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Reproducibility of experimental results lies at the heart of scientific disciplines. Herewe propose a signal process-
ing method that extracts task-related components by maximizing the reproducibility during task periods from
neuroimaging data. Unlike hypothesis-driven methods such as general linear models, no specific time courses
are presumed, and unlike data-driven approaches such as independent component analysis, no arbitrary inter-
pretation of components is needed. Task-related components are constructed by a linear, weighted sum of mul-
tiple time courses, and its weights are optimized so as to maximize inter-block correlations (CorrMax) or
covariances (CovMax). Our analysis method is referred to as task-related component analysis (TRCA). The co-
variance maximization is formulated as a Rayleigh–Ritz eigenvalue problem, and corresponding eigenvectors
give candidates of task-related components. In addition, a systematic statistical test based on eigenvalues is pro-
posed, so task-related and -unrelated components are classified objectively and automatically. The proposed test
of statistical significance is found to be independent of the degree of autocorrelation in data if the task duration is
sufficiently longer than the temporal scale of autocorrelation, so TRCA can be applied to datawith autocorrelation
without any modification. We demonstrate that simple extensions of TRCA can provide most distinctive signals
for two tasks and can integrate multiple modalities of information to remove task-unrelated artifacts. TRCA was
successfully applied to synthetic data as well as near-infrared spectroscopy (NIRS) data of finger tapping. There
were two statistically significant task-related components; onewas a hemodynamic response, and anotherwas a
piece-wise linear time course. In summary, we conclude that TRCA has a wide range of applications in multi-
channel biophysical and behavioral measurements.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Analysis of neuroimaging data can be in general classified into two
categories: a hypothesis-driven approach such as general linear models
(GLMs), and a data-driven approach such as principle component
analysis (PCA) and independent component analysis (ICA). Hypothesis-
and data-driven approaches correspond to supervised and unsupervised
approaches, respectively, in machine learning. In the hypothesis-driven
approach, a single time course obtained in neuroimaging data is assumed
to consist of certain specific task-related components (e.g., hemodynam-
ic responses) and task-unrelated components (e.g., systemic signals and
head movement artifacts). In GLMs, these presumed components are
summarized in a so-called design matrix, and their contributions are
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statistically assessed by the statistical parametric mapping (SPM) meth-
od (Friston et al., 1994b). For analysis of functional magnetic resonance
imaging (fMRI) data, GLM and SPM have been highly successful in local-
izing voxels that show significant activations related to a task. The GLM
analysis, however, requires certain hypotheses about task-related and
task-unrelated components, which may not be a priori obvious in some
cases such as the shape of hemodynamic response function (Plichta et
al., 2007). Furthermore, GLM is not able to assess components that are
not modeled into a design matrix.

Another approach to neuroimaging data analysis is the data-driven
approach in which only general statistical assumptions are made to de-
compose neuroimaging data. One notable example is ICA, in which only
statistical independence between source signals is assumed (Amari et
al., 1996; Bell and Sejnowski, 1995; Hyvarinen and Oja, 1997). ICA ex-
tracts independent components as a linear weighted sum of multiple
time series and maximizes some information-theoretic criteria such as
mutual information or higher-order cumulants. ICA has been successfully
applied to fMRI, electroencephalography (EEG) and near-infrared spec-
troscopy (NIRS) data analyses (Katura et al., 2008; Kohno et al., 2007;
Makeig et al., 1996; McKeown and Sejnowski, 1998). In contrast to
GLM, ICA makes no assumptions other than statistical independence
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between source signals, so it can sometimes discover unexpected compo-
nents in neuroimaging data. Moreover, its applicability is not limited to
neuroimaging data but also covers physiological and behavioral data
(Nakamura et al., 2004). Independent components discovered by ICA,
however, need an additional process for determining which of indepen-
dent components are task-related or artifactual (Nakada et al., 2000).
Also, due to its generality, the original formulation of ICA does not make
any use of available information regarding experimental procedures
(there are a few extensions of ICA that incorporate temporal or spatial
constraints, though; Calhoun et al., 2005; Lin et al., 2010).

We here propose a new analysis approach to extract task-related
components from a linear weighted sum of multiple time series. This
analysis will be referred to as task-related component analysis
(TRCA). Coefficients, or weights, of time series are determined so as
to maximize the covariance or correlation between task blocks, there-
by maximizing the inter-block consistency. This is based on a belief
that a signal that appears consistently and robustly in every task
block should be regarded as task related. In other words, we define
task relatedness by consistent and robust appearance of a same signal.
This covariance-maximization problem is formulated as a Rayleigh–
Ritz eigenvalue problem, and statistical significance of each solution
can be assessed by a corresponding eigenvalue. Unlike GLM, TRCA as-
sumes no a priori knowledge of time series other than task periods,
and unlike ICA, TRCA can provide a concrete measure of task-
relatedness to each extracted component. In GLM analyses, autocorre-
lation in time series poses a serious issue of inflated statistics, but we
show that TRCA is not sensitive to autocorrelation if the time scale of
temporal smoothing is smaller than the duration of task block. Fur-
thermore, we show that TRCA can be generalized into a classification
problem of binary tasks and can sequentially incorporate known ef-
fects obtained from an additional source such as respiration and
bodymotion in order to remove task-unrelated artifacts. We illustrate
our proposed method by applying to synthetic data and NIRS data. Al-
though our method has been developedmainly for NIRS data analysis,
we argue that it has a wide applicability to multi-channel physiologi-
cal and behavioral measurements.

Methods

The ‘Signal reconstruction from weighted linear summation’ section
illustrates a linear generative model of observed time courses and ex-
plains the concept that covariance maximization can recover task-
related components. The ‘Task‐related component analysis: a basic
formulation’ section formulates TRCA by using two conventional mea-
sures; a correlation coefficient and covariance, and the ‘Statistical test
of task consistency’ section proposes a statistical test for choosing signif-
icantly task-related components. The ‘Effect of temporal smoothing and
autocorrelation’ section argues how autocorrelation due to temporal
smoothing affects results of the statistical test. The ‘Task‐distinctive
components’ and ‘Data augmentation’ sections explain simple extensions
of ourmethod formultiple tasks and for data augmentation, respectively.
These extensions are not easily realizedwith PCA or ICA. The ‘Mapping of
a task‐related component’ section argues how to obtain a spatial map of
task-related component. Finally, ‘Application to synthetic data’ and ‘NIRS
finger tapping experiment’ sections summarize details of synthetic and
NIRS data. Further tests of the methods are described in the supplemen-
tary data.

Signal reconstruction from weighted linear summation

Wehere illustrate the concept of task-related component analysis by a
simple example. Two signal sources are assumed when there are three
blocks of a task; one (s(t): task related) that has the same profile during
every task block (i.e., s(1)(t), s(2)(t) and s(3)(t) are the same, sustained
wave forms) (Fig. 1A, top), and another (n(t): task unrelated) that is flat
except the second block (i.e., n(2)(t) is phasic whereas n(1)(t) and n(3)(t)
are flat) (Fig. 1A, bottom). These signal time courses are
constructed so that covariance -between blocks of the task-
related component is a positive constant (Cov(s(1)(t), s(2)(t))=
Cov(s(1)(t),s(3)(t))=Cov(s(2)(t),s(3)(t))=positive const) whereas co-
variance between blocks of the task-unrelated component and be-
tween task-related and task-unrelated are zero (Cov(s(i)(t),n(j)(t))=
Cov(n(i)(t),n(j)(t))=0 (1≤ ib j≤3)). A linear generative model of ob-
served time courses (x1(t) and x2(t)) are assumed as

x1 tð Þ ¼ a11s tð Þ þ a12n tð Þ
x2 tð Þ ¼ a21s tð Þ þ a22n tð Þ ;

�
ð1Þ

as illustrated in Fig. 1B. The problem is to recover the latent task related
component s(t) from a linear sum of observed time courses defined as

y tð Þ ¼ w1x1 tð Þ þw2x2 tð Þ ¼ w1a11 þw2a21ð Þs tð Þ þ w1a12 þw2a22ð Þn tð Þ: ð2Þ

