
Automating the Dependency Pair Method

Nao Hirokawa1 and Aart Middeldorp2⋆

1 Graduate School of Systems and Information Engineering
University of Tsukuba, Tsukuba 305-8573, Japan

nao@score.is.tsukuba.ac.jp

2 Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan

ami@is.tsukuba.ac.jp

Abstract. Developing automatable methods for proving termination of
term rewrite systems that resist traditional techniques based on simpli-
fication orders has become an active research area in the past few years.
The dependency pair method of Arts and Giesl is one of the most pop-
ular such methods. However, there are several obstacles that hamper
its automation. In this paper we present new ideas to overcome these
obstacles. We provide ample numerical data supporting our ideas.

1 Introduction

Proving termination of term rewrite systems has been an active research area
for several decades. In recent years the emphasis has shifted towards the devel-
opment of powerful methods for automatically proving termination. The tradi-
tional methods for automated termination proofs of rewrite systems are simplifi-
cation orders like the recursive path order, the Knuth-Bendix order, and (most)
polynomial orders. The termination proving power of these methods has been
significantly extended by the dependency pair method of Arts and Giesl [2]. In
this method, depicted in Fig. 1, a rewrite system is transformed into groups of
ordering constraints such that termination of the system is equivalent to the
solvability of these groups. The number and size of these groups is determined
by the approximation used to estimate the dependency graph and, more impor-
tantly, by the cycle analysis algorithm that is used to extract the groups from
the approximated dependency graph. Typically, the ordering constraints in the
obtained groups must be simplified before traditional simplification orders are
applicable. Such simplifications are performed by so-called argument filterings.
It is fair to say that the dependency pair method derives much of its power
from the ability to use argument filterings to simplify constraints. The finite-
ness of the argument filtering search space has been stressed in many papers on
the dependency pair method, but we do not hesitate to label the enormous size
of this search space as the main obstacle for the successful automation of the
dependency pair method.
⋆ Partially supported by the Grant-in-Aid for Scientific Research (C)(2) 13224006 of

the Ministry of Education, Culture, Sports, Science and Technology of Japan.

TRS // dependency pairs

��

approximations
_ _ _ _ _ _ _ _ _

dependency graph

uukkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTT

cycle

analysis
_ _ _ _ _ _ ______

ordering constraints

��

ordering constraints

��

argument

filterings
_ _ _ _ _ _ _ _ _ _________

simplified constraints

((PPPPPPPPPPPPP

simplified constraints

vvnnnnnnnnnnnnn
standard

techniques
_ _ _ _ _ _____

termination proof // output

Fig. 1. The dependency pair method.

We present several new ideas which help to tackle the argument filtering
problem in Section 5. In Section 4 we present a new algorithm for cycle analysis
and in Section 3 we make some comments on dependency graph approximations.
A brief introduction to the dependency pair method is given in the next section.
In Section 6 we report on the numerous experiments that we performed to assess
the viability of our ideas.

It goes without saying that the dependency pair method is not the only
automatable method for proving termination of rewrite systems that cannot
be handled by traditional simplification orders. We mention here the pioneering
work of Steinbach [15] on automating the transformation order of Bellegarde and
Lescanne [5] and the more recent work of Borralleras et al. [6] on transforming
the semantic path order of Kamin and Lévy [12] into a monotonic version that is
amenable to automation. We believe that an implementation of the monotonic
semantic path order of [6] may benefit from the ideas presented in this paper.

2 Dependency Pairs

We assume familiarity with the basics of term rewriting ([4]). In this section we
recall the basic notions and results of the dependency pair method. We refer to
[2, 9, 10] for motivations and additional refinements.3 Let R be a term rewrite
system (TRS for short) over a signature F . Let F ♯ denote the union of F and
{f ♯ | f is a defined symbol of R} where f ♯ has the same arity as f . Given a term

3 The refinements (like narrowing and instantiation) transform dependency pairs with
the aim of simplifying the resulting ordering constraints; they are orthogonal to the
ideas we develop in this paper.

2

t = f(t1, . . . , tn) ∈ T (F ,V) with f defined, we write t♯ for the term f ♯(t1, . . . , tn).
If l → r ∈ R and t is a subterm of r with defined root symbol then the rewrite
rule l♯ → t♯ is a dependency pair of R. The set of all dependency pairs of R is
denoted by DP(R). In examples we often write F for f♯. An argument filtering
for a signature F is a mapping π that assigns to every n-ary function symbol
f ∈ F an argument position i ∈ {1, . . . , n} or a (possibly empty) list [i1, . . . , im]
of argument positions with 1 6 i1 < · · · < im 6 n. The signature Fπ consists
of all function symbols f such that π(f) is some list [i1, . . . , im], where in Fπ

the arity of f is m. Every argument filtering π induces a mapping from T (F ,V)
to T (Fπ,V), also denoted by π: π(t) = t if t is a variable, π(t) = π(ti) if t =
f(t1, . . . , tn) and π(f) = i, and π(t) = f(π(ti1), . . . , π(tim

)) if t = f(t1, . . . , tn)
and π(f) = [i1, . . . , im]. Thus, an argument filtering is used to replace function
symbols by one of their arguments or to eliminate certain arguments of function
symbols. In Section 5 we consider argument filterings that are partially defined.

