcal{R}\setminus\{\ell\to r\})$ (modulo renaming)

complete TRS is canonical if it is reduced

Theorem (Ballantyne 1980?; Métivier, 1983)

 $\begin{array}{l} \mbox{canonical presentations \mathcal{R} and \mathcal{S} of \mathcal{E} are identical if} \\ \mathcal{R} \subseteq \succ \mbox{ and $\mathcal{S} \subseteq \succ$} & \mbox{for some reduction order \succ} \end{array}$

delete	$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$		deduce	$\frac{\mathcal{E},\mathcal{R}}{\mathcal{E}\cup\{s\approx t\},\mathcal{R}}$	$\text{if }s \xleftarrow[]{\mathcal{R}} \cdot \xrightarrow[]{\mathcal{R}} t$
orient	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if s > t	cimplify	$\frac{\mathcal{E} \uplus \{ \boldsymbol{s} \approx t \}, \mathcal{R}}{\mathcal{E} \cup \{ \boldsymbol{u} \approx t \}, \mathcal{R}}$	$\text{if }s\xrightarrow[\mathcal{R}]{}u$
	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}}$	if t > s	Simplify	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}}$	$\text{if } t \xrightarrow[\mathcal{R}]{} u$

Theorem

 \mathcal{R}_n is complete presentation of \mathcal{E}_0 if $(\mathcal{E}_0, \mathcal{R}_0) \vdash \cdots \vdash (\mathcal{E}_n, \mathcal{R}_n)$ with $\mathcal{R}_0 = \mathcal{E}_n = \emptyset$ and $\mathsf{CP}(\mathcal{R}) \subseteq \mathcal{E}_0 \cup \cdots \cup \mathcal{E}_n$

Completion and Reduction Orders

delete	$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$		deduce	$\frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}$	$\text{if } s _{\mathcal{R}} \cdot _{\mathcal{R}} t$
orient	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if s > t	simplify	$\frac{\mathcal{E} \uplus \{ \boldsymbol{s} \approx t \}, \mathcal{R}}{\mathcal{E} \cup \{ \boldsymbol{u} \approx t \}, \mathcal{R}}$	$\text{if }s\xrightarrow[]{\mathcal{R}} u$
	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}}$	if t > s		$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}}$	$\text{if } t \xrightarrow{\mathcal{R}} u$
collapse	$rac{\mathcal{E}, \mathcal{R} \uplus \{t ightarrow s\}}{\mathcal{E} \cup \{u pprox s\}, \mathcal{R}}$	$\text{if } t \xrightarrow[\mathcal{R}]{} u$			

Theorem

 \mathcal{R}_n is complete presentation of \mathcal{E}_0 if

 $(\mathcal{E}_0, \mathcal{R}_0) \vdash \cdots \vdash (\mathcal{E}_n, \mathcal{R}_n)$ with $\mathcal{R}_0 = \mathcal{E}_n = \varnothing$ and $\mathsf{CP}(\mathcal{R}) \subseteq \mathcal{E}_0 \cup \cdots \cup \mathcal{E}_n$

delete	$\frac{\mathcal{E} \uplus \{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}}$		deduce	$\frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup \{s \approx t\}, \mathcal{R}}$	$\text{if } s _{\mathcal{R}} \cdot _{\mathcal{R}} t$
orient	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{s \to t\}}$	if s > t	simplify	$\frac{\mathcal{E} \uplus \{ \boldsymbol{s} \approx t \}, \mathcal{R}}{\mathcal{E} \cup \{ \boldsymbol{u} \approx t \}, \mathcal{R}}$	$ \text{if } s \xrightarrow[]{\mathcal{R}} u \\$
	$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup \{t \rightarrow s\}}$	if t > s		$\frac{\mathcal{E} \uplus \{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup \{s \approx u\}, \mathcal{R}}$	$\text{if } t \xrightarrow[\mathcal{R}]{} u$
collapse	$rac{\mathcal{E},\mathcal{R} \uplus \{ t ightarrow s \}}{\mathcal{E} \cup \{ u pprox s \}, \mathcal{R}}$	$\text{if } t \xrightarrow[]{\mathcal{R}} u$	compose	$rac{\mathcal{E}, \mathcal{R} \uplus \{s ightarrow oldsymbol{t}\}}{\mathcal{E}, \mathcal{R} \cup \{s ightarrow oldsymbol{u}\}}$	$\text{if } t \xrightarrow[]{\mathcal{R}} u$

Theorem

 \mathcal{R}_n is complete presentation of \mathcal{E}_0 if

 $(\mathcal{E}_0, \mathcal{R}_0) \vdash \cdots \vdash (\mathcal{E}_n, \mathcal{R}_n)$ with $\mathcal{R}_0 = \mathcal{E}_n = \varnothing$ and $\mathsf{CP}(\mathcal{R}) \subseteq \mathcal{E}_0 \cup \cdots \cup \mathcal{E}_n$

Completion and Reduction Orders

Completion with Inter-Reduction

$$\begin{aligned} \mathsf{s}(x) + y &\to \mathsf{s}(x+y) \\ \mathsf{s}(\mathsf{p}(x)) &\to x \\ \mathsf{p}(\mathsf{s}(x)) &\to x \\ \mathsf{s}(\mathsf{p}(x) + y) &\to x + y \\ \mathsf{p}(x) + y &\to \mathsf{p}(x+y) \end{aligned}$$

Completion and Reduction Orders

40/86

Completion with Inter-Reduction

$$s(x) + y \rightarrow s(x + y)$$

$$s(p(x)) \rightarrow x$$

$$p(s(x)) \rightarrow x$$

$$s(p(x) + y) \rightarrow x + y$$

$$p(x) + y \rightarrow p(x + y)$$

Completion and Reduction Orders

40/86
$$s(x) + y \rightarrow s(x + y)$$

$$s(p(x)) \rightarrow x$$

$$p(s(x)) \rightarrow x$$

$$s(p(x + y)) \approx x + y$$

$$p(x) + y \rightarrow p(x + y)$$

$$\begin{aligned} \mathsf{s}(x) + y &\to \mathsf{s}(x+y) \\ \mathsf{s}(\mathsf{p}(x)) &\to x \\ \mathsf{p}(\mathsf{s}(x)) &\to x \\ \mathsf{s}(\mathsf{p}(x+y)) &\approx x+y \\ \mathsf{p}(x) + y &\to \mathsf{p}(x+y) \end{aligned}$$