We propose to maximize the covariance of the first-block (y(1)(t))
and the second-block (y(2)(t)) time courses (here, for simplicity, covari-
ance between first and second blocks is considered, and a multiple-block
case will be discussed in the following subsection):

Cov y 1ð Þ
; y 2ð Þ� �

¼ w1a11 þw2a21ð Þ2Cov s 1ð Þ
; s 2ð Þ

� �

þ w1a12 þw2a22ð Þ2Cov n 1ð Þ
;n 2ð Þ

� �

þ w1a11 þw2a21ð Þ w1a12 þw2a22ð Þ
h
Cov s 1ð Þ

;n 2ð Þ
� �

þ Cov n 1ð Þ
; s 2ð Þ

�� i
¼ w1a11 þw2a21ð Þ2Cov s 1ð Þ

; s 2ð Þ
� �

: ð3Þ

Here we used Cov(n(1),n(2))=Cov(s(1),n(2))=Cov(n(1),s(2))=0. This
is a quadratic function of w1 and w2, which is unbounded. To obtain a fi-
nite solution, the variance of y(t) is constrained to be one,

var yð Þ ¼ w1a11 þw2a21ð Þ2 þ w1a12 þw2a22ð Þ2 ¼ 1; ð4Þ

where the signals are assumed to be normalized (Var(s(t))=Var(n(t))=
1) and uncorrelated (Cov(s(t),n(t))=0). This constrained optimization
problemhas a solution ofw1a11+w2a21=1 andw1a12+w2a22=0, lead-
ing to the final solution y(t)=s(t) unless a11a22−a12a21=0. This simple
example suggests that inter-block covariance maximization can be a
guiding principle for reconstructing task-related components from ob-
served time courses. The following sections will discuss general multiple
time-course cases.

Task-related component analysis: a basic formulation

Suppose that N-channel temporal signals denoted by xi(t) (i=1,
…,N) are given, containing K blocks of a same repeated task whose
periods are fixed as t∈ [tk, tk+T] (k=1,⋯,K). Here T is duration of
each task block. We propose that a task-related component is com-
puted as a linear, weighted sum of those input signals as:

y tð Þ ¼
XN
i¼1

wixi tð Þ ¼ wTx tð Þ: ð5Þ

As in the previous section, we implicitly assume that observed signals are
generated by a linear weighted sum of task-related and task-unrelated
components so that task-related components can be recovered by appro-
priatelyweighing observed signals. The goal of this analysis is to optimize
the coefficients in such a way that a temporal profile of a task-related
component exhibits a maximal temporal similarity among task blocks,



Fig. 1. (A) Time courses of task-related (s(t)) and task-unrelated (n(t)) components. Blue shaded areas indicate task blocks, and s(i) and n(i) are i-th block segments of s(t) and n(t), respectively.
(B) A generativemodel of observation (x1(t) and x2(t)) from task-related (s(t)) and task-unrelated (n(t)) components. (C) Schematics of TRCA.Multiple time series (left row) are summedwith
weights to give a single time course y(t) (right). Shaded area in the time series indicate task blocks of a single task. The weights, or coefficients, are determined so as to maximize the sum of
correlations or covariances of y(t) between task blocks.

310 H. Tanaka et al. / NeuroImage 64 (2013) 308–327
as illustrated in Fig. 1C.Wewill formulate this problem in twodistinct but
related ways; correlation maximization and covariance maximization.
Correlation maximization (CorrMax)
One such a measure of reproducibility is a correlation coefficient

between k- and l-th blocks defined by

Ckl ¼ Corr y kð Þ tð Þ; y lð Þ tð Þ
� �

¼
∑
i;j

wiwjCov x kð Þ
i tð Þ; x lð Þ

j tð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i;j

wiwjCov x kð Þ
i tð Þ; x kð Þ

j tð Þ
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
i;j

wiwjCov x lð Þ
i tð Þ; x lð Þ

j tð Þ
� �r :

ð6Þ
Here y(k)(t) and xi
(k)(t) denote a k-th block segment of y(t) andxi(t), re-

spectively. We propose to maximize the sum of correlation coefficients
between all possible combinations of task blocks defined as

XK
k; l ¼ 1
k≠l

Ckl ¼
XK

k; l ¼ 1
k≠l

Corr y kð Þ tð Þ; y lð Þ tð Þ
� �

¼
XK

k; l ¼ 1
k≠l

∑
i;j

wiwjCorr x kð Þ
i tð Þ; x lð Þ

j tð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i;j

wiwjCorr x kð Þ
i tð Þ; x kð Þ

j tð Þ
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
i;j

wiwjCorr x lð Þ
i tð Þ; x lð Þ

j tð Þ
� �r :

ð7Þ



Fig. 2. Flow chart of TRCA. (A) Original multi-channel time series are decomposed into (B) task-related components using the algorithm presented in the ‘Task‐re-
lated component analysis: a basic formulation’ section. (C) Statistical significance of the eigenvalues (red crosses on the horizontal axis) is evaluated using the
resampling procedure in the ‘Statistical test of task consistency’ section. The dotted vertical line indicates a 99% confidence level. (D) Two eigenvalues outside
the confidence level are selected as being significantly task-related in this case. The framed boxes on the right depict block averages of the two components, re-
spectively. These figures were created with NIRS finger tapping data.
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This objective function is invariant to a global rescaling of weight
coefficientswi→αwi, so in order to bound the coefficients, the variance
of y(t) is normalized to one as

Var y tð Þð Þ ¼
XN
i;j¼1

wiwjCov xi tð Þ; xj tð Þ
� �

¼ wTQw ¼ 1; ð8Þ

where (Q)ij≡Cov(xi(t),xj(t)). This formulation is referred to as correla-
tion maximization (CorrMax). The objective function (Eq. (7)) is
nonlinear in terms of the weight coefficients due to the quad-
ratic terms in the denominators, so an analytical, closed-form solution
cannot be expected. Instead, a numerical optimization algorithm
(fmincon of MATLAB Optimization Toolbox, MathWorks, MA, U.S.A.)
was used.

Covariance maximization (CovMax)
Although it is reasonable tomaximize the sumof inter-block correla-

tions (Eq. (7)), the computation for optimization does not have an
analytically closed form, and more seriously, only a single task-related
component is obtained. Instead of correlation coefficients, we propose
an alternativeway tomaximize covariance between k-th and l-th blocks
of y(t):

Ĉ kl ¼ Cov y kð Þ tð Þ; y lð Þ tð Þ
� �

¼
XN
i;j¼1

wiwjCov x kð Þ
i tð Þ; x lð Þ

k tð Þ
� �

: ð9Þ

As in Eq. (7), all possible combinations of task blocks are summed as

XK
k; l ¼ 1
k≠l

Ĉ kl ¼
XK

k; l ¼ 1
k≠l

Cov y kð Þ tð Þ; y lð Þ tð Þ
� �

¼
XK

k; l ¼ 1
k≠l

XN
i;j¼1

wiwjCov x kð Þ
i tð Þ; x lð Þ

j tð Þ
� �

¼ wTSw:

ð10Þ

image of Fig.�2


Fig. 3. Removal of a large movement artifact. (A) Input synthetic time series (from top to bottom: hemodynamic response, slow wave, and large-amplitude jerky move-
ment). (B) Randomly mixed time courses. The red lines at 315 s during the third block indicate the moment of the sudden, large discontinuity. (C) Task related compo-
nents with corresponding eigenvalues in a descending order and (D) independent components computed with the JADE algorithm. The components in panels C and D
were moving averaged with a temporal window of 1 s after applying TRCA and JADE algorithms, respectively. (E) Eigenvalue distribution computed with randomized
task onsets (gray bars) and original eigenvalues (red crosses). The vertical dashed line indicates 99% confidence interval.
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Fig. 4. Extraction of multiple task related components. (A) Input synthetic time series (from top to bottom: two task-related and one task-unrelated components). (B) Randomly mixed time
courses. (C) Task-related components with corresponding eigenvalues. (D) Eigenvalue distribution computed with randomized task onsets (blue bars) and original eigenvalues (red crosses).
The vertical dashed line indicates 99% confidence interval.
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Here the symmetric matrix S is defined by

