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Abstract. In this paper we present some new refinements of the depen-
dency pair method for automatically proving the termination of term
rewrite systems. These refinements are very easy to implement, increase
the power of the method, result in simpler termination proofs, and make
the method more efficient.

1 Introduction

Since the introduction of the dependency pair method (Arts and Giesl [1]) and
the monotonic semantic path order (Borralleras, Ferreira, and Rubio [5]), two
powerful methods that facilitate termination proofs that can be obtained auto-
matically, there is a renewed interest in the study of termination for term rewrite
systems. Three important issues which receive a lot of attention in current re-
search on termination are to make these methods faster, to improve the methods
such that more and more (challenging) rewrite systems can be handled, and to
extend the methods beyond the realm of ordinary first-order term rewriting.
Especially in connection with the dependency pair method many improvements,
extensions, and refinements have been published. The method forms an impor-
tant ingredient in several software tools for proving terminating. To mention a
few (in order of appearance): CiME [6], TTT [15], AProVE [12], and TORPA [24].

In this paper we go back to the foundations of the dependency pair method.
Starting from scratch, we give a systematic account of the method. Along the
way we derive two new refinements which are very easy to implement, increase
the termination proving power,1 give rise to simpler termination proofs, and
make the method much faster.

We use the following term rewrite system (TRS for short) from Dershowitz [7]
to illustrate the developments in the remainder of the paper:

1 : ¬¬x → x

2: ¬(x ∨ y) → ¬x ∧ ¬y

3: ¬(x ∧ y) → ¬x ∨ ¬y

4: x ∧ (y ∨ z) → (x ∧ y) ∨ (x ∧ z)

5 : (y ∨ z) ∧ x → (x ∧ y) ∨ (x ∧ z)

1 Note however the discussion at the end of Section 5.



Termination of this TRS is easily shown by the multiset path order. This, how-
ever, does not mean that automatic termination tools easily find a termination
proof. For instance, both CiME and the fully automatic “Meta Combination”
algorithm in AProVE 1.0 fail to prove termination.

We assume familiarity with the basics of term rewriting ([3, 20]). We just
recall some basic notation and terminology. The set of terms T (F ,V) constructed
from a signature F and a disjoint set V of variables is abbreviated to T when
no confusion can arise. The set of variables appearing in a term t is denoted
by Var(t). The root symbol of a term t is denoted by root(t). Defined function
symbols are root symbols of left-hand sides of rewrite rules. We use

ε
−→ to denote

root rewrite steps and
>ε
−−→ to denote rewrite steps in which the selected redex

occurs below the root. A substitution is a mapping σ from variables to terms such
that its domain Dom(σ) = {x | x 6= σ(x)} is finite. We write tσ to denote the
result of applying the substitution σ to the term t. A relation R on terms is closed
under substitutions if (sσ, tσ) ∈ R whenever (s, t) ∈ R, for all substitutions σ.
We say that R is closed under contexts if (u[s]p, u[t]p) ∈ R whenever (s, t) ∈ R,
for all terms u and positions p in u. The superterm relation is denoted by D (i.e.,
s D t if t is a subterm of s) and B denotes its strict part.

2 Dependency Pairs

In this section and in Section 4 we recall the basics of the dependency pair
method of Arts and Giesl [1]. We provide proofs of all results.

Let us start with some easy observations. If a TRS R is not terminating
then there must be a minimal non-terminating term, minimal in the sense that
all its proper subterms are terminating. Let us denote the set of all minimal
non-terminating terms by T∞.

Lemma 1. For every term t ∈ T∞ there exists a rewrite rule l → r, a substitu-
tion σ, and a non-variable subterm u of r such that t

>ε
−−→∗ lσ

ε
−→ rσ D uσ and

uσ ∈ T∞.

Proof. Let A be an infinite rewrite sequence starting at t. Since all proper sub-
terms of t are terminating, A must contain a root rewrite step. By considering
the first root rewrite step in A it follows that there exist a rewrite rule l → r and
a substitution σ such that A starts with t

>ε
−−→∗ lσ

ε
−→ rσ. Write l = f(l1, . . . , ln).

Since the rewrite steps in t →∗ lσ take place below the root, t = f(t1, . . . , tn)
and ti →

∗ liσ for all 1 6 i 6 n. By assumption the arguments t1, . . . , tn of t are
terminating. Hence so are the terms l1σ, . . . , lnσ. It follows that σ(x) is termi-
nating for every x ∈ Var(r) ⊆ Var(l). As rσ is non-terminating it has a subterm
t′ ∈ T∞. Because non-terminating terms cannot occur in the substitution part,
there must be a non-variable subterm u of r such that t′ = uσ. ut

Observe that the term lσ in Lemma 1 belongs to T∞ as well. Further note that
uσ cannot be a proper subterm of lσ (since all arguments of lσ are terminating).

Corollary 2. Every term in T∞ has a defined root symbol. ut
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If we were to define a new TRS S consisting of all rewrite rules l → u for
which there exist a rewrite rule l → r ∈ R and a subterm u of r with defined
function symbol, then the sequence in the conclusion of Lemma 1 is of the form
>ε
−−→∗

R ·
ε
−→S . The idea is now to get rid of the position constraints by marking

the root symbols of the terms in the rewrite rules of S.

