
Recovering Synchronization with Iterative Decoders:
LDPC Codes

Raúl Martı́nez-Noriega
Grad. School of Electro-Comms.

The University of Electro-Comms.,

Tokyo, Japan 182-8585

Email: raul@ice.uec.ac.jp

Brian Kurkoski and Kazuhiko Yamaguchi
Grad. School of Informatics and Eng.

The University of Electro-Comms.,

Tokyo, Japan 182-8585

Email: {kurkoski,yama}@ice.uec.ac.jp

Kingo Kobayashi
Inform. Security Research Center

National Inst. of Inf. and Comms. Tech.,

Tokyo, Japan 184-8795

Email: kingo@ice.uec.ac.jp

Abstract—We study a new synchronization algorithm based on
low-density parity check codes. The algorithm was developed for
scenarios with redundant information in 2010, [1]. We describe
a revised version of the algorithm and, for the first time, we
discuss the fundamentals about the coding and decoding theory.
The results of this analysis define the scope and restrictions of the
algorithm. We show that the algorithm is capable of recovering
synchronization even in scenarios without redundant information.
The algorithm has the characteristic of using not only cyclically
permutable codes like the related proposals. Nevertheless special
attention must be paid to short codes. Finally, an accurate
approximation of the bound is introduced by using maximum
likelihood decoding.

I. INTRODUCTION

Reliable communications involve techniques to prevent er-
rors generated in the transmissions. Block error-correcting
codes are algorithms that attempt to correct those errors by
dividing the information into blocks and adding redundancy
to each block. However the encoder and the decoder must be
in perfect synchrony, that is they must know exactly where
a certain block begins and ends. Otherwise, even with the
lack of noise, the decoder will emit unintelligible results.
Hence, synchronization is important when the information is
transmitted as blocks called codewords.

Synchronization can be lost due to many reasons. For
example, clipped codewords produced by deletion of symbols
in the channel, interruption of the communication between
transmitter-receiver, carrier phase offset, etc.
One of the first attempts to keep the synchronization was

the use of a special symbol which delimited the end and the
beginning of different codewords, with the constraint that the
special symbol was not a member of the information alphabet.
Morse code applies this technique, and the letter space is the
delimiter among codewords.

Codeword separation is implicit on comma-free codes [2]
and [3]. These codes have the property that no valid codeword
is a prefix of any other valid codeword. Therefore, if the
received stream is read from left to right the codeword is
immediately recognized because it is the only block that looks
like valid codeword. However comma-free codes do not have
such good error correction capability as other good codes. In
addition, if the code length is large, the decoding produces
delays.

In 1965, Levenshtein proposed binary codes which aided
maintaining the synchronization [4]. His aim was not code-
word separation, he defined a code that is capable of recover-
ing a codeword with s or fewer deletions or insertions instead.
However, depending on the code, some restrictions must be
applied. For example, the code can correct only one deletion
for every three codewords.
Common codes used in schemes with loss of synchro-

nization are cyclically permutable (CP) codes proposed by
Gilbert [5]. CP codes do not have implicit synchronization
capability by themselves, but the synchronization property
appears if there are redundant codewords at the decoder. An
example of this principle was applied by Kuribayashi [6] in
digital watermarking to desynchronization attacks. Generally,
CP codes are constructed by discarding codewords from a
cyclic code [5] and [7]. Therefore, CP codes have low coding
rates which is its major disadvantage.
Most of the algorithms with self-synchronous capability

are tied to some specific code, e.g. CP-codes, comma-free,
Levenshtein’s codes. However powerful error correcting codes,
e.g. low-density parity-check (LDPC) codes or turbo codes, are
desirable in noisy channels.
LDPC codes, [8] and [9], have better BER performance

than turbo codes for long codes. They work under the general
principle that the longer the code length, the closer they are to
the theoretical channel capacity. Unlike BCH codes, decoding
complexity of LDPC codes increases linearly in its codeword
length. Besides LDPC codes have been shown to approach the
capacity of various channels.
In [10] and [11], LDPC codes have been already used in

