
Confluence of Non-Left-Linear TRSs via
Relative Termination?

Dominik Klein and Nao Hirokawa

School of Information Science
Japan Advanced Institute of Science and Technology, Japan

{dominik.klein,hirokawa}@jaist.ac.jp

Abstract. We present a confluence criterion for term rewrite systems
by relaxing termination requirements of Knuth and Bendix’ confluence
criterion, using joinability of extended critical pairs. Because computa-
tion of extended critical pairs requires equational unification, which is
undecidable, we give a sufficient condition for testing joinability auto-
matically.

1 Introduction

Applications in various domains [16, 20, 26], resulted in an interest in proving
confluence of term rewrite systems (TRSs) automatically [3, 10, 27, 28]. Knuth
and Bendix [16] showed that confluence of terminating TRSs is decidable by
testing joinability of critical pairs, which are induced by overlaps. In the case of
non-termination, several powerful techniques have been developed for proving
confluence of left-linear systems [10, 23, 24]. Still, proving confluence of both
non-left-linear and non-terminating TRSs remains challenging.

Results that tackle this setting can be roughly classified into three categories:
First, by generalizing the notion of overlaps, one can formulate direct criteria
that guarantee confluence [8, 9]. The second approach is to decompose a TRS
into smaller ones, show confluence of each of them by existing criteria, and for-
mulate modularity conditions to ensure that the union remains confluent [1, 19,
22]. The third approach is to generalize Knuth and Bendix’ confluence criterion
by relaxing termination requirements to relative termination. A famous result
here is Jouannaud and Kirchner’s criterion for the Church-Rosser modulo prop-
erty [13] based on extended critical pairs. Geser [6] analyzed their proof to derive
confluence criteria based only on syntactical critical pairs.

We present a new confluence criterion that also relies on relative termination,
and can be applied for non-left-linear TRSs. The criterion requires to check
joinability of extended critical pairs, but we show that under certain conditions,
joinability can be concluded from joinability of syntactical critical pairs. With it,
we are able to prove confluence of several non-terminating, non-left-linear TRSs
fully automatically, for which no known criteria exist.

? This work is supported by the Grant-in-Aids for Young Scientists (B) 22700009 and
Scientific Research (B) 23300005 of the Japan Society for the Promotion of Science.

This paper is structured as follows: In Section 2 we recall notions from rewrit-
ing, unification, and the decreasing diagram technique, which will be used in
proofs later. Our main result is presented in Section 3. Since it requires join-
ability of uncomputable extended critical pairs, we explain in Section 4 how to
automate it, and then report on experiments in Section 5. In Section 6, we com-
pare our criterion with related works, and finally conclude with an outlook on
future work in Section 7.

2 Preliminaries

We assume familiarity with the basics of term rewriting ([4, 21]).

Term Rewriting. Terms are inductively defined over a set F of fixed-arity func-
tion symbols, and a set V of variables. For given term t, the set of variables oc-
curring in t is denoted by Var(t). The set of (variable, function) positions in t is
denoted by Pos(t) (PosV(t),PosF (t)). Here positions are expressed by sequences
on natural numbers, and the root position ε is the empty sequence. Given posi-
tions p, q, and o, we write p\q for o if p = qo. We write B for the proper superterm
relation. The domain Dom(σ) of a substitution σ is the set {x ∈ V | x 6= xσ}.
A rewrite rule ` → r is a pair (`, r) of terms with Var(r) ⊆ Var(`) and ` 6∈ V.
A TRS is a collection of rewrite rules. A rewrite rule is left-linear if no variable
occurs more than once in `. Likewise, a TRS is left-linear, if all of its rules are.
An extended rewrite rule is a pair (`, r) of terms with ` 6∈ V, and an extended
TRS (eTRS) is a set of extended rewrite rules. A rewrite step of R at position
p is denoted by

p−→R. We write ↓R for the join relation →∗R · ∗R←. We write
→1/→2 for →∗2 · →1 · →∗2, and →R/S for →R/→S . R is relatively terminating
over a TRS S or R/S is terminating, if →R/S is so.

Unification. We briefly recapitulate some notions from unification theory. An
equality s ≈ t is the ordered pair (s, t) of terms. Let E and S be sets of equalities,
and X the set of all variables in E . Given a substitution σ, we write Eσ for
{sσ ≈ tσ|s ≈ t ∈ E}. An S-unifier of E is a substitution σ such that Eσ ⊆ ↔∗S .
A substitution σ is more general than a substitution σ′ on X (σ .XS σ′), if there
exists a substitution τ such that xσ′ ↔∗S xστ for all x ∈ X. Let U be a set
of S-unifiers of E . We say that U is complete if for every S-unifier of E there
is a more general element in U . If in addition all elements in U are minimal
with respect to .XS , we call U minimal complete. A substitution σ is an S-most
general unifier (S-mgu) of E , if {σ} is a minimal complete set of S-unifiers of E .
In the special case of S = ∅, we simply speak of (syntactic) unification, unifiers
and mgu’s. A set of equalities E = {x1 ≈ t1, . . . , xn ≈ tn} is in solved form, if
xi are pairwise distinct variables, and no xi occurs in ti. For E in solved form,

we write
−→
E for the induced substitution {x1 7→ t1, . . . , xn 7→ tn}. Note that in

general, S-unifiability does not ensure presence of an S-mgu, except for S = ∅.