Definition 3. Let R be a TRS over a signature F . Let F ] denote the union
of F and {f ] | f is a defined symbol of R} where f ] is a fresh function symbol
with the same arity as f . We call these new symbols dependency pair symbols.
Given a term t = f(t1, . . . , tn) ∈ T (F ,V) with f a defined symbol, we write t]

for the term f ](t1, . . . , tn). If l → r ∈ R and u is a subterm of r with defined root
symbol such that u is not a proper subterm of l then the rewrite rule l] → u] is
called a dependency pair of R. The set of all dependency pairs of R is denoted
by DP(R).

The idea of excluding dependency pairs l] → u] where u is a proper subterm
of l is due to Dershowitz [8]. Although dependency pair symbols are defined
symbols of DP(R), they are not defined symbols of R. In the following, defined
symbols always refer to the original TRS R.

Example 4. The example in the introduction admits the following 9 dependency
pairs:

6 : ¬](x ∨ y) → ¬x ∧] ¬y

7: ¬](x ∨ y) → ¬]x 11: x ∧] (y ∨ z) → x ∧] y

8: ¬](x ∨ y) → ¬]y 12: x ∧] (y ∨ z) → x ∧] z

9: ¬](x ∧ y) → ¬]x 13: (y ∨ z) ∧] x → x ∧] y

10: ¬](x ∧ y) → ¬]y 14: (y ∨ z) ∧] x → x ∧] z

Lemma 5. For every term s ∈ T∞ there exist terms t, u ∈ T∞ such that s] →∗
R

t] →DP(R) u].

Proof. Immediate from Lemma 1, Corollary 2, and the preceding definition. ut

Definition 6. For any subset T ⊆ T consisting of terms with a defined root
symbol, we denote the set {t] | t ∈ T} by T ].

An immediate consequence of the previous lemma is that for every non-
terminating TRS R there exists an infinite rewrite sequence of the form

t1 →∗
R t2 →DP(R) t3 →∗

R t4 →DP(R) · · ·

with ti ∈ T ]
∞ for all i > 1. Hence, to prove termination of a TRS R it is

sufficient to show that R∪DP(R) does not admit such infinite sequences. Every
such sequence contains a tail in which all applied dependency pairs are used
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infinitely many times. For finite TRSs, the set of those dependency pairs forms
a cycle in the dependency graph. From now on, we assume that all TRSs are
finite.

As a side remark, note that all terms in T ]
∞ are terminating with respect to

R but admit an infinite rewrite sequence with respect to R∪ DP(R).

Definition 7. The nodes of the dependency graph DG(R) are the dependency
pairs of R and there is an arrow from s → t to u → v if and only if there exist
substitutions σ and τ such that tσ →∗

R uτ . A cycle is a nonempty subset C of
dependency pairs of DP(R) if for every two (not necessarily distinct) pairs s → t
and u → v in C there exists a nonempty path in C from s → t to u → v.

Definition 8. Let C ⊆ DP(R). An infinite rewrite sequence in R∪C of the form

t1 →∗
R t2 →C t3 →∗

R t4 →C · · ·

with t1 ∈ T ]
∞ is called C-minimal if all rules in C are applied infinitely often.

Hence proving termination boils down to proving the absence of C-minimal
rewrite sequences, for any cycle C in the dependency graph DG(R).

Example 9. The example in the introduction has the following dependency graph:
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It contains 30 cycles: all nonempty subsets of both {7, 8, 9, 10} and {11, 12, 13, 14}.

Although the dependency graph is not computable in general, sound ap-
proximations exist that can be computed efficiently (see [1, 17]). Soundness here
means that every cycle in the real dependency graph is a cycle in the approxi-
mated graph. For the example TRS all known approximations compute the real
dependency graph.

3 Subterm Criterion

We now present a new criterion which permits us to ignore certain cycles of the
dependency graph.
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Definition 10. Let R be a TRS and C ⊆ DP(R) such that every dependency
pair symbol in C has positive arity. A simple projection for C is a mapping π
that assigns to every n-ary dependency pair symbol f ] in C an argument position
i ∈ {1, . . . , n}. The mapping that assigns to every term f ](t1, . . . , tn) ∈ T ] with
f ] a dependency pair symbol in C its argument at position π(f ]) is also denoted
by π.

Theorem 11. Let R be a TRS and let C be a cycle in DG(R). If there exists a
simple projection π for C such that π(C) ⊆ D and π(C) ∩ B 6= ∅ then there are
no C-minimal rewrite sequences.

Before presenting the proof, let us make some clarifying remarks about the
notation. If R is a set of rewrite rules and O is a relation on terms then the
expression π(R) denotes the set {π(l) → π(r) | l → r ∈ R}, the inclusion R ⊆ O
abbreviates “(l, r) ∈ O for all l → r ∈ O”, and the inequality R ∩ O 6= ∅

abbreviates “(l, r) ∈ O for at least one l → r ∈ O”. So the conditions state
that after applying the simple projection π, every rule in C is turned into an
identity or a rule whose right-hand side is a proper subterm of the left-hand
side. Moreover, the latter case applies at least once.