schemes that keep the transmitter and the receiver in sync.
However, the desynchronization problem is from a different
nature. They both assume desynchronization because carrier
phase offset which differs from the aim of this paper. They
do not consider loss of synchronization because of clipped
codewords at decoder.
We consider scenarios where the desynchronization is due

to deletions in the channel that produce clipped codewords at
the receiver. This problem is common in digital watermarking
where attacks like clipping causes desynchronization [12]. The
problem is described and formulated in Sec. II.
In Sec. III, we describe a revised and extended version of

ISITA2010, Taichung, Taiwan, October 17-20, 2010

978–1–4244–6017–5/10/$26.00 c© 2010 IEEE
490

the self-synchronous algorithm introduced in [1] with addition
of the fundamentals behind the synchronization capability.
The algorithm assumes a received bit stream with redundant
codewords where there are clipped codewords. Thus, the
decoder achieves synchronization with the nearest unclipped
codeword.
The algorithm is analyzed, the scope and restrictions are

defined and the performance is shown through simulations in
Sec. IV. We show that the difference between synchronized
transmission and our algorithm is reduced when the code
length is increased. The algorithm is also capable to recover
synchronization in scenarios without redundant codewords.
We introduce an idea about the performance bound of the

proposed algorithm, in Sec. V, with the aid of maximum
likelihood decoding. An interesting point about the bounding
analysis is the generation of a code which is non-linear but
with cyclic-like characteristics.
Finally, our proposal is not restricted to a specific code,

e.g. CP-codes. Indeed, a wide variety of codes can be used
including non CP-codes. Sec. VI concludes the paper.

II. PROBLEM DESCRIPTION AND STATEMENTS

Consider transmissions where codewords Ci from a code-
book C are sequentially and iteratively transmitted p > 1
times each of them, i.e. the same codeword Ci is continuously
transmitted p times before a different codeword Cj could be
transmitted:

. . . , Ci
1, C

i
2, . . . , C

i
pC

j
1 , C

j
2 , . . . , C

j
p, . . . ,

and every codeword C = (c1, c2, . . . , cn) contains n bits.

Assume loss of synchronization due to any consecutive
deletion of α bits. Therefore, the decoder obtains a stream
that contains a clipped codeword followed of an unclipped
codeword,

. . . , ciα+1, c
i
α+2, . . . , c

i
n, c

i
1, c

i
2, . . . , c

i
n, . . . ,

thus the decoder does not know where the unclipped codeword
begins. The problem is to recover the synchronization with the
nearest, unclipped codeword.
Deletions could occur among same codewords,

Ci
1, C

i
2, . . . , C

i
p, or different ones Ci, Cj , We will

focus on the former case however the algorithm is not limited
to deletions between same codewords. Any other deletion
pattern, e.g. a bit deletion per each codeword, is out of the
scope of this paper.

III. SYNCHRONIZATION SCHEME

In this Section the proposed algorithm will be described
along with some necessary definitions.

A. Definitions

Let us define C = (c1, c2, . . . , cn) as a codeword of
length n. Thus, one-bit cyclic shift named “cyclic equivalent
permutation” RC of the codeword C is:

RC = (c2, c3, . . . , cn, c1),

in the same way we will find that C contains n cyclic equiv-
alent permutations, RC,R2C, . . . , RnC, where C = RnC.
In 1963, Gilbert [5] defined an error correcting code called

cyclically permutable (CP) code. The main characteristic of
this code is that any valid codeword cannot be obtained by
cyclically permuting another valid codeword.
Definition 1 (Cyclically permutable (CP) code): CP code

is a set of codewords of length n such that for any two
valid codewords Ci = ci1, c

i
2, . . . , c

i
n, C

j = cj1, c
j
2, . . . , c

j
n and

considering t ∈ [1, n− 1]:

Ci #= RtCi,

and for any j, where i #= j,

RtCi #= Cj .