2

Critical Pairs. Conditions for confluence are often based on the notion of over-
laps and critical pairs. Let R1,R2,S be eTRSs. An S-overlap (`1 → r1, p, `2 →
r2)σ of R1 on R2 consists of a variant `1 → r1 of a rule in R1 and `2 → r2 of a
rule inR2, a position p ∈ PosF (`2) and a substitution σ, such that `1σ ↔∗S `2|pσ.
If p = ε, then `1 → r1 and `2 → r2 may not be variants of each other. The pair
(`2σ[r1σ]p, r2σ) induced from the overlap is an S-extended critical pair (or simply
S-critical pair) of `1 → r1 and `2 → r2 at p, written `2σ[r1σ]p R1

←S ∝→R2
r2σ.

We write R1
←S∞→R2

for R1
←S ∝→R2

∪ R2
←S ∝→R1

. We remark that our
definition of (S-)critical pairs includes pairs originating from non-minimal uni-
fiers, which are usually excluded from the definition to guarantee finiteness of
critical pairs.

Let REN(t) denote a linear term resulting from replacing in t each variable

occurrence by a fresh variable. We write R̂ for the eTRS {REN(`) → r | ` →
r ∈ R}. A TRS S is strongly non-overlapping on R if Ŝ has no overlaps on

R̂. We write SNO(R,S) if both S is strongly non-overlapping on R, and R
is strongly non-overlapping on S. Left-linear TRSs without critical pairs are
called orthogonal. Orthogonal TRSs are confluent. Moreover, Knuth and Bendix’
criterion [16] states that R←∅ ∝→R ⊆ ↓R implies confluence of a terminating
TRS R.

Decreasing Diagrams. Van Oostrom showed a powerful confluence criterion for
abstract rewrite systems (ARSs), called the decreasing diagram technique [25].
Let A = (A, 〈→α〉α∈I) be an ARS and > a proper order on I. For every α ∈ I
we write

∨−→α for {→β | β ∈ I and β < α}, and write
∨−→∗α for (

∨−→α)∗. The union

of
∨−→α and α

∨←− is denoted by ←−∨−→α. For α, β ∈ I, the union of
∨−→α and

∨−→β is

written as
∨−→αβ . Two labels α and β are decreasing with respect to > if

α← · →β ⊆
∨←→∗α· →=

β · ←−
∨−→∗αβ · =α← · ∗β←−

∨−→

An ARS A = (A, 〈→α〉α∈I) is decreasing if there exists a well founded order >
such that all two labels in I are decreasing with respect to >.

Theorem 1 ([25]). A decreasing ARS is confluent. ut

3 Confluence Criterion

First we state our main theorem, which is a proper generalization (when S 6= ∅)
of Knuth and Bendix’ confluence criterion.

Theorem 2. Suppose that S is confluent, R/S is terminating, and SNO(R,S).
The union R∪ S of the TRSs is confluent if and only if R←S ∝→R ⊆ ↓R∪S .

In the rest of this section we first prove our main theorem, and afterwards give
examples of its application. Let R and S be TRSs. We introduce an intermediate
relation _, such that →R∪S ⊆ _ ⊆ →∗R∪S . Confluence of this intermediate

3

relation readily implies confluence of R ∪ S. The relation _ is defined as the
union of →RS and →∗S , where RS is the TRS

{`′σ → rτ | `′ρ→ r ∈ R and σ →∗S ρτ for some substitution ρ on V }

In the above set σ →∗S τ means that xσ →∗S xτ for all variables x. It is important
to note that in the definition linearity of `′ can be assumed without loss of
generality, and that the inclusions →R ⊆ →RS ⊆ →∗S · →R hold.

We show confluence of _ by the decreasing diagram technique with the
predecessor labeling [25]: We write b _a c if a _∗ b _ c. Labels are compared
with respect to→+

R/S , denoted by >. Since termination ofR/S is presupposed in

the theorem, the relation > forms a well-founded order. The next lemma states
a property of rewriting in substitutions.

Lemma 3. If tσ
p−→R u and p 6∈ PosF (t) then u→∗R tτ for some τ with σ →=

R τ .

Proof. Suppose tσ
p−→R u and p 6∈ PosF (t). Then there exists a variable position

q ∈ PosV(t) with q 6 p and u = (tσ)[u|q]q. Let Q be the set of all variable
occurrences of t|q in t. Since u|q′ →R u|q holds for all q′ ∈ Q \ {q}, we have
u →R (tσ)[u|q]q′∈Q\{q}. The latter term is identical to (tσ)[u|q]q′∈Q. We define
the substitution τ as follows:

τ(x) =

{
u|q if x = t|q
xσ otherwise

One can verify σ →=
R τ and (tσ)[u|q]q′∈Q = tτ . Hence u→∗R tτ . ut

We analyze peaks of the form ^ ·_. According to the definition of _, they
fall into the three cases: (a) ∗S← · →∗S , (b) RS← · →∗S , and (c) RS← · →RS . For
case (a) we can apply confluence of S to show decreasingness of the peak. The
remaining cases are more complicated. We start with a localized version of (b).
In the next Lemmata 4, 6, and 7 we assume SNO(R,S) and confluence of S.

Lemma 4. If t RS← s→S u then t→∗R∪S · ∗
RS← u.

