
CoLL: A Confluence Tool for Left-Linear Term
Rewrite Systems?

Kiraku Shintani and Nao Hirokawa1

School of Information Science,
JAIST, Japan

{s1310032,hirokawa}@jaist.ac.jp

Abstract. We present a confluence tool for left-linear term rewrite sys-
tems. The tool proves confluence by using Hindley’s commutation theo-
rem together with three commutation criteria, including Church-Rosser
modulo associative and/or commutative theories. Despite a small num-
ber of its techniques, experiments show that the tool is comparable to
recent powerful confluence tools.

1 Introduction

In this paper we present the new confluence tool CoLL for left-linear term rewrite
systems (TRSs). The tool has two distinctive features. One is use of Jouannaud
and Kirchner’s theorem for the Church-Rosser modulo property. Our tool sup-
ports rewriting modulo associativity and/or commutativity rules. Another no-
table feature is that confluence is proved by commutation criteria only. By using
Hindley’s Commutation Theorem [1] confluence is proved via commutation of
subsystems of an input TRS. In addition to them, CoLL implements a simple
transformation technique that eliminates redundant rewrite rules.

The remaining part of the paper is organized as follows: After recalling basic
notions of rewriting in the next section, we discuss how to use the Church-
Rosser modulo theorem for associativity and/or commutativity rules in Sec-
tion 3. Commutation criteria and decomposition techniques supported in the
tool are described in Section 4. In Section 5 we report experimental results to
assess effectiveness of the presented techniques and the tool. The final section
describes related work and concluding remarks. The tool is available at:

http://www.jaist.ac.jp/project/saigawa/coll/

2 Preliminaries

We assume familiarity of term rewriting and unification theory [2]. We recall
here only some notions for rewriting and rewriting modulo. We consider terms
built from a signature F and a set V of variables. We write s B t if t is a proper
subterm of s.
? Supported by JSPS KAKENHI Grant Number 25730004 and Core to Core Program.

Commutation. Let R and S be TRSs. We say that R and S commute if
∗
R← · →∗S ⊆ →∗S · ∗R←. Confluence of R is equivalent to self-commutation of
R, i.e., commutation of R and R. The relation →∗S · →R · →∗S is called the rel-
ative step of R over S, and denoted by →R/S . We say that R/S is terminating
if →R/S is terminating.

Multi-steps. The multi-step ◦−→R of a TRS R is inductively defined on terms as
follows:

1. x ◦−→R x for all x ∈ V,
2. f(s1, . . . , sn) ◦−→R f(t1, . . . , tn) if si ◦−→R ti for all 1 6 i 6 n, and
3. `σ ◦−→R rτ if `→ r ∈ R and σ and τ are substitutions that xσ ◦−→R xτ for

all variables x.

Rewriting modulo. Let R and E be TRSs. The rewrite step →R,E of R modulo
theory E is defined as follows: s →R,E t if If s|p ↔∗E `σ and t = s[rσ]p for some
position p ∈ PosF (s), rule `→ r ∈ R, and substitution σ. The relation →R,E is
Church-Rosser modulo E , denoted by CR(R, E), if ↔∗R∪E ⊆ →∗R,E · ↔∗E · ∗

R,E←.
Let FA, FC, and FAC be pairwise disjoint sets of binary function symbols. We
define the three theories A (associativity), C (commutativity), and AC as:

A = { f(f(x, y), z)→ f(x, f(y, z)), f(x, f(y, z))→ f(f(x, y), z) | f ∈ FA }
C = { f(x, y)→ f(y, x) | f ∈ FC }

AC = { f(f(x, y), z)→ f(x, f(y, z)), f(x, y)→ f(y, x) | f ∈ FAC }

Critical pairs. Conditions for confluence are often based on the notion of critical
pairs. We denote by UE(s ≈ t) a fixed complete set of E-unifiers for terms s and
t. Let `1 → r1 be a rule in a TRS R and `2 → r2 a variant of a rule in a TRS S
with Var(`1)∩Var(`2) = ∅. When p ∈ PosF (`2) and σ ∈ UE(`1 ≈ `2|p), the pair
(`2σ[r1σ]p, r2σ) is called an E-extended critical pair (or simply E-critical pair)
of R on S, and written `2σ[r1σ]p R,E←o→S r2σ.