A reduction pair consists of a rewrite preorder (i.e., a transitive and reflexive
relation on terms which is closed under contexts and substitutions) & and a
compatible well-founded order > which is closed under substitutions. Compat-
ibility means that the inclusion & · > ⊆ > or the inclusion > · & ⊆ > holds.
Reduction pairs are used to solve groups of simplified ordering constraints and
hence are typically based on traditional simplification orders. In all our examples
and experiments we use the pair (≻=

lpo,≻lpo) for some strict precedence ≻. Here
≻lpo denotes the lexicographic path order (LPO) induced by ≻.

Theorem 1 (Arts and Giesl [2]). A TRS R over a signature F is terminating
if and only if there exist an argument filtering π for F ♯ and a reduction pair
(&, >) such that π(l) & π(r) for every rewrite rule l → r ∈ R and π(l) > π(r)
for every dependency pair l → r ∈ DP(R). ⊓⊔

We abbreviate the two conditions in the above theorem to π(R) ⊆ & and
π(DP(R)) ⊆ >. Rather than considering all dependency pairs at the same time,
like in the above theorem, it is advantageous to treat groups of dependency
pairs separately. These groups are extracted from the dependency graph DG(R)
of R. The nodes of DG(R) are the dependency pairs of R and there is an arrow
from s → t to u → v if and only if there exist substitutions σ and τ such that
tσ →∗

R
uτ . A cycle is a non-empty subset C of dependency pairs of DP(R) if for

every two (not necessarily distinct) pairs s → t and u → v in C there exists a
non-empty path in C from s → t to u → v.

Theorem 2 (Giesl, Arts, and Ohlebusch [10]). A TRS R is terminating if and
only if for every cycle C in DG(R) there exist an argument filtering π and a
reduction pair (&, >) such that π(R ∪ C) ⊆ & ∪ > and π(C) ∩ > 6= ∅. ⊓⊔

The last condition in Theorem 2 denotes the situation that π(s) > π(t) for
at least one dependency pair s → t ∈ C.

Definition 3. Let R be a TRS and let C be a subset of DP(R). We write �∃

R, C if there exist an argument filtering π and a reduction pair (&, >) such that

3

π(R ∪ C) ⊆ & ∪ > and π(C) ∩ > 6= ∅. We write (&, >)π �∃ R, C if we want
to indicate a combination of argument filtering and reduction pair that makes
�∃ R, C true.

The existential quantifier in the notation indicates that some pair in C should
be strictly decreasing. Theorem 2 can now be simply stated as “A TRS R is
terminating if and only if �∃ R, C for every cycle C in DG(R).”

Example 4. Consider the following TRS (from [6]):

ackin(0, x) → ackout(s(x)) u11(ackout(x)) → ackout(x)

ackin(s(x), 0) → u11(ackin(x, s(0))) u21(ackout(x), y) → u22(ackin(y, x))

ackin(s(x), s(y)) → u21(ackin(s(x), y), x) u22(ackout(x)) → ackout(x)

There are six dependency pairs:

1 : ACKIN(s(x), 0) → ACKIN(x, s(0))

2 : ACKIN(s(x), 0) → U11(ackin(x, s(0)))

3 : ACKIN(s(x), s(y)) → ACKIN(s(x), y)

4 : ACKIN(s(x), s(y)) → U21(ackin(s(x), y), x)

5 : U21(ackout(x), y) → ACKIN(y, x)

6 : U21(ackout(x), y) → U22(ackin(y, x))

The dependency graph

?>=<89:;1 oo //
&&

?>=<89:;3 //))
��

?>=<89:;2 ?>=<89:;5oo oo //
ee gg

?>=<89:;4 //?>=<89:;6

contains six cycles: {1, 3, 4, 5}, {1, 4, 5}, {3, 4, 5}, {4, 5}, {1, 3}, and {3}. The
constraints generated by Theorem 2 can be solved as follows.

– For cycles {1, 3, 4, 5}, {1, 4, 5}, {3, 4, 5}, and {4, 5} we take the argument
filtering π with π(ACKIN) = π(ackin) = π(u11) = π(u22) = 1, π(U21) = [2],
π(ackout) = [], π(u21) = 2 and LPO with precedence 0 ≻ ackout and s ≻ U21.

– For cycle {1, 3} we take the argument filtering π with π(ACKIN) = π(ackin) =
π(u11) = π(u22) = 1, π(ackout) = [], π(u21) = 2 and LPO with precedence
0 ≻ ackout.

– For cycle {3} we take the argument filtering π with π(ackin) = π(u11) =
π(u22) = 1, π(ACKIN) = π(u21) = 2, π(ackout) = [] and LPO with prece-
dence 0 ≻ ackout.

In the next three sections we address the various problems that arise when
automating the dependency pair technique.