Sð Þij≡
XK

k; l ¼ 1
k≠l

Cov x kð Þ
i tð Þ; x lð Þ

j tð Þ
� �

: ð11Þ

Wepropose tomaximize the quantity defined in Eq. (10), whichwill
be referred to as task consistency. This formulation is referred to as co-
variance maximization (CovMax). Note that inputs required by TRCA
are only task block timings. As in the CorrMax algorithm, the normaliza-
tion constraint (Eq. (8)) is imposed. Now the constrained optimization
problem becomes a Rayleigh–Ritz eigenvalue problem:

ŵ ¼ argmax
w

wTSw
wTQw

: ð12Þ

With the help of the Rayleigh–Ritz theorem, the optimal coefficient
vector is obtained as an eigenvector of the matrix Q−1S. A Matlab func-
tion to solve this eigenvalue problem was included in Appendix A.
Generally N eigenvectors of the matrix Q−1S are obtained, and
correspondinglyN components are obtained.Without loss of generality,
task-related components are arranged in a descending order of associat-
ed eigenvalues. These eigenvalues can be used to statistically test
whether the corresponding components are task-related or not, as
discussed in the next subsection. Throughout this paper, the CovMax al-
gorithm will be used unless otherwise stated.

Statistical test of task consistency

In order to assess how significantly task-related the components
are, a statistical test must be introduced. One such measure is an ei-
genvalue λ of the matrix Q−1S, which represents the value of cost
function for the corresponding eigenvector ŵ:

ŵTSŵ ¼ ŵTSŵ

ŵTQŵ
¼ λŵTQŵ

ŵTQŵ
¼ λ ∵Sŵ ¼ λQŵ

� �
: ð13Þ

Therefore, the eigenvalue represents the task consistency among
task blocks. If the original signals contain no task related components
but just random variations, corresponding eigenvalues will be limited
to a chance range.

image of Fig.�4


Fig. 5. Effect of temporal smoothing. (A, B, C) Input time courses smoothedwith a Gaussianwindowof 1, 10 and 30 s FWHMs, respectively. (D, E, F) Eigenvalue distributions using randomized
task onsets from the data in panels A, B and C, respectively. The red crosses on the horizontal axis represent the eigenvalues computed with the actual task onsets. The numbers indicate the
corresponding components shown below in panels G, H or I. The asterisks denote statistical significance (pb0.01). (G, H, I) Extracted task-related components.
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Mathematics of random matrices has been well investigated from
the seminal work of Wigner, who explained the energy spectrum of
an atomic nucleus as an eigenvalue distribution of a random matrix
(Wigner, 1955, 1967). When xi's are temporally uncorrelated random
variables, the matrix Q in Eq. (8) is known as the Wishart matrix
(Wishart, 1928) and its eigenvalue distribution is known in the
limit of infinite N and T known as Marcenko–Pastur's quarter circle
law (Marcenko and Pastur, 1967). This formula has been used to as-
sess statistical significance of principal components of spike ensemble
recording (Peyrache et al., 2010). The analytical formula assumes no
temporal correlation between input time courses {xi}, whereas there
are considerable temporal autocorrelations in biological signals.
Therefore, a statistical test based on the analytical formula is not ap-
propriate for our case.

We here take a more practical and computational approach, in
which the weight distribution when a null hypothesis is assumed is
to use a non-parametric, permutation test. Our null hypothesis postu-
lates that there is no task related component; therefore, instead of ac-
tual task onsets {tk}(k=1,⋯,K), randomized task-block onsets (K time
points sampled from a uniform distribution of entire experimental dura-
tion) can be used to compute the null distribution of weight coefficients.
This gives the null distribution ofweight coefficients, so a statistical signif-
icance of actual coefficients can be quantified by comparing with the null
distribution. Eigenvalues outside a confidence interval of thenull distribu-
tion can be regarded as being statistically significant, and corresponding
eigenvectors can be regarded as being task related.

To summarize, TRCA consists of three computational steps: (1)
computation of eigenvalues and eigenvectors of the matrix Q−1S
with experimentally given periods of task blocks, (2) computation
of the weight distribution with randomized periods of task blocks,
and (3) selection of statistically significant task-related components.
The procedure for computing task related components is schemat-
ically summarized in Fig. 2.

Effect of temporal smoothing and autocorrelation

Neuroimaging data such as BOLD signals in fMRI and oxy- and
dexoy-hemoglobin concentration signals in NIRS contain consider-
able temporal autocorrelation due to inherent slow hemodynamic re-
sponses. Autocorrelation in the signals is enhanced by temporal
smoothing, which is often employed for the purpose of artifact re-
moval and the improvement of signal detection. In standard GLM
methods, such autocorrelation leads to underestimation of the noise
variance and hence to the inflation of estimated statistics (e.g., the
t-statistic, which is inversely proportional to the noise variance). Con-
siderable efforts have been made to develop methods to evaluate the

image of Fig.�5
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degree of autocorrelation in data and to correct the statistic both in
fMRI (Friston et al., 1994a, 1995, 2000; Worsley and Friston, 1995)
and in NIRS (Fekete et al., 2011).

It is thus important to assess whether and how inflated autocorre-
lation due to inherent hemodynamics and temporal smoothing affects
the results of the statistical analysis of TRCA because temporal
smoothing induces spurious correlation and covariance. At first one
might think that an appropriate correction is required when the
method is applied to input time courses with considerable temporal
autocorrelation because autocorrelation generally increases our co-
variance measure (Eq. (10)). However, as seen in Eq. (13), the optimal
coefficient is determined as a tradeoff between the inter-block covariance
(Eq. (10)) and the covariance of entire time courses (Eq. (8)), the latter of
which also increaseswith temporal smoothing. The statistical test of TRCA
uses the eigenvalues of thematrixQ−1S but not the individualmatricesQ
or S. Whereas temporal smoothing increases the inter-block covariance
(Eq. (10)) and the covariance of entire time course (Eq. (8)), the eigen-
values of the matrix Q−1S will not be affected. It is thus expected that
the effect of temporal smoothing has a minimal impact on our analysis.

The above argument holdswhen the temporal scale of autocorrelation
or temporal smoothing is small compared to the duration of task block or
the entire experimental duration. There are two time scales in covariances
of TRCA: the task duration for the matrix S and the entire experimental
duration for thematrixQ. If the scale of temporal smoothing increases be-
yond the duration of task block, the components of Smatrix will be satu-
rated whereas the components of Qmatrix will still grow. Therefore, the
eigenvalues of the matrix Q−1S will become smaller, and some of
task-related components might not be able to survive. To summarize,
the effect of temporal smoothing will be in effect if the smoothing scale
becomes the same order of the task block. This considerationwas verified
with numerical simulations (‘Effect of temporal smoothing’ section).

Task-distinctive components

In practical applications such as brain–machine interface and brain
decoding (Blankertz et al., 2008), it is often desirable to contrast neuro-
imaging data obtained in multiple task types. Once components related
to each task are extracted, thosewill be used to infer corresponding cog-
nitive states or to drive external devices such as a robot arm. Here we
propose that a simple extension of TRCA can provide the most distinc-
tive feature for binary task classification.