Proof. Suppose to the contrary that there exists a C-minimal rewrite sequence:

t1 →∗
R u1 →C t2 →∗

R u2 →C t3 →∗
R · · · (1)

All terms in this sequence have a dependency pair symbol in C as root symbol.
We apply the simple projection π to (1). Let i > 1.

– First consider the dependency pair step ui →C ti+1. There exist a depen-
dency pair l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ.
We have π(ui) = π(l)σ and π(ti+1) = π(r)σ. We have π(l) D π(r) by as-
sumption. So π(l) = π(r) or π(l) B π(r). In the former case we trivially have
π(ui) = π(ti+1). In the latter case the closure under substitutions of B yields
π(ui) B π(ti+1). Because of the assumption π(C) ∩ B 6= ∅, the latter holds
for infinitely many i.

– Next consider the rewrite sequence ti →
∗
R ui. All steps in this sequence take

place below the root and thus we obtain the (possibly shorter) sequence
π(ti) →

∗
R π(ui).

So by applying the simple projection π, sequence (1) is transformed into an
infinite →R ∪ B sequence containing infinitely many B steps, starting from the
term π(t1). Since the relation B is well-founded, the infinite sequence must also
contain infinitely many →R steps. By making repeated use of the well-known
relational inclusion B · →R ⊆ →R · B (B commutes over →R in the terminology
of [4]), we obtain an infinite →R sequence starting from π(t1). In other words, the
term π(t1) is non-terminating with respect to R. Let t1 = f ](s1, . . . , sn). Because
t1 ∈ T ]

∞, f(s1, . . . , sn) is a minimal non-terminating term. Consequently, its
argument π(t1) = sπ(f]) is terminating with respect to R, providing the desired
contradiction. ut
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The remarkable thing about the above theorem is that it permits us to discard
cycles of the dependency graph without considering any rewrite rules. This is
extremely useful. Moreover, the criterion is very simple to check.

Example 12. Consider the cycle C = {7, 8, 9, 10}. The only dependency pair
symbol in C is ¬]. Since ¬] is a unary function symbol, there is just one simple
projection for C: π(¬]) = 1. By applying π to C, we obtain

7: x ∨ y → x

8: x ∨ y → y

9: x ∧ y → x

10: x ∧ y → y

We clearly have π(C) ⊆ B. Hence we can ignore C (and all its subcycles). The
only cycles that are not handled by the criterion of Theorem 11 are the ones
that involve 13 or 14; applying the simple projection π(∧]) = 1 produces

13: y ∨ z → x

14: y ∨ z → x

whereas π(∧]) = 2 gives

13: x → y

14: x → z

None of these rules are compatible with D.

In implementations one shouldn’t compute all cycles of the dependency graph
(since there can be exponentially many in the number of dependency pairs), but
use the technique of Hirokawa and Middeldorp [14] to recursively solve strongly
connected components (which gives rise to a linear algorithm): if all pairs in
a strongly connected component (SCC for short) are compatible with D after
applying a simple projection, the ones that are compatible with B are removed
and new SCCs among the remaining pairs are computed. This is illustrated in
the final two examples in this section. The last example furthermore shows that
the subterm criterion is capable of proving the termination of TRSs that are
considered to be challenging in the termination literature (cf. the remarks in
[10, Example 9]).

Example 13. Consider the following TRS from [7]:

1 : sort([ ]) → [ ]

2 : sort(x : y) → insert(x, sort(y))

3 : insert(x, [ ]) → x : [ ]

4 : insert(x, v : w) → choose(x, v : w, x, v)

5 : choose(x, v : w, y, 0) → x : (v : w)

6 : choose(x, v : w, 0, s(z)) → v : insert(x, w)

7 : choose(x, v : w, s(y), s(z)) → choose(x, v : w, y, z)
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There are 5 dependency pairs:

8 : sort](x : y) → insert](x, sort(y))

9 : sort](x : y) → sort](y)

10: insert](x, v : w) → choose](x, v : w, x, v)

11: choose](x, v : w, 0, s(z)) → insert](x, w)

12: choose](x, v : w, s(y), s(z)) → choose](x, v : w, y, z)

The dependency graph

9 //

��

8 // 10 oo //
$$

11 12oo





contains 2 SCCs: {9} and {10, 11, 12}. The first one is handled by the simple
projection π(sort]) = 1:

9: x : y → x

For the other SCC we take π(insert]) = π(choose]) = 2:

10: v : w → v : w

11: v : w → w

12: v : w → v : w

After removing the strictly decreasing pair 11, we are left with 10 and 12. The
restriction of the dependency graph to these two pairs contains one SCC: {12}.
This pair is handled by the simple projection π(choose]) = 3:

12: s(y) → y

Hence the TRS is terminating.