Gilbert [5] and Kuribayashi [7], individually, proposed
constructions of CP codes based on cyclic codes. However
these codes have a disadvantage from the point of view of
coding rate because CP codes are constructed by discarding
cyclic equivalent codewords from the cyclic codebook.
Consider two codewords, Ci and Cj of length n them both.

Hamming distance dH(Ci, Cj) is defined as the number of
bits in which they differ. If the cyclic permutations of the
codewords are considered, define cyclic Hamming distance as:

DH(Ci, Cj) = min
x

dH(Ci, RxCj),

where RxCj means that the codeword Cj has been cyclic
permuted x bits
Definition 2 (CP-distance): In a code (n, k) with 2k code-

words and code length n the CP-distance S is defined:

S = min
i!=j

DH(Ci, Cj). (1)

B. Self-synchronizable decoding

The synchronization capability of the proposed algorithm is
based mainly on the decoding part. The encoder is a traditional
LDPC code which takes blocks of k information bits and
produces codewords of n bits.
The decoder receives a desynchronized stream of noisy bits,

. . . , c̃1, c̃2, . . . , c̃2n−1, . . . , c̃3n, The index of c̃i could or
could not match with the index of a certain codeword, i.e.
c̃1 does not necessarily mean the beginning of a codeword.
The decoding algorithm aims to synchronize with the nearest
unclipped codeword. Fig. 1 depicts this idea.
The algorithm takes the first 2n−1 symbols from the noisy

received stream. Those symbols are divided into n sequences
C̃i of length n, each sequence differs from the previous one
in a shifted bit to the right.
Sum-product algorithm (SPA) with only 1 iteration is ap-

plied to each sequence C̃i producing updated sequences Ĉi.
Hamming distance dH(C̃i, Ĉi) between the updated sequences
Ĉi and its corresponding C̃i is measured.
On the other hand, the number of invalid parity checks Bi

from each sequence Ĉi are computed. With long codes, the
Hamming distance, dH(C̃i, Ĉi), provides reliable information
about which sequence is the synchronized codeword. However

491

Fig. 1. Decoding with self synchronization capability.

for codes with poor CP-characteristics or short codes, the
Hamming distance is not enough because sometimes the
minimum Hamming distance belongs to an invalid codeword.
Hence, how reliable is the Hamming distance dH(C̃i, Ĉi) can
be associated with the number of parity checks violated by
Ĉi.

A simple way to combine the Hamming distance and the
number of violated parity checks is to add them. Then the met-
ric mi, which decides whether a sequence C̃i is synchronized,
is computed with:

mi = dH(C̃i, Ĉi) +Bi. (2)

Finally, the synchronized codeword is assumed to be the
sequence which minimizes, C̃syn = minimi, the metric.
Therefore, only C̃syn is decoded using full iterations with SPA
decoding. If |mini mi| > 1, where | · | is the cardinality, the
first element of the vector mi is taken as the synchronized
codeword.

For example, consider the next CP-codebook C :

0 0 0
1 1 0.

Assume that the next stream was transmitted:

1 1 0 1 1 0 1 1 0,

then desynchronization occurs because deletion of the first two
bits producing 0 1 1 0 1 1 0. According to the algorithm, the
first 2n−1 = 2(3)−1 = 5 bits are taken 0 1 1 0 1 and divided

into sequences C̃i of n=3 continuous bits:

C̃1 = 0 1 1

C̃2 = 1 1 0

C̃3 = 1 0 1.

Each sequence C̃i is updated with SPA producing Ĉi.