Let us consider two types of tasks, say A and B, which have KA and KB

blocks with task periods t∈[tkA, tkA+T] (k=1,⋯,KA) and t∈[tkB, tkB+T]
(k=1,⋯,KB), respectively. We construct a component that has maximal
covariance between blocks of one task type and minimal covariance
between blocks of different task types. As in the previous section, the
covariance among task-A blocks

CAA
kl ¼ Cov y kAð Þ tð Þ; y lAð Þ tð Þ

� �
¼ ∑

i;j
wiwjCov x kAð Þ

i tð Þ; x lAð Þ
j tð Þ

� �
ð14Þ

and task-B blocks

CBB
kl ¼ Cov y kBð Þ tð Þ; y lBð Þ tð Þ

� �
¼ ∑

i;j
wiwjCov x kBð Þ

i tð Þ; x lBð Þ
j tð Þ

� �
ð15Þ

are to be maximized to give a task-related signal for both tasks A and B.
We also require minimizing the covariance between task A and task B
blocks,

Ĉ AB
kl ¼ Cov y kAð Þ tð Þ; y lBð Þ tð Þ

� �
¼ ∑

i;j
wiwjCov x kAð Þ

i tð Þ; x lBð Þ
j tð Þ

� �
ð16Þ

and

Ĉ BA
kl ¼ Cov y kBð Þ tð Þ; y lAð Þ tð Þ

� �
¼ ∑

i;j
wiwjCov x kBð Þ

i tð Þ; x lAð Þ
j tð Þ

� �
: ð17Þ
Accordingly, the linear weighted sum that maximizes the intra-task
covariances (Eqs. (14) and (15)) and minimizes the inter-task covari-
ances (Eqs. (16) and (17)) will give the most distinctive time course be-
tween the two tasks. For this purpose, the objective function to be
maximized now becomes

XKA ;KB

k; l ¼ 1
k≠l

Ĉ
AA
kl þ Ĉ BB

kl

� �
−

XKA ;KB

k;l¼1

Ĉ
AB
kl þ Ĉ BA

kl

� �
¼ wTSw; ð18Þ

where the components of the matrix S is defined as

Sð Þij≡∑
k≠l

Cov x kAð Þ
i tð Þ; x lAð Þ

j tð Þ
� �

þ Cov x kBð Þ
i tð Þ; x lBð Þ

j tð Þ
� �h i

−∑
k≠l

Cov x kAð Þ
i tð Þ; x lBð Þ

j tð Þ
� �

þ Cov x kBð Þ
i tð Þ; x lAð Þ

j tð Þ
� �h i

:
ð19Þ

With this newly defined matrix S, the coefficients are determined by
solving the Rayleigh–Ritz problem (Eq. (12)), and corresponding compo-
nents are referred to as task-distinctive components.

Data augmentation

The basic formulation of TRCA makes use of multi-channel signals
obtained from a single modality, and task periods of a single task. In
this sense, TRCA may be considered as a least supervised method.
When additional, independent sources of information (such as body
movement or respiration signals) are provided, it is desirable to
make use of those sources in order to improve the task consistency.
Here we show that a simple extension of TRCA can incorporate other
sources of task-related and task-unrelated information step by step.

Suppose that, in addition to N-channel temporal signals denoted
by xi(t) (i=1,⋯,N), additional, independent Ñ temporal signals de-
noted by ˜xi tð Þ (i=1,⋯,Ñ) are given. These signals may, for example,
represent task-unrelated artifacts such as body movement measured
by an accelerometer or respiration measured by a respiratory belt,
and we assume that xi(t)'s are corrupted linearly by ˜xi tð Þ's. Task con-
sistency can be improved by appropriately subtracting task-unrelated
components from xi(t). We propose that these two sets of temporal
signals are augmented to form a new vector X:

X tð Þ ¼ x1 tð Þ ⋯ xN tð Þ x̃1 tð Þ ⋯ x̃Ñ tð Þ�� 	T :h
ð20Þ

If we replace the original vector x in Eq. (5) with this augmented
vector, task-related components can be computed as in the ‘Task‐
related component analysis: a basic formulation’ section. The addi-
tional signals provided by ˜xi tð Þf g can be regarded as supervised sig-
nals, so TRCA has a flexibility of incrementally integrating potentially
informative signals.

Mapping of a task-related component

Once a statistically significant task-related component y(t) is iden-
tified, the next task is to evaluate how each time course contains that
task-related component. If input time courses are normalized to one,
the correlation coefficient between i-th input time course and the
task-related component is given as

E xi tð Þ⋅y tð Þ½ �: ð21Þ

By spatially aligning these dot products, a spatial map of the task-
related component is obtained for individual subjects. Finally, spatial
maps for multiple subjects are averaged channel by channel to obtain
a subject-averaged spatial map (Singh et al., 2005).



Fig. 6. Discriminative signal computed by TRCA. (A) Two task-related hemodynamics (top two) and task-unrelated slowwave (bottom). Blue- and red-shaded areas suggest task-A and task-B
periods, respectively. (B) Five randomly mixed signals. (C) Most distinctive component and (D) its block averages.
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Application to synthetic data

We have conducted four numerical simulations with synthetic
data in order to illustrate how TRCA works: (1) a hemodynamic re-
sponse corrupted with a physiological artifact and a motion artifact
with large discontinuity (‘Removal of motion artifact’ section),
(2) multiple task-related responses corrupted with physiological ar-
tifacts (‘Extraction of multiple task‐related components’ section),
(3) decorrelation of two-task signals (‘Effect of temporal smoothing’
section), and (4) incorporation of other source signals for artifact re-
moval (‘Task‐distinctive component’ section). These simulations were
designed mainly for the following application to NIRS data. Details of
synthetic data are summarized in Appendix B and Table 2. Whereas ac-
tual task periods were 30 s, extra 5 s prior to a block and 20 s after a
block (therefore, totally 55 s) were included to compute correlation co-
efficients and covariances. This will ensure that task-related compo-
nents have consistent signals not only during but also shortly before
and after a task block.

NIRS finger tapping experiment

Although NIRS measures hemodynamic responses evoked by un-
derlying neural responses like fMRI, the signal-to-noise ratio of NIRS
is generally no better than that of fMRI (Cui et al., 2011). Also, NIRS
data is corrupted with various systemic noises such as cardiac and
respiratory signals, skin blood flow, and motion artifacts (Katura et
al., 2006; Sato et al., 2006).

TRCA was then applied to NIRS data set of 29 subjects performing
a finger tapping task, which was composed of five blocks, 30 s each.
Details of experimental data were summarized in our previous publi-
cation (Katura et al., 2008; Sato et al., 2005). As in the synthetic case,
5 s before and 20 s after the task period were combined for the com-
putation of correlation coefficients and covariances. Amplitudes of
NIRS signals considerably vary channel-to-channel, so the standard
deviation of each channel time course was normalized to one before
applying TRCA. For the analysis of task-related components (‘Task
related components’ section), the oxy-hemoglobin data for left- and
right-finger tapping were analyzed independently. For the analysis
of task-distinctive components (‘Task‐distinctive component’ sec-
tion), the data for left- and right-finger tapping were merged together
as if they formed a single measurement, and both oxy- and deoxy-
hemoglobin data were used.

Additional simulations and analyses

In order to assess the performance of our method, several addi-
tional simulations were performed with synthetic data with variable
activation amplitudes, activation onsets, and sampling rates. More-
over, the method was tested with time courses of a simulated exper-
iment of event-related design. Also, in order to evaluate how robust
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Fig. 7. Data augmentation in TRCA. (A) Three synthetic signals used for the simulation. (B) Randomly mixed signals (top three) and motion related signals (bottom).
(C) Task-related component with the highest eigenvalue when the top three signals (top) or all the four signals (bottom) were used. (D) Box plot of the baseline-change indices of
one-thousand repeated simulations.
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task-related components were, TRCA was applied to NIRS data with
reduced number of task blocks or channels. These results are sum-
marized in the Supplementary data.

Results

Synthetic data

Four numerical experiments were conducted to assess our pro-
posed method: removal of motion artifact (‘Removal of motion
artifact’ section), extraction of multiple task-related components
(‘Extraction of multiple task‐related components’ section), effect
of temporal smoothing (‘Effect of temporal smoothing’ section),
distinctive components (‘Task‐distinctive component’ section),
and data augmentation (‘Incorporation of augmented signals’
section). Throughout the main text of this paper, TRCA was
formulated and tested in a block-design experiment with non-
overlapping task periods. An application to experiments of event-
related design with overlapping task-related responses is argued in
the Supplementary data.