Proof. We perform induction on s. Suppose t RS
p←− s

q−→S u. By the definition
of RS we may assume `1ρ → r1 ∈ R for some linear term `1 and ρ : V → V,
s|p = `1σ, t|p = r1τ , and σ →∗S ρτ , as well as `2 → r2 ∈ S, s|q = `2µ, and
u|q = r2µ. Due to SNO(R,S), neither p\q ∈ PosF (`2) nor q\p ∈ PosF (`1)
holds. We distinguish several cases concerning the relation of p and q.

– Suppose p = ε. Then there is a variable position q1 of x1 in `1 with q1 6 q.
Since x1ρτ

∗
S← x1σ →S u|q1 holds, we have x1ρτ →∗S v ∗S← u|q1 for some v

by confluence of S. We define the substitutions µ1 and ν as follows:

µ1(x) =

{
u|q1 if x = x1

xσ otherwise
ν(x) =

{
v if x = x1ρ

xτ otherwise

We have τ →∗S ν, and also u = `1µ1 by linearity of `1. Moreover, µ1 →∗S ρν
because xµ1 →∗S v = x1ρν = xρν if x = x1, and xµ = xσ →∗S xν otherwise.
Therefore, we obtain t = r1τ →∗S r1ν RS← `1µ1 = u.

4

– Suppose q = ε. We may presume Var(`1)∩Var(`2) = ∅, and thus σ = µ can
be assumed. Since `2σ →RS t holds, by Lemma 3 we obtain t →∗RS `2ν for
some ν with σ →=

RS ν. Thus, t→∗RS `2ν →S r2ν
∗
RS← r2σ = r2µ = u.

– If p = ip′ and q = jq′ for some i, j ∈ N with i 6= j, one can easily verify
t
q−→S · RS

p←− u.
– Otherwise, p = ip′ and q = iq′ for some i ∈ N. Since t|i RS← s|i →S
u|i holds, the induction hypothesis yields t|i →∗R∪S · ∗

RS← u|i. Therefore
t→∗R∪S · ∗

RS← u. ut

In order to handle peaks of shape RS← · →∗S we show an auxiliary lemma for
ARSs. In the next lemma → stands for →1 ∪ →2 and > for (→1/→2)+, and we
write b→a c if a→∗ b→ c. We will freely use the next two facts: (1) for all a, b, c
with a > b, we have that b ←−∨−→∗a · →∗ c implies b ←−∨−→∗a c, and (2) b →=

1 ·
∨−→∗a c

whenever a→∗ b→∗1 c.

Lemma 5. Let 1← · →2 ⊆ →∗ · ∗1←. If b 1← a→∗2 c then b←−∨−→∗a · =1← c.

Proof. Let b 1← a →n
2 c. We show the claim by induction on n. If n = 0 then

trivially the claim holds. Otherwise, a →n−1
2 d →2 c for some d. The induction

hypothesis yields b←−∨−→∗a e =
1← d for some e. We distinguish two cases.

– If d = e then b←−∨−→∗a e = d→1 c. Thus b←−∨−→∗a c by (1).
– Suppose d →1 e. Because we have e 1← d →2 c, by the assumption e →∗
f ∗1← c for some f . Since a→∗2 d→1 e→∗ f holds, we obtain e

∨−→∗a f by (2).
Moreover, c→∗1 f implies c→=

1 ·
∨−→∗a f by (2). Hence, b←−∨−→∗a · =1← c. ut

Lemma 6. If t RS← s→∗S u then t
∨_̂∗s · =

RS← u.

Proof. By Lemma 4 we have that t RS← s→S u implies t→∗R∪S · ∗
RS← u. The

claim follows by instantiating Lemma 5 with →1 as →RS and →2 as →S . ut

Lastly, peaks of case (c), of shape RS← · →RS , are considered.

Lemma 7. If t RS← s→RS u then t
∨_̂∗s u or t→∗S · R←S∞→R · ∗S← u.

Proof. We perform induction on s. Suppose t RS
p←− s

q−→RS u. By the definition
of RS we can assume `1ρ1 → r1, `2ρ2 → r2 ∈ R for some linear terms `1, `2 and
ρ1, ρ2 : V → V, and

s|p = `1σ1 t|p = r1τ1 σ1 →∗S ρ1τ1
s|q = `2σ2 u|q = r2τ2 σ2 →∗S ρ2τ2

Except for symmetric cases, the relation of p and q falls into the next four cases:

– Suppose q = ε, and p ∈ PosF (`2). We have `1ρ1τ1
∗
S← s →∗S `2|pρ2τ2.

Without loss of generality Var(`1ρ1) ∩ Var(`2ρ2) = ∅, and thus we may
assume τ = τ1 ∪ τ2 is a well-defined substitution. The substitution τ is an
S-unifier of `1ρ1 and `2ρ2|p. Because xσ2 →∗S xρ2τ holds for all x ∈ Var(`2),

t = (`2σ2)[r1τ]p →∗S (`2ρ2τ)[r1τ]p R←S ∝→R r2τ = u

5

s

t uv

s1 s2

s2 s1

s

t uv

s1 s2

∨
s1

∗ =
s1

s

t u

s1 s2

∨
s1

∗

(a) ∗S← · →∗S (b) RS← · →
∗
S (c) RS← · →RS

Fig. 1. Decreasingness of _.