4

3 Dependency Graph Approximations

Since it is undecidable whether there exist substitutions σ, τ such that tσ →∗

R

uτ , the dependency graph cannot be computed in general. Hence, in order to
mechanize the termination criterion of Theorem 2 one has to approximate the
dependency graph. Arts and Giesl [2] proposed a simple approximation based
on syntactic unification for this purpose.

Definition 5. Let R be a TRS. The nodes of the estimated dependency graph
EDG(R) are the dependency pairs of R and there is an arrow from s → t to
u → v if and only if REN(CAP(t)) and u are unifiable. Here CAP replaces all
outermost subterms with a defined root symbol by distinct fresh variables and
REN replaces all occurrences of variables by distinct fresh variables.

Middeldorp [13] showed that better approximations of the dependency graph
are obtained by adopting tree automata techniques. These techniques are how-
ever computationally expensive. In a very recent paper Middeldorp [14] showed
that the approximation of Arts and Giesl can be improved by symmetry consid-
erations without incurring the overhead of tree automata techniques.

Definition 6. Let R be a TRS over a signature F . The result of replacing all
outermost subterms of a term t with a root symbol in D−1 by distinct fresh
variables is denoted by CAP−1(t). Here D−1 = {root(r) | l → r ∈ R} if R is
non-collapsing and D−1 = F otherwise. The nodes of the estimated∗ dependency
graph EDG∗(R) are the dependency pairs of R and there is an arrow from s →
t to u → v if and only if both REN(CAP(t)) and u are unifiable, and t and
REN(CAP−1(u)) are unifiable.

A comparison between the new estimation and the tree automata based ap-
proximations described in [13] can be found in [14]. From the latter paper we
recall the identity EDG(R) = EDG∗(R) for collapsing R. This explains why for
most examples the new estimation does not improve upon the one of Arts of
Giesl. However, when the two approximations do differ, the difference can be
substantial.

Example 7. Using the new estimation, automatically proving termination of no-
torious TRSs like the famous rule f(a, b, x) → f(x, x, x) of Toyama [17] becomes
trivial, as in this case the estimated∗ dependency graph coincides with the real
dependency graph, and the latter is empty since no instance of F(x, x, x) rewrites
to an instance of F(a, b, x). On the other hand, the estimated dependency graph
contains a cycle and the constraints resulting from Theorem 2 cannot be solved
by any quasi-simplification order.

We refer to Section 6 for some statistics related to the two estimations.

5

4 Cycle Analysis

The use of Theorem 2 for ensuring termination requires that all cycles have
to be considered (see [9] for concrete examples). Unfortunately, the number of
cycles can be very large, even if the number of dependency pairs is small. In the
worst case, there are 2n − 1 cycles for n dependency pairs. This explains why
in existing implementations ([1, 7]) of the dependency pair method, strongly
connected components rather than cycles are computed. A strongly connected
component (SCC) is a maximal (with respect to the inclusion relation) cycle.
Note that the number of SCCs for n dependency pairs is at most n, since every
dependency pair belongs to at most one SCC.

Corollary 8. A TRS R is terminating if for every SCC S in DG(R) there exist
an argument filtering π and a reduction pair (&, >) such that π(R) ⊆ & ∪ >
and π(S) ⊆ >. ⊓⊔

We find it convenient to abbreviate the two conditions in Corollary 8 to
(&, >)π �∀ R,S. We write �∀ R,S if there exist an argument filtering π and a
reduction pair (&, >) such that (&, >)π �∀ R,S. The universal quantifier in the
notation indicates that all pairs in S should be strictly decreasing.

The difference with Theorem 2 is that all pairs in an SCC must be strictly
decreasing. This, however, makes the termination criterion of Corollary 8 strictly
weaker than the one of Theorem 2, if we employ traditional (quasi-)simplification
as reduction pairs. If we allow arbitrary reduction pairs then the termination
criteria of Corollary 8 and Theorem 2 become equivalent, in other words, the
reverse of Corollary 8 also holds. This, however, is only of theoretical interest.

Example 9. Consider again the TRS of Example 4. The dependency graph (which
can be computed with the estimations mentioned in the preceding section) con-
tains one SCC: {1, 3, 4, 5}. The constraints generated by Corollary 8 cannot be
solved automatically.

In order to cope with this problem, we propose a new recursive approach
to compute and solve SCCs. More precisely, if S is the current SCC then we
first compute (see the next section) an argument filtering π and a reduction pair
(&, >) such that π(R ∪ S) ⊆ & ∪ > and π(S) ∩ > 6= ∅. Then we compute the
SCCs of the subgraph of DG(R) induced by the pairs l → r of S that are not
strictly decreasing. These new SCCs are added to the list of SCCs that have to
be solved. It turns out that this new approach has the termination proving power
of Theorem 2 and the efficiency of Corollary 8. The former is proved below and
the latter is confirmed by extensive experiments (see Section 6) and explained
in the paragraph following Example 12.

Definition 10. Let R be a TRS and S a subset of the dependency pairs in
DP(R). We write � R,S if there exist an argument filtering π and a reduction
pair (&, >) such that (&, >)π �∃ R,S and � R,S′ for all SCCs S′ of the subgraph
of DG(R) induced by the pairs l → r ∈ S such that π(l) 6> π(r).