Removal of motion artifact
Although NIRS is relatively tolerant to head and body movements

compared to other neuroimaging modalities such as fMRI, its data still
suffers from motion artifacts (Cui et al., 2010; Sato et al., 2006). In
order to address how TRCA works for motion-contaminated data,
synthetic data was created with a single task-related component
and physical and physiological task-unrelated components (Fig. 3A).
For the task-related component, five blocks of 30 s were included,
and expected activations were computed by convolving with a stan-
dard hemodynamic response function (Boynton et al., 1996). The sig-
nals in Fig. 3A were randomly mixed to generate synthetic NIRS
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Table 1
Numbers of statistically significant task-related components for left- and right-finger tapping
experiment.

# Statistically significant
components

# Subjects
(left-finger tapping)

# Subjects
(right-finger tapping)

0 1 1
1 8 6
2 19 22
3 1 0

Fig. 8. Motion artifact removal by TRCA. (A) Time courses of NIRS channels with six largest inter-block correlation coefficients out of 24 channels. The numbers in
upper left corners are corresponding correlation coefficients. Some artifacts that were possibly caused by body movements are indicated by blue arrows around
155 s and red arrows around 303 s. (B) Task-related component with the largest eigenvalue. The number at the upper left corner is a correlation coefficient
among task blocks.
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signals in Fig. 3B. An obvious jump at 315 s during the third block in-
dicates that simple block averaging cannot remove such a large
discontinuity.

We then applied TRCA to the synthetic data. The correlation
matrices, S and Q, were computed by their definitions (Eqs. (11)
and (8)). Y contains possible task-related components. We em-
phasize that the eigenvalues are the task consistency (Eq. (13))
of corresponding components. In other words, the reproducibility
of a task-related component can be quantified by the correspond-
ing eigenvalue.

Fig. 3C shows reconstructed task-related components in the
order of decreasing eigenvalues. A statistical test indicated that
only one component was statistically significant (Fig. 3E); the top
row denotes the task-related component with the largest eigenval-
ue, and clearly this component recovered the hemodynamic re-
sponse and did not suffer from the large discontinuity at 315 s.
The other components were the jump and the physiological compo-
nent, respectively, which are not regarded as task related due to
their eigenvalues within the chance interval. Fig. 3D illustrates in-
dependent components computed by using the JADE algorithm
(Cardoso, 1999). The jump component, hemodynamics component,
and physiological component were separated, but an additional
analysis step was needed to determine which component was
task-related and task-unrelated.
Extraction of multiple task-related components
Generally the eigenvalue problem of Eq. (12) gives N possible so-

lutions, and their task relatedness needs to be assessed by a statistical
test on corresponding eigenvalues. By counting the number of statis-
tically significant eigenvalues, therefore, the number of latent, task-
related components can be estimated. Two task-related components
and one task-unrelated component (Fig. 4A) were used to create syn-
thetic data (Fig. 4B). Correspondingly, three potential task-related
components were obtained (Fig. 4C). Their statistical significance
was assessed by comparing with eigenvalues computed from block-
shuffled inputs. There was one eigenvalue inside the confidence
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Fig. 9. (A) One TRC of right finger tapping and (B) the corresponding projection map. (C) Another TRC of right finger tapping and (D) the corresponding projection map.
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interval, and there were two eigenvalues outside the confidence
interval (Fig. 4D), thereby successfully recovering the original
two task-related components and rejecting the remaining one as
task-unrelated.

Effect of temporal smoothing
Whereas autocorrelation in time series reduces the noise variance

and thus GLM analyses require an appropriate correction for the
Fig. 10. (A) One TRC of left finger tapping and (B) the corresponding projection map.
statistic, in the ‘Effect of temporal smoothing and autocorrelation’
section we provided an intuitive explanation of why autocorrelation
will not matter in the case of TRCA, on condition that the time
constant of autocorrelation is small compared with the duration of
task block. To verify this intuition, a numerical simulation was
performed by controlling the degree of autocorrelation with tempo-
rally smoothed synthetic data of various time scales. Five synthetic
time courses were created from two task-related components
(C) Another TRC of left finger tapping and (D) the corresponding projection map.
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Fig. 11. (A) Themost discriminatory time course computed from a representative subject. Blue and red shaded areas denote the task periods of right and left finger tapping, respectively.
(B) Task-block average of the time course in panel A. Thin blue and red lines denote individual right and left finger tapping blocks, respectively, and thick blue and red lines are their av-
erages. (C) Task block average computed from all subjects. Error bars indicate standard errors. (D) Corresponding project map averaged over all subjects.

320 H. Tanaka et al. / NeuroImage 64 (2013) 308–327
corrupted with three task-unrelated components (see Section 1.3
of Supplementary data for details), followed by temporal smooth-
ing with a Gaussian window of three values for full-width
half-maximum or FWHM (1, 10, or 30 s) (Figs. 5A–C). In this
simulation, the duration of a task block was 30 s, followed by
70 s of rest, thereby consisting of a periodic block design of 100 s.
Details observed in the time courses in panel A became less
apparent with the increase of the smoothing scale. For the three
sets of data, the resampling distributions indicated that the two
task-related components were correctly identified for the cases of
1 and 10 s FWHMs (Figs. 5D and E), whereas only one component
was recovered for the case of 30 s FWHM (Fig. 5F), as expected from
our intuitive explanation. Corresponding task-related components
were shown in Figs. 5H–I. With the consideration in ‘Effect of
temporal smoothing and autocorrelation’ section supported by
this numerical result, we conclude that TRCA can safely be applied
to data with considerable temporal autocorrelation if the scale of
temporal autocorrelation is shorter than the duration of task
block. This result also suggests that, if data contains autocorrela-
tion due to hemodynamic response or temporal smoothing, the
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Fig. 12. (A)Most distinctive time courses computed using oxy- (solid line) and deoxy- (dotted line) hemoglobin NIRS signals of subject #12. Blue and red shaded areas denote the task periods
of right and left finger tapping, respectively. (B) Snap shots of the distinctive components in panel A at t ranging from−5.0 to 40.0 in steps of 5 s. The horizontal and vertical axes denote dis-
tinctive components constructed fromoxy- and deoxy-hemoglobin signals, respectively. Task periodwas indicated as light-gray background, and rest period as dark-gray background. (C) Snap
shots of the distinctive components computed from all subjects at t ranging from−5.0 to 40.0 in steps of 5 s, using the same format of panel B. Translucent blue and red circles depict individual
blocks, and large solid blue and red circles depict the center of mass.
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task duration used for TRCA should be set sufficiently longer than
the scale of autocorrelation, as discussed in designing an fMRI
experiment (Friston et al., 2000).
Task-distinctive component
Often it is desirable to contrast activations from two distinct tasks,

so synthetic data was created that contained two independent
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Table 2
Task-related and -unrelated components that were used for synthetic data.

Notation Signal type Functional form

r1(t) Sustained hemodynamic response
(task-related)

s∗h(t)

r2(t) Transient hemodynamic response
(task-related)

d
dt s � h tð Þ

r3(t) Mayer wave
(task-unrelated)

AM sin
2πt
TM

� �
AM ¼ 0:5; TM ¼ 12ð Þ

r4(t) Sudden discontinuity
(task-unrelated) Θ t−315ð Þ ¼ 1 t > 315ð Þ

0 t≤315ð Þ
�
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activations of two tasks (Fig. 6A). TRCA was applied to differentiate
synthetic time courses that were composed of task-related compo-
nents of two distinct tasks (Fig. 6B). A solution with the highest
eigenvalue contained increases during blocks of one task and de-
creases during blocks of another task (Figs. 6C and D). Intra-task
correlations were 0.93 (SD 0.0084) and 0.92 (SD 0.016) for task A
and task B, respectively, and an inter-task correlation was −0.93
(SD 0.018).