– Suppose q = ε, and p 6∈ PosF (`2) and p2 is a variable occurrence of x2 in `2
with p2 6 p. Since t|p2 RS← x2σ2 →∗S x2ρ2τ2, Lemma 6 yields t|p2

∨_̂∗s|p2
v =
RS← x2ρ2τ2 for some v. Because s = `2σ2, t|p2

∨_̂∗s|p2 v, and σ2 →∗S ρ2τ2
hold, by closure under contexts of rewrite relations and > we obtain

t = (`2σ2)[t|p2]p2
∨_̂∗s (`2σ2)[v]p2 →∗S (`2ρ2τ2)[v]p2

Thus, t
∨_̂∗s (`2ρ2τ2)[v]p2 . Since x2ρ2τ2 →=

RS v holds and `2 is linear,

`2ρ2τ2 →=
RS (`2ρ2τ2)[v]p2

is deduced. Here we distinguish two cases. If `2ρ2τ2 = (`2ρ2τ2)[v]p2 , we obtain

t
∨_̂∗s `2ρ2τ2 →R u

Otherwise, `2ρ2τ2 →RS (`2ρ2τ2)[v]p2 . Since by Lemma 3 there exists ν with
τ2 →=

RS ν such that (`2ρ2τ2)[v]p2 →∗RS `2ρ2ν, finally we obtain

t
∨_̂∗s (`2ρ2τ2)[v]p2 →∗RS `2ρ2ν →R r2ν

∗
RS← r2τ2 = u

Because s > t and s > u hold, in both cases t
∨_̂∗s u is concluded.

– If p = ip′ and q = jq′ for some i, j ∈ N with i 6= j, one can easily verify
t
q−→RS · RS

p←− u, which implies t←−∨−→∗s u.
– Otherwise, p = ip′ and q = iq′ for some i ∈ N. Since t|i RS← s|i →RS u|i

holds, by induction hypothesis t|i ←−
∨−→∗s|i u|i or t|i →∗S · R←S∞→R · ∗S← u|i

is deduced. Thus, t←−∨−→∗s u or t→∗S · R←S∞→R · ∗S← u is concluded. ut

Now we are ready to prove the main theorem.

Proof (of Theorem 2). Suppose that S is confluent, R/S is terminating, and
SNO(R,S). We show that R∪ S is confluent if and only if R←S ∝→R ⊆ ↓R∪S .
Since the “only if”-direction is trivial, we only show the “if”-direction. Assume

R←S ∝→R ⊆ ↓R∪S . Because confluence of _ implies confluence ofR∪S, accord-
ing to Theorem 1, it is enough to show decreasingness of _. Let t s1^ s _s2 u.
As mentioned, following the definition of _, we distinguish three cases.

6

(a) If t ∗S← s→∗S u then t→∗S v ∗S← u for some v by confluence of S.

(b) If t RS← s→∗S u then t
∨_̂∗s v =

RS← u for some v by Lemma 6.

(c) If t RS← s →RS u then t
∨_̂∗s u for some v by Lemma 7 and joinability of

S-critical pairs.

In all cases decreasingness is established, as seen in Figure 1. ut
The next examples illustrate Theorem 2. Note that no existing powerful tool

can prove their confluence automatically (see Section 5).

Example 8. Consider the TRS

1: f(x, x)→ (x+ x) + x 2: x+ y → y + x

Take R = {1} and S = {2}. One can easily verify SNO(R,S). Termination of
R/S can be established using a termination tool such as TTT2 v1.06 [17]1, and
confluence of S follows from orthogonality. Because of R←S ∝→R = ∅ ⊆ ↓R∪S ,
we conclude confluence by Theorem 2.

Example 9. Consider the TRS

1: f(x, x)→ s(s(x)) 2 : ∞→ s(∞)

TakeR = {1} and S = {2}. As in Example 8, one can easily verify the conditions
of Theorem 2, including R←S ∝→R = ∅ ⊆ ↓R∪S . Hence the TRS is confluent.

Example 10. Consider the TRS

1: eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 3 : nats→ 0 : inc(nats)

2 : eq(n, xs, xs)→ T 4: inc(x : xs)→ s(x) : inc(xs)

Take R = {1, 2} and S = {3, 4}. Again, SNO(R,S), termination of R/S and
confluence of S is established. Moreover, one can show

R←S ∝→R = {(eq(s, t, u),T) | s, t, u are terms and t↔∗S u}

and thus the set is included in ↓R∪S because of confluence of S. Hence by using
Theorem 2 we conclude that R∪ S is confluent.

We conclude this section by mentioning that all conditions of Theorem 2
are essential. One cannot drop SNO(R,S) nor termination of R/S, and even
replacing joinability of S-critical pairs by joinability of syntactical critical pairs
makes the theorem unsound.

Example 11. Consider Huet’s example [11]

1 : f(x, x)→ a 2: f(x, g(x))→ b 3: c→ g(c)

which is known to be non-confluent. If one takes R = {1} and S = {2, 3} then
R/S is terminating, S is confluent, and R←S ∝→R = ∅ ⊆ ↓R∪S . If one takes
R = {3} and S = {1, 2} then, SNO(R,S), S is confluent, and there are no
S-critical pairs of R. Furthermore, if one takes R = {1, 2} and S = {3} then
SNO(R,S), R/S is terminating, S is confluent, and there are no syntactical
critical pairs of R, although S-critical pairs are present.

1 http://colo6-c703.uibk.ac.at/ttt2/

7

4 Joinability of S-Critical Pairs

The biggest challenge in applying Theorem 2 is to check R←S ∝→R ⊆ ↓R∪S
automatically. The standard approach is to compute a minimal complete set of
S-unifiers for `1 and `2|p for each combination of rules `1 → r1, `2 → r2 and a
position p ∈ PosF (`2). Then, joinability of its induced critical pairs ensures join-
ability for all S-unifiers. However, depending on S, the computation of minimal
complete sets varies, and worse, minimal complete sets may not even exist for
S-unifiable terms. In this section we give sufficient conditions for the joinabil-
ity and non-joinability of S-critical pairs without performing specific equational
unification algorithms.