Example 14. Consider the following TRS from [19]:

1 : intlist([ ]) → [ ]

2 : intlist(x : y) → s(x) : intlist(y)

3 : int(0, 0) → 0 : [ ]

4 : int(0, s(y)) → 0 : int(s(0), s(y))

5 : int(s(x), 0) → [ ]

6 : int(s(x), s(y)) → intlist(int(x, y))

There are 4 dependency pairs:

7 : intlist](x : y) → intlist](y)

8 : int](0, s(y)) → int](s(0), s(y))

9 : int](s(x), s(y)) → intlist](int(x, y))

10: int](s(x), s(y)) → int](x, y)

7



The dependency graph

8 oo //
$$

10 //

II
9 // 7

II

contains 2 SCCs: {7} and {8, 10}. The first one is handled by the simple projec-
tion π(intlist]) = 1:

7: x : y → y

For the second one we use the simple projection π(int]) = 2:

8: s(y) → s(y)

10: s(y) → y

After removing the strictly decreasing pair 10, we are left with 8. Since the
restriction of the dependency graph to the remaining pair 8 contains no SCCs,
the TRS is terminating.

An empirical evaluation of the subterm criterion can be found in Section 6.

4 Reduction Pairs and Argument Filterings

What to do with cycles C of the dependency graph that cannot be handled by
the criterion of the preceding section? In the dependency pair approach one uses
a pair of orderings (&, >) that satisfy the properties stated below such that (1)
all rules in R are oriented by &, (2) all rules in C are oriented by & ∪ >, and
(3) at least one rule in C is oriented by >.

Definition 15. A rewrite preorder is a preorder (i.e., a transitive and reflexive
relation) on terms which is closed under contexts and substitutions. A reduction
pair (&, >) consists of a rewrite preorder & and a compatible well-founded order
> which is closed under substitutions. Compatibility means that the inclusion
& · > ⊆ > or the inclusion > · & ⊆ > holds.

Since we do not demand that > is the strict part of the preorder &, the
identity & · > = > need not hold, although the reduction pairs that are used in
practice do satisfy this identity.

A typical example of a reduction pair is (≥lpo, >lpo), where >lpo is the lexi-
cographic path order induced by the (strict) precedence > and ≥lpo denotes its
reflexive closure. Both ≥lpo and >lpo are closed under contexts and the identity
≥lpo · >lpo = >lpo holds.

A general semantic construction of reduction pairs, which covers polyno-
mial interpretations, is based on the concept of algebra. If we equip the car-
rier A of an algebra A = (A, {fA}f∈F) with a well-founded order > such
that every interpretation function is weakly monotone in all arguments (i.e.,

8



fA(x1, . . . , xn) > fA(y1, . . . , yn) whenever xi > yi for all 1 6 i 6 n, for every
n-ary function symbol f ∈ F) then (&A, >A) is a reduction pair. Here the rela-
tions &A and >A are defined as follows: s &A t if [α]A(s) > [α]A(t) and s >A t
if [α]A(s) > [α]A(t), for all assignments α of elements of A to the variables in s
and t ([α]A(·) denotes the usual evaluation function associated with the algebra
A). In general, the relation >A is not closed under contexts, &A is not a partial
order, and >A is not the strict part of &A. Compatibility holds because of the
identity &A · >A = >A.

In order for reduction pairs like (≥lpo, >lpo) whose second component is
closed under contexts to benefit from the fact that closure under contexts is
not required, the conditions (1), (2), and (3) mentioned at the beginning of this
section may be simplified by deleting certain (arguments of) function symbols
occurring in R and C before testing orientability.

Definition 16. An argument filtering for a signature F is a mapping π that
assigns to every n-ary function symbol f ∈ F an argument position i ∈ {1, . . . , n}
or a (possibly empty) list [i1, . . . , im] of argument positions with 1 6 i1 < · · · <
im 6 n. The signature Fπ consists of all function symbols f such that π(f) is
some list [i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering
π induces a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =











t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1 ), . . . , π(tim
)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

Note that the simple projections of the preceding sections can be viewed as
special argument filterings.

Example 17. Applying the argument filtering π with π(∧) = π(∨) = [ ] and
π(¬) = [1] to the rewrite rules of our leading example results in the following
simplified rules:

1 : ¬¬x → x

2: ¬(∨) → ∧

3: ¬(∧) → ∨

4: ∧ → ∨

5: ∧ → ∨

These rules are oriented from left to right by the lexicographic path order with
precedence ¬ > ∧ > ∨ (which does not imply termination of the original TRS.)

We are now ready to state and prove the standard dependency pair approach
to the treatment of cycles in the dependency graph.

Theorem 18 ([9]). Let R be a TRS and let C be a cycle in DG(R). If there
exist an argument filtering π and a reduction pair (&, >) such that π(R) ⊆ &,
π(C) ⊆ & ∪ >, and π(C)∩> 6= ∅ then there are no C-minimal rewrite sequences.
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Although the condition π(C) ⊆ & ∪ > is weaker than π(C) ⊆ &, in practice
there is no difference since all reduction pairs that are used in automatic tools
satisfy the inclusion > ⊆ &.

Proof. Suppose to the contrary that there exists a C-minimal rewrite sequence:

t1 →∗
R u1 →C t2 →∗

R u2 →C t3 →∗
R · · · (2)

We show that after applying the argument filtering π we obtain an infinite de-
scending sequence with respect to the well-founded order >. Let i > 1.