Incorporation of augmented signals
In some cases in which signals and artifacts are mixed by a similar

proportion to multiple time series, simple summation or subtraction
between multiple time series cannot entirely cancel artifacts. Often
additional sources of potential artifacts can be obtained by a separate
and simultaneous recording such as cardiac, respiratory or motion
measurements. TRCA is able to flexibly incorporate additional sources
of artifact related components. Synthetic data was constructed from
three signal time courses (Fig. 7A), and three random mixtures
were used as inputs to TRCA (Fig. 7B, top three). Also, additional
time course of a sudden jump was assumed (Fig. 7B, bottom). When
only the three mixed time courses were used, often the discontinuity
was not totally removed (Fig. 7C, top). This failure occurred when the
individual time courses (top three in Fig. 7B) happened to contain
hemodynamics and jump components in similar proportions. In
contrast, TRCA applied to the augmented data could remove the
jump component completely (Fig. 7C, bottom). The performance
of the non-augmented and augmented methods was assessed by
repeating this simulation with randomized mixture coefficients
for one thousand times and by computing a baseline-change
index defined by:

mean½y tð Þ t¼600
t¼315

��� i
−mean½y tð Þ t¼315

t¼0

��� i
std y tð Þ t¼600

t¼0

�� 	
:


 ð22Þ

The index takes zero if the jump component is completely re-
moved. Fig. 7D shows a box plot of the indices, indicating that
the performance of TRCA can be improved by incorporating addi-
tional sources of artifact information.

NIRS data of finger tapping

Task related components
An example of artifact removal is shown in Fig. 8. Time

courses of six channels with largest correlation coefficients out
of 24 channels (subject #23, left finger tapping) contain several
artifacts that appeared to originate from body movements
(Fig. 8A). These components occurred not reproducibly between
task blocks, so TRCA optimized the weight coefficients so as to
suppress these artifacts. The dominant TRC with the largest
eigenvalue did not suffer these artifacts (Fig. 8B). Note also that
there was an improvement in the correlation coefficient; the
largest correlation coefficient among individual channels was 0.45
(top left in Fig. 8A), and the correlation coefficient of the dominant
task-related component was 0.86. Also, this TRC appeared consistent
with known properties of hemodynamic response in the motor cortex
(Rao et al., 1996).

The same analysis was applied to all subjects. The numbers of sta-
tistically significant task-related components ranged from zero to
three (Table 1). Most subjects had one or two components. There
were a total of 99 task-related components (49 and 50 for right-
and left-finger tapping) that were statistically significant. Since
most subjects had at most two components, a k-means cluster analy-
sis (k=2) with respect to Euclidean distance was performed in order
to classify these dominant components.
Fig. 9 summarizes the two dominant TRCs for right-finger tapping.
One TRC had a gradually changing time course similar to a conven-
tional hemodynamics response; it gradually increased a few seconds
after the task onsets and decreased a few seconds after the task off-
sets (Fig. 9A). Another TRC had a piece-wise linear time course; it
peaked after a few seconds after the task onsets, linearly decreased
until a few seconds after the task onsets, and then increased linearly
(Fig. 9C). The inter-block correlations were 0.74 (SD 0.18) (Fig. 9A)
and 0.56 (SD 0.17) (Fig. 9C), respectively. To visualize the contribu-
tion of the task-related components with the highest eigenvalues to
original NIRS signals, projection coefficients (defined by a dot product
vi ¼ E y tð Þ⋅xi tð Þ½ �, see ‘Mapping of a task‐related component’ section)
were first computed for individual subjects and then averaged over
all subjects. One TRC projection map showed laterality to the contra-
lateral hemisphere (Fig. 9B), whereas the other TRC map appeared to
spread over the both hemispheres (Fig. 9D). We computed a laterality
index (LI) defined by

LI ¼
∑

i∈Left
Hemiphere

vi− ∑
i∈Right
Hemiphere

vi,
∑
i

vij j
ð23Þ

which takes a positive or negative value for left- or right-
hemisphere dominant activation, respectively. Laterality indices
were 0.17 (SD 0.30) and −0.0010 (SD 0.23) for Figs. 9B and D,
respectively.

Similarly, Fig. 10 summarizes the two dominant TRCs for
left-finger tapping. The inter-block correlations were 0.75 (SD 0.16)
(Fig. 10A) and 0.63 (SD 0.16) (Fig. 10C), respectively. As in the case
of the right-finger tapping, one component showed contralateral
dominance (Fig. 10B) while another component appeared in
both hemispheres (Fig. 10D). The laterality indices were −0.20
(SD 0.24) (Fig. 10B) and 0.060 (SD 0.28) (Fig. 10D), respectively.
Furthermore, in order to see how robustly TRCA could detect
these two dominant TRCs, TRCA was applied to a dataset with
the reduced number of task blocks or NIRS channels. We found
that TRCA could recover the two components robustly (see Sup-
plementary Figs. 5 and 6).

The performance of the CovMax and CorrMax algorithms was
evaluated by inter-block correlation coefficients. For comparison, cor-
relations of all individual channels (29 (subjects)×24 (channels)×2
(conditions)) were computed. Medians of all individual channels,
channels with maximal correlation per subject, and task related com-
ponents derived by the CovMax and CorrMax algorithms were: 0.17,
0.50, 0.76 and 0.83 for left-finger tapping, and 0.18, 0.55, 0.71 and
0.85 for right-finger tapping. Computational time of the CovMax algo-
rithm was 0.48 (SD 0.013) seconds per subject, and that of the
CorrMax algorithm was 4.36 (SD 1.5592) seconds (Matlab, 2011b,
MathWorks Inc. Intel Core2Duo CPU 3.0 GHz).
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Task-distinctive component
A task-distinctive component was extracted from right- and left-

finger tapping data by using the algorithm presented in ‘Effect of
temporal smoothing and autocorrelation’ section. Fig. 11A shows a
representative time course from a single subject (subject #12), and
Fig. 11B shows its block averages. Correlations between blocks of
one task type (intra-task correlation) for this subject were 0.84 (SD
0.038) and 0.86 (SD 0.056) for left- and right-finger tapping, respec-
tively, and correlation between blocks of different task types
(inter-task correlation) was −0.85 (SD 0.044). In panel B, blocks of
left-finger tapping showed elevated activations (blue lines) whereas
blocks of right-finger tapping showed depressions (red lines). A
group average of the same analysis was shown in Fig. 11C;
intra-task correlations for all subjects were 0.53 (SD 0.25) and 0.50
(SD 0.27) for left- and right-finger tapping, respectively, and an
inter-task correlation was −0.50 (SD 0.26). A projection map of this
task-distinct component averaged over all subjects is illustrated in
Fig. 11D.

The task-distinctive components provide a succinct description to
classify two tasks from physiological measurements. NIRS has an ad-
vantage of simultaneous recording of oxy- and deoxy-hemoglobin, so
TRCA was applied to both oxy- and deoxy-hemoglobin signals.
Fig. 12A shows two task-distinctive components from the same sub-
ject in Fig. 11. The time courses of these task-distinctive components
were projected onto a two-dimensional plane composed of oxy- and
deoxy-hemoglobin signals (Fig. 12B). One sees that left- and
right-finger tapping signals were inseparable before and after
task period and separable during task period, indicating that these
task-distinctive components provide a low-dimensional representation
for classifying cognitive states. The same analysis was applied to all sub-
jects (Fig. 12C).

Discussion

An analysis method based on inter-block reproducibility of biophys-
ical signals was proposed. The reproducibility of signals among task
blocks was measured with a sum of correlation coefficients (Eq. (7))
or covariances (Eq. (10)). In the latter case, the maximization of sum
of covariances was reduced to a Rayleigh–Ritz eigenvalue problem,
and a statistical significance of task relatednesswas quantified by eigen-
values against a null hypothesis. Our task-related component analysis
(TRCA) was applied to both synthetic and NIRS data. We demonstrated
that TRCA is not sensitive to data with autocorrelationwhose time scale
is smaller than the duration of task block; this insensitivity to autocor-
relation is advantageouswhen TRCA is generalized to other neuroimag-
ing modalities or biophysical measurements.