For the first we show that a most general unifier of strongly S-stable terms
is always a most general S-unifier. As the next lemma shows, this allows us
to compute S-critical pairs by means of syntactic unification. Here a term t
is strongly S-stable if for every position p ∈ PosF (t) there are no term u and

substitution σ such that t|pσ →∗S ·
ε−→S u. Note that tσ is strongly S-stable if t

and xσ are strongly S-stable for all variables x.

Lemma 12. If SNO(R,S) then ` is strongly S-stable for all `→ r ∈ R. ut

In order to show the claim on mgu’s, we recall the standard inference rules
for syntactic unification from [4]. These rules are defined over sets of equalities
on terms.

Eliminate
{x ≈ t}] E

{x ≈ t} ∪ E{x 7→ t}
if x 6∈ Var(t)

Orient
{t ≈ x}] E
{x ≈ t} ∪ E

if t 6∈ V

Delete
{t ≈ t}] E

E

Decompose
{f(s1, . . . , sn) ≈ f(t1, . . . , tn)}] E
{s1 ≈ t1, . . . , sn ≈ tn} ∪ E

We write =⇒ for a derivation by the inferences. The following lemma states that
a most general unifier can be computed by a sequence of derivations.

Lemma 13 ([4]). If s and t are unifiable, there exists E in solved form such

that {s ≈ t} =⇒∗ E and
−→
E is an mgu of s and t. ut

The next lemma shows that the inferences of syntactic unification preserve
strong S-stability and S-unifiability. We say that a set E of equalities is strongly
S-stable if s and t are strongly S-stable for all s ≈ t ∈ E .

Lemma 14. Let S be a confluent TRS. If E1 is strongly S-stable, E1σ ⊆ ↓S ,
and E1 =⇒ E2, then E2σ ⊆ ↓S and E2 is strongly S-stable.

8

Proof. Suppose E1 is strongly S-stable, E1σ ⊆ ↓S , and E1 =⇒ E2. We distinguish
the inference of E1 =⇒ E2. Because the cases of Delete and Orient are trivial,
below we only consider the other two cases:

– Eliminate: Suppose E1 = {x ≈ t}] E ′ and E2 = {x ≈ t} ∪ E ′µ, where
µ = {x 7→ t} and x 6∈ Var(t). We claim µσ ↔∗S σ. Actually it follows from
the assumption xσ ↓S tσ. We now prove E2σ ⊆ ↓S . It is sufficient to show
uµσ ↓S vµσ for an arbitrary u ≈ v ∈ E ′. Because uσ ↓S vσ by assumption,
the claim yields uµσ ↔∗S vµσ. Therefore uµσ ↓S vµσ is concluded from
confluence of S. To show strong S-stability of E2, fix u ≈ v ∈ E ′. Since u, v,
and xµ are strongly S-stable, so are uµ and vµ.

– Decompose: Suppose E1 = {s ≈ t}] E ′ and E2 = {s1 ≈ t1, . . . , sn ≈
tn} ∪ E ′ with s = f(s1, . . . , sn) and t = f(t1, . . . , tn). Since E is strongly
S-stable, and thus s and t are, si and ti are also strongly S-stable for all
1 6 i 6 n. Furthermore, due to strong S-stability of s and t, sσ ↓S tσ implies
siσ ↓S tiσ for all 1 6 i 6 n. Therefore, the claim holds. ut

We arrive at the aforementioned sufficient condition.

Theorem 15. Let S be a confluent TRS. An mgu of strongly S-stable terms s
and t is an S-mgu of s and t.

Proof. Let µ be an arbitrary mgu of strongly S-stable terms s and t. Since µ is
trivially an S-unifier of s and t, it is enough to show that µ is more general than
an arbitrary S-unifier σ of s and t. By using Lemma 13 there is an E in solved

form such that {s ≈ t} =⇒∗ E and
−→
E is an mgu of s and t. Because sσ ↔∗S tσ

and S is confluent, we have {s ≈ t}σ ⊆ ↓S , and thus Eσ ⊆ ↓S is obtained by
induction on the length of =⇒∗ using Lemma 14. Since E is in solved form,

xσ ↓S x
−→
E σ holds for all x ∈ Dom(

−→
E). This means σ ↔∗S

−→
E σ. Since µ is an

mgu, there is a substitution ρ with
−→
E = µρ. Thus σ ↔∗S µρσ. Hence µ is more

general than σ. ut

When automating Theorem 2, confluence of S and SNO(R,S) can be as-
sumed. Therefore, according to Theorem 15 and Lemma 12, a syntactical overlap
by an mgu µ is also an S-overlap by S-mgu µ. Thus joinability of its syntactical
critical pairs implies joinability of S-critical pairs induced by any S-unifier.

Example 16 (continued from Example 10). We consider again the example with
R = {1, 2} and S = {3, 4}. Take the first and second rules renamed:

1 : eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 2 : eq(m, zs, zs)→ T

We know that there is an overlap between 1 and 2 at root position with the mgu
µ = {m 7→ s(n), zs 7→ x : xs, ys 7→ xs}. Elsewhere, even S-overlaps cannot occur.
The induced critical pair (eq(n, xs, xs),T) is trivially joinable by the second rule.
Hence R←S ∝→R ⊆ ↓R∪S holds.