Completion and Reduction Orders

40/86

$$\begin{split} \mathbf{s}(x) + y &\to \mathbf{s}(x+y) \\ \mathbf{s}(\mathbf{p}(x)) &\to x \\ \mathbf{p}(\mathbf{s}(x)) &\to x \\ x+y &\approx x+y \\ \mathbf{p}(x) + y &\to \mathbf{p}(x+y) \end{split}$$

$$\begin{split} \mathbf{s}(x) + y &\to \mathbf{s}(x+y) \\ \mathbf{s}(\mathbf{p}(x)) &\to x \\ \mathbf{p}(\mathbf{s}(x)) &\to x \\ x+y &\approx x+y \\ \mathbf{p}(x) + y &\to \mathbf{p}(x+y) \end{split}$$

$$\begin{split} \mathbf{s}(x) + y &\to \mathbf{s}(x+y) \\ \mathbf{s}(\mathbf{p}(x)) &\to x \\ \mathbf{p}(\mathbf{s}(x)) &\to x \end{split}$$

$$\mathsf{p}(x) + y \to \mathsf{p}(x+y)$$

canonical TRS

Completion and Reduction Orders

40/86

$$\mathcal{E} = \left\{ \begin{array}{c} 0+x \approx x\\ (-x)+x \approx 0\\ (x+y)+z \approx x+(y+z) \end{array} \right\}$$

$$\mathcal{E} = \left\{ \begin{array}{c} 0 + x \approx x \\ (-x) + x \approx 0 \\ (x + y) + z \approx x + (y + z) \end{array} \right\}$$
LPO with $- \succ + \succ 0$
COMPLETION

Completion and Reduction Orders

41/86

$$\mathcal{E} = \begin{cases} 0+x \approx x\\ (-x)+x \approx 0\\ (x+y)+z \approx x+(y+z) \end{cases}$$

$$\mathsf{LPO with} - \succ + \succ 0 \longrightarrow \texttt{COMPLETION}$$

$$\mathbf{\mathcal{R}} = \begin{cases} 0+x \rightarrow x & -(-x) \rightarrow x\\ x+0 \rightarrow x & x+((-x)+y) \rightarrow y\\ (-x)+x \rightarrow 0 & (-x)+(x+y) \rightarrow y\\ x+(-x) \rightarrow 0 & -(x+y) \rightarrow (-y)+(-x)\\ -0 \rightarrow 0 & (x+y)+z \rightarrow x+(y+z) \end{cases}$$

difficult to find suitable reduction order before performing completion

$$\mathcal{E} = \begin{cases} 0 + x \approx x \\ (-x) + x \approx 0 \\ (x + y) + z \approx x + (y + z) \end{cases}$$

PO with $- \succ + \succ 0$

$$\mathcal{COMPLETION}$$

$$\mathcal{R} = \begin{cases} 0 + x \rightarrow x & -(-x) \rightarrow x \\ x + 0 \rightarrow x & x + ((-x) + y) \rightarrow y \\ (-x) + x \rightarrow 0 & (-x) + (x + y) \rightarrow y \\ x + (-x) \rightarrow 0 & -(x + y) \rightarrow (-y) + (-x) \\ -0 \rightarrow 0 & (x + y) + z \rightarrow x + (y + z) \end{cases}$$

difficult to find suitable reduction order before performing completionwhy not find suitable reduction order during completion?

Completion and Reduction Orders

I

Quiz: Orient Some Equations to Construct Complete Presentation

$$\begin{split} \mathsf{s}(x) + y &\approx \mathsf{s}(x + y) \\ \mathsf{s}(\mathsf{p}(x)) &\approx x \\ \mathsf{p}(\mathsf{s}(x)) &\approx x \\ \mathsf{s}(\mathsf{p}(x) + y) &\approx \mathsf{s}(x + y) \\ x + y &\approx \mathsf{s}(\mathsf{p}(x) + y) \\ \mathsf{p}(x + y) &\approx \mathsf{p}(x) + y \\ \mathsf{p}((\mathsf{s}(x) + y) + z &\approx (x + y) + z \end{split}$$

NB. these are valid equations of $\{s(x) + y \approx s(x + y), s(p(x)) \approx x, p(s(x)) \approx x\}$

Quiz: Orient Some Equations to Construct Complete Presentation

$$s(x) + y \rightarrow s(x + y)$$

$$s(p(x)) \rightarrow x$$

$$p(s(x)) \rightarrow x$$

$$s(p(x) + y) \approx s(x + y)$$

$$x + y \approx s(p(x) + y)$$

$$p(x + y) \leftarrow p(x) + y$$

$$p((s(x) + y) + z \approx (x + y) + z$$

NB. these are valid equations of $\{s(x) + y \approx s(x + y), s(p(x)) \approx x, p(s(x)) \approx x\}$

Problem

input: equational system \mathcal{E} and decidable class \mathcal{RO} of reduction orders

output: complete presentation \mathcal{R} of \mathcal{E} such that

 $\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ \quad \text{ for some } \succ \text{ in } \mathcal{RO}$

Problem

- input: equational system \mathcal{E} and decidable class \mathcal{RO} of reduction orders
- **output:** complete presentation \mathcal{R} of \mathcal{E} such that

$$\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$$
 for some \succ in \mathcal{RO}

Heuristics (Sato and Winkler, 2015)

choose pair (\mathcal{R},\succ) that minimizes $|\mathcal{R}|$ subject to

Problem

- input: equational system ${\cal E}$ and decidable class ${\cal R}{\cal O}$ of reduction orders
- **output:** complete presentation \mathcal{R} of \mathcal{E} such that

$$\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$$
 for some \succ in \mathcal{RO}

Heuristics (Sato and Winkler, 2015)

choose pair (\mathcal{R},\succ) that minimizes $|\mathcal{R}|$ subject to

• $\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$, and

Problem

- input: equational system ${\cal E}$ and decidable class ${\cal R}{\cal O}$ of reduction orders
- **output:** complete presentation \mathcal{R} of \mathcal{E} such that

$$\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$$
 for some \succ in \mathcal{RO}

Heuristics (Sato and Winkler, 2015)

choose pair (\mathcal{R},\succ) that minimizes $|\mathcal{R}|$ subject to

- $\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$, and
- all nontrivial equations $s \approx t$ in \mathcal{E} are reducible, i.e. $s \notin NF(\mathcal{R})$ or $t \notin NF(\mathcal{R})$

Problem

- input: equational system ${\cal E}$ and decidable class ${\cal R}{\cal O}$ of reduction orders
- **output:** complete presentation \mathcal{R} of \mathcal{E} such that

$$\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$$
 for some \succ in \mathcal{RO}

Heuristics (Sato and Winkler, 2015)

choose pair (\mathcal{R},\succ) that minimizes $|\mathcal{R}|$ subject to

- $\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$, and
- all nontrivial equations $s \approx t$ in \mathcal{E} are reducible, i.e. $s \notin NF(\mathcal{R})$ or $t \notin NF(\mathcal{R})$

Rationale

Problem

- input: equational system ${\cal E}$ and decidable class ${\cal R}{\cal O}$ of reduction orders
- **output:** complete presentation \mathcal{R} of \mathcal{E} such that

$$\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$$
 for some \succ in \mathcal{RO}

Heuristics (Sato and Winkler, 2015)

choose pair (\mathcal{R},\succ) that minimizes $|\mathcal{R}|$ subject to

- $\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$, and
- all nontrivial equations $s \approx t$ in \mathcal{E} are reducible, i.e. $s \notin NF(\mathcal{R})$ or $t \notin NF(\mathcal{R})$

Rationale

attempts to find canonical (i.e. reduced complete) TRS

Problem

- input: equational system ${\cal E}$ and decidable class ${\cal R}{\cal O}$ of reduction orders
- **output:** complete presentation \mathcal{R} of \mathcal{E} such that

$$\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$$
 for some \succ in \mathcal{RO}

