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Abstract—Consider a binary-input, M -output discrete mem-
oryless channel (DMC) where the outputs are quantized to K
levels, with K < M . The subject of this paper is the maximization
of mutual information between the input and quantizer output,
over both the input distribution and channel quantizer. This
can be regarded as finding the capacity of a quantized DMC.
An algorithm is given, which either finds the optimal input
distribution and corresponding quantizer, or declares a failure.

I. INTRODUCTION

Consider a binary-input, M -output discrete memoryless
channel (DMC) where the outputs are quantized to K levels,
with K < M . The subject of this paper is the maximization
of mutual information between the input and quantizer output,
over both the input distribution and channel quantizer. This
can be regarded as finding the capacity of a quantized DMC.
An algorithm is given, which either finds the optimal input
distribution and corresponding quantizer, or declares a failure.

Concretely, let the DMC input be X, let the DMC output
be Y, and let the quantized output be Z. The alphabet sizes
of X, Y and Z are J , M and K, respectively. Here, K < M
is of interest, since K ≥ M implies no reduction in mutual
information due to quantization.

Let C denote the quantizer function, that is:

C : {1, 2, . . . ,M}→ {1, 2, . . . ,K}. (1)

Let C−1(k) denote the subset of {1, . . . ,M} that maps to
channel quantizer k. Denote the channel input distribution as:

pj = Pr(X = j),

denote the channel probability transition probability matrix as
P , with elements:

Pm|j = Pr(Y = m|X = j),

and denote the input-to-quantizer output transition probability
matrix as T , with elements:

Tk|j = Pr(Z = k|X = j) =
∑

m∈C−1(k)

Pm|j .
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This paper makes the restriction that J = 2. Since J = 2,
p1+p2 = 1, and in the sequel the input distribution is p = p1.
The mutual information between X and Y is:

I(X;Y) =
∑

j

∑

k

pjPm|j log
Pm|j∑

j′ pj′Pm|j′
. (2)

The sum
∑

m, etc. means the sum over the whole alphabet∑M
m=1, etc. Mutual information I(X;Y) is convex (lower

convex) in Pm|j , for fixed pj . Similarly, it is concave (upper
convex) in pj for fixed Pm|j [1, Theorem 2.7.4].

It is well-known that the channel capacity is:

max
p

I(X;Y) (3)

and clearly for any fixed quantizer C the capacity of the quan-
tized channel is maxp I(X;Z). Furthermore, the celebrated
Arimoto-Blahut algorithm [2] [3] finds the capacity-achieving
input distribution:

p∗ = argmax
p

I(X;Z). (4)

Since P and C uniquely determine T , the capacity-achieving
input distribution of the quantized channel will be denoted as
a function CAPACITY: p∗ = CAPACITY(P,C).

On the other hand, for any fixed p, it is possible [4]
[5] to find the quantizer C∗ which maximizes the mutual
information,

C∗ = argmax
C

I(X;Z) (5)

which will be denoted as a function QUANT: C∗ =
QUANT(P, p).

The objective in this paper is to find the jointly optimal input
distribution p∗ and channel quantizer C∗ which maximizes the
mutual information:

max
p,C

I(X;Z). (6)

This expression is regarded as the capacity of a quantized
DMC. The algorithm described in this paper either finds a
jointly optimal p∗ and C∗, or it declares a failure.

The rest of this paper is outlined as follows. Section II
describes previous work on the capacity of quantized channels
and summarizes the contribution of this paper. Section III
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describes two key concepts: partial mutual information, a
partial sum of mutual information; and a certificate, the range
of input distributions over which a particular quantizer is
known to be optimal. Section IV describes the main algorithm
which either gives the quantizer and channel input distribution
which maximizes mutual information, or declares a failure.
Section V gives some numerical results that illustrate the
algorithm. Section VI is the conclusion.