Confluence of S cannot be dropped in Theorem 15.

9

Example 17. Consider the TRS S

g(x, y)→ f(x, x) g(x, y)→ f(x, y)

The terms f(x1, x1) and f(x, y) are both strongly S-stable, and the substitution
µ = {x 7→ x1, y 7→ x1} is a most general unifier. However, µ is not an S-mgu,
because µ is not more general than the other S-unifier {x1 7→ x}.

Unjoinability of S-critical pairs can be tested similarly to checking non-
confluence of a TRS with the function TCAP ([27]).

Definition 18 ([7]). Let t be a term, and R a TRS. We define TCAPR(t)
inductively as a fresh variable, when t is a variable or when t = f(t1, . . . , tn)
and ` and u unify for some (renamed) rule ` → r ∈ R, and u, otherwise. Here
u stands for f(TCAPR(t1), . . . ,TCAPR(tn)).

Lemma 19. Let `1 → r1, `2 → r2 ∈ R and p ∈ PosF (`2). If `1σ ↔∗R `2|pσ,
and TCAPR(r2) and TCAPR(`2[r1]p) do not unify, R is not confluent. ut

Proof. Using the fact that if sσ ↓R tτ then TCAPR(s) and TCAPR(t) must
unify (see [27]). ut

Example 20 (continued from Example 11). Recall R = {1, 2} and S = {3}:

1 : f(x, x)→ a 2: f(y, g(y))→ b 3: c→ g(c)

where variables are renamed in rule 2. We denote i-th rule by `i → ri. While
`1 and `2|ε are (R ∪ S)-unifiable with {x, y 7→ c}, TCAPR∪S(`2[r1]ε) = a and
TCAPR∪S(r2) = b do not unify. Thus, by Lemma 19, R∪ S is not confluent.

In automation we need to test S-unifiability of `1 and `2|p. This can be au-
tomated by first-order theorem provers (for unit equational problems, so-called
UEQ) and indeed non-confluence of the above TRS can be proved automati-
cally, see Section 5. Note that in contrast to [27] this approach only requires
S-unifiability but not S-unifiers.

As a final remark, from the absence of a unifier we may not conclude non-
existence of S-critical pairs, as illustrated in Example 11.

5 Experiments

In order to assess feasibility of our methods, we implemented Theorem 2 together
with Theorem 15 for confluence, and Lemma 19 for non-confluence. In the next
subsections we mention details of our implementation and report on experimental
data.

10

5.1 Implementation

In order to automate Theorem 2 we employed TTT2 v1.06 [17] for checking rel-
ative termination R/S and an extended version of Maxcomp [14] for testing
S-unifiability, using ordered completion. To check confluence of S, we used the
existing three state-of-the-art confluence provers: ACP v0.20 [3]2, CSI v0.1 [27]3,
and Saigawa v1.2 [10]4. Since termination of R∪ S cannot be assumed, we only
test joinability of S-critical pairs by at most four step rewriting for each term.

We give a brief overview of our procedure. Given a TRS P, we output either
YES (P is confluent), NO (P is not confluent), or MAYBE (confluence of P is neither
proven nor disproven). We enumerate all possible partitions P = R]S, and then
for each (R,S), we test whether SNO(R,S), termination of R/S, and confluence
of S holds. If one of these conditions does not hold, we continue with the next
partition; if none is left, we return MAYBE. Otherwise, to check the last remaining
condition of Theorem 2, namely R←S ∝→R ⊆ ↓R∪S , we proceed in the following
way: For all tuples (`1 → r1, p, `2 → r2) where `1 → r1 and `2 → r2 are rules
from R and p ∈ PosF (`2), we test in the following order:

1. If REN(`1) and REN(`2|p) are not syntactically unifiable, then no S-overlap
exists, and we continue with the next tuple. Otherwise,

2. if `1 and `2|p are syntactically unifiable with σ, the current tuple forms an
S-overlap, so we test joinability of the induced critical pair.
(a) If joinability holds, we continue with the next tuple.
(b) If joinability cannot be established, we test whether TCAPR∪S(r2σ) and

TCAPR∪S(`2σ[r1σ]p) syntactically unify. If they are not unifiable, return
NO. Otherwise, return MAYBE

3. if `1 and `2|p are not syntactically unifiable, we check S |= `1 ≈ `2|p by a
theorem prover:
(a) If unsatisfiability of the formula is detected, no S-overlap exists, and we

continue.
(b) If satisfiability is detected, we test syntactic unifiability of TCAPR∪S(r2)

and TCAPR∪S(`2[r1]p). If they are not unifiable, return NO. If they unify,
return MAYBE.

(c) Lastly, if the theorem prover does not provide a conclusive answer, return
MAYBE

If no tuple remains, we have established R←S ∝→R ⊆ ↓R∪S and return YES.
Correctness of the whole procedure can be established using Theorems 2, 15 and
Lemmata 12, 19.