C̃1 = 0 1 1 #= Ĉ1

C̃2 = 1 1 0 = Ĉ2 = 1 1 0

C̃3 = 1 0 1 #= Ĉ3

∴
dH(C̃1, Ĉ1) > 0, B1≥0

dH(C̃2, Ĉ2) = 0, B2=0

dH(C̃3, Ĉ3) > 0, B3≥0

Since {C̃1, C̃3} /∈ C hence C̃1 #= Ĉ1 and C̃3 #= Ĉ3 because
SPA attempts to correct the errors. Thus, C̃2 is the only
sequence with metric m2 = dH(C̃2, Ĉ2)+B2 = 0 equal to
zero and therefore C̃syn = minimi = C̃2, i ∈ [1, 3], is the
correct and synchronized codeword.

Let us think about the input segment of 2n− 1 bits which
is processed by the decoder. Assuming that desynchronization
occurred between the same codewords, then the segment
of 2n − 1 contains the codeword Ci = (ci1, c

i
2, . . . , c

i
n)

concatenated with a prefix Ci
pre = (ci1, c

i
2, . . . , c

i
l) or suffix

Ci
suf = (cit+1, c

i
t+2, . . . , c

i
n) of the same codeword Ci, for

{l, t} ∈ [1, n). That is, the decoder could obtain one of the next
concatenations: [Ci

suf , C
i], [Ci, Ci

pre] or [Ci
suf , C

i, Ci
pre].

Without distinction about which concatenation the decoder
could obtain, all the n-tuples inside that segment are cyclic
equivalent codewords of Ci. This claim can be proved with
Theorem 1.

Theorem 1 (Cyclically equivalent codewords): Any
sequence of n consecutive bits taken from the concatenation of
[Csuf , C], [C,Cpre] or [Csuf , C, Cpre] is a cyclic equivalent
codeword of C = (c1, c2, . . . , cn), where C has length n and
Csuf = (ct+1, ct+2, . . . , cn), Cpre = (c1, c2, . . . , cl) are its
suffix and prefix respectively with {t, l} ∈ [1, n).
Proof: A cyclic permutation RtC of a codeword C =

(c1, c2, . . . , cn), where 1 ≤ t < n, is defined as:

RtC = (ct+1, ct+2, . . . , cn, c1, . . . , ct). (3)

Let us analyze the first case when [Csuf , C]. If C has length n,
thus its suffix is:

Csuf = (ct+1, ct+2, . . . , cn).

Then, the concatenation of [Csuf , C] produces:

[Csuf , C] = (ct+1, ct+2, . . . , cn, c1, c2, . . . , cn).

Taking any sequence of n consecutive elements from
[Csuf , C], we obtain:

ct+1, ct+2, . . . , cn, c1, . . . , ct,

which is exactly the definition of cyclic permutation (3) of the
codeword C.

Second case, [C,Cpre]. Since C has length n, the first n
consecutive bits are the codeword C itself. From the second n
consecutive bits the problem turns to be:

[Csuf , Cpre] = (ct+1, ct+2, . . . , cn, c1, c2, . . . , cl),

and

Cpre = c1, c2, . . . , cl,

492

with 1 ≤ l < n. Considering that Csuf has n − t elements,
any consecutive string of n inside [Csuf , Cpre] is defined as:

ct+1, ct+2, . . . , cn, c1, . . . , ct,

which is again the definition of cyclic permutation (3).
In the last case when [Csuf , C, Cpre], there cannot be

a sequence of n consecutive bits which contains elements
of both Csuf and Cpre at the same time, because there is
a codeword C of length n between them. Therefore, this
problem can be broken in two sub-problems: [Csuf , C] and
[C,Cpre] which were already proved. "
If the encoder uses CP codes then no cyclic equivalent

codeword of Ci exists in the codebook. Therefore is expected
that the desynchronized sequences obtain more errors, because
those sequences are invalid and also due to the channel
noise. In consequence, SPA’s convergence will need greater
number of iterations and its number of invalid parity checks
after the first iteration must be considerable. Then, computing
dH(C̃i, Ĉi) and its reliability with Bi we can obtain a reliable
guess about which C̃i is the synchronized codeword.
When the code is not precisely a CP code, it must have

good CP-characteristics or a long code length. Good CP-
characteristics mean that the code must have the less possible
number of equivalent codewords in its codebook. For short
codes, this can be achieved with equivalent codes generated
by elementary row operation in its generator matrix.
With long codes is difficult to say that a code is strictly