Heuristics (Sato and Winkler, 2015)

choose pair (\mathcal{R},\succ) that minimizes $|\mathcal{R}|$ subject to

- $\mathcal{R} \subseteq (\mathcal{E} \cup \mathcal{E}^{-1}) \cap \succ$, and
- all nontrivial equations $s \approx t$ in \mathcal{E} are reducible, i.e. $s \notin NF(\mathcal{R})$ or $t \notin NF(\mathcal{R})$

Rationale

- attempts to find canonical (i.e. reduced complete) TRS
- \blacksquare redundant equations in ${\mathcal E}$ increase accuracy of the method

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
plus(x0,x1) == s(plus(p(x0),x1))
p(plus(x0,x1)) == plus(p(x0),x1)
p(plus(plus(s(x0),x1),x2)) == plus(plus(x0,x1),x2)
```

ELPO with interpretations on N
plus_A(x1,x2) = x1 + x2 + 1
s_A(x1) = x1 + 1
p_A(x1) = x1 + 1
plus#_A(x1,x2) = x1
s#_A(x1) = x1
p#_A(x1) = x1
and precedence:
p > s > plus

Maximal Completion with Inter-Reduction

- \blacksquare let $\mathcal{O}(\mathcal{E})$ be result of Sato and Winkler's method
- let $\psi(\mathcal{E},\succ)$ be result of deduce-free completion on $(\mathcal{E},\varnothing)$ with respect to \succ

Idea

find canonical presentation by SW method $\mathcal{O}\textsc{,}$ generating equations by completion ψ

Maximal Completion with Inter-Reduction

- \blacksquare let $\mathcal{O}(\mathcal{E})$ be result of Sato and Winkler's method
- let $\psi(\mathcal{E},\succ)$ be result of deduce-free completion on $(\mathcal{E},\varnothing)$ with respect to \succ

Idea

find canonical presentation by SW method $\mathcal O_{\text{r}}$ generating equations by completion ψ

Definition

$$\varphi(\mathcal{E}) = \begin{cases} \mathcal{R} & \text{if } \mathcal{R} \text{ is complete for } \mathcal{E} \\ \varphi(\mathcal{E} \cup \mathcal{S}(\mathcal{E})) & \text{otherwise} \end{cases}$$

where, $(\mathcal{P},\succ) = \mathcal{O}(\mathcal{E})$, $(\mathcal{E}',\mathcal{R}) = \psi(\mathcal{E},\succ)$, and $\mathcal{S}(\mathcal{E})$ is subset of $\mathcal{E}' \cup \mathcal{R} \cup \mathsf{CP}(\mathcal{R}) \downarrow_{\mathcal{R}}$

Maximal Completion with Inter-Reduction

- \blacksquare let $\mathcal{O}(\mathcal{E})$ be result of Sato and Winkler's method
- let $\psi(\mathcal{E},\succ)$ be result of deduce-free completion on $(\mathcal{E},\varnothing)$ with respect to \succ

Idea

find canonical presentation by SW method $\mathcal O_{\text{r}}$ generating equations by completion ψ

Definition

$$\varphi(\mathcal{E}) = \begin{cases} \mathcal{R} & \text{if } \mathcal{R} \text{ is complete for } \mathcal{E} \\ \varphi(\mathcal{E} \cup \mathcal{S}(\mathcal{E})) & \text{otherwise} \end{cases}$$

where, $(\mathcal{P},\succ) = \mathcal{O}(\mathcal{E})$, $(\mathcal{E}',\mathcal{R}) = \psi(\mathcal{E},\succ)$, and $\mathcal{S}(\mathcal{E})$ is subset of $\mathcal{E}' \cup \mathcal{R} \cup \mathsf{CP}(\mathcal{R}) \downarrow_{\mathcal{R}}$

Theorem

 $\varphi(\mathcal{E})$ is complete TRS for \mathcal{E} if $\varphi(\mathcal{E})$ is defined

Example 1: Peano Arithmetic

plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x

plus(s(x),y) <- s(plus(x,y)) s(p(x)) -> x p(s(x)) -> x | ELPO with interpretations on N

```
plus_A(x1,x2) = 1
s_A(x1) = x1 + 1
p_A(x1) = x1
s#_A(x1) = 0
p#_A(x1) = x1
and precedence:
p > s > plus
```

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
```

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
```

plus(s(x),y) -> s(plus(x,y))
s(p(x)) -> x
p(s(x)) -> x
p(plus(s(x0),x1)) == plus(x0,x1)

ELPO with interpretations on N

```
plus_A(x1,x2) = 1
s_A(x1) = x1
p_A(x1) = x1
plus#_A(x1,x2) = x1
s#_A(x1) = 0
p#_A(x1) = x1
and precedence:
p > plus > s
```

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
plus(x0,x1) == s(plus(p(x0),x1))
```

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
plus(x0,x1) == s(plus(p(x0),x1))
```
plus(s(x),y) <- s(plus(x,y))
s(p(x)) -> x
p(s(x)) -> x
p(plus(s(x0),x1)) -> plus(x0,x1)
plus(x0,x1) == s(plus(p(x0),x1))

EKBO with interpretations on N

```
plus_A(x1,x2) = 1
   s_A(x1) = x1 + 1
   p_A(x1) = x1 + 1
   plus#_A(x1,x2) = x1
   s\#_A(x1) = 0
 weights
  w0 = 1
   w(plus) = 0
   w(s) = 1
   w(p) = 1
 and precedence:
| p > s > p | us
```

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
plus(x0,x1) == s(plus(p(x0),x1))
p(plus(x0,x1)) == plus(p(x0),x1)
p(plus(plus(s(x0),x1),x2)) == plus(plus(x0,x1),x2)
```

```
plus(s(x),y) == s(plus(x,y))
s(p(x)) == x
p(s(x)) == x
p(plus(s(x0),x1)) == plus(x0,x1)
plus(x0,x1) == s(plus(p(x0),x1))
p(plus(x0,x1)) == plus(p(x0),x1)
p(plus(plus(s(x0),x1),x2)) == plus(plus(x0,x1),x2)
```

```
ELPO with interpretations on N
plus_A(x1,x2) = x1 + x2 + 1
s_A(x1) = x1 + 1
p_A(x1) = x1 + 1
plus#_A(x1,x2) = x1
s#_A(x1) = x1
p#_A(x1) = x1
and precedence:
p > s > plus
```

YES

```
(VAR x0 x1 x y)
(RULES
    p(plus(x0,x1)) -> plus(p(x0),x1)
    p(s(x)) -> x
    s(p(x)) -> x
    s(plus(x,y)) -> plus(s(x),y)
)
```

(COMMENT

Termination is shown by ELPO with interpretations on N

```
\begin{array}{l} plus_A(x1,x2) = x1 + x2 + 1\\ s_A(x1) = x1 + 1\\ p_A(x1) = x1 + 1\\ plus\#_A(x1,x2) = x1\\ s\#_A(x1) = x1\\ p\#_A(x1) = x1\\ \end{array}
```

and precedence:

p > s > plus)

Example 1: Peano Arithmetic

Example 2: Commuting Group Endomorphisms (CGE₂)