5.2 Experimental Results

We tested the implementation on a collection of 32 TRSs, consisting of 29 non-
left-linear non-terminating TRSs in the Confluence Problem Database (Cops
Nos. 1–116)5 and Examples 8, 9 and 10. Note that Example 11 is part of the 29

2 http://www.nue.riec.tohoku.ac.jp/tools/acp/
3 http://cl-informatik.uibk.ac.at/software/csi/
4 http://www.jaist.ac.jp/project/saigawa/
5 http://coco.nue.riec.tohoku.ac.jp/

11

Table 1. Summary of experimental results (32 TRSs)

ACP ACP∗ CSI CSI∗ Saigawa Saigawa∗

YES 12 19 7 15 0 10
NO 3 4 3 3 0 2

MAYBE 17 9 17 9 32 20
timeout (60 sec) 0 0 5 5 0 0

TRSs. The tests were single-threaded run on a system equipped with an Intel
Core Duo L7500 with 1.6 GHz and 2 GB of RAM using a timeout of 60 seconds.

The results are depicted in Table 1. 6 Here columns ACP, CSI and Saigawa
show results for running the respective tools, and ACP∗, CSI∗ and Saigawa∗

show results when using the respective tool to show confluence of the S-part in
Theorem 2.

It should be noted, that the criteria implemented by Saigawa apply only to
left-linear systems, whereas CSI is able to show confluence of non-left-linear sys-
tems by order-sorted decomposition [5], and the implementation of ACP includes
criteria based on layer preserving [19] and persistency decompositions [1], and
the criterion by Gomi et al. [9].

For overall results, there are twelve TRSs for which confluence can be shown
by ACP, CSI and Saigawa combined, in fact however all twelve can be shown by
ACP alone. Extending with Theorem 2, there are 19 TRSs, for which confluence
can be shown by ACP∗, CSI∗ or Saigawa∗ combined. Similar to the standalone-
case, ACP∗ subsumes both other combinations. As for Example 8, 9 and 10,
neither CSI, ACP nor Saigawa can show confluence, whereas all CSI∗, ACP∗ and
Saigawa∗ succeed. Out of the nine TRSs that ACP∗ missed, four TRSs (Cops
Nos. 76, 77, 78, 109) contain AC rules, for which most likely the criterion in [13]
applies if suitable equational unification algorithms were implemented (see Sec-
tion 6), and five TRSs (Nos. 16, 24, 26, 27, 47) are variants of Huet’s example
(Example 11) or Klop’s example [15]: {f(x, x)→ a, g(x)→ f(x, g(x)), c→ g(c)}.

6 Related Work

Among others, we compare our criterion with three well-known criteria capable
of proving confluence of non-left-linear and non-terminating TRSs. Note that for
the second criterion below we use reversibility [2] for comparison, because the
original criterion requires equational systems for S rather than rewrite systems.
We say that a TRS S is reversible if S← ⊆→∗S .

– Criteria by Non-E-Overlappingness. The criterion by Gomi et al. [8],
later extended in [9], is that a root-E-overlapping TRS, that is also strongly

6 Detailed results are available at http://www.jaist.ac.jp/project/saigawa/

12

weight-preserving or strongly depth-preserving, is confluent. Here E-overlaps
are a generalization of overlaps, and strong non-overlappingness plays a ma-
jor role in deriving sufficient conditions to decide root-E-overlappingness.7

A TRS is strongly depth preserving, if for any rewrite rule and any variable
appearing in both sides, the minimal depth of the variable occurrences in the
left-hand side is greater than or equal to the maximal depth of the right hand
side’s occurrences. Instead of comparing the depth of the variable directly,
one can also assign weights to function symbols and compare the weight of
the variable occurrence, where the weight is the sum of the function sym-
bols from root to its occurrence. For details of the definitions we refer to [9].
Consider the following TRS:

f(x, x)→ a c→ g(c) g(x)→ f(x, x)

Confluence of this TRS can be established, since it is depth-preserving and
root-E-overlapping. However Theorem 2 cannot be applied, since the TRS
cannot be partitioned into a non-empty R and S, such that R/S is termi-
nating — except for R = ∅. On the other hand, weight-preservation and
depth-preservation impose strong syntactic restrictions on the variable posi-
tions. Consider for example the TRS

1: g(x, x)→ f(x) 2 : f(x)→ f(f(x))

By taking R = {1} and S = {2}, Theorem 2 can be applied. However the
second rule violates both strong depth and strong weight-preservation.

– Criteria by Extended Critical Pairs. In [13], based on the preliminary
work in [12], Jouannaud and Kirchner show that the union of a TRS R and
a reversible TRS S is confluent if R/S and B/↔S are terminating and

R←S ∝→R∪S∪S−1 ⊆ →∗R,S · ↔∗S · ∗
R,S←

Here s→R,S t if there exist a rule `→ r ∈ R, a position p ∈ Pos(s), and a
substitution σ, such that s|p ↔∗S `σ and t = s[rσ]p. Note that S has a serious
restriction: The two termination requirements prohibit application when S
is erasing or collapsing, or even when C[t] ↔∗S t. For instance, Examples 9
and 10 cannot be handled due to this restriction. On the other hand it is
applicable for mutually overlapping TRSs R and S, for example:

1 : x+ x→ x 2: x+ y → y + x 3: (x+ y) + z → x+ (y + z)

By takingR = {1} and S = {2, 3}, one can easily show confluence ofR∪S by
using their criterion. However, Theorem 2 cannot be applied because R and
S overlap on each other. This criterion forms a foundation of AC-completion.

7 S-overlaps are sometime called E-overlaps but should not be confused with the E-
overlaps defined by Gomi et al. [8], originally introduced by Ogawa [18].