CP code because the number of codewords is huge. However
this characteristic itself is a great advantage in our algorithm
because the probability that any desynchronized sequence
belongs to the codebook is reduced when the code length is
increased. For long codes is expected that our method performs
very close to perfect synchronized transmission.
It has been discussed the specific case when desynchro-

nization happens between the same codewords. However
desynchronization may also occur among different codewords,
producing different concatenations, [Ci

suf , C
j], [Ci, Cj

pre] or
[Ch

suf , C
i, Cj

pre] where Theorem 1 does not hold. However if
the code is large, the probability of errors due to an invalid
sequence RtCj turns into a codeword Ci, including j = i, is
low. We refer to this error as mis-decoding.

IV. PERFORMANCE OF SELF-SYNCHRONIZABLE

DECODING SCHEME

In this Section comparison between desynchronized trans-
missions using the proposed algorithm and perfect synchro-
nized transmissions are shown. The channel is a binary phase-
shift keying with additive white Gaussian channel (AWGN).
Finally, the scopes of the algorithm are discussed.
One of the advantages of this proposal is that a wide variety

of codes, e.g. short or long, can be used. Fig. 2 shows the
comparison between the proposed algorithm and synchronized
transmission for a tiny LDPC code with rate .25, code length
12 and CP-distance S = 2. The simulation was conveyed
by applying desynchronization to every transmitted codeword
but, in this case, the desynchronization happens only among

0 2 4 6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

desyncrhonized: proposal

synchronized

Fig. 2. Performance comparison between a synchronized transmission and
our self-synchronizable decoding proposal over AWGN channel using a tiny
LDPC code.

−1 0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

synchronized

desyncrhonized: proposal

Fig. 3. Performance comparison between a synchronized transmission and
our self-synchronizable decoding proposal over AWGN channel using a non
CP-code: high rate LDPC code.

redundant codewords. The difference of performance is about
3 dB between both methods. This big gap is due to the code
is very short, but is expected that the performance of both
methods tend to be the same with large codes.
The proposed algorithm is not restricted to CP-codes, how-

ever attention must be paid to the CP-characteristics of the
code. That is, the code could have CP-distance S = 0 but
the code should contain a few number of equivalent cyclic
codewords. Fig. 3 shows the previous idea. In this simulation
the code is a high rate LDPC code with length 495 and rate .87,
whether this code is precisely a CP-code or not is difficult
to compute. Nevertheless, since the code is high-rate then is
highly probable that the CP-distance is zero. In this case, the
code length is bigger than Fig. 2 and therefore the difference
between both methods has been reduced to only 1 dB.
In general, the proposed method works with codes of

different lengths. The longer the code the better performance
and less restrictions.

493

1.5 2 2.5 3 3.5 4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

synchronized

desynchronized: A

desynchronized: B

Fig. 4. Recovering synchronization due to, A: deletions among same
codewords and B: deletions among different codewords.

When the fundamentals behind this proposal were explained
in Sec. III-B, we assumed that the desynchronization occurred
in places with redundant codewords. We also explained that
Theorem 1 does not hold when desynchronization happens
among different codewords. However, if the code has long
code length or good CP-characteristics the probability of mis-
decoding due to desynchronization among different codewords
is low and the proposed algorithm performs as well as before.

Fig. 4 pictures the above situation. We used a half rate
LDPC code with length 504. “synchronized” scheme is a
normal transmission which was perfectly synchronized and
only contaminated with AWGN. “desynchronized: A” is our
proposal when the desynchronization happens only among
redundant codewords and “desynchronized: B” is when desyn-
chronization occurs among different codewords. Without dis-
tinction of the desynchronization place, the algorithm performs
around .75 dB less than perfect synchronized transmission for
low SNR and almost the same for high SNR. Comparing the
gaps between synchronized transmission and our method in
Figs. 2, 3 and 4, we are aware that the difference is reduced
when the code length is increased.