3 Confluence via Church-Rosser Modulo

In this section we explain how the next theorem by Jouannaud and Kirchner [3] is
used for confluence analysis. Especially, we discuss how to deal with associativity
and/or commutativity rules.

Theorem 1. Let R and E be TRSs that R/E is terminating and B · ↔∗E is
well-founded. Then, CR(R, E) iff R,E←o→R∪E∪E−1 ⊆ →∗R,E · ↔∗E · ∗

R,E←. ut

We use the next left-linear TRS R1 to illustrate problems that arise when
employing Theorem 1:

1 : 0 + x→ x 2: x+ (y + z)→ (x+ y) + z 3: (x+ y) + z → x+ (y + z)

Let FA = {+}. We may assume A = {2, 3}. An idea here is proving CR({1},A)
to conclude confluence of R1. The next trivial lemma validates this idea. We call
a TRS E reversible if →E ⊆ ∗E← holds.

Lemma 2. Suppose E is reversible. If CR(R, E) then R∪ E is confluent. ut

Reversibility of A and well-foundedness of B · ↔∗{2,3} are trivial. Termination

of {1}/A can be shown by AC-RPO [4]. Therefore, it remains to test joinability
of extended critical pairs to apply Theorem 1.

3.1 Associative Unification

How to compute A-critical pairs? Plotkin [5] introduced a procedure that enu-
merates a minimal complete set of A-unifiers. It is well-known that a minimal
complete set need not to be finite, and thus the procedure may not terminate. In
fact there is a one-rule TRS that admits infinitely many A-critical pairs. Prob-
ably this is one of main reasons that existing confluence tools do not support
Theorem 1 for associativity theory. However, as observed in [6], a minimal com-
plete set resulting from the procedure is finite whenever an input equality is a
pair of linear terms that share no variables. Therefore, for every left-linear TRS
one can safely use Plotkin’s procedure to compute their A-critical pairs.

We present a simple variant of Plotkin’s procedure [5,7] specialized for our
setting. Let S and T be sets of substitutions. We abbreviate the set {στ |
σ ∈ S and τ ∈ T} to ST . Given a term t, we write t↓A′ for the normal form
of t with respect to A′. Here A′ stands for the confluent and terminating TRS
{f(f(x, y), z)→ f(x, f(y, z)) | f ∈ FA}.

Definition 3. Let s and t be terms. The function 〈s ≈ t〉 is inductively defined
as follows:

〈s ≈ t〉 =

{{s 7→ t}} if s ∈ V
{{t 7→ s}} if s /∈ V and t ∈ V
A1 · · ·An ∪As,t ∪At,s if s = f(s1, . . . , sn) and t = f(t1, . . . , tn)

∅ otherwise

where,

Ai = 〈si ≈ ti〉, As,t =

{
{{s1 7→ f(t1, s1)}}〈s ≈ t2〉 if (∗)
∅ otherwise

and (∗) stands for s = f(s1, s2), t = f(t1, t2), f ∈ FA, and s1 ∈ V.

Theorem 4. Let s and t be linear terms with Var(s) ∩ Var(t) = ∅. The set
〈s↓A′ ≈ t↓A′〉 is a finite complete set of their A-unifiers. ut

We illustrate the use of the theorem. Let s = 0 + x, t = (x′ + y′) + z′, and
FA = {+}. A complete set of A-unifiers for the terms is computed as follows:

〈s↓A′ ≈ t↓A′〉 = 〈0 + x ≈ x′ + (y′ + z′)〉
=
(
〈0 ≈ x′〉〈x ≈ y′ + z′〉

)
∪
(
{{x′ 7→ 0 + x′}}〈x′ + (y′ + z′) ≈ x〉

)
=
{
{x′ 7→ 0, x 7→ y′ + z′}, {x′ 7→ 0 + x′, x 7→ x′ + (y′ + z′)}

}

This set induces the A-critical pairs:

y′ + z′ {1},A←o→{3} 0 + (y′ + z′)

x′ + (y′ + z′) {1},A←o→{3} (0 + x′) + (y′ + z′)

Both of the right-hand sides reduce to the corresponding left-hand sides by the
rewriting modulo step →{1},A. What about the other critical pairs?

3.2 Coherence

Consider the A-critical pair:

x+ z {1},A←o→{2} (x+ 0) + z

Contrary to our intention, (x + 0) + z →{1},A x + z does not hold, and thus
CR({1},A) is refuted by Theorem 1. This undesired incapability of rewriting
modulo is known as the coherence problem [3,8].