II. PREVIOUS WORK AND CONTRIBUTION

The importance of designing channel quantizers has long
been recognized as a topic of interest in information theory
with practical applications. In the 1960s, Wozencraft and
Kennedy suggested using the cut-off rate as a criteria for quan-
tizer optimization [6], and design algorithms for both binary-
input channels and non-binary inputs channels were described
around that time [7] [8]. But the first known reference to using
mutual information to design channel quantizers came in 2002
[9]. An important application is the design of analog-to-digital
converters for communication receivers, and codes for such
systems.

Singh et al. considered the capacity of quantized channels,
but of continuous output channels, partticularly the AWGN
channel [10]. For a fixed quantizer, optimal input distributions
can be found using a cutting-plane algorithm. Since certain
two-bit quantizers can be characterized by one parameter
(for symmetrical channels), joint optimization of the input
distribution and quantizer can be performed in a brute-force
manner. But for three-bit quantization, it was necessary to
resort to an optimization approach that involves alternating
between finding the capacity-achieving input and the optimal
quantizer, but this was not proved globally optimal.

By considering a DMC rather than a continuous output
channel, further progress can be made on this problem. For
a fixed input distribution, there exists a polynomial-time al-
gorithm which gives the quantizer which maximizes mutual
information [4] [5], for a binary input channel. When the
channel outputs satisfy:

log
P1|1

P1|2
< log

P2|1

P2|2
< · · · < log

PM |1

PM |2
, (7)

then for the optimal quantizer, each quantizer output consists
of a convex subset of channel outputs. This quantization
problem is an example of impurity partitions from machine
learning, where convex subsets are known to be optimal [11].
While restricted to binary-input DMCs, this approach finds the
optimal quantizer for otherwise arbitrary channels.

It is also worth noting that the optimal quantizer is known
to be deterministic. That is, for a continuous-output channel
there is no advantage to using dithered quantization [12]. And
for a DMC, probabilistic quantizers are suboptimal [4].

Thus, various optimization problems have been considered.
The channel capacity is a straightforward convex minimiza-
tion problem (Arimoto-Blahut). Finding the optimal channel
quantizer is a concave minimization problem which is NP-hard
in general, but has polynomial complexity when attention is

restricted to binary-input channels. So joint optimization of
the input distribution and the quantizer is a convex-concave
optimization problem, and provably optimal methods remain
elusive.

The contribution of this paper is an algorithm which finds
the jointly optimal input distribution and channel quantizer,
for a given binary-input DMC, or declares a failure. The basic
approach is to augment the quantization algorithm for a fixed
input distribution [4], by adding a “certificate” property. The
certificate is a range of input distributions over which the
channel quantizer (or a partial quantization of the channel)
is known to be optimal. The algorithm can be seen fom
a dynamic programming perspective. Dynamic programming
decompositions are an effective way to show the optimality
of algorithms. Distinct from previous work, this approach can
find the capacity of arbitrary channels.

III. PARTIAL MUTUAL INFORMATION AND ITS
CERTIFICATE

This section considers a partially quantized channel, by
developing the concepts of partial mutual information and
a certificate for a partially quantized channel. After these
preliminary concepts are established, the algorithm to compute
the DMC capacity is given in the following section.

A. Partial Mutual Information

The objective function in (6) is the mutual information
between X and Z:

I(X;Z) =
∑

j

∑

k

pjTk|j log
Tk|j∑

j′ pj′Tk|j′
. (8)

This can be written as:
∑

j

∑

k

pj
∑

m∈C−1(k)

Pm|j log

∑
m∈C−1(k) Pm|j∑

j′ pj′
∑

m∈C−1(k) Pm|j′
.

A partial sum of mutual information is called partial mutual
information in this paper. Partial mutual information is a func-
tion of the input distribution p. The partial mutual information
ιk for output k and quantizer C is:

ιk(p;C) =
∑

j

pj
∑

m∈C−1(k)

Pm|j log

∑
m∈C−1(k) Pm|j∑

j′ pj′
∑

m∈C−1(k) Pm|j′
.