Comparison with previous approaches

Several comments are made on this analysis method in compari-
son with previous approaches to neuroimaging data. First, this meth-
od differs from traditional, single-channel based analysis such as
general linear models (Friston et al., 1994b), in which task related
components are extracted within a single-channel time course. Gen-
eral linear models (GLMs) decompose individual voxel time courses
into several presumed components, and the contribution of each com-
ponent is assessed statistically. This approach implicitly assumes the
fact that whole brain areas are entirely and uniformly sampled so
GLMs should be able to detect task related voxels if there are any.
These assumptions, however, may not hold for other functional
neuroimaging modalities such as NIRS and EEG, whose sampling
points are sparsely located only on the scalp. Our method, on the
contrary, attempts to reconstruct a task related component from
multiple-channel time courses with appropriate weight coeffi-
cients, and cortical areas responsible for the task consistency are
mapped by evaluating a correlation between a task-related and
original time courses. Also, the GLM approach depends critically
on hypotheses of contributing time courses such as a shape of he-
modynamic response (Plichta et al., 2007). On the other hand,
our TRCA requires only onset timings of task blocks but not de-
tailed time courses.

Second, the proposed method is, in mathematical formulation, sim-
ilar to periodic component analysis, which is also formulated as a
Rayleigh–Ritz eigenvalue problem (Monasterio et al., 2010; Sameni et
al., 2008; Saul and Allen, 2001). We note, however, that our method is
not restricted to periodic signals as long as task onsets are known, so
it is flexibly applicable to an experimental design which uses non-
periodic task cycles (see an application to an event-related experiment
in Supplementary data).

Finally, our proposed analysis is an eigenvalues problem, so
extracted components can be obtained with standard linear alge-
bra methods that are computationally inexpensive. Moreover, sta-
tistical significance of an extracted component can be assessed by
an associated eigenvalue, which implies the degree of inter-block
covariances. This makes a contrast with independent component
analysis, in which an additional procedure for quantifying how
extracted independent components are task related is required.
Our previous work applied ICA to the same dataset of finger
tapping and found two task-related components that were similar
to those reported in this work (Katura et al., 2008). But, in order
to identify task-related components among candidate components
separated by ICA, a threshold of inter-block correlation (0.2) was
imposed, which was determined rather arbitrarily by hand.
Another ICA study extracted an artifact component possibly related
to skin blood flow by introducing an index describing spatial distri-
bution of components (Kohno et al., 2007). They identified the
most spatially uniform component as an artifact of skin blood
flow, but what degree of uniformity is needed to be identified as
such an artifact remains arbitrary. Our proposed method, in con-
trast, extracted two task-related components without introducing
such arbitrary selection parameters.
Dominant task-related components

Our proposed method discovered statistically significant task-
related components. One component (Figs. 8A and 9A) had a grad-
ually changing time course and appeared in the hemisphere
contralateral to tapping fingers (Figs. 8B and 9B). Therefore, we
interpreted this component to be a hemodynamic response to
finger tapping execution. Another component (Figs. 8C and 9C)
had a piece-wise linear time course and its peaks occurred a few
seconds after the task onsets. This component did not show a
consistent hemispheric localization (Figs. 8D and 9D). In conven-
tional NIRS analyses where multi-subject data was averaged on a
channel-by-channel basis, this piece-wise linear component was
not reported before to our knowledge. This component was not
spatially reproducible but temporally reproducible, so the conven-
tional analysis on channel-by-channel basis might not be able to
detect this component. Our proposed TRCA based on temporal re-
producibility could discover it.

One then will ask what this piece-wise component might repre-
sent. One interpretation is that it represents variable delays of hemo-
dynamic responses in individual channels. Interestingly, we noticed
that the temporal derivative of the hemodynamic response conspic-
uously resembled the piece-wise component (Supplementary
Figs. 7A and B). In GLM analyses for fMRI data, it is a common prac-
tice to include a hemodynamic time course along with its temporal
derivative so that delays in individual activations are adjusted.
Although this may explain certain delays in activation onsets, we
found that raw time courses of some channels closely resembled
this piece-wise linear component (Supplementary Fig. 7C). Therefore,
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the delay interpretation itself cannot explain this piece-wise linear
component.

Another interpretation of this component is hemodynamic fluctua-
tions in the scalp that are estimated to be 10 to 20 times higher than
those in cortical layers (Takahashi et al., 2011). There is considerable in-
terest in the NIRS community in understanding hemoglobin changes
that originate from neural and from systemic activities such as heart
rate or blood pressure (Patel et al., 2011; Tachtsidis et al., 2009, 2010).
Recently, Kirilina et al. (2012) reported oxy-hemoglobin time courses
similar to our piece-wise linear component in a continuous performance
task and a n-backworkingmemory task. FunctionalNIRS combinedwith
fMRI and peripheral physiological measurements revealed that these
time courses were systemic artifacts whose origin was a task-evoked
sympathetic arterial vasoconstriction followed by a decrease in venous
volume in the scalp. In one study, Minati et al. (2011) quantified, with
shallow- and deep-penetrating NIRS recording, the contribution of sys-
temic blood pressure changes caused transiently by arm raising and con-
cluded that systemic changes were reflected both in intra- and extra-
cranial signals but with different patterns. In a related study, Saager et
al. (2011) used two-detector NIRS with short and long separations and
improved the signal-to-noise ratio by subtracting short-separation com-
ponents from long-separation components. Takahashi et al. (2011)
quantified the contribution of skin blood flow changes confounding in
NIRS signal during a verbal fluency task by applying a pressure on the
scalp between transmitting and detecting optodes. These studies
employed certain specialized experiment settings such as two-distance
optodes or pressure gauge, so it would be more convenient if
confounding signals originating from systemic factors are identified
and separated by a signal processing method.

To demonstrate this more explicitly, TRCA was applied to deoxy-
hemoglobin as well as oxy-hemoglobin data. A recent study (Cui et
al., 2010) suggested an artifact removal method based on the fact
that the concentration changes of oxy- and deoxy-hemoglobin are
negatively correlated for neural activation but not so for motion arti-
facts. We followed the same reasoning; if one component from
oxy-hemoglobin is negatively correlated with another component
from deoxy-hemoglobin, they are likely related to neural activation.
Otherwise, positively or weakly correlated components are likely
non-neural artifacts. We thus applied TRCA to deoxy-hemoglobin
data (data not shown). One TRC in oxy-hemoglobin was negatively
correlated with another TRC in deoxy-hemoglobin, therefore sug-
gesting their neural origin. In contrast, one TRC in oxy-hemoglobin
was positively correlated with another TRC in deoxy-hemoglobin,
thereby indicating that they were not from neural activation. Thus
TRCA can be a tool for separating components related to neural activa-
tion from those related to systemic factors.

We would like also to point out that a time course similar to
ours was reported in a multi-wavelength intrinsic optical imaging
experiment in which a behaving animal performed a visual atten-
tion task (Sirotin and Das, 2009; Sirotin et al., 2012) (there is, how-
ever, a controversy over whether or not the component Sirotin and
Das reported was really task anticipatory and whether this compo-
nent could be explained by electrophysiological signals, see Das
and Sirotin, 2011; Handwerker and Bandettini, 2011a, 2011b;
Kleinschmidt and Muller, 2010). Given the facts that the subjects
were instructed that our task design was repetitive before the ex-
periment (thus anticipatory) and that NIRS uses multiple wave-
lengths (thus containing information of not only oxygenation but
also blood volume), it might not be surprising that NIRS signals
contained some anticipatory signals similar to what Sirotin and
Das had reported.

Possible extensions and future applications

This paper provided the basic formulation of task-related compo-
nent analysis, and a few theoretical and practical extensions are
considered here. First, whereas this paper proposed temporally re-
producible signals as task-related components, spatially reproduc-
ible signals can also be considered as being task related. TRCA can
be formulated so that an activation map has a maximal covariance
between task blocks. Spatial TRCA may be applicable to fMRI data,
in which temporal dimension (the number of temporal samplings)
is usually much smaller than spatial dimensions (the number of
voxels).