Definition 5. A pair (R, E) is strongly coherent if ↔∗E · →R,E ⊆ →R,E · ↔∗E .

Lemma 6. Suppose E is reversible and (R, E) is strongly coherent. If CR(R, E)
then R∪ E is confluent, and vice versa. ut

While the strong coherence property always holds for rewriting modulo C,
rewriting modulo A and AC rarely satisfy the property. This can be overcome
by extending a rewrite system. Since an extension for AC is known [3,8], here we
consider an A-extension of a TRS.

Definition 7. Let R be a TRS. The A-extended TRS ExtA(R) consists of

`→ r f(`, x)→ f(r, x) f(x, f(`, y))→ f(x, f(r, y))

f(x, `)→ f(x, r)

for all rules `→ r ∈ R with f = root(`) ∈ FA. Here x and y are fresh variables
not in `.

Lemma 8. The pair (ExtA(R),A) is strongly coherent and →ExtA(R) =→R.

Proof. From the inclusion →A · →ExtA(R),A ⊆ →ExtA(R),A · →∗A the first claim
follows. Since →R is closed under contexts, the second claim is trivial. ut

The TRS ExtA({1}) consists of the four rules:

0 + x→ x w + (0 + x)→ w + x

(0 + x) + y → x+ y w + ((0 + x) + y)→ w + (x+ y)

As the extended TRS contains all original rules, we have again the previous
A-critical pair:

x+ z {1},A←o→{2} (x+ 0) + z

Since (x+ 0) + z →ExtA({1}),A x+ z holds, the pair is joinable. Similarly, one can
verify that all other A-critical pairs are joinable. Therefore, CR(ExtA({1}),A) is
concluded by Theorem 1. Finally, confluence of R1 is established.

3.3 Commutative Unification

Commutative unification also benefits from left-linearity. We define UC
E (s ≈ t)

as {µ | s ◦−→C s
′ and µ ∈ UE(s′ ≈ t) for some s′}.

Lemma 9. Suppose C and E ∪ E−1 commute. If Var(s) ∩ Var(t) = ∅ and s is
linear then UC

E (s ≈ t) is a complete set of C ∪ E-unifiers for s and t.

Proof. Since it is trivial that UC
E (s ≈ t) consists of E ∪ C-unifiers, we only show

completeness of the set. Let sσ ↔∗C∪E tσ. One can show (↔E ∪→C)∗ ⊆ ∗C← · ↔∗E
by using induction, commutation, and the reversibility of C. Thus, sσ ∗C← u↔∗E
tσ for some u. Since ◦−→C =↔∗C holds, sσ ◦−→C u. Due to the linearity of s there
are s′ and σ′ such that u = s′σ′, s ◦−→C s

′, and xσ ◦−→C xσ
′ for all variables x.

We define the substitution µ as follows:

µ = {x 7→ xσ | x ∈ Var(s)} ∪ {x 7→ xσ′ | x ∈ Var(t)}

Since s and t share no variables, µ is well-defined. By the definition we obtain
s′µ↔∗E tµ. ut

Since A and C are left-linear TRSs that share no function symbols, their
commutation can be proved (by using e.g. Theorem 11 in the next section). So
Lemma 9 gives a way to compute A ∪ C-critical pairs.

Example 10. Consider the left-linear TRS R2 with FA = {∗} and FC = {eq}:

1 : eq(a, a)→ T 3: eq(a ∗ x, y ∗ a)→ eq(x, y) 5 : (x ∗ y) ∗ z → x ∗ (y ∗ z)
2 : eq(a, x ∗ y)→ F 4: eq(x, y)→ eq(y, x) 6 : x ∗ (y ∗ z)→ (x ∗ y) ∗ z

Let R = {1, 2, 3} and E = {4, 5, 6}. Note that E = C ∪ A. It is sufficient to
show CR(ExtA(R), E). We can use AC-RPO to prove termination of R/E , which
is equivalent to that of ExtA(R)/E due to the identity in Lemma 6. Let s =
eq(a ∗ x, y ∗ a) and t = eq(a ∗ x′, y′ ∗ a). A complete set of their A ∪ C-unifiers is:

UC
A (s ≈ t) = 〈s ≈ t〉 ∪ 〈eq(y ∗ a, a ∗ x) ≈ eq(a ∗ x′, y′ ∗ a)〉

=

{x 7→ x′, y 7→ y′},
{x 7→ a, y 7→ a, x′ 7→ a, y′ 7→ a}
{x 7→ y′ ∗ a, y 7→ a ∗ y, x′ 7→ y ∗ a, y′ 7→ a ∗ y′}

In this way we can compute complete sets to induce the set of all E-critical pairs.
Since all pairs are joinable, CR(R, E) is concluded.