For quantizer outputs 1 to k, quantized using C, the partial
mutual information is:

ι(p;C, k) =
k∑

k′=1

ιk′(p;C). (9)

So the total mutual information for some input distribution
p′ is the sum of all the partial mutual information terms
evaluated at p′:

I(X;Z) = ι(p′, C,K) =
∑

k

ιk(p
′, C).
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Fig. 1: Finding the certificate for ι1(p), the region where ι1(p) ≥ ι2(p).

B. Certificate on Maximum Partial Mutual Information

Consider distinct quantizers C1, C2, . . ., Ci, . . . and some
fixed k. The partial mutual information is: ι(p, Ci, k). The
input which maximizes mutual information can be found:

p∗i = argmax
p

ι(p, Ci, k). (10)

Without loss of generality, assume that the channels are
ordered such that:

ι(p∗1, C1, k) ≥ ι(p∗2, C2, k) ≥ · · · (11)

Let Pi, i = 2, 3, . . . be the domain of p for which C1 has
higher partial mutual information than Ci:

Pi =
{
p
∣∣∣ ι(p, C1, k) > ι(p, Ci, k)

}
. (12)

A certificate for C1, denoted L, is a domain of ι(p;C1, k)
for which C1 achieves the maximum partial mutual informa-
tion over all other quantizations:

L ⊆ P2 ∩ P3 ∩ · · · (13)

Since L is a line segment, it is sufficient to represent L by the
two values " and r:

L = [", r] = {p|" ≤ p ≤ r}. (14)

C. Finding the Certificate

The following subsection gives an explicit method for
finding P2, but can of course be applied for any Pi. Then
the certificate L is found as the intersection P2 ∩ P3 ∩ · · · .

The algorithm input is two partially quantized channels with
partial mutual information ι(p;C1, k) and ι(p;C2, k). Since
C1, C2 and k are fixed, from here, write ι(p;Ci, k) as ιi(p)
since C and k are fixed. The corresponding derivatives are

ι′1(p) and ι′2(p). The derivative of partial mutual information
is:

ι′(p;C, k) =
k∑

k′=1

(
− (Tk′|1 − Tk′|2)(

1

ln 2
+ log2 f(p))

+Tk′|1 log2 Tk′|1 − Tk′|2 log2 Tk′|2

)
, (15)

where f(p) = pTk′|1 + (1− p)Tk′|2.
1) Input: two partially-quantized channels with partial mu-

tual information ι1(p) and ι2(p) with ι1(p∗1) > ι2(p∗2)
2) Initialize: "1 = p∗2 and r1 = p∗2.
3) For i = 1, 2, . . ., find "i+1, the solution in p to:

ι′2("i)
(
p− "i

)
+ ι2("i) = ι1(p)

for which "i+1 ≤ "i. Repeat until a sufficiently accurate
solution " is obtained.

4) For i = 1, 2, . . ., find ri+1, the solution in p to

ι′2(ri)
(
p− ri

)
+ ι2(ri) = ι1(p)

for which ri+1 ≥ ri. Repeat until a sufficiently accurate
solution r is obtained.

5) Output: L = [", r].
The operation of the algorithm is illustrated in Fig. 1. The

key point is that for any r, the line tangent to ι2(p) at r is
greater than or equal to ι2(p):

ι2(p)(p− r) + ι2(r) ≥ ι2(p), (16)

for 0 ≤ p ≤ 1, and equality at r = p. In the region where this
line is less than ι1(p):

{p|ι2(p)(p− r) + ι2(r) ≤ ι1(p)}, (17)

the inequality ι2(p) ≤ ι1(p) holds.