6

Theorem 11. Let R be a TRS. The following conditions are equivalent:

1. � R,S for every SCC S in DG(R),
2. �∃ R, C for every cycle C in DG(R).

Proof. First suppose � R,S for every SCC S in DG(R) and let C be a cycle
in DG(R). We show that �∃ R, C. Let S be the SCC that contains C. We use
induction on the size of S. We have � R,S by assumption. So there exists an
argument filtering π and reduction pair (&, >) such that (&, >)π �∃ R,S and
� R,S′ for all SCCs S′ of the subgraph of DG(R) induced by the pairs l → r ∈ S
such that π(l) 6> π(r). Let us denote the set of these pairs by S̄. If π(C)∩> 6= ∅
then (&, >)π �∃ R, C. Otherwise, all pairs in C belong to S̄ and thus C is a cycle
in the subgraph of DG(R) induced by S̄. Hence C is contained in an SCC S′ of
this subgraph. We have � R,S′ by assumption. Since |S′| < |S| we can apply
the induction hypothesis to obtain the desired �∃ R, C.

Next we suppose that �∃ R, C for every cycle C in DG(R). Let S be an SCC
in DG(R). We have to show that � R,S. We use induction on the size of S. Since
S is also a cycle, (&, >)π �∃ R,S for some argument filtering π and reduction
pair (&, >). Let S̄ = {l → r ∈ S | π(l) 6> π(r)}. Since π(S) ∩ > 6= ∅, S̄ is a
proper subset of S. Hence every SCC S′ in the subgraph of DG(R) induced by S̄
is smaller than S, and thus � R,S′ by the induction hypothesis. Consequently,
� R,S. ⊓⊔

The above proof provides quite a bit more information than the statement
of Theorem 11 suggests. As a matter of fact, both conditions are equivalent to
termination of R, and also equivalent to the criterion “�∀ R,S for every SCC
S in DG(R)” of Corollary 8. However, from the proof of Theorem 11 we learn
that a termination proof based on “� R,S for every SCC S in DG(R)” can be
directly transformed into a termination proof based on “� R, C for every cycle C
in DG(R)” and vice-versa; there is no need to search for new argument filterings
and reduction pairs. This is not true for the criterion of Corollary 8.

Example 12. Consider the TRS of Example 4. If we take the argument filtering π
with π(ACKIN) = π(ackin) = π(u11) = π(u22) = 1, π(U21) = [2], π(ackout) = []
and π(u21) = 2 then the constraints for SCC {1, 3, 4, 5} amount to

0 & ackout ackout & ackout s(x) > x s(x) > U21(x)

s(x) & x y & y s(x) > s(x) U21(y) > y

LPO with precedence 0 ≻ ackout and s ≻ U21 satisfies all these constraints,
except s(x) > s(x). This latter constraint originates from dependency pair (3).
Since the induced subgraph of this pair consists of a single arrow, there is one new
SCC: {3}. By taking the argument filtering π with π(ackin) = π(u11) = π(u22) =
1, π(ACKIN) = π(u21) = 2 and π(ackout) = [], the resulting constraints for SCC
{3} are satisfied by LPO with precedence 0 ≻ ackout.

A dependency graph with n dependency pairs has at most n SCCs. So the
number of groups of ordering constraints that need to be solved in order to ensure

7

termination according to Corollary 8 is bounded by n. We already remarked that
the number of cycles and hence the number of groups generated by the cycle
approach of Theorem 2 is at most 2n−1. Example 13 below shows that this upper
bound cannot be improved. It is easy to see that the new approach of Theorem 11
generates at most n groups. This explains why the efficiency of the new approach
is comparable to the SCC approach and better than the cycle approach. It also
explains why (human or machine) verification of the termination proof generated
by the new algorithm involves (much) less work than the one generated by the
approach based on Theorem 2.

Example 13. As an extreme example, consider the TRS R (Example 11 in [8])
consisting of the rules

D(t) → 1 D(x + y) → D(x) + D(y)

D(c) → 0 D(x × y) → (y × D(x)) + (x × D(y))

D(−x) → −D(x) D(x − y) → D(x) − D(y)

D(ln x) → D(x)/x D(x/y) → (D(x)/y) − ((x × D(y))/y2)

D(xy) → ((y × xy−1) × D(x)) + ((xy × lnx) × D(y))

The only defined symbol, D, occurs 12 times in the right-hand sides of the rules,
so there are 12 dependency pairs. All these dependency pairs have a right-hand
side D♯(t) with t a variable. It follows that the dependency graph is a complete
graph. Consequently, there are 212 − 1 = 4095 cycles but just 1 SCC. Since R is
compatible with LPO, all groups of ordering constraints are easily solved.

To conclude this section, we can safely state that every implementation of
the dependency pair method should use our new algorithm for cycle analysis.

5 Argument Filterings

The search for a suitable argument filtering that enables the simplified con-
straints to be solved by some reduction pair (based on some quasi-simplification
order) is the main bottleneck of the dependency pair method. The standard ap-
proach is to enumerate all possible argument filterings until one is encountered
that enables the resulting constraints to be solved. However, since a single func-
tion symbol of arity n already gives rise to 2n + n different argument filterings,
enumeration is impractical except for small examples. In this section we present
two new ideas to reduce the number of computed argument filterings.