4 Commutation

4.1 Commutation Criteria

Our tool employs three commutation criteria. The first commutation criterion
is the development closedness theorem [9,10,11,12].

Theorem 11 (Development Closedness). Left-linear TRSs R and S com-
mute if the inclusions R←o→S ⊆ ◦−→S and R←n→S ⊆ →∗S · ◦←−R hold. ut

The second criterion is the commutation version of the confluence criterion
based on rule labeling with weight function [13,14].

Definition 12. A weight function w is a function from F to N. The weight
w(C) of a context C is defined as follows:

w(C) =

{
0 if C = �

w(f) + w(C ′) if C = f(t1, . . . , C
′, . . . , tn) with a context C ′

The weight is admissible for a TRS R if

{w(C) | C[x] = `} >mul {w(C) | C[x] = r}

holds for all ` → r ∈ R and x ∈ Var(r). Here >mul stands for the multiset
extension of the standard order > on N (see e.g. [15]). A rule labeling φ for a

TRS R is a function from R to N. The labeled step
α−→R is defined as follows:

s →R,(k,m) t if there are a rule ` → r, a context C, and a substitution σ such
that s = C[`σ], t = C[rσ], and α = (w(C), φ(`→ r)).

In the next theorem we use the following abbreviations for labeled steps:

I−→ =
⋃
α∈I

α−→ gα = {β ∈ I | α � β} gαβ = (gα) ∪ (gβ)

where, � stands for the lexicographic order on N× N.

Theorem 13 (Rule Labeling). Left-linear TRSs R and S commute if there
are an admissible weight function w and a rule labeling φ for R∪ S such that

(R
α←−o β−→S) ∪ (R

α←−n β−→S) ⊆ gα−−→∗S ·
β−→=
S ·

gαβ−−−→∗S · ∗R
gαβ←−−− · =R

α←− · ∗R
gβ←−−

for all pairs α, β ∈ N× N. ut

The final criterion is a trivial adaptation of Theorem 1 to the commutation
property, integrating Lemmata 6, 8, and 9.

Theorem 14 (Church-Rosser modulo). Let R,S be left-linear TRSs and
E ∈ {A,AC} such that R/E ′ is terminating for E ′ = E ∪ C. The TRSs R ∪ E ′
and S ∪ E ′ commute if and only if the inclusion holds:

(R′,E′←o→S′∪E′) ∪ (R′∪E′←n→S′,E′) ⊆ →∗S′,E′ · ↔∗E′ · ∗
R′,E′←

Here R′ = ExtE(R) and S ′ = ExtE(S). ut

Note that our tool uses the algorithm in [16] for AC unification and flattened
term representation for overcoming the coherence problem of AC-rewriting. Since
we use the dedicated algorithms for A and AC unification, currently we cannot
employ Theorem 1 with E = A ∪ AC.

4.2 Commutation Theorem

The next theorem is known as Hindley’s Commutation Theorem [1].

Theorem 15 (Commutation Theorem). If
α−→ and

β−→ commute for all α ∈ I
and β ∈ J then

I−→ and
J−→ commute. ut

Example 16. Consider the left-linear TRS R3:

1 : 0× y → nil 5: nil++x→ x

2: s(x)× y → y++(x× y) 6 : x++ nil→ x

3: hd(c(x))→ x 7: x++(y++ z)→ (x++ y) ++ z

4: hd(c(x) ++ y)→ x 8: (x++ y) ++ z → x++(y++ z)

9 : from(x)→ x : from(s(x))

By using the Commutation Theorem we show self-commutation of R3:

(i) Self-commutation of {1, . . . , 8} follows from Theorem 14.
(ii) Commutation of {1, . . . , 8} and {9} follows from Theorem 11.

(iii) Self-commutation of {9} is proved by Theorem 11.

Hence, R3 is confluent.