 $\begin{array}{l} a(e(),x) == x \\ a(i(x),x) == e() \\ f(a(x,y)) == a(f(x),f(y)) \\ g(a(x,y)) == a(g(x),g(y)) \\ a(f(x),g(y)) == a(g(y),f(x)) \\ a(x,a(y,z)) == a(a(x,y),z) \end{array}$

a(e(),x) -> x a(i(x),x) -> e() f(a(x,y)) <- a(f(x),f(y)) g(a(x,y)) <- a(g(x),g(y)) a(f(x),g(y)) -> a(g(y),f(x)) a(x,a(y,z)) -> a(a(x,y),z)

EKBO with interpretations on N $a_A(x1, x2) = x2 + 1$ e A = 1 $i_A(x1) = x1 + 1$ $f_A(x1) = 1$ $g_A(x1) = 2$ a# A(x1, x2) = x2 $e#_A = 0$ $f#_A(x1) = 0$ weights $w\Theta = 1$ w(a) = 0w(e) = 1w(i) = 1w(f) = 1w(g) = 1and precedence: a > g > f > i > e

 $\begin{aligned} a(e(), x) &= x \\ a(i(x), x) &= e() \\ f(a(x,y)) &= a(f(x), f(y)) \\ g(a(x,y)) &= a(g(x), g(y)) \\ a(f(x), g(y)) &= a(g(x), g(x)) \\ a(x, a(y, z)) &= a(a(x), y), z) \\ a(x, a(y, z)) &= a(a(x, 0, e()), x1) \\ e() &= a(a(i(a(x0, e(1)), x0), x1) \\ a(x0, e(1)) &= a(a(x0, i(x1)), x1) \\ a(x0, e(1)) &= a(a(x0, g(x1)), g(x2)) \\ a(x0, f(a(x1, x2))) &= a(a(x0, f(x1)), f(x2)) \\ a(a(x0, g(x1)), f(x2)) &= a(a(x0, f(x2)), g(x1)) \\ a(x0, f(x1)) &= a(a(x0, f(x1)), f(x2)) \\ a(x0, f(x1)) &= a(a(x0, f(x1)), f(x2)) \\ a(x0, f(x1)) &= a(a(x0, f(x1)), g(x1)) \\ a(x0, f(x1)) \\ a(x0, f(x1)) &= a(a(x0, f(x1)), g(x1)) \\ a(x0, f(x1)) \\ a(x0, f$

 $\begin{aligned} a(e(), x) &= x \\ a(i(x), x) &= e() \\ f(a(x,y)) &= a(f(x), f(y)) \\ g(a(x,y)) &= a(g(x), g(y)) \\ a(f(x), g(y)) &= a(g(x), f(x)) \\ a(x, a(y, z)) &= a(a(x), z) \\ a(x, a(y, z)) &= a(a(x, 0, (z)), z) \\ a(x, a(y, z)) &= a(a(x, 0, (z)), x) \\ a(x, a(y, e()) &= a(a(x, 0, i(x)), x)) \\ a(x, a(z, 0, (z)) &= a(a(x, 0, g(x)), g(x2)) \\ a(x, a(g(x)), f(x2)) &= a(a(x, 0, f(x2)), g(x2)) \\ a(a(x, 0, g(x)), f(x2)) &= a(a(x, 0, f(x2)), g(x)) \end{aligned}$

EKBO with interpretations on N
$a_A(x1,x2) = x2$
e_A = 0
$i_A(x1) = x1 + 1$
$f_A(x1) = x1 + 2$
$g_A(x1) = 1$
$a#_A(x1,x2) = x2$
e#_A = 0
$f#_A(x1) = x1$
$g_{A(x1)} = x1$
weights
$w\Theta = 1$
w(a) = 0
w(e) = 1
w(i) = 1
w(f) = 1

w(g) = 1
and precedence:
a > g > f > i > e

a(e(),x) == xa(i(x), x) == e()f(a(x,y)) == a(f(x), f(y))g(a(x,y)) == a(g(x),g(y))a(f(x),g(y)) == a(g(y),f(x))a(x,a(y,z)) == a(a(x,y),z)a(x0,x1) == a(a(x0,e()),x1)e() == a(a(i(a(x0,x1)),x0),x1)a(x0,e()) == a(a(x0,i(x1)),x1)a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))x0 == a(i(x1), a(x1, x0))a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2)) a(e(),x) == xa(i(x), x) == e()f(a(x,y)) == a(f(x), f(y))g(a(x,y)) == a(g(x),g(y))a(f(x),g(y)) == a(g(y),f(x))a(x,a(y,z)) == a(a(x,y),z)a(x0,x1) == a(a(x0,e()),x1)e() == a(a(i(a(x0,x1)),x0),x1)a(x0,e()) == a(a(x0,i(x1)),x1)a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))x0 == a(i(x1), a(x1, x0))a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))

a(e(),x) -> x	EKBO with interpretations on N
$a(i(x),x) \rightarrow e()$	
$f(a(x,y)) \to a(f(x),f(y))$	$a_A(x1,x2) = x1 + x2$
g(a(x,y)) < -a(g(x),g(y))	e_A = 0
a(f(x),g(y)) < -a(g(y),f(x))	$i_A(x1) = x1$
a(x,a(y,z)) < -a(a(x,y),z)	$f_A(x1) = 0$
a(x0,x1) == a(a(x0,e()),x1)	$g_A(x1) = 1$
e() == a(a(i(a(x0,x1)),x0),x1)	a#_A(x1,x2) = x1
a(x0,e()) == a(a(x0,i(x1)),x1)	e#_A = 0
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))	
a(x0,f(a(x1,x2))) == a(a(x0,f(x1)),f(x2))	weights
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))	
x0 <- a(i(x1),a(x1,x0))	w0 = 1
a(g(a(x0,x1)),x2) <- a(g(x0),a(g(x1),x2))	w(a) = 0
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))	w(e) = 1
a(f(x0),a(g(x1),x2)) <- a(g(x1),a(f(x0),x2))	w(i) = 1
	w(f) = 0
	w(g) = 1

and precedence: f > g > a > i > e

```
a(e(),x) == x
a(i(x), x) == e()
f(a(x,y)) == a(f(x),f(y))
g(a(x,y)) == a(g(x),g(y))
a(f(x),g(y)) == a(g(y),f(x))
a(x,a(y,z)) == a(a(x,y),z)
a(x0,x1) == a(a(x0,e()),x1)
e() == a(a(i(a(x0,x1)),x0),x1)
a(x0,e()) == a(a(x0,i(x1)),x1)
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
x0 == a(i(x1), a(x1, x0))
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
f(x0) == a(f(e()), f(x0))
a(i(i(x0)), x1) == a(x0, x1)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
```

```
a(e(),x) == x
a(i(x), x) == e()
f(a(x,y)) == a(f(x),f(y))
g(a(x,y)) == a(g(x),g(y))
a(f(x),g(y)) == a(g(y),f(x))
a(x,a(y,z)) == a(a(x,y),z)
a(x0,x1) == a(a(x0,e()),x1)
e() == a(a(i(a(x0,x1)),x0),x1)
a(x0,e()) == a(a(x0,i(x1)),x1)
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
a(x0,f(a(x1,x2))) == a(a(x0,f(x1)),f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
x0 == a(i(x1), a(x1, x0))
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
f(x0) == a(f(e()), f(x0))
a(i(i(x0)), x1) == a(x0, x1)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
```