– First consider the dependency pair step ui →C ti+1. Since ui ∈ T ], the step
takes place at the root positions and thus there exist a dependency pair
l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ. Define the
substitution σπ as the composition of σ and π, i.e., σπ(x) = π(σ(x)) for every
variable x. A straightforward induction proof reveals that π(tσ) = π(t)σπ

for every term t. Hence π(ui) = π(l)σπ and π(ti+1) = π(r)σπ . From the
assumption π(C) ⊆ & ∪ > we infer that π(l) & π(r) or π(l) > π(r). Since
both & and > are closed under substitutions, we have π(ui) & π(ti+1) or
π(ui) > π(ti+1). As in the proof of Theorem 11, the latter holds for infinitely
many i because of the assumption π(C) ∩ > 6= ∅.

– Next consider the rewrite sequence ti →
∗
R ui. Using the assumption π(R) ⊆

&, we obtain π(ti) &∗ π(ui) and thus π(ti) & π(ui) as in the preceding case.

So (2) is transformed into an infinite descending sequence consisting of & and >
steps, where there are an infinite number of the latter. Using the compatibility of
& and >, we obtain an infinite descending sequence with respect to >, providing
the desired contradiction. ut

Example 19. The argument filtering of Example 17 cannot be used to handle
the remaining SCC {11, 12, 13, 14} in our leading example. This can be seen as
follows. Because π(∨) = [ ], irrespective of the choice of π(∧]), variables y and z
will no longer appear in the left-hand sides of the simplified dependency pairs.
Hence they cannot appear in the right-hand sides, and this is only possible if we
take 1, [1], or [ ] for π(∧]). The first two choices transform dependency pairs 13
and 14 into rules in which the variable x appears on the right-hand side but not
on the left-hand side, whereas the third choice turns all dependency pairs into
the identity ∧] = ∧].

Since the original TRS is compatible with the multiset path order, it is no
surprise that the constraints of Theorem 18 for both SCCs are satisfied by the
full argument filtering π (that maps every n-ary function symbol to [1, . . . , n])
and the reduction pair (≥mpo, >mpo) with the precedence ¬ > ∧ > ∨. However,
it can be shown that there is no argument filtering π such that the resulting
constraints are satisfied by a polynomial interpretation or the lexicographic path
order.

Observe that the proof of Theorem 18 does not use the fact that C-minimal
rewrite sequences start from terms in T ]

∞. In the next section we show that
by restoring the use of minimality, we can get rid of some of the constraints
originating from R.

10



5 Usable Rules

More precisely, we show that the concept of usable rules which was introduced in
[1] to optimize the dependency pair method for innermost termination, can also
be used for termination. The resulting termination criterion is stronger than
previous results in this area ([10, 23]). We start by recalling the definition of
usable rules.

Definition 20. We write f I g if there exists a rewrite rule l → r ∈ R such
that f = root(l) and g is a defined function symbol in Fun(r). For a set G of
defined function symbols we denote by R�G the set of rewrite rules l → r ∈ R
with root(l) ∈ G. The set U(t) of usable rules of a term t is defined as R�{g |
f I∗ g for some f ∈ Fun(t)}. Finally, if C is a set of dependency pairs then

U(C) =
⋃

l → r ∈ C

U(r)

Example 21. None of the dependency pairs that appear in an SCC in our leading
example have defined symbols in their right-hand sides, so for both SCCs the set
of usable rules is empty. The same is true for the TRSs of Examples 13 and 14.

The following definition is the key to our result. It is a variation of a similar
definition in Urbain [23], which in turn is based on a definition of Gramlich [13].

Definition 22. Let R be a TRS over a signature F and let G ⊆ F . The in-
terpretation IG is a mapping from terminating terms in T (F ],V) to terms in
T (F ] ∪ {nil, cons},V), where nil and cons are fresh function symbols, inductively
defined as follows:

IG(t) =











t if t is a variable

f(IG(t1), . . . , IG(tn)) if t = f(t1, . . . , tn) and f /∈ G

cons(f(IG(t1), . . . , IG(tn)), t′) if t = f(t1, . . . , tn) and f ∈ G

where in the last clause t′ denotes the term order({IG(u) | t →R u}) with

order(T ) =

{

nil if T = ∅

cons(t, order(T \ {t})) if t is the minimum element of T

Here we assume an arbitrary but fixed total order on T (F ] ∪ {nil, cons},V).

Because we deal with finite TRSs, the relation is →R is finitely branching
and hence the set {u | t →R u} of one-step reducts of t is finite. Moreover,
every term in this set is terminating. The well-definedness of IG now follows by
a straightforward induction argument. The difference with Urbain’s definition is
that we insert f(IG(t1), . . . , IG(tn)) in the list t′ when f ∈ G. This modification
is crucial for obtaining Theorem 29 below.
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In the following CE denotes the TRS consisting of the two projection rules

cons(x, y) → x

cons(x, y) → y

These rules are used to extract elements from the lists constructed by the inter-
pretation IG . To improve readability, we abbreviate cons(t1, . . . cons(tn, nil) . . . )
to [t1, . . . , tn] in the next example.