Certain short codes are desirable in specific situations due
to its good error correction capability or because of constraint
length in the system. Those codes must have good CP-
characteristics in order to work properly with our algorithm.
That is, the less number of cyclic equivalent codewords in the
codebook, the better.

Equivalent codes can be generated by applying elementary
row operation in the generator matrix G. Those equivalent
codes have a different number of cyclic equivalent codewords.
Therefore, is preferable to choose a code with the minimum
number of equivalent codewords.

In Fig. 5, a simulation using two equivalent tiny codes
with the proposed algorithm is shown. First, a random LDPC
code of length 20 is generated. However its performance
is bad because it contains 60 cyclic equivalent codewords.
Using its generator matrix, G, an equivalent code is found

2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

LDPC(20,7): 60 cyclic equivalent codewords

LDPC(20,7): 0 cyclic equivalent codewords

Fig. 5. Short codes: Performance of equivalent codes for desynchronized
transmissions.

by elementary row operations. The equivalent code contains
0 cyclic equivalent codewords and it performs well with our
method.

The main restrictions of this algorithm are two. The first one
is related with the kind of code. By definition 3, a cyclic code
contains the cyclic permutation of each valid codeword which
is exactly what our algorithm is trying to avoid. Therefore
cyclic codes are not suitable for this proposal.

Definition 3 (Cyclic Code): The linear code C c of length
n is a cyclic code if it is invariant under a cyclic permutation:

Ci ∈ C c ⇔ RtCi = Cj ∈ C c, for t ∈ [1, n).

Then, a cyclic code contains all n cyclic permutation of any
codeword.

The second restriction comes from the desynchronization
nature. This proposal assumes that after the continuous dele-
tion of α bits, there is a segment of 2n−1 bits which contains
the unclipped codeword C. Any other deletion pattern, e.g. one
deleted bit every codeword or similar, is out of the scope of
this proposal.

If the synchronized codeword were exhaustible searched in
a segment of 2n−1 bits, the decoder will need n×λ iterations
to find the correct codeword, where n is the code length and
λ is the number of iteration allowed by SPA. However this
complexity is highly reduced in our algorithm because it only
needs at most n+ λ iterations.

V. TOWARD THE BOUND: MAXIMUM LIKELIHOOD

DECODING

The proposal’s behavior has been defined and also its scopes
have been discussed. However a theoretical bound that ensures
the reliability of the algorithm is needed. In this Section, we
introduce a simple approach based on maximum likelihood
(ML) decoding which tends to bound the errors. Let us define
C as the code used in our proposal. For convenience, a tiny
LDPC code (12,3) will be used as toy example.

494

−4 −2 0 2 4 6 8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

synchronized

desynchronized: proposal

desynchronized: proposal ML

synchronized: ζ*

Fig. 6. Maximum likelihood decoding for our proposal and its potential
bounded code.

Recapitulating, the proposed algorithm works under the
premise that no cyclic equivalent codeword of a valid code-
word Ci exists in the codebook or the number of cyclic equiv-
alent codewords are very few. Consider codewords {Ci, Cj} ∈
C including i = j. Thus, the algorithm produces a decoding
error when either: an invalid sequence RtCj becomes Ci

or when the synchronized codeword Ci becomes a cyclic
equivalent codeword RtCj of any valid codeword in the
codebook.
Now, let us think about a cyclic code C c. For any codeword

Ci in a cyclic codebook, its cyclic equivalent codewords are
also valid codewords. Then, a decoding error occurs when
either any cyclic equivalent codeword RtCj becomes Ci or
vice versa, including i = j.
This behavior of cyclic codes under normal circumstances,

i.e. synchronized transmissions, is very similar to our desyn-
chronized model. Therefore, would be natural to think that the
proposed algorithm could be bounded by a cyclic code C c over
a synchronized transmission, in which C is a subcode of C c.
However, it turns that the code C c cannot be generated when