D. Newton-Raphson Method
The Newton-Raphson method is an iterative technique for

finding a root of f(p) which has a derivative f ′(p). Beginning
with an initial value p1, compute:

pi+1 = pi −
f(pi)

f ′(pi)
, (18)

iteratively until a sufficiently accurate value is obtained.
Here, f(p) is the difference between the partial mutual

information function ι(p) and a line. Since ι(p) is strictly
convex, the equality f(p) = 0 has at most two solutions.
However, which of the two solution found by the Newton-
Raphson method depends upon the initial value. For Step 3,
use an initial value of 0. For Step 4, use an initial value of 1.

To deal with this, the above iteration step is modified as:

q = pi −
f(pi)

f ′(pi)
, (19)

and

pi+1 =






0 if q < 0
q if 0 ≤ q ≤ 1
1 if q > 1

. (20)

Because f(x) is convex, this modification does not change the
convergence.
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IV. ALGORITHM TO COMPUTE THE CAPACITY OF A
QUANTIZED DMC

This section describes an algorithm which computes the
capacity of the quantized DMC. A dynamic programming
approach is used. In this way, it is possible to show the
optimality of the algorithm. Note that the algorithm may fail,
but if it does produce a solution, it is an optimal solution.

A. Consideration of Optimality
In dynamic programming, a problem exhibits optimal sub-

structure if the optimal solution contains optimal solutions
to subproblems [13]. The subproblem is as follows. For m
channel outputs quantized to k quantizer outputs (with m ≤M
and k ≤ K and k ≤ m), find Cm,k with certificate Lm,k (that
is, Cm,k is known to be optimal over input distributions in the
set Lm,k). Assume that the optimal quantization:

Ck−1,k−1, Ck,k−1, . . . , Cn−1,k−1 (21)

is known, and each has a corresponding certificate Lk−1,k−1,
Lk,k−1, . . . , Ln−1,k−1.

The solution to the subproblem, forming the iterative step
of the algorithm, is as follows. For some fixed m and k,
and for some n < m, consider a candidate quantizer for
channel outputs 1 to m, denoted C(n)

m,k. This can be formed
by combining the known-optimal quantizer Cn,k−1, with the
quantization of channel outputs n+1 to m to the single output
k. The candidate quantizer is given by:

C(n)
m,k(m

′) =

{
Cn,k−1(m′) if 1 ≤ m′ ≤ n
k if n < m′ ≤ m

. (22)

For each n, compute the input distribution which achieves the
maximum partial mutual information. Then select n∗ for the
quantizer C(n∗)

m,k which has maximum mutual information (here
n∗ corresponds to 1 of the previous section) with certificate
K. Then, the optimal quantizer is C(n∗)

m,k with certificate:

Lm,k = Ln∗,k−1 ∩K. (23)

Note that if Lm,k = ∅, then a valid certificate cannot be found
with this method, and the algorithm declares a failure.

B. Algorithm
The algorithm to compute the capacity of the quantized

DMC is as follows.
1) Inputs:

• Binary-input discrete memoryless channel Pm|j . If
necessary, modify labels to satisfy (7).

• The number of quantizer outputs K.
2) Initialize C0,0 = ∅ and L0,0 = [0, 1]
3) For each k ∈ {1, . . . ,K}, and for each m ∈ {k, . . . , k+

M −K}
a) for each n ∈ {k − 1, . . . ,m− 1}:

• Find C(n)
m,k according to (22).

• Compute p∗n = CAPACITY(P,C(n)
m,k).

b) Select n∗ = argmaxn ι(p∗n;C
(n)
m,k, k)

Fig. 2: The relationship between subproblems for case of M = 5 and K = 3.

c) Find K, the certificate for n∗

d) The locally optimal quantizer is:

Cm,k = C(n∗)
m,k

and the certificate is:

Lm,k = Ln∗,k−1 ∩K.

e) If Lm,k = ∅ then declare a failure. Stop.
4) Outputs. The globally optimal quantizer C∗ is CM,K .

The capacity-achieving input distribution is:

p∗ = CAPACITY(P,CM,K).