Example 23. Consider the non-terminating TRS R consisting of the following
three rewrite rules:

1 : x + 0 → 0

2: x × 0 → 0

3: x × s(y) → (x + 0) × s(y)

There are two dependency pairs:

4 : x ×] s(y) → (x + 0) ×] s(y)

5 : x ×] s(y) → x +] 0

The dependency graph

4 //

��

5

contains 1 cycle: C = {4}. The following is a C-minimal rewrite sequence:

((0 + 0) × 0) ×] s(0) →C (((0 + 0) × 0) + 0) ×] s(0)

→R ((0 + 0) × 0) ×] s(0)

→R 0 ×] s(0)

→C (0 + 0) ×] s(0)

→R 0 ×] s(0)

→C · · ·

We have U(C) = {1}. Let G be the set of defined symbols of R \ U(C), i.e.,
G = {×}. Applying the definition of IG yields

IG(0 × 0) = cons(IG(0) × IG(0), order({IG(0)}))

= cons(0 × 0, order({0}))

= cons(0 × 0, cons(0, nil))

= [0 × 0, 0]

and

IG((0 + 0) × 0) = cons(IG(0 + 0) × IG(0), order({IG(0 × 0), IG(0)}))

= cons((0 + 0) × 0, order({[0 × 0, 0], 0}))

= [(0 + 0) × 0, 0, [0× 0, 0]]

12



if we assume that 0 is smaller than [0 × 0, 0] in the given total order. Now, by
applying IG to all terms in the above C-minimal rewrite sequence, we obtain the
following infinite rewrite sequence in U(C) ∪ C ∪ CE :

[(0 + 0) × 0, 0, [0× 0, 0]]×] s(0) →C ([(0 + 0) × 0, 0, [0× 0, 0]] + 0) ×] s(0)

→U(C) [(0 + 0) × 0, 0, [0× 0, 0]]×] s(0)

→+
CE

0 ×] s(0)

→C (0 + 0) ×] s(0)

→U(C) 0 ×] s(0)

→C · · ·

We start with some preliminary results. The first one addresses the behaviour
of IG on instantiated terms. The second states that IG preserves any top part
without G-symbols.

Definition 24. If σ is a substitution that assigns to every variable in its domain
a terminating term then we denote the substitution that assigns to every variable
x the term IG(σ(x)) by σIG .

Lemma 25. Let R be a TRS over a signature F and let G ⊆ F . Let t be a term
and σ a substitution. If tσ is terminating then IG(tσ) →∗

CE
tσIG and, if t does

not contain G-symbols, IG(tσ) = tσIG .

Proof. We use induction on t. If t is a variable then IG(tσ) = IG(σ(t)) = tσIG .
Let t = f(t1, . . . , tn). We distinguish two cases.

1. If f /∈ G then IG(tσ) = f(IG(t1σ), . . . , IG(tnσ)). The induction hypothesis
yields IG(tiσ) →∗

CE
tiσIG for 1 6 i 6 n and thus

IG(tσ) →∗
CE

f(t1σIG , . . . , tnσIG ) = tσIG

If there are no G-symbols in t1, . . . , tn then we obtain IG(tiσ) = tiσIG for all
1 6 i 6 n from the induction hypothesis and thus IG(tσ) = tσIG .

2. If f ∈ G then

IG(tσ) = cons(f(IG(t1σ), . . . , IG(tnσ)), t′) →CE
f(IG(t1σ), . . . , IG(tnσ))

for some term t′. We obtain f(IG(t1σ), . . . , IG(tnσ)) →∗
CE

tσIG as in the
preceding case and thus IG(tσ) →∗

CE
tσIG as desired.

ut

The preceding lemma is not true for Urbain’s interpretation function.

Lemma 26. Let R be a TRS over a signature F and let G ⊆ F . If t =
C[t1, . . . , tn] is terminating and the context C contains no G-symbols then IG(t) =
C[IG(t1), . . . , IG(tn)].
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Proof. Let t′ be the term C[x1, . . . , xn] where x1, . . . , xn are fresh variables. We
have t = t′σ for the substitution σ = {xi 7→ ti | 1 6 i 6 n}. The preceding
lemma yields IG(t) = t′σIG . Clearly t′σIG = C[IG(t1), . . . , IG(tn)]. ut

The next lemma states an easy connection between usable rules and defined
symbols of the other rules.

Lemma 27. Let R be a TRS over a signature F and let C ⊆ DP(R). Further-
more, let G be the set of defined symbols of R \ U(C).

1. R = U(C) ∪ (R�G).
2. If l → r ∈ U(C) then r contains no G-symbols.

Proof. The first statement is obvious. For the second statement we reason as
follows. Suppose to the contrary that r contains a function symbol g ∈ G. We
have l → r ∈ U(t) for some s → t ∈ C. So there exists a function symbol
f ∈ Fun(t) such that f I∗ root(l). We have root(l) I g by the definition of I

and hence also f I∗ g. Therefore R�{g} ⊆ U(t) ⊆ U(C). So g is a defined symbol
of a rule in U(C). This contradicts the assumption that g ∈ G. ut

The following lemma is the key result for the new termination criterion. It
states that rewrite steps in R are transformed by IG into rewrite sequences in
U(C) ∪ CE , provided G is the set of defined symbols of R \ U(C).

Lemma 28. Let R be a TRS over a signature F and let C ⊆ DP(R). Fur-
thermore, let G be the set of defined symbols of R \ U(C). If terms s and t are
terminating and s →R t then IG(s) →+

U(C)∪CE
IG(t).