C is extended, that is when all cyclic equivalent codewords
of C are computed. A special code which is neither linear
nor cyclic appears instead, we will define this code as C ∗.
Therefore, well-known bounds for linear codes, e. g. union
bound, cannot be applied.
Fig. 6 shows a simulation using the previous idea with a

tiny LDPC code, rate .25 and code length 12. “synchronized”
refers to synchronized transmission using C , “desynchronized:
proposal” is the proposed algorithm with desynchronization
and the codebook C , “desynchronized: proposal ML” means
the proposal with ML decoding and C , finally “synchronized:
C ∗” stands for the potential bound using codebook C ∗,
synchronized and with ML decoding. This simple idea shows

a good approximation about the bound for the algorithm
described in this paper.

VI. CONCLUSION

Synchronization is a very important issue for transmission
where the information is sent in blocks. In this paper, we
described a revised version of our proposal for transmission
with loss of synchronization and we extended that study by
defining its scope and restrictions.
The results showed that the algorithm is capable to use a

wide range of codes, short and long ones. It is not restricted
to CP-codes as previous proposals are. When short codes
are needed, a solution was proposed by computing equivalent
codes with better CP-characteristics.
Two major restrictions of this algorithm are the deletion

pattern and the incompatibility with cyclic codes, that is the
algorithm cannot work with cyclic codes. The algorithm is
defined only for channels where continuous deletion occurs,
e.g. watermarking under clipping attack.
Finally, an idea for bounding the number of errors in the

algorithm was introduced. An important point is that the
potential code which could bound the number of errors is
neither linear nor cyclic. This idea was demonstrated with
ML decoding and it produced almost the same curve as ML
decoding. As future work, we are planning to polish the bound.

REFERENCES

[1] R. Martinez-Noriega, I. Abe, and K. Yamaguchi, “Self-synchronizable
decoding algorithms for transmission with redundant information at
decoder,” IEICE Trans. on Fundamentals of Electronics Comms. and
Computer Science, 2010.

[2] S. W. Golomb et al., “Comma-free codes,” Canadian Journal of Math-
ematics, vol. 10, no. 2, pp. 202–209, 1958.

[3] H. Imai, “A construction method for path-invariant comma-free codes,”
IEEE Trans. on Inf. Theory, vol. 20, no. 4, pp. 555–559, 1974.

[4] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Cybernetics and Control Theory, vol. 10, no. 8,
pp. 707–710, 1966.

[5] E. N. Gilbert, “Cyclically permutable error-correcting codes*,” IEEE
Trans. on Inf. Theory, vol. 9, pp. 175–182, 1963.

[6] M. Kuribayashi and M. Morii, “Spread spectrum watermark with self-
synchronization capability,” in Proc. of SCIS, Sasebo, Japan, Jan. 2007.

[7] M. Kuribayashi et al., “How to generate cyclically permutable codes
from cyclic codes,” IEEE Trans. on Inf. Theory, vol. 52, no. 10, pp.
4660–4663, 2006.

[8] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Inf.
Theory, vol. 8, no. 10, pp. 21–28, 1962.

[9] D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, 1999.

[10] W. Matsumoto and H. Imai, “Blind synchronization with enhanced sum-
product algorithm for low-density parity-check codes,” in Proc. of The
5th Int. Symp. on Wireless Personal Mult. Comms., Oct. 2002, pp. 966–
970.

[11] H. Steendam et al., “Iterative carrier phase synchronization for low-
density parity-check coded systems,” in Proc. of IEEE Int. Conf. on
Comms., May 2003, pp. 290–294.

[12] R. Martı́nez-Noriega, M. Nakano, and K. Yamaguchi, “Self-synchronous
time-domain audio watermarking based on coded-watermarks,” in Proc.
of Int. Conf. on Int. Info. Hiding and Mult. Sig. Process., Oct. 2010.

495