It is a non-trivial task to find suitable commuting subsystems from an expo-
nential number of candidates. In order to address the problem we introduce a
decomposition method based on composability, which was introduced by Ohle-
busch [17]. Let R be a TRS. We write FR, DR, and CR for the following sets:

FR =
⋃

`→r∈R

Fun(`) ∪ Fun(r) DR = {root(`) | `→ r ∈ R} CR = FR \ DR

Definition 17. We say that TRSs R and S are composable if CR ∩ DS =
CS ∩ DR = ∅ and {`→ r ∈ R ∪ S | root(`) ∈ DR ∪ DS} ⊆ R ∩ S.

Ohlebusch [17] posed the following question.

Question 18. Are left-linear composable TRSs R and S confluent if and only if
R∪ S is confluent?

Although the question still remains open, the following variation is valid.

Theorem 19. Commuting composable TRSs R and S are confluent if and only
if R∪ S is confluent. ut

Example 20. Recall the TRS R3 from Example 16. The TRS is the union of the
three commuting composable subsystems: {1, 2, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8}, and
{9}. Confluence of each subsystem can be proved in the same method used in
the previous example. Hence, R3 is confluent.

5 Implementation

The confluence tool CoLL consists of about 5,000 lines of OCaml code. Given an
input TRS, the tool first performs the next trivial redundant rule elimination.

Theorem 21. Let R and S be TRSs with S ⊆ →∗R. The TRS R∪S is confluent
if and only if R is confluent. ut

Example 22. We illustrate the elimination technique with a small example taken
from the Confluence Problem Database (Cops)1. Consider the TRS:

1: f(x)→ g(x, f(x)) 2 : f(f(f(f(x))))→ f(f(f(g(x, f(x)))))

Since {2} ⊆ →∗{1} holds, we eliminate the redundant rule 2. Confluence of the

simplified system {1} is easily shown by Theorem 11. Note that CoLL cannot
prove confluence without using the elimination technique.

Next, the tool employs Theorem 19 to split the simplified TRS into commut-
ing composable subsystemsR1, . . . ,Rn. For each subsystemRi the tool performs
the non-confluence test of [18, Lemma 1]. If non-confluence is detected, the tool
outputs NO (non-confluence is proved). Otherwise, the tool uses the Commuta-
tion Theorem together with the three commutation criteria (Theorems 11, 13,
and 14) to determine self-commutation of Ri. Suitable commuting subsystems
are searched by enumeration. It outputs YES (confluence is proved) if all of
R1, . . . ,Rn are confluent. Concerning automation, we employed AC-RPO for
checking termination of R/E automatically. Automation of Theorem 13 is based
on the SAT encoding technique of [19].

We tested the presented techniques on 188 left-linear TRSs in Cops Nos. 1–
425, where we ruled out duplicated problems.2 The tests were run on a PC
equipped with an Intel Core i7-4500U CPU with 1.8 GHz and 3.8 GB of RAM us-
ing a timeout of 120 seconds. For the sake of comparison we also ran the tools that
participated in the 3rd Confluence Competition: ACP v0.5 [9], CSI v0.4.1 [18],
and Saigawa v1.73. The first table in Figure 1 summarizes the results. The first
three indicate the results of each commutation criterion without using the Com-
mutation Theorem. The second table indicates the results of individual theories
for Theorem 14. The row ‘all three’ in the first table is the summation of their
results, and ‘all with elimination’ is the same but the elimination technique is
enabled. The row CoLL corresponds to the strategy stated above. On our prob-
lem set, all confluence proofs by Saigawa are covered by CoLL. The results of
CoLL, ACP, and CSI are incomparable.

1 http://cops.uibk.ac.at/
2 All problems and results are available at the tool website (see the URL in Section 1).
3 http://www.jaist.ac.jp/project/saigawa/

YES NO timeout

Church-Rosser modulo 93 8 1
development closed 17 0 0
rule labeling 58 0 26
all three 125 8 –
all with elimination 136 9 –

CoLL 137 16 21
ACP 134 41 0
CSI 118 38 11
Saigawa 105 16 17

E YES NO timeout

∅ 18 8 0
A 24 0 0
C 42 8 0
AC 64 8 1
C] AC 88 8 1
A] C] AC 93 8 1

Fig. 1. Experimental results.

6 Conclusion

We presented the new confluence tool CoLL for left-linear TRSs, which proves
confluence via commutation. Our primary contribution is automation of Jouan-
naud and Kirchner’s Church-Rosser modulo criterion for associativity and/or
commutativity theory, where left-linearity is exploited in several ways.