Proof. Let p be the position of the rewrite step s →R t. We distinguish two
cases.

– First suppose that there is a function symbol from G at a position q 6 p. In
this case we may write s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn]
with si →R ti, where root(si) ∈ G and the context C contains no G-symbols.
We have IG(si) →CE

order({IG(u) | si →R u}). Since si →R ti, we can
extract IG(ti) from the term order({IG(u) | si →R u}) by appropriate CE
steps, so IG(si) →

+
CE

IG(ti). We now obtain IG(s) →+
CE

IG(t) from Lemma 26.

– In the other case s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn] with
si

ε
−→R ti, where root(si) /∈ G and the context C contains no G-symbols.

Since root(si) /∈ G the applied rewrite rule l → r in the step si
ε
−→R ti must

come from U(C) according to part 1 of Lemma 27. Let σ be the substitution
with Dom(σ) ⊆ Var(l) such that si = lσ and ti = rσ. According to part
2 of Lemma 27, r contains no G-symbols and thus we obtain IG(si) →∗

CE

lσIG and IG(ti) = rσIG from Lemma 25. Clearly lσIG →U(C) rσIG and thus

IG(si) →+
U(C)∪CE

IG(ti). Lemma 26 now yields the desired IG(s) →+
U(C)∪CE

IG(t).
ut
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After these preparations, the main result2 of this section is now easily proved.

Theorem 29. Let R be a TRS and let C be a cycle in DG(R). If there exist an
argument filtering π and a reduction pair (&, >) such that π(U(C) ∪ CE) ⊆ &,
π(C) ⊆ & ∪ >, and π(C)∩> 6= ∅ then there are no C-minimal rewrite sequences.

Proof. Suppose to the contrary that there exists a C-minimal rewrite sequence:

t1 →∗
R u1 →C t2 →∗

R u2 →C t3 →∗
R · · · (3)

Let G be the set of defined symbols of R \ U(C). We show that after applying
the interpretation IG we obtain an infinite rewrite sequence in U(C) ∪ CE ∪ C in
which every rule of C is used infinitely often. Since all terms in (3) belong to
T ]
∞, they are terminating with respect to R and hence we can indeed apply the

interpretation IG . Let i > 1.

– First consider the dependency pair step ui →C ti+1. There exist a depen-
dency pair l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ.
We may assume that Dom(σ) ⊆ Var(l). Since ui ∈ T ]

∞, σ(x) is terminat-
ing for every variable x ∈ Var(l). Hence the substitution σIG is well-defined.
Since r lacks G-symbols by Lemma 27, we have IG(rσ) = rσIG by Lemma 25.
Furthermore, IG(lσ) →∗

CE
lσIG by Lemma 25. Hence

IG(ui) →
∗
CE

lσIG →C rσIG = IG(ti+1)

– Next consider the rewrite sequence ti →∗
R ui. Because all terms in this

sequence are terminating, we obtain IG(ti) →∗
U(C)∪CE

IG(ui) by repeated
applications of Lemma 28.

Next we apply the argument filtering π to all terms in the resulting infinite
rewrite sequence in U(C) ∪ CE ∪ C. Because of the assumptions of this theorem,
we can simply reuse the proof of Theorem 18 (where U(C) ∪ CE takes the place
of R) and obtain the desired contradiction with the well-foundedness of >. ut

Since U(C) in general is a proper subset of R, the condition π(U(C)) ⊆ & is
easier to satisfy than the condition π(R) ⊆ & of Theorem 18. What about the
additional condition π(CE) ⊆ &? By choosing π(cons) = [1, 2] the condition re-
duces to cons(x, y) & x and cons(x, y) & y. Virtually all reduction pairs that are
used in termination tools can be extended to satisfy this condition. For reduction
pairs that are based on simplification orders, like (≥lpo, >lpo), this is clear. A
sufficient condition that makes the semantic construction described in Section 4
for generating reduction pairs work is that each pair of elements of the carrier
has a least upper bound. For interpretations in the set N of natural numbers
equipped with the standard order this is obviously satisfied. The necessity of the
least upper bound condition follows by considering the term algebra associated
with the famous rule f(a, b, x) → f(x, x, x) of Toyama [22] equipped with the
well-founded order →+.

2 This result has been independently obtained by Thiemann et al. [21].
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As a matter of fact, due to the condition π(CE) ⊆ &, Theorem 29 provides
only a sufficient condition for the absence of C-minimal rewrite sequences. A
concrete example of a terminating TRS that cannot be proved terminating by
the criterion of Theorem 29 will be presented at the end of this section.

Example 30. Let us take a final look at the SCC {11, 12, 13, 14} in our leading
example. There are no usable rules. By taking the linear polynomial interpreta-
tion ∧]

N(x, y) = x + y and ∨N(x, y) = x + y + 1 the involved dependency pairs
reduce the following inequalities:

11: x + y + z + 1 > x + y

12: x + y + z + 1 > x + z

13: x + y + z + 1 > x + y

14: x + y + z + 1 > x + z

Hence there are no C-minimal rewrite sequences for any nonempty subset C ⊆
{11, 12, 13, 14} and we conclude that the TRS is terminating.