$a(e(),x) \rightarrow x$	EKBO with interpretations on N
a(i(x),x) -> e()	
f(a(x,y)) < -a(f(x),f(y))	$a_A(x1,x2) = x1 + x2$
$g(a(x,y)) \rightarrow a(g(x),g(y))$	e_A = 1
$a(f(x),g(y)) \rightarrow a(g(y),f(x))$	$i_A(x1) = x1 + 2$
a(x,a(y,z)) < -a(a(x,y),z)	$f_A(x1) = x1 + 1$
a(x0,x1) == a(a(x0,e()),x1)	$g_A(x1) = 0$
e() == a(a(i(a(x0,x1)),x0),x1)	$a\#_A(x1,x2) = x1$
a(x0,e()) == a(a(x0,i(x1)),x1)	$e#_A = 0$
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))	
a(x0,f(a(x1,x2))) == a(a(x0,f(x1)),f(x2))	weights
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))	
$x_0 < -a(i(x_1), a(x_1, x_0))$	w0 = 1
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))	w(a) = 0
a(f(a(x0,x1)),x2) < - a(f(x0),a(f(x1),x2))	w(e) = 1
$a(f(x0), a(g(x1), x2)) \rightarrow a(g(x1), a(f(x0), x2))$	w(i) = 1
$a(i(e()), x0) \rightarrow x0$	w(f) = 1
a(i(i(x0)), e()) == x0	w(g) = 0
f(x0) == a(f(e()), f(x0))	
$a(i(i(x0)),x1) \rightarrow a(x0,x1)$	and precedence:
f(e()) == a(f(i(x0)), f(x0))	
$a(i(g(x\theta)),g(a(x\theta,x1))) == g(x1)$	g > a > f > i > e
a(i(a(x0,x1)),a(x0,a(x1,x2))) -> x2	
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)	
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))	
f(g(a(x0,x1))) = a(f(g(x0)), f(g(x1)))	
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)	
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))	
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)	

```
a(e(),x) == x
                                                  g(x0) == a(g(e()), g(x0))
                                                  i(a(i(a(x0,x1)),x0)) == x1
a(i(x), x) == e()
f(a(x,y)) == a(f(x),f(y))
                                                  a(i(a(x0,i(x1))),x0) == x1
g(a(x,y)) == a(g(x),g(y))
                                                  g(x0) == a(g(i(e())), g(x0))
                                                  g(e()) == a(g(i(x0)),g(x0))
a(f(x),g(y)) == a(g(y),f(x))
a(x,a(y,z)) == a(a(x,y),z)
                                                  a(i(a(x0, i(e())), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                  a(i(f(x0)), f(a(x0, x1))) == f(x1)
e() == a(a(i(a(x0,x1)),x0).x1)
a(x0,e()) == a(a(x0,i(x1)),x1)
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
a(x0,f(a(x1,x2))) == a(a(x0,f(x1)),f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
x0 == a(i(x1), a(x1, x0))
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
f(x0) == a(f(e()), f(x0))
a(i(i(x0)), x1) == a(x0, x1)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
e() == i(e())
a(x0,e()) == x0
x0 == i(i(x0))
e() == a(x0, i(x0))
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0),g(e()))
```

```
a(e(),x) == x
                                                  g(x0) == a(g(e()), g(x0))
a(i(x), x) == e()
                                                  i(a(i(a(x0,x1)),x0)) == x1
f(a(x,y)) == a(f(x),f(y))
                                                  a(i(a(x0, i(x1))), x0) == x1
g(a(x,y)) == a(g(x),g(y))
                                                  g(x0) == a(g(i(e())), g(x0))
a(f(x),g(y)) == a(g(y),f(x))
                                                  g(e()) == a(g(i(x0)), g(x0))
a(x,a(y,z)) == a(a(x,y),z)
                                                  a(i(a(x0, i(e()))), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                  a(i(f(x0)), f(a(x0, x1))) == f(x1)
e() == a(a(i(a(x0,x1)),x0),x1)
a(x0,e()) == a(a(x0,i(x1)),x1)
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
a(x0,f(a(x1,x2))) == a(a(x0,f(x1)),f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
x0 == a(i(x1), a(x1, x0))
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
f(x0) == a(f(e()), f(x0))
a(i(i(x0)), x1) == a(x0, x1)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
e() == i(e())
a(x0,e()) == x0
x0 == i(i(x0))
e() == a(x0, i(x0))
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

```
a(e(),x) \rightarrow x
                                                     g(x0) == a(g(e()), g(x0))
a(i(x), x) -> e()
                                                     i(a(i(a(x0,x1)),x0)) -> x1
f(a(x,y)) \leq a(f(x),f(y))
                                                     a(i(a(x0,i(x1))),x0) \rightarrow x1
g(a(x,y)) \leq a(g(x),g(y))
                                                     g(x0) == a(g(i(e())), g(x0))
a(f(x),g(y)) \rightarrow a(g(y),f(x))
                                                     g(e()) == a(g(i(x0)), g(x0))
a(x,a(y,z)) \rightarrow a(a(x,y),z)
                                                     a(i(a(x0, i(e()))), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                     a(i(f(x0)), f(a(x0, x1))) \rightarrow f(x1)
e() <- a(a(i(a(x0,x1)),x0),x1)
a(x0,e()) == a(a(x0,i(x1)),x1)
a(x0,g(a(x1,x2))) <- a(a(x0,g(x1)),g(x2))
a(x0,f(a(x1,x2))) <- a(a(x0,f(x1)),f(x2))
a(a(x0,g(x1)),f(x2)) \le a(a(x0,f(x2)),g(x1))
x0 == a(i(x1), a(x1, x0))
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
f(x0) == a(f(e()), f(x0))
a(i(i(x0)), x1) == a(x0, x1)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) \rightarrow g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
e() <- i(e())
a(x0,e()) \rightarrow x0
x_0 <- i(i(x_0))
e() <- a(x0,i(x0))
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