We briefly compare our tool with existing tools. CRC 3 [20] is a powerful
Church-Rosser checker for Maude and supports the Church-Rosser modulo the-
orem for any combination of associativity, commutativity, and/or identity the-
ories, except associativity theory. When handling TRSs that contain reversible
rules, ACP [9] employs reduction-preserving completion [21]. This method effec-
tively works for C and AC rules, but not for associativity rules. ACP and CSI [18]
employ layer-preserving decomposition [17] to split a TRS into subsystems. The
technique is incomparable to Theorem 19. If Question 18 is affirmatively solved,
it generalizes these two criteria for the class of left-linear TRSs. Lastly, we re-
mark that CoLL was designed to complement Saigawa. The two tools will be
merged in the next version.

As future work we plan to investigate whether Theorem 19 can be generalized
to cover a subclass of hierarchical combination [17]. Another interesting direction
is the modularity of the commutation property. Since confluence is a modular
property [22], it is closed under signature extension. Contrary to our expectation,
(even local) commutation is not signature extensible. Consider the TRSs R and
S over the signature F = {f(2), a(0), b(0)}:

R = { a→ b } S =

{
f(x, x)→ b, f(a, x)→ b, f(x, a)→ b

f(b, x)→ b, f(x, b)→ b

}
Since C[t]→∗S b holds for all contexts C and t ∈ {a, b}, we obtain the strong com-
mutation R← · →S ⊆ →∗S · =R←, which entails commutation of R and S. How-
ever, if one extends the signature to F ∪ {g(1)}, the local peak f(g(b), g(a)) R←
f(g(a), g(a))→S b no longer commutes. We conjecture that (local) commutation
is closed under signature extension for left-linear TRSs.

Acknowledgements. We are grateful for the detailed comments of the anony-
mous reviewers, which helped us to improve the presentation.

References

1. Hindley, J.R.: The Church-Rosser Property and a Result in Combinatory Logic.
PhD thesis, University of Newcastle-upon-Tyne (1964)

2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1998)

3. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal on Computing 15(4) (1986) 1155–1194

4. Rubio, A.: A fully syntactic AC-RPO. Information and Computation 178(2)
(2002) 515–533

5. Plotkin, G.: Building in equational theories. Machine Intelligence 7 (1972) 73–90
6. Schulz, K.: Word unification and transformation of generalized equations. In: Word

Equations and Related Topics. Volume 677 of LNCS. (1993) 150–176
7. Schmidt, R.: E-unification for subsystems of s4. In: Proc. 9th RTA. Volume 1379

of LNCS. (1998) 106–120
8. Peterson, G., Stickel, M.: Complete sets of reductions for some equational theories.

Journal of the ACM 28(2) (1981) 233–264
9. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems

automatically. In: RTA 2009. Volume 5595 of LNCS. (2009) 93–102
10. Huet, G.: Confluent reductions: Abstract properties and applications to term

rewriting systems. Journal of the ACM 27(4) (1980) 797–821
11. Toyama, Y.: Commutativity of term rewriting systems. In Fuchi, K., Kott, L., eds.:

Programming of Future Generation Computers II. North-Holland (1988) 393–407
12. van Oostrom, V.: Developing developments. Theoretical Computer Science 175(1)

(1997) 159–181
13. van Oostrom, V.: Confluence by decreasing diagrams converted. In Voronkov, A.,

ed.: Proc. 19th RTA. Volume 5117 of LNCS. (2008) 306–320
14. Aoto, T.: Automated confluence proof by decreasing diagrams based on rule-

labelling. In: Proc. 21st RTA. Volume 6 of LNCS. (2010) 7–16
15. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University

Press (1998)
16. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algo-

rithms. In: Proc. 4th RTA. Volume 488 of LNCS. (1991) 162–173
17. Ohlebusch, E.: Modular Properties of Composable Term Rewriting Systems. PhD

thesis, Universität Bielefeld (1994)
18. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI — a confluence tool. In: Proc.

23rd CADE. Springer (2011) 499–505
19. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. Jour-

nal of Automated Reasoning 47(4) (2011) 481–501
20. Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional order-sorted

equational maude specifications. In: Rewriting Logic and Its Applications. (2010)
69–85

21. Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence
of non-terminating term rewriting systems. LMCS 8(1) (2012) 1–29

22. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM 34(1) (1987) 128–143

