Globecom 2012 - Symposium on Selected Areas in Communications

WOM Codes Reduce Write Amplification in NAND
Flash Memory

Xiang Luojie
Department of Computer Science
Purdue University
West Lafayette, IN 47907, USA
xiang7 @purdue.edu

Brian M. Kurkoski
School of Information Science
Japan Advanced Institute of
Science and Technology (JAIST)
Nomi, Japan

Eitan Yaakobi
California Institute of Technology
yaakobi @caltech.edu

kurkoski@ieee.org

Abstract—This paper proposes a NAND flash system that uses
Write-Once Memory (WOM) codes to encode the data stored. It
is shown through both analysis and simulation that, with proper
parameters, flash memories which use WOM codes to encode
data can achieve a lower write amplification than in a non-
WOM-coded system. For example, in a 16-level per cell flash
memory, when a two-write MLC WOM code is used with a total
overprovisioning of 0.8, the write amplification is 15% lower
than a non-WOM-coded system. A closed-form expression for
the write amplification in a WOM-coded system is given for a
system with a greedy garbage collection policy and a uniform
random workload. The proposed expression is a function of the
total overprovisioning factor, number of WOM code writes, and
number of values per cell. The expression is applicable for both
SLC and MLC flash.

I. INTRODUCTION

Recently, flash memories have become widespread, being
used in cell phones, memory cards, SSDs, USB disks etc. This
is because flash memory has many advantages over traditional
hard disk drives, such as lower power consumption, lower read
latencies, mechanical reliability, and smaller size [1] [2]. MLC
flash memory has gained substantial attention because it has
higher density, lower cost per bit and a comparable read speed
compared to SLC flash [10] [14]-[16]. In this paper, MLC
refers to two or more bits per cell.

Flash memory is organized physically in blocks of fixed
size. Each physical block contains a fixed number of pages
with fixed size. The page is the unit of reads and writes. All
flash memory has an ‘erase-before-write’ characteristic [3].
Conventionally, this means, once a physical page is written, it
must be erased before it can be written again. Flash memory
adopts block erase. This makes erasing whenever an update
on a physical page is needed extremely inefficient.

To solve this problem, a controller is implemented to present
a logical address space over the physical space. When an
update on a logical page is issued, the controller writes the
data to an empty physical page, then invalidates the old
page. This scheme is called out-of-place write. Out-of-place
write introduces invalidated pages (referred to as invalid page
later). Invalid pages accumulate over time, consuming the
physical space without storing data. Garbage collection is then
periodically used to change invalid pages into empty pages.

978-1-4673-0921-9/12/$31.00 ©2012 |[EEE

The general steps of garbage collection are: first select a
physical block, then copy the valid pages into some auxiliary
space, then erase the block, and finally copy the valid pages
back. The copy operation introduces unwanted physical writes.
This phenomenon is referred to as write amplification. Write
amplification W A is defined as the average number of physical
writes per logical write:
average number of physical writes

WA = _ —. (D
average number of logical writes

Write amplification reduces the lifetime of flash memory and
causes significant system overhead.

Write amplification reduces the lifetime because flash mem-
ory can tolerate a limited number of program-erase cycles
before it becomes unreliable. The latest multi-level cell (MLC)
memories can endure around 10* program-erase cycles and
single-level cell (SLC) memories can endure around 10° cycles
[1] [2]. Therefore, reducing the number of program-erase
cycles is very important for flash memory, especially MLC
flash. This means write amplification should be minimized.

To reduce write amplification, a common practice is to allow
the user to access only a portion of the raw flash memory
space. This is referred to as overprovisioning and the amount
of overprovisioning is the ratio between the additional space
and the total logical space. It has been shown that write
amplification is reduced by increasing the amount of over-
provisioning. Previously, most work analyzed the influence
of flash system parameters over write amplification, such as
overprovisioning, total number of blocks, number of pages per
block etc., as well as the influence of usage patterns such as
data placement strategy for hot cold data, and access pattern
(sequential, random) etc. [4]-[6].

WOM codes are a coding technique that allow multiple
updates on a flash memory cell without erases. The original
WOM codes, proposed by Rivest and Shamir [8] were binary
codes that are suitable for SLC flash. Since then, several recent
works studied MLC WOM codes and the capacity of both
SLC and MLC WOM code [9] [11]-[13]. Fu and Han Vinck
found the WOM capacity for ¢ writes to g-ary storage cells.
Jagmohan et al. proposed a multi-write coding scheme to
encode the data stored in flash to reduce write amplification

3249

[1]. Their work achieved a lower write amplification than a
non-coded system. However, they assumed data compression
which causes system overhead. In addition, their work was
based on simulation rather than analysis.

This paper extends Jagmohan et al’s work and examines
write amplification when the stored data are encoded with
WOM codes. In a non-WOM-coded system, an update results
in writing on a free page and an invalid page that is erased
later (recall out-of-place write). In a WOM-coded system,
however, some updates can be accommodated by eraselessly
reprogramming on the old data. This reduces the number
of program-erase cycles per logical write, which is called
memory wear. Despite the benefit of reducing memory wear,
WOM codes can cause an increased write amplification in
SLC flash memory reducing its contribution.

This paper shows through both analysis and simulation
that, with proper system parameters, applying WOM codes
can achieve a lower write amplification than non-WOM-coded
flash memory. For a 16-level-cell flash memory, when a two-
write WOM code is used with a total overprovisioning of 0.8,
the write amplification is 15% lower than that of a non-WOM-
coded system. This paper also gives a closed-form expression
for the write amplification when WOM codes are used. The
closed-form expression is a function of the overprovisioning
factor piotal, the number of WOM code writes ¢, and the
number of values per physical bit g. This work does not use
data compression.

II. SYSTEM MODEL
A. Capacity-Achieving WOM Code

For a t-write WOM code, the rate on the i-th write R;
bits/cell, for ¢ = 1,2,...,¢t. Then, the capacity is the upper
bound on the achievable sum rate [6]:

R1+R2+---+Rt§10g2(q+i 1)7 2
where ¢ is the number of levels stored in a cell. A penalty
expansion factor indicates the additional memory required for
the WOM code:

tlogs q

"2 o () ¥
It is possible to achieve equality in Eq. (2) only when all
individual rates on each write are different. This paper uses
WOM codes with equal rates. So, we use Eq. (3) in order
to form a lower bound on the write amplification. The actual
construction scheme of WOM codes is beyond the scope of
this paper. The write amplification value while using specific
WOM code constructions remains an open problem.

B. WOM-Coded System Model

This paper models the physical flash memory as a block
pool containing 7' blocks. Each block has a fixed number
of NN, pages. The logical memory space is modeled as a
continuous space with UN, pages, where each logical page
has a fixed size S,. WOM codes are used to encode the data

stored in the physical space. In order to maintain the physical
page alignment, the size of a physical page is assumed to
be the same as a WOM code word. Because the WOM code
has an expansion factor 7, the size of a physical page is Spr.
A physical page has ¢ 4 2 states. A free page, denoted by
state 0, is a physical page that has not been written and can
accommodate a new write. A valid page is a physical page
that has been written and stores valid data. Because a ¢-write
WOM code supports ¢ writes on a physical page, a valid page
has ¢ states from state 1 to state . An invalid page, denoted