5.1 Heuristics

We propose two simple heuristics that significantly reduce the number of argu-
ment filterings:

– In the some heuristic we consider for an n-ary function symbol f only the
‘full’ argument filtering π(f) = [1, . . . , n] and the n ‘collapsing’ argument
filterings π(f) = i for i = 1, . . . , n.

8

– In the some more heuristic we consider additionally the argument filtering
π(f) = [] (when n > 0).

Clearly, an n-ary function symbol admits n + 1 argument filterings in the some
heuristic and n+2 (1 if n = 0) in the some more heuristic. The following example
shows that even if the total number of function symbols is relatively small, the
savings made by these heuristics is significant.

Example 14. Consider the following TRS (from [3]):

1: high(n, nil) → nil 2: ifHigh(false, n, m : x) → m : high(n, x)

3 : high(n, m : x) → ifHigh(m ≤ n, n, m : x) 4 : ifHigh(true, n, m : x) → high(n, x)

5 : low(n, nil) → nil 6: ifLow(false, n, m : x) → low(n, x)

7 : low(n, m : x) → ifLow(m ≤ n, n, m : x) 8 : ifLow(true, n, m : x) → m : low(n, x)

9 : nil++ y → y 10: 0 ≤ y → true

11: (n : x)++ y → n : (x++ y) 12: s(x) ≤ 0 → false

13: qsort(nil) → nil 14: s(x) ≤ s(y) → x ≤ y

15: qsort(n : x) → qsort(low(n, x))++(n : qsort(high(n, x)))

There are 2 function symbols of arity 3, 5 function symbols of arity 2, 2 function
symbols of arity 1, and 2 function symbols of arity 0, resulting in (23 + 3)2 ×
(22 + 2)5 × (21 + 1)2 × (20 + 0)2 = 8468064 argument filterings for just the rule
constraints. The some more heuristic produces only 230400 possible argument
filterings and the some heuristic reduces this number further to 15552.

One can imagine several other heuristics, like computing all argument filter-
ings for function symbols of arity n 6 2 but only some for function symbols of
higher arity. Needless to say, adopting any of these heuristics reduces the class
of TRSs that can be proved terminating automatically. Nevertheless, the exper-
iments reported in Section 6 reveal that the two heuristics described above are
surprisingly effective.

5.2 Divide and Conquer

In this subsection we propose a new divide and conquer approach for finding
all suitable argument filterings while avoiding enumeration. In the following we
develop this approach in a stepwise fashion.

The first observation is that argument filterings should be computed for terms
rather than for function symbols. Consider e.g. the term t = f(g(h(x)), y). There
are 6 × 3 × 3 = 54 possible argument filterings for the function symbols f, g,
and h. Many of these argument filterings contain redundant information. For
instance, if π(f) = [2] then it does not matter how π(g) and π(h) are defined
since g and h no longer appear in π(t) = f(y); likewise for π(f) = 2 or π(f) = [].
If π(f) ∈ {[1, 2], [1], 1} and π(g) = [] then the value of π(h) is irrelevant. It
follows that there are only 24 ‘minimal’ argument filterings for t. The following
definition explains how these minimal argument filterings can be computed.

9

Definition 15. Let F be a signature. We consider partial argument filterings
that need not be defined for all function symbols in F . The completely undefined
argument filtering will be denoted by ǫ. Let π be a (partial) argument filtering
and t a term in T (F ,V). The domain dom(π) is the set of function symbols on
which π is defined. We define outer(t, π) as the subset of F consisting of those
function symbols in t where the computation of π(t) gets stuck: outer(t, π) = ∅
when t ∈ V and if t = f(t1, . . . , tn) then outer(t, π) = outer(ti, π) when π(f) = i,
outer(t, π) =

⋃m
j=1 outer(tij

, π) when π(f) = [i1, . . . , im], and outer(ti, π) = {f}
when π(f) is undefined. Let π and π′ be argument filterings. We say that π′ is
an extension of π and write π ⊆ π′ if dom(π) ⊆ dom(π′).

Definition 16. Let F be a signature, t ∈ T (F ,V), and π an argument filter-
ing. We define a set AF(t, π) of argument filterings as follows: AF(t, π) = {π}
if outer(t, π) = ∅ and AF(t, π) =

⋃
{AF(t, π′) | π′ ∈ AF(outer(t, π)) × π} if

outer(t, π) 6= ∅. Here AF(outer(t, π)) returns the set of all argument filterings
whose domain coincide with outer(t, π) and AF(outer(t, π)) × π extends each of
these argument filterings with π.

Note that the recursion in the definition of AF(t, π) terminates since its second
argument enables more and more of t to be evaluated, until π(t) can be fully
computed, i.e., until outer(t, π) = ∅. Next we present an equivalent non-recursive
definition of AF(t, π).

Definition 17. For a term t and an argument filtering π we denote by AF′(t, π)
the set of minimal extensions π′ of π such that outer(t, π′) = ∅. Minimality here
means that if outer(t, π′′) = ∅ and π ⊆ π′′ ⊆ π′ then π′′ = π′.