13

– Criteria by Relative Termination. Geser [6] introduced several pio-
neering applications of relative termination. A result of particular interest in
this context is the following confluence criterion: A TRS R∪ S is confluent
if R is left-linear, S is confluent, and the following two inclusions hold:

S←∅ ∝→R ⊆ (→∗S · ∗
R∪S←) ∪ (→R · ↓R∪S) R←∅ ∝→R ⊆ ↓R∪S

In contrast to Theorem 2, overlaps between rules in R and S pose no prob-
lem. The following example, due to Geser, shows the power of his approach
beyond pure left-linear systems:

1 : c(s(x), s(y))→ c(x, y) 2 : c(x, x)→ f(c(x, x))

Then confluence can be established by taking R = {1} and S = {2}, whereas
Theorem 2 is not applicable. 8 The reason for being able to handle overlaps
between R and S is, that with the restriction of left-linearity of the R-
part, joinability of syntactical critical pairs suffices to establish confluence.
On the other hand, the requirement of left-linearity prevents application for
Examples 8, 9 and 10, except for choosing R = ∅.

7 Conclusion

In this paper we showed a generalization of Knuth and Bendix’ confluence cri-
terion, which can deal with non-left-linear, non-terminating TRSs. Moreover
we presented its automation technique. As seen in Section 6, conditions re-
quired in our criterion are related to the results by Jouannaud and Kirch-
ner [13] and Geser [6]. Any of them exploits relative termination to overcome
non-termination, however still relative termination poses a strict restriction. We
anticipate that use of critical pair steps [10] relaxes this restriction.

Acknowledgements. We thank the anonymous referees for their valuable comments.

References

1. Aoto, T., Toyama, Y.: Persistency of confluence. Journal of Universal Computer
Science 3(11), 1134–1147 (1997)

2. Aoto, T., Toyama, Y.: A Reduction-Preserving Completion for Proving Confluence
of Non-Terminating Term Rewriting Systems. In: Proc. 22nd RTA. LIPIcs, vol.
10, pp. 91–106 (2011)

3. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems
automatically. In: Proc. 21st RTA. LNCS. pp. 93–102 (2009)

4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1998)

5. Felgenhauer, B., Zankl, H., Middeldorp, A.: Layer systems for proving confluence.
In: Proc. 31st FSTTCS. LIPIcs, vol. 13, pp. 288–299 (2011)

8 All current confluence tools fail to show confluence of the one rule TRS of rule 2.

14

6. Geser, A.: Relative Termination. PhD thesis, Universität Passau (1990). Available
as technical report 91-03.

7. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Proc. 5th FroCoS. LNAI, vol. 3717, pp. 216–231
(2005)

8. Gomi, H., Oyamaguchi, M., Ohta, Y.: On the Church-Rosser property of non-E-
overlapping and strongly depth-preserving term rewriting systems. Trans. IPSJ
37(12), 2147–2160 (1996)

9. Gomi, H., Oyamaguchi, M., Ohta, Y.: On the Church-Rosser property of root-E-
overlapping and strongly depth-preserving term rewriting systems. Trans. IPSJ
39(4), 992–1005 (1998)

10. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. Jour-
nal of Automated Reasoning 47, 481–501 (2011)

11. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems: Abstract properties and applications to term rewriting systems.
Journal of the ACM 27, 797–821 (1980)

12. Jouannaud, J.P.: Confluent and coherent equational term rewriting systems: Ap-
plication to proofs in abstract data types. In: Proc. 8th CAAP. LNCS, vol. 159,
pp. 269–283 (1983)

13. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal on Computing 15(4), 1155–1194 (1986)

14. Klein, D., Hirokawa, N.: Maximal completion. In: Proc. 22nd RTA. LIPIcs, vol.
10, pp. 71–80 (2011)

15. Klop, J.: Combinatory reduction systems. PhD thesis, Utrecht University (1980)
16. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Computa-

tional Problems in Abstract Algebra. 263–297 (1970)
17. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.

In: Treinen, R. (ed.) Proc. 20th RTA 2009. LNCS, vol. 5595, pp. 295–304 (2009)
18. Ogawa, M.: Chew’s theorem revisited -uniquely normalizing property of nonlinear

term rewriting systems-. In: ISAAC. LNCS, vol. 650, pp. 309–318 (1992)
19. Ohlebusch, E.: Modular properties of composable term rewriting systems. Journal

of Symbolic Computation 20, 1–41 (1995)
20. Stump, A., Kimmell, G., Omar, R.E.H.: Type preservation as a confluence problem.

In: Proc. 22nd RTA. LIPIcs, vol. 10, pp. 345–360 (2011)
21. TeReSe: Term Rewriting Systems. vol. 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press (2003)
22. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting

systems. Journal of the ACM 34(1), 128–143 (1987)
23. Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future

Generation Computers II. North-Holland 393–407 (1988)
24. van Oostrom, V.: Developing developments. Theoretical Computer Science 175(1),

159–181 (1997)
25. van Oostrom, V.: Confluence by decreasing diagrams. In: Proc. 19th RTA. LNCS,

vol. 5117, pp. 306–320 (2008)
26. Yamamoto, A.: Completeness of extending unification based on basic narrowing.

In: Proc. 7th Conference on Logic Programming. LNCS, vol. 383, pp. 1–10 (1988)
27. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI - a confluence tool. In: Proc. 23th

CADE. LNAI, vol. 6803, pp. 499–505 (2011)
28. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. In:

Proc. 22nd RTA. LIPIcs. pp. 377–392 (2011)

15