The modularity result in Giesl et al. [10] can be expressed as the version of
Theorem 29 where U(C) is replaced by

U ′(C) =
⋃

l → r ∈ C

U ′(l[)

The mapping (·)[ : T ] → T replaces the dependency pair symbol f ] at the root
of its argument by the original defined function symbol f and U ′(t) is computed
like U(t) but with a different relation I′ that relates more function symbols:
f I′ g if there exists a rewrite rule l → r ∈ R such that f = root(l) and g is a
defined function symbol in Fun(l) ∪ Fun(r).

Since U(r) ⊆ U(r[) ⊆ U(l[) ⊆ U ′(l[) for every dependency pair l → r, it is
clear that U(C) is always a subset of U ′(C). Very often it is a proper subset and
that may affect the ability to prove termination. This will become clear from the
experimental data in the next section.

Example 31. If we adopt the above definition of usable rules then for the SCC
{7, 8, 9, 10} in our leading example all five rewrite rules are usable whereas for
the SCC {11, 12, 13, 14} only rules 4 and 5 are usable. For the SCC {9} in
Example 13 all seven rewrite rules and for the SCC {10, 11, 12} rules 3–7 are
usable. Finally, for the SCC {7} in Example 14 rules 1 and 2 are usable whereas
for the SCC {8, 10} all six rewrite rules are usable.

Combining the two main results of this paper, we arrive at the following
corollary.

Corollary 32. A TRS R is terminating if for every cycle C in DG(R) one of
the following two conditions holds:

– there exists a simple projection π for C such that π(C) ⊆ D and π(C)∩B 6= ∅,
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– there exist an argument filtering π and a reduction pair (&, >) such that
π(U(C) ∪ CE) ⊆ &, π(C) ⊆ & ∪ >, and π(C) ∩ > 6= ∅.

ut

The final example in this paper shows that the reverse does not hold. This is
in contrast to Theorem 18, which provides a sufficient and necessary condition
for termination. The reason is that termination of a TRS R is equivalent to the
termination of R ∪ DP(R), a result due to [1] (see [18] for a simple proof based
on type introduction).

Example 33. Consider the terminating TRS R consisting of the following two
rewrite rules:

1 : f(s(a), s(b), x) → f(x, x, x)

2 : g(f(s(x), s(y), z)) → g(f(x, y, z))

There are three dependency pairs:

3 : f](s(a), s(b), x) → f](x, x, x)

4 : g](f(s(x), s(y), z)) → g](f(x, y, z))

5 : g](f(s(x), s(y), z)) → f](x, y, z)

The dependency graph

3 5oo 4

��

oo

contains 1 cycle: C = {4}. The only simple projection for g] transforms 4 into

4: f(s(x), s(y), z) → f(x, y, z)

and f(x, y, z) is not a proper subterm of f(s(x), s(y), z). We have U(C) = {1}.
We claim that the inclusions π(U(C) ∪ CE) ⊆ & and π(C) ⊆ > are not satisfied
for any argument filtering π and reduction pair (&, >). The reason is simply
that the term t = g](f(u, u, u)) with u = s(cons(s(a), s(b))) admits the following
cyclic reduction in U(C) ∪ CE ∪ C:

t →C g](f(cons(s(a), s(b)), cons(s(a), s(b)), u))

→CE
g](f(s(a), cons(s(a), s(b)), u))

→CE
g](f(s(a), s(b), u))

→U(C) t

6 Benchmarks

We implemented the new criteria presented in the preceding sections in the Ty-
rolean Termination Tool [16], the successor of the Tsukuba Termination Tool [15].

We tested the effect of the improvements described in the previous sections
on 223 examples from three different sources:
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– all 89 terminating TRSs from Arts and Giesl [2],
– all 23 TRSs from Dershowitz [7],
– all 119 terminating TRSs from Steinbach and Kühler [19, Sections 3 and 4].

Eight of these TRSs appear in more than one collection, so the total number is
223. In all experiments we used the EDG∗ approximation [17] of the dependency
graph and, when the lexicographic path order is used, the divide and conquer
algorithm described in the full version of [14] is used to search for suitable argu-
ment filterings. The experiments were performed on a PC equipped with a 2.20
GHz Mobile Intel Pentium 4 Processor - M and 512 MB of memory.

The results are summarized in Table 1. The letters in the column headings
have the following meaning:

s the subterm criterion of Section 3,
u the usable rules criterion of Section 5,
l lexicographic path order in combination with the argument filtering heuris-

tic that considers for an n-ary function symbol the full argument filtering
[1, . . . , n] in addition to the n collapsing argument filterings 1, . . . , n,

p polynomial interpretation restricted to linear polynomials with coefficients
from {0, 1}; the usefulness of the latter restriction has been first observed in
[11].

We list the number of successful termination attempts, the number of failures
(which means that no termination proof was found while fully exploring the
search space implied by the options), and the number of timeouts, which we set
to 30 seconds. The numbers in parentheses refer to the usable rules criterion
of [10] which is described in the latter part of Section 5. The figures below
the number of successes and failures indicate the average time in seconds. It
is interesting to note that the subterm criterion could handle 279 of the 395
generated SCCs, resulting in termination proofs for 128 of the 223 TRSs.
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