Lemma 18. For all terms t and argument filterings π, AF(t, π) = AF′(t, π).

Proof. We use induction on n = |Fun(t) \ dom(π)|. If n = 0 then Fun(t) \
dom(π) = ∅ and thus outer(t, π) = ∅. Hence AF(t, π) = {π} = AF′(t, π). Sup-
pose n > 0. We have AF(t, π) =

⋃
{AF(t, π′) | π′ ∈ AF(outer(t, π))×π}. For every

π′ ∈ AF(outer(t, π)) × π, |Fun(t) \ dom(π′)| < n and thus AF(t, π′) = AF′(t, π′)
by the induction hypothesis. So it remains to show that

AF′(t, π) =
⋃

{AF′(t, π′) | π′ ∈ AF(outer(t, π)) × π}.

First suppose that π′′ ∈ AF′(t, π). So π ⊆ π′′ and outer(t, π′′) = ∅. Hence there
exists an argument filtering π′ ∈ AF(outer(t, π)) × π such that π′ ⊆ π′′. To
conclude that π′′ ∈ AF′(t′, π′) we have to show that π′′ = π̄ whenever π′ ⊆ π̄ ⊆
π′′ and outer(t, π̄) = ∅. Clearly π ⊆ π̄ ⊆ π′′ for any such π̄ and thus π′′ = π̄ by
the assumption π′′ ∈ AF′(t, π).

Next suppose that π′′ ∈ AF′(t, π′) for some π′ ∈ AF(outer(t, π))×π. We have
outer(t, π′′) = ∅, π ⊆ π′ ⊆ π′′, and dom(π′) = dom(π)∪ outer(t, π). To conclude
that π′′ ∈ AF′(t, π) it remains to show that π′′ = π̄ whenever π ⊆ π̄ ⊆ π′′ and
outer(t, π̄) = ∅. Any such π̄ satisfies dom(π) ∪ outer(t, π) ⊆ dom(π̄) and hence,
as π̄ ⊆ π′′ and π′ ⊆ π′′, π̄ and π′ agree on the function symbols in outer(t, π).
Consequently, π′ ⊆ π̄ and thus π′ = π̄ by the assumption π′′ ∈ AF′(t, π′). ⊓⊔

10

Since a term t can be completely evaluated by an argument filtering π if and
only if outer(t, π) = ∅, the next result is an immediate consequence of Lemma 18.

Corollary 19. AF(t, ǫ) is the set of all minimal argument filterings π such that
π(t) can be completely evaluated. ⊓⊔

Definition 16 is easily extended to rewrite rules.

Definition 20. For a rewrite rule l → r we define AF(l → r) =
⋃
{AF(r, π) |

π ∈ AF(l, ǫ)} and AFvc(l → r) = {π ∈ AF(l → r) | Var(π(r)) * Var(π(l))}.

The reason for excluding, in the definition of AFvc(l → r), argument filterings
π from AF(l → r) that violate the variable condition Var(π(r)) ⊆ Var(π(l)) is
simply that no simplification order > satisfies π(l) & π(r) if some variable in
π(r) does not also occur in π(l). If we know in advance which base order will
be used to satisfy the simplified constraints, then we can do even better. In the
following definition we illustrate this for LPO with strict precedence.

Definition 21. Let l → r a rewrite rule. We define AFlpo(l → r) = {π ∈
AF(l → r) | π(l) ≻=

lpo π(l) for some precedence ≻}.

The idea is now to (1) compute all argument filterings (with respect to AF,
AFvc, or AFlpo)) for each constraint separately and (2) subsequently merge them
to obtain the argument filterings of the full set of constraints.

Definition 22. Two argument filterings π1 and π2 are said to be compatible if
they agree on the function symbols on which both are defined, in which case their
union π1 ∪ π2 is defined in the obvious way. If A1 and A2 are sets of argument
filterings then A1 ⊗ A2 = {π1 ∪ π2 | π1 ∈ A1 and π2 ∈ A2 are compatible}.

The following lemma expresses the fact that merging preserves the minimality
property. The easy proof is omitted. Similar statements hold for AFvc and AFlpo.

Lemma 23. If l1 → r1 and l2 → r2 are rewrite rules then AF(l1 → r1) ⊗
AF(l2 → r2) is the set of all minimal argument filterings π such that π(l1),
π(r1), π(l2), and π(r2) can be completely evaluated. ⊓⊔

We illustrate the divide and conquer approach on the TRS of Example 14.

Example 24. Table 1 shows for each rule l → r the number of argument filterings
in AF(Fun(l → r)), AF(l → r), AFvc(l → r), and AFlpo(l → r). The last column
shows the cumulative effect of the merge operation with respect to AFlpo. For
instance, merging the 5 argument filterings for rule 1 with the 96 for rule 2
produces 165 argument filterings for the combination of rules 1 and 2. From the
last entry in the table we see that only 40 out of 8468064 argument filterings
enable the rule constraints to be solved by LPO with strict precedence.