In our basic formulation of TRCA, the objective functions
(Eqs. (7), (9) and (19)) contain the contributions of successive
blocks and distant blocks equally, namely that the covariances be-
tween successive blocks and between distant blocks have the
same weights in the objective functions. The assumption of our
method is that components that are task-related should appear in
the same manner in every task block, so in the basic formulation
of our method the effect of changing hemodynamic responses in
the course of an experiment has not been modeled. These equal
contributions may be justified when no changes in activation dur-
ing the course of an experiment are expected, as in simple tasks
such as finger tapping. It is, however, desirable to extract adaptive
changes of activation profiles during the course of the experiment,
such as those related to learning or habituation. One way to
model such effects could be to introduce an additional factor to ac-
count for the duration of the experiment:

XK
k; l ¼ 1
k≠l

f klCov y kð Þ tð Þ; y lð Þ tð Þ
� �

ð24Þ

If the factor (fkl) is a decreasing function of the block distance
|k− l|, the covariance between initial blocks and late blocks be-
comes less important. Therefore, the signals from initial and
late blocks are not required to be very similar; only gradually sig-
nals that change block-by-block will be extracted.

Throughout this paper, we restrict ourselves to a linear model
(Eq. (5)) to maximize the inter-block correlation or covariance.
A higher reproducibility may be expected if input signals are
mapped into a high dimensional feature space. A nonlinear ex-
tension may be possible by applying a kernel method, which
has proved to be useful in areas such as kernel PCA (Mika et
al., 1999b), kernel ICA (Bach and Jordan, 2003), kernel discrimi-
nant analysis (Mika et al., 1999a). Particularly, our linear formal-
ism shares the same mathematics with Fisher linear discriminant
analysis, so it is readily extendable to a nonlinear formalism
with the help of kernel methods.

TRCA can also be applicable to multi-channel data that have sever-
al behaviorally relevant onsets. For example, a typical working-
memory task contains stimulus-presentation timings and response
timings of subjects. For example, a typical working-memory task con-
tains stimulus-presentation timings and response timings of subjects.
TRCA with stimulus-onsets and with response-onsets may reveal
stimulus- and response-related activations, respectively. Our future
study will address these limitations and extensions of TRCA.
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Appendix A. MATLAB code
function [Y, V, D, S, C] = TRCA(X, t1, Nexp)

%% task-related component analysis

% Covariance Maximization (CovMax) algorithm

% X: data matrix (N channels * T time points)

% t1: task onsets (vector)

% Nexp: task duration (sampling unit)

Nchannel = size(X, 1);

Nblock = length(t1);

% computation of correlation matrices:

S = zeros(Nchannel, Nchannel);

for i=1:Nchannel

for j=1:Nchannel

for k=1:Nblock

for l=1:Nblock

if k~=l

                    tk = t1(k); %onset of l-th block 

                    tl = t1(l);   %onset of l-th block 

                    xi = X(i, tk:tk+Nexp);

                    xj = X(j, tl:tl+Nexp);

                    S(i,j) = S(i,j) + (xi-mean(xi,2))*(xj-mean(xj,2))’; 

end

end

end

end

end

X = X –repmat(mean(X,2),1,size(X,2));

Q = X*X’;

% TRCA eigenvalue algorithm 

[V, D] = eig(Q\S);

Y = V'*X; 
Appendix B. Synthetic data

Here we describe some details of how synthetic data Xwas created
for the four simulations in the ‘Synthetic data’ section.X represents anN
(# channels)×T (# time points) matrix. Ns source signals were created
and compiled into an Ns×T matrix R. These source signals could be
task-related (i.e., hemodynamic responses) or -unrelated (i.e., systemic
or movement-related artifacts). As in the ‘Signal reconstruction from
weighted linear summation’ section, these source time series were ran-
domly mixed up to give six synthetic time series (X: N (# channels)∗T
(# time points)) as

X ¼ AR þ ξ; ðB:1Þ
where A is the N×Ns mixing matrix. A Gaussian noise vector ξ of mean
0 and variance 0.3 was added. All time courses were sampled at 10 Hz.
The four simulations (‘Removal of motion artifact’–‘Task‐distinctive
component’ sections) differed in how the matrices R and Awere creat-
ed. Details of how the four synthetic data sets used in themain texts are
summarized below and in Table 2.

B.1. Simulation in section 3.1.1

One hemodynamic response (r1), one physiological component (r3),
and physical jump component (r4) formed the matrix R.

R ¼ r1 r3 r4½ �T: ðB:2Þ

These time courses were 600 s long and sampled with 10 Hz
(therefore, T=600). For hemodynamic response (r1), five task
blocks of 30 s were placed at 100, 200, 300, 400 and 500 s, and a
box-car function (s(t)) was defined to be one during the task periods
and zero otherwise. A hemodynamic response function was adopted
from Boynton et al. (1996):

h tð Þ ¼ t
τ

� �n−1
exp − t

τ

� �
= n−1ð Þ!τ ðB:3Þ

where τ=1.08 and n=3. Hemodynamic response (hence task relat-
ed) was computed by convolving s(t) and h(t). For physiological
component (r3), an oscillatory signal of 0.0833 Hz (or 12 s period)
was included to emulate the Mayer wave. For a physical artifact
(r4), a large jump at 315 s was included to emulate a motion artifact.
The 3×3 mixing matrix A was created as

A ¼
1 0 3
1 0 3
1 0 3

0
@

1
Aþ

η11 η12 η13
η21 η22 η23
η31 η32 η33

0
@

1
A ðB:4Þ

where η∼N(0,0.52).

B.2. Simulation in section 3.1.2

Five task blocks were included as in the simulation in the ‘Removal
of motion artifact’ section. In addition to the sustained hemodynamic
response function (r1), another, transient task-related component
(r2) was introduced as a temporal derivative of Eq. (B.3). This phasic
component was responsive positively to onset and negatively to off-
set of a task. The Mayer wave was also included, and the matrix R
was defined as

R ¼ r1 tð Þ r2 tð Þ r3 tð Þ½ �T: ðB:5Þ

The 3×3 matrix A was created as

A ¼
0:5 0:5 0
0:5 0:5 0
0:5 0:5 0

0
@

1
Aþ

η11 η12 η13
η21 η22 η23
η31 η32 η33

0
@

1
A; ðB:6Þ

where η∼N(0,0.52).

B.3. Simulation in section 3.1.3

Ten task blocks, five for task A and the other five for task B,
were created alternately from 100 to 1000 in steps of 100 s. The
total duration was 1200 s sampled at 10 Hz. Two tasks were
inserted alternatively; five task-A blocks of 30 s were placed
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starting at 100, 300, 500, 700 and 900 s, and five task-B blocks of
30 s starting at 200, 400, 600, 800 and1000 s. Accordingly, two
box-car functions were constructed, and corresponding hemody-
namic responses (r1A and r1

B) were then created by convolving the
box-car functions and Eq. (B.3). The Mayer-wave component was also
added. The matrix Rwas

R ¼ rA1 tð Þ rB1 tð Þ r3 tð Þ
h iT

; ðB:7Þ

and the 4×3 matrix Awas

A ¼

1:0 0:2 η13
0:8 0:4 η23
0:6 0:6 η33
0:4 0:8 η43
0:2 1:0 η53

0
BBBB@

1
CCCCA; ðB:8Þ

where η∼N(0,0.32).

B.4. Simulation in section 3.1.4

A data matrix composed of three time courses in Fig. 7B (top
three) was created in the same way as the ‘Removal of motion
artifact’ section. In addition, an augmented data matrix composed
of the three time courses plus one movement time course was cre-
ated as:

X tð Þ ¼ x1 tð Þ x2 tð Þ x3 tð Þ r4 tð Þ½ �T: ðB:9Þ

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.08.044.
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