EKBO with interpretations on N a A(x1, x2) = x1 + x2 + 1e A = 2i A(x1) = x1 + 1 $f_{A(x1)} = 1$ $g_A(x1) = 2$ a# A(x1, x2) = x2e# A = 0 $f\#_A(x1) = 0$ $g#_A(x1) = x1$ weights $w\Theta = 1$ w(a) = 0w(e) = 2w(i) = 1w(f) = 1w(g) = 1and precedence: g > a > f > i > e

```
a(e(),x) == x
                                                  g(x0) == a(g(e()), g(x0))
a(i(x), x) == e()
                                                  i(a(i(a(x0,x1)),x0)) == x1
f(a(x,y)) == a(f(x),f(y))
                                                  a(i(a(x0, i(x1))), x0) == x1
g(a(x,y)) == a(g(x),g(y))
                                                  g(x0) == a(g(i(e())), g(x0))
a(f(x),g(y)) == a(g(y),f(x))
                                                  g(e()) == a(g(i(x0)), g(x0))
a(x, a(y, z)) == a(a(x, y), z)
                                                  a(i(a(x0, i(e()))), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                  a(i(f(x0)), f(a(x0, x1))) == f(x1)
e() == a(a(i(a(x0,x1)),x0),x1)
                                                  e() == f(e())
a(x0,e()) == a(a(x0,i(x1)),x1)
                                                  e() == g(e())
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
                                                  a(a(x0,i(x1)),x1) == x0
                                                  a(a(x0,x1),i(x1)) == x0
a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))
                                                  a(i(f(e())), f(x0)) == f(x0)
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
x0 == a(i(x1), a(x1, x0))
                                                  a(x0,i(a(i(x1),x0))) == x1
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
                                                  a(i(a(x0,x1)),x0) == i(x1)
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
                                                  i(a(x0, i(a(x1, x0)))) == x1
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
                                                  a(i(g(e())),g(x0)) == g(x0)
                                                  a(i(f(x0)), f(e())) == f(i(x0))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
                                                  a(i(f(i(x0))), f(e())) == f(x0)
f(x0) == a(f(e()), f(x0))
                                                  a(i(g(x0)),g(e())) == g(i(x0))
a(i(i(x0)), x1) == a(x0, x1)
                                                  a(i(g(i(x0))),g(e())) == g(x0)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
e() == i(e())
a(x0,e()) == x0
x0 == i(i(x0))
e() == a(x0, i(x0))
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

```
a(e(),x) == x
                                                  g(x0) == a(g(e()), g(x0))
a(i(x), x) == e()
                                                  i(a(i(a(x0,x1)),x0)) == x1
f(a(x,y)) == a(f(x),f(y))
                                                  a(i(a(x0, i(x1))), x0) == x1
g(a(x,y)) == a(g(x),g(y))
                                                  g(x0) == a(g(i(e())), g(x0))
a(f(x),g(y)) == a(g(y),f(x))
                                                  g(e()) == a(g(i(x0)), g(x0))
a(x, a(y, z)) == a(a(x, y), z)
                                                  a(i(a(x0, i(e()))), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                  a(i(f(x0)), f(a(x0, x1))) == f(x1)
e() == a(a(i(a(x0,x1)),x0),x1)
                                                  e() == f(e())
a(x0,e()) == a(a(x0,i(x1)),x1)
                                                  e() == g(e())
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
                                                  a(a(x0,i(x1)),x1) == x0
                                                  a(a(x0,x1),i(x1)) == x0
a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
                                                  a(i(f(e())), f(x0)) == f(x0)
x0 == a(i(x1), a(x1, x0))
                                                  a(x0,i(a(i(x1),x0))) == x1
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
                                                  a(i(a(x0,x1)),x0) == i(x1)
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
                                                  i(a(x0, i(a(x1, x0)))) == x1
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
                                                  a(i(g(e())),g(x0)) == g(x0)
                                                  a(i(f(x0)), f(e())) == f(i(x0))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
                                                  a(i(f(i(x0))), f(e())) == f(x0)
f(x0) == a(f(e()), f(x0))
                                                  a(i(g(x0)),g(e())) == g(i(x0))
a(i(i(x0)), x1) == a(x0, x1)
                                                  a(i(g(i(x0))),g(e())) == g(x0)
f(e()) == a(f(i(x0)), f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
e() == i(e())
a(x0,e()) == x0
x0 == i(i(x0))
e() == a(x0, i(x0))
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

```
a(e(),x) \rightarrow x
                                                    g(x0) == a(g(e()), g(x0))
                                                                                                                           EKBO with interpretations on N
a(i(x),x) -> e()
                                                    i(a(i(a(x0,x1)),x0)) == x1
f(a(x,y)) \leq a(f(x),f(y))
                                                    a(i(a(x0, i(x1))), x0) == x1
                                                                                                                             a A(x1, x2) = x1 + x2
g(a(x,y)) \rightarrow a(g(x),g(y))
                                                    g(x0) == a(g(i(e())), g(x0))
                                                                                                                             e A = 0
a(f(x),g(y)) \rightarrow a(g(y),f(x))
                                                    g(e()) == a(g(i(x0)), g(x0))
                                                                                                                             i A(x1) = x1
a(x,a(y,z)) \leq a(a(x,y),z)
                                                    a(i(a(x0, i(e()))), a(x0, x1)) == x1
                                                                                                                             f_{A(x1)} = 1
a(x0,x1) == a(a(x0,e()),x1)
                                                    a(i(f(x0)), f(a(x0, x1))) \rightarrow f(x1)
                                                                                                                             g_A(x1) = 0
                                                    e() <- f(e())
                                                                                                                             a# A(x1,x2) = x1
e() == a(a(i(a(x0,x1)),x0),x1)
                                                    e() <- g(e())
a(x0,e()) == a(a(x0,i(x1)),x1)
                                                                                                                             e# A = 0
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
                                                    a(a(x0,i(x1)),x1) == x0
                                                    a(a(x0,x1),i(x1)) == x0
a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))
                                                                                                                           weights
                                                    a(i(f(e())), f(x0)) == f(x0)
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
x0 <- a(i(x1), a(x1, x0))
                                                    a(x0,i(a(i(x1),x0))) \rightarrow x1
                                                                                                                             w\Theta = 1
                                                    a(i(a(x0,x1)),x0) \rightarrow i(x1)
                                                                                                                             w(a) = 0
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
a(f(a(x0,x1)),x2) \le a(f(x0),a(f(x1),x2))
                                                    i(a(x0, i(a(x1, x0)))) \rightarrow x1
                                                                                                                             w(e) = 2
a(f(x0),a(g(x1),x2)) -> a(g(x1),a(f(x0),x2))
                                                    a(i(g(e())),g(x0)) == g(x0)
                                                                                                                             w(i) = 1
                                                    a(i(f(x0)), f(e())) == f(i(x0))
                                                                                                                             w(f) = 1
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
                                                    a(i(f(i(x0))), f(e())) == f(x0)
                                                                                                                             w(g) = 0
f(x0) == a(f(e()), f(x0))
                                                    a(i(g(x0)),g(e())) == g(i(x0))
a(i(i(x0)), x1) == a(x0, x1)
                                                    a(i(g(i(x0))),g(e())) == g(x0)
                                                                                                                           and precedence:
f(e()) == a(f(i(x0)), f(x0))
                                                                                                                           q > a > f > i > e
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) -> x2
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
e() <- i(e())
a(x0,e()) \rightarrow x0
x_0 <- i(i(x_0))
e() <- a(x0,i(x0))
x0 <- a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

```
a(e(),x) == x
                                                  g(x0) == a(g(e()), g(x0))
a(i(x), x) == e()
                                                  i(a(i(a(x0,x1)),x0)) == x1
f(a(x,y)) == a(f(x),f(y))
                                                  a(i(a(x0, i(x1))), x0) == x1
g(a(x,y)) == a(g(x),g(y))
                                                  g(x0) == a(g(i(e())), g(x0))
a(f(x),g(y)) == a(g(y),f(x))
                                                  g(e()) == a(g(i(x0)), g(x0))
a(x,a(y,z)) == a(a(x,y),z)
                                                  a(i(a(x0, i(e()))), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                  a(i(f(x0)), f(a(x0, x1))) == f(x1)
e() == a(a(i(a(x0,x1)),x0),x1)
                                                  e() == f(e())
a(x0,e()) == a(a(x0,i(x1)),x1)
                                                  e() == g(e())
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
                                                  a(a(x0,i(x1)),x1) == x0
                                                  a(a(x0,x1),i(x1)) == x0
a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
                                                  a(i(f(e())), f(x0)) == f(x0)
x0 == a(i(x1), a(x1, x0))
                                                  a(x0,i(a(i(x1),x0))) == x1
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
                                                  a(i(a(x0,x1)),x0) == i(x1)
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
                                                  i(a(x0, i(a(x1, x0)))) == x1
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
                                                  a(i(g(e())),g(x0)) == g(x0)
                                                  a(i(f(x0)), f(e())) == f(i(x0))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
                                                  a(i(f(i(x0))), f(e())) == f(x0)
f(x0) == a(f(e()), f(x0))
                                                  a(i(g(x0)),g(e())) == g(i(x0))
a(i(i(x0)), x1) == a(x0, x1)
                                                  a(i(g(i(x0))),g(e())) == g(x0)
f(e()) == a(f(i(x0)), f(x0))
                                                  g(i(x\Theta)) == i(g(x\Theta))
                                                  f(i(x0)) == i(f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
                                                  a(x0,i(a(x1,x0))) == i(x1)
                                                  a(i(x0),x1) == i(a(i(x1),x0))
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
                                                  a(i(x0), i(x1)) == i(a(x1, x0))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
                                                  a(x0,x1) == i(a(i(x1),i(x0)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
                                                  a(x0,a(x1,i(a(x0,x1)))) == e()
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
                                                  f(x0) == i(f(a(x1, i(a(x0, x1)))))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
                                                  a(f(a(x0,x1)),i(f(x1))) == f(x0)
                                                   i(a(f(x0), i(f(a(x1, x0))))) == f(x1)
e() == i(e())
a(x0,e()) == x0
                                                   a(i(f(a(x0,x1))),f(x0)) == i(f(x1))
x0 == i(i(x0))
                                                  a(i(f(x0)), f(x1)) == f(a(i(x0), x1))
e() == a(x0, i(x0))
                                                  a(x0,a(x1,a(i(a(x0,x1)),x2))) == x2
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

```
a(e(),x) == x
                                                  g(x0) == a(g(e()), g(x0))
a(i(x), x) == e()
                                                  i(a(i(a(x0,x1)),x0)) == x1
f(a(x,y)) == a(f(x),f(y))
                                                  a(i(a(x0, i(x1))), x0) == x1
g(a(x,y)) == a(g(x),g(y))
                                                  g(x0) == a(g(i(e())), g(x0))
a(f(x),g(y)) == a(g(y),f(x))
                                                  g(e()) == a(g(i(x0)), g(x0))
a(x,a(y,z)) == a(a(x,y),z)
                                                  a(i(a(x0, i(e()))), a(x0, x1)) == x1
a(x0,x1) == a(a(x0,e()),x1)
                                                  a(i(f(x0)), f(a(x0, x1))) == f(x1)
e() == a(a(i(a(x0,x1)),x0),x1)
                                                  e() == f(e())
a(x0,e()) == a(a(x0,i(x1)),x1)
                                                  e() == g(e())
a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))
                                                  a(a(x0,i(x1)),x1) == x0
                                                  a(a(x0,x1),i(x1)) == x0
a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))
a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))
                                                  a(i(f(e())), f(x0)) == f(x0)
x0 == a(i(x1), a(x1, x0))
                                                  a(x0,i(a(i(x1),x0))) == x1
a(g(a(x0,x1)),x2) == a(g(x0),a(g(x1),x2))
                                                  a(i(a(x0,x1)),x0) == i(x1)
a(f(a(x0,x1)),x2) == a(f(x0),a(f(x1),x2))
                                                  i(a(x0, i(a(x1, x0)))) == x1
a(f(x0), a(g(x1), x2)) == a(g(x1), a(f(x0), x2))
                                                  a(i(g(e())),g(x0)) == g(x0)
                                                  a(i(f(x0)), f(e())) == f(i(x0))
a(i(e()), x0) == x0
a(i(i(x0)),e()) == x0
                                                  a(i(f(i(x0))), f(e())) == f(x0)
f(x0) == a(f(e()), f(x0))
                                                  a(i(g(x0)),g(e())) == g(i(x0))
a(i(i(x0)), x1) == a(x0, x1)
                                                  a(i(g(i(x0))),g(e())) == g(x0)
f(e()) == a(f(i(x0)), f(x0))
                                                  g(i(x\Theta)) == i(g(x\Theta))
                                                  f(i(x0)) == i(f(x0))
a(i(g(x0)),g(a(x0,x1))) == g(x1)
a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2
                                                  a(x0,i(a(x1,x0))) == i(x1)
a(i(g(x0)), a(f(x1), g(x0))) == f(x1)
                                                  a(i(x0),x1) == i(a(i(x1),x0))
f(x0) == a(f(i(x1)), a(f(x1), f(x0)))
                                                  a(i(x0), i(x1)) == i(a(x1, x0))
f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))
                                                  a(x_0, x_1) == i(a(i(x_1), i(x_0)))
a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)
                                                  a(x0,a(x1,i(a(x0,x1)))) == e()
a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))
                                                  f(x0) == i(f(a(x1, i(a(x0, x1)))))
a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)
                                                  a(f(a(x0,x1)), i(f(x1))) == f(x0)
                                                  i(a(f(x0), i(f(a(x1, x0))))) == f(x1)
e() == i(e())
a(x0,e()) == x0
                                                  a(i(f(a(x0,x1))),f(x0)) == i(f(x1))
x0 == i(i(x0))
                                                  a(i(f(x0)), f(x1)) == f(a(i(x0), x1))
e() == a(x0, i(x0))
                                                  a(x0,a(x1,a(i(a(x0,x1)),x2))) == x2
x0 == a(x1, a(i(x1), x0))
g(x0) == a(g(x0), g(e()))
```

 $a(e(),x) \rightarrow x$ a(i(x),x) -> e() $f(a(x,y)) \leq a(f(x),f(y))$ $g(a(x,y)) \leq a(g(x),g(y))$ $a(f(x),g(y)) \rightarrow a(g(y),f(x))$ $a(x,a(y,z)) \leq a(a(x,y),z)$ a(x0,x1) == a(a(x0,e()),x1)e() == a(a(i(a(x0,x1)),x0),x1)a(x0,e()) == a(a(x0,i(x1)),x1)a(x0,g(a(x1,x2))) == a(a(x0,g(x1)),g(x2))a(x0, f(a(x1, x2))) == a(a(x0, f(x1)), f(x2))a(a(x0,g(x1)),f(x2)) == a(a(x0,f(x2)),g(x1))x0 <- a(i(x1),a(x1,x0)) a(g(a(x0,x1)),x2) <- a(g(x0),a(g(x1),x2))a(f(a(x0,x1)),x2) <- a(f(x0),a(f(x1),x2))a(f(x0),a(g(x1),x2)) -> a(g(x1),a(f(x0),x2)) a(i(e()), x0) == x0a(i(i(x0)),e()) == x0f(x0) == a(f(e()), f(x0))a(i(i(x0)), x1) == a(x0, x1)f(e()) == a(f(i(x0)), f(x0))a(i(g(x0)),g(a(x0,x1))) == g(x1)a(i(a(x0,x1)),a(x0,a(x1,x2))) == x2a(i(g(x0)), a(f(x1), g(x0))) == f(x1)f(x0) == a(f(i(x1)), a(f(x1), f(x0)))f(g(a(x0,x1))) == a(f(g(x0)), f(g(x1)))a(i(g(x0)), a(g(a(x0, x1)), x2)) == a(g(x1), x2)a(f(f(x0)), f(g(x1))) == a(f(g(x1)), f(f(x0)))a(i(g(x0)), a(f(x1), a(g(x0), x2))) == a(f(x1), x2)e() <- i(e())a(x0.e()) -> x0 $x_0 <- i(i(x_0))$ e() <- a(x0.i(x0)) x0 <- a(x1, a(i(x1), x0))g(x0) == a(g(x0), g(e()))

g(x0) == a(g(e()), g(x0))i(a(i(a(x0,x1)),x0)) == x1a(i(a(x0, i(x1))), x0) == x1g(x0) == a(g(i(e())), g(x0))g(e()) == a(g(i(x0)), g(x0))a(i(a(x0, i(e()))), a(x0, x1)) == x1a(i(f(x0)), f(a(x0, x1))) == f(x1)e() <- f(e()) $e() \leq g(e())$ a(a(x0,i(x1)),x1) == x0a(a(x0,x1),i(x1)) == x0a(i(f(e())), f(x0)) == f(x0)a(x0,i(a(i(x1),x0))) == x1a(i(a(x0,x1)),x0) == i(x1)i(a(x0, i(a(x1, x0)))) == x1a(i(g(e())),g(x0)) == g(x0)a(i(f(x0)), f(e())) == f(i(x0))a(i(f(i(x0))), f(e())) == f(x0)a(i(g(x0)),g(e())) == g(i(x0))a(i(g(i(x0))),g(e())) == g(x0)g(i(x0)) <- i(g(x0))f(i(x0)) <- i(f(x0))a(x0,i(a(x1,x0))) == i(x1)a(i(x0),x1) == i(a(i(x1),x0))a(i(x0), i(x1)) < - i(a(x1, x0))a(x0,x1) == i(a(i(x1),i(x0)))a(x0,a(x1,i(a(x0,x1)))) == e()f(x0) == i(f(a(x1, i(a(x0, x1)))))a(f(a(x0,x1)),i(f(x1))) == f(x0)i(a(f(x0), i(f(a(x1, x0))))) == f(x1)a(i(f(a(x0,x1))),f(x0)) == i(f(x1))a(i(f(x0)), f(x1)) == f(a(i(x0), x1))a(x0,a(x1,a(i(a(x0,x1)),x2))) == x2

EKBO with interpretations on N a A(x1, x2) = x1 + x2e A = 0i A(x1) = x1f A(x1) = x1 + 1 $g_A(x1) = 0$ a# A(x1, x2) = x1e# A = 0 $f\#_A(x1) = 0$ weights $w\Theta = 1$ w(a) = 0w(e) = 1w(i) = 0w(f) = 1w(q) = 1and precedence: i>g>a>f>e

YES

```
(VAR x1 x0 x2 x y z)
(RULES
  i(a(x1,x0)) \rightarrow a(i(x0),i(x1))
  i(g(x0)) \rightarrow g(i(x0))
  i(f(x_0)) \rightarrow f(i(x_0))
  g(e()) \rightarrow e()
  f(e()) -> e()
  a(x1,a(i(x1),x0)) \rightarrow x0
  a(x0,i(x0)) \rightarrow e()
  i(i(x0)) -> x0
  i(e()) -> e()
  a(x0,e()) -> x0
  a(f(x0), a(g(x1), x2)) \rightarrow a(g(x1), a(f(x0), x2))
  a(f(x0), a(f(x1), x2)) \rightarrow a(f(a(x0, x1)), x2)
  a(g(x0),a(g(x1),x2)) \rightarrow a(g(a(x0,x1)),x2)
  a(i(x1),a(x1,x0)) -> x0
  a(a(x,y),z) \rightarrow a(x,a(y,z))
  a(f(x),g(y)) \rightarrow a(g(y),f(x))
  a(g(x),g(y)) \rightarrow g(a(x,y))
  a(f(x), f(y)) \rightarrow f(a(x, y))
  a(i(x),x) -> e()
  a(e(),x) \rightarrow x
)
```

(COMMENT

Termination is shown by EKBO with interpretations on N

```
\begin{array}{l} a_{-}A(x1,x2) = x1 + x2 \\ e_{-}A = 0 \\ i_{-}A(x1) = x1 \\ f_{-}A(x1) = x1 \\ f_{-}A(x1) = 0 \\ a\#_{-}A(x1,x2) = x1 \\ e\#_{-}A = 0 \\ f\#_{-}A(x1) = 0 \\ e\#_{-}A(x1) = 0 \end{array}
weights
```

w0 = 1 w(a) = 0 w(e) = 1 w(i) = 0 w(f) = 1w(g) = 1

and precedence:

```
i > g > a > f > e
)
```

Example 2: Commuting Group Endomorphisms (CGE₂)

$$\mathcal{R} = \begin{cases} e + x \approx x & f(x + y) \approx f(x) + f(y) \\ i(x) + x \approx e & g(x + y) \approx g(x) + g(y) \\ (x + y) + z \approx x + (y + z) & f(x) + g(y) \approx \approx g(y) + f(x) \end{cases} \end{cases}$$

$$\mathcal{R} = \begin{cases} e + x \rightarrow x & f(e) \rightarrow e & i(x + y) \rightarrow i(y) + i(x) \\ \mathcal{E} \cup \mathcal{R} & \mathcal{E}, \succ & \mathcal{E}, \leftarrow & \mathcal{E}, \leftarrow & \mathcal{E}, \succ & \mathcal{E}, \leftarrow & \mathcal{E}, \succ & \mathcal{E}, \succ & \mathcal{E}, \leftarrow & \mathcal{E}, & \mathcal{E}, & \mathcal{E}, & \mathcal{E}, & \mathcal{$$

Experimental Results

- 115 completion problems (taken from problem set of mkbTT)
- 600 seconds timeout
- minimization problems are solved by MaxSMT (Z3)

orders (tool)LPOKBOELPOEKBOELPO+EKBOKBCVMaxcompDP# completed82838686968697

Presented Techniques

Presented Techniques

termination: order extension based on semantic labeling

Presented Techniques

- **termination:** order extension based on semantic labeling
- **confluence:** characterization by rewrite strategies

Presented Techniques

- **termination:** order extension based on semantic labeling
- **confluence:** characterization by rewrite strategies
- **completion:** maximal completion with inter-reduction

= Sato and Winkler's method + standard completion

Presented Techniques

- **termination:** order extension based on semantic labeling
- **confluence:** characterization by rewrite strategies
- **completion:** maximal completion with inter-reduction

= Sato and Winkler's method + standard completion

Future Work

ordered completion