An additional advantage of the divide and conquer approach is that the
argument filterings for the rewrite rule constraints, which are part of every group
of ordering constraints need to be computed only once.

11

Table 1. Divide and conquer example.

l → r AF(Fun(l → r)) AF(l → r) AFvc(l → r) AFlpo(l → r) conquer

1 6 6 6 5
2 396 231 108 96 165
3 2376 981 327 281 104
4 396 216 102 97 10
5 6 6 6 5 50
6 396 216 102 97 281
7 2376 981 327 281 44
8 396 231 108 96 28
9 6 6 3 3 84

10 6 6 6 5 45
11 36 36 27 23 25
12 18 12 12 11 50
13 3 3 3 3 150
14 18 16 11 11 120
15 3888 513 282 151 40

The divide and conquer approach can easily be combined with the heuris-
tics of the previous subsection, just replace AF(outer(t, π)) in Definition 16 by
AFh(outer(t, π)) where h is the heuristic. With respect to Example 24, the some
more heuristic would produce 16 and the some heuristic just 9 suitable argument
filterings.

6 Experiments

Our ideas have been implemented in the termination prover TTT (Tsukuba Ter-
mination Tool), which is described in [11] and available at

http://www.score.is.tsukuba.ac.jp/ttt

We tested 227 examples from three different sources:

– all 82 terminating examples (59 in Section 3 and 23 in Section 4) from Arts
and Giesl [3],

– all 23 examples from Dershowitz [8],
– all 122 examples from Steinbach and Kühler [16, Sections 3 and 4].

Of these 227 examples, 225 are terminating (Examples 4.34 and 4.40 from [16]
are not). All experiments were performed on a PC equipped with an 850 MHz
Pentium III CPU and 512 MB memory. Our first experiment concerns the two
estimations of the dependency graph mentioned in Section 3. Table 2 lists the 13
examples where the two estimations differ. Only for Example 4.50 in [16] (which
happens to be the rule of Toyama that we encountered in Example 7) does the

12

Table 2. Dependency graph estimation (I).

EDG EDG∗ EDG EDG∗ EDG EDG∗

TRS #DPs #arrows #SCCs #cycles

[3]:3.23 2 4 2 1 1 3 1
[3]:3.44 4 4 0 2 0 2 0
[3]:3.45 4 5 3 3 2 3 2
[3]:3.48 6 17 12 2 2 8 4
[3]:4.20(a) 3 3 1 2 1 2 1
[3]:4.20(b) 4 7 5 2 1 4 3
[3]:4.21 6 12 8 2 2 6 4
[3]:4.37(b) 4 6 3 3 2 3 2

[16]:2.51 3 8 7 1 1 6 5
[16]:2.52 9 36 35 4 4 17 16
[16]:4.44 4 4 0 2 0 2 0
[16]:4.50 1 1 0 1 0 1 0
[16]:4.59 6 12 4 3 2 5 2

estimation influence the ability to prove termination automatically, although
termination is proved faster with the EDG∗ approximation—the overhead of
using EDG∗ instead of EDG is negligible. This can be seen from Table 3, where
we show the effect of both estimations in combination with the three approaches
for cycle analysis. In these and all subsequent experiments, LPO with strict
precedence is used as base order. (The ideas described in Section 5 were not used
for Table 3.) The numbers denote execution time in seconds. Italics indicate that
termination could not be proved within the given time, while fully exploring the
search space implied by the options.

Table 4 shows for several examples the effect of the three approaches to cycle
analysis in combination with the heuristics for reducing the number of argument
filterings. Question marks denote a timeout of one hour. In all experiments we
used EDG∗, except for the columns labeled “none” where the termination cri-
terion of Theorem 1 is used. The last two rows indicate how many of the 225
terminating TRSs could actually be proved terminating within, respectively,

Table 3. Dependency graph estimation (II).

cycle scc new
TRS EDG EDG∗ EDG EDG∗ EDG EDG∗

[3]:3.48 3.25 0.35 0.78 0.23 0.99 0.23
[16]:4.50 0.00 0.00 0.00 0.00 0.00 0.00
[16]:4.59 6.45 3.37 4.45 3.44 4.45 3.32

13

Table 4. Cycle analysis and heuristics for argument filtering.

some some more all
TRS none cycle scc new none cycle scc new none cycle scc new

[3]:3.10 ? 24.22 24.18 24.68 ? 668.22 666.19 640.44 ? ? ? ?

[3]:3.11 ? 10.75 8.40 4.97 ? 123.35 198.40 48.34 ? ? ? ?

[3]:3.13 ? 16.32 38.98 12.88 ? 120.46 402.53 92.91 ? ? ? ?

[3]:3.38 0.08 0.01 0.01 0.01 0.95 0.05 0.05 0.05 5.41 4.13 0.81 0.86

[3]:3.55 ? 34.68 76.95 18.01 ? 538.19 ? 256.51 ? ? ? ?

[3]:4.35 106.94 1.62 1.20 1.35 2663.14 13.73 13.08 13.47 ? 774.51 750.45 755.81

[8]:8 0.00 0.11 0.01 0.01 0.00 0.10 0.01 0.01 0.01 0.31 0.02 0.02

[8]:27 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

[16]:2.14 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.90 0.15 0.16 0.16

[16]:2.29 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 247.62 9.43 9.24 9.36

[16]:2.61 4.75 0.10 0.10 0.10 206.17 0.36 0.34 0.32 574.93 7.47 7.50 7.58

[16]:4.2 0.03 10.77 0.04 0.05 0.13 11.06 0.06 0.06 0.62 10.91 0.12 0.13

[16]:4.59 0.12 0.04 0.04 0.05 0.55 0.01 0.01 0.01 56.68 3.37 3.44 3.32

225 99 128 120 129 107 138 127 139 114 137 134 138

225 99 126 120 128 106 136 127 137 99 136 132 136

one hour and ten seconds, and with LPO with strict precedence as base order.
Changing the base order will greatly affect these numbers.

Table 5 shows the effect of the divide and conquer approach. For some exam-
ples we observe a dramatic increase in performance whereas for other examples
the required time increases significantly. One reason for the latter is that in the
divide and conquer approach all suitable argument filterings are computed. In
addition, for every suitable argument filtering we store the set of minimal LPO
precedences that satisfy the resulting constraints. This avoids many additional
calls to the LPO constraint solving procedure, but can have a negative impact on
both space and time requirements. This point clearly requires further investiga-
tion. Furthermore, the order in which the solutions to individual constraints are
merged together obviously influences the performance of the divide and conquer
approach. Further research is needed to develop good strategies.

References

1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA,
volume 1833 of LNCS, pages 261–264, 2000.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS,
236:133–178, 2000.

3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting
using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.
Available from http://aib.informatik.rwth-aachen.de/.

14

Table 5. Divide and conquer experiments.

some some more all
TRS none cycle scc new none cycle scc new none cycle scc new

[3]:3.10 23.31 22.25 22.43 22.59 1702.96 1665.68 1648.29 1667.55 ? ? ? ?

[3]:3.11 1.92 0.67 0.23 0.37 30.03 6.01 1.76 2.92 ? 562.46 332.70 332.63

[3]:3.13 2.70 1.17 0.73 0.72 197.45 8.40 5.75 5.79 ? ? ? ?

[3]:3.38 0.01 0.01 0.01 0.01 0.94 0.04 0.05 0.05 27.26 67.72 4.37 4.41

[3]:3.55 8.35 1.49 0.45 0.83 186.40 23.77 5.20 9.85 ? ? 2082.20 2055.73

[3]:4.35 0.12 0.35 0.18 0.18 0.40 0.59 0.42 0.43 247.20 243.34 240.37 245.95

[8]:8 0.05 1.56 0.04 0.05 0.24 6.51 0.19 0.19 0.87 29.69 0.84 0.83

[8]:27 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.12 0.12 0.12 0.12

[16]:2.14 0.01 0.01 0.00 0.01 0.03 0.01 0.01 0.01 0.13 0.02 0.02 0.02

[16]:2.29 2.92 0.34 0.36 0.34 192.29 6.42 6.26 6.59 ? 144.37 144.79 145.33

[16]:2.61 70.40 0.44 0.40 0.44 1640.27 3.11 3.23 3.23 ? 61.13 60.87 62.29

[16]:4.2 0.01 10.59 0.04 0.04 0.02 10.65 0.04 0.04 0.08 10.40 0.07 0.06

[16]:4.59 1.75 0.05 0.05 0.05 79.85 0.60 0.59 0.59 ? 20.28 19.76 19.91

225 99 128 120 129 107 138 127 139 109 137 136 139

225 96 128 120 129 99 135 124 136 94 126 124 128

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

5. F. Bellegarde and P. Lescanne. Termination by completion. AAECC, 1:79–96,
1990.

6. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path
orderings. In Proc. 17th CADE, volume 1831 of LNAI, pages 346–364, 2000.

7. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000.
Available at http://cime.lri.fr/.

8. N. Dershowitz. 33 Examples of termination. In French Spring School of Theoretical

Computer Science, volume 909 of LNCS, pages 16–26, 1995.
9. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. AAECC,

12(1,2):39–72, 2001.
10. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting

using dependency pairs. JSC, 34(1):21–58, 2002.
11. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proc. 14th RTA,

LNCS, 2003. To appear.
12. S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering. Un-

published manuscript, University of Illinois, 1980.
13. A. Middeldorp. Approximating dependency graphs using tree automata techniques.

In Proc. IJCAR, volume 2083 of LNAI, pages 593–610, 2001.
14. A. Middeldorp. Approximations for strategies and termination. In Proc. 2nd WRS,

volume 70(6) of ENTCS, 2002. (Invited paper.).
15. J. Steinbach. Automatic termination proofs with transformation orderings. In

Proc. 6th RTA, volume 914 of LNCS, pages 11–25, 1995.
16. J. Steinbach and U. Kühler. Check your ordering – termination proofs and open

problems. Technical Report SR-90-25, Universität Kaiserslautern, 1990.

15

17. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-
ing systems. Information Processing Letters, 25:141–143, 1987.

16