The algorithm has polynomial complexity. In step 3, it
can be seen there are three “for each” loops which which
contribute M3 operations. For each of these, it is necessary
to find p∗, which is also polynomial complexity. Note that
finding the certificate has complexity linear in M .

The relationship between the subproblems is illustrated in a
trellis-type diagram in Fig. 2, for M = 5 and K = 3. For any
node Cm,k, lines indicate those Cn,k−1, n = k−1, . . . ,m−1
which are used in step 3.

C. An Alternating Algorithm
An alternating algorithm is presented, which is based upon

the principles similar to Singh et al [10]. By alternating
between the DMC Quantization algorithm [4] (for a fixed
p) and the Arimoto-Blahut algorithm (for a fixed C), this
approach is straightforward:

1) Initialize with i = 1 and p1 = 0.5.
2) Ci = QUANT(P, pi)
3) pi+1 = CAPACITY(P,Ci)
4) If Ci = Ci−1 and i > 1 then stop. Output quantizer Ci

and distribution pi+1.
5) i← i+ 1. Goto step 2.
This algorithm is considerably simpler, but it is not guar-

anteed to find optimum p∗ and C∗. In particular, the capacity
maximization may find an input distribution p which is locally
optimal for all possible quantizers, but is distinct from the
global optimal p∗.
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Fig. 3: For a test channel, the capacity of the quantized channel for various DMC outputs
M and various quantizer outputs K.

V. NUMERICAL RESULTS

To illustrate, the following test channel is used. A BPSK
channel with data-dependent noise is used, where Gaussian
noise with variance 4 is added to −1 and Gaussian noise with
variance 0.1 is added to +1. A DMC is formed by uniformly
quantizing this between −1 and +1 to M levels.

A. Quantized Channel Capacity for the Test Channel
The quantized channel capacity of the test channel is shown

in Fig. 3 for various values of M and K, with K < M .
The unquantized channel capacity is also shown. Generally,
a DMC with a larger number of outputs M has a greater
channel capacity, for fixed K. Note an exception for M = 5
and M = 8, where the later has greater channel capacity. This
may be attributed to relatively coarse channel quantization,
where the boundaries for the M = 5 test channel are more
suitable for quantization to K = 2.

For this particular test channel, the alternating algorithm
of Subsec. IV-C produced the same quantizer and input
distribution.

B. Algorithm Failure
The algorithm is able to certify the output. That is, if an

output is produced it is known to be optimal. Otherwise, the
algorithm declares a failure. Table I lists various combinations
of M and K for the test channel. Cases where the algorithm
failed are marked “F” (and success is marked “-”). The algo-
rithm is more likely to fail when attempting to resolve small
differences between competing quantizers. In these cases, the
new certificate is relatively short, and has no overlap with the
prior certificate, which may also be short. When there is no
intersection, the capacity-achieving input distribution cannot
be found.

VI. CONCLUSION

This paper has presented an algorithm which computes
the capacity of quantized discrete memoryless channels. For

K

M 2 3 4 5 6 7 8 10 12 14 16 20
4 - -
5 - - -
6 - - - -
7 - - - - -
8 - - - - - -

10 - - - - - - -
12 - - - - - - - -
16 - - - - - - - - - -
32 - - - - - - - F F F F F
64 - - F - - F F F F F F F

TABLE I: Test channels which failed are marked “F”, and “-” indicates an optimal solution
was provided.

a quantizer with K outputs, the algorithm may find the
input distribution and quantizer which maximizes the mutual
information. If it does not find these, then it declares a failure.

Jointly maximizing mutual information in both the input
distribution and the quantizer is concave-convex optimization
problem; this class of problem is NP-hard in general. However,
by exploiting the properties of efficient quantizers (described
in II), polynomial complexity is possible. The optimality of the
solution produced by the algorithm can be shown by dynamic
programming techniques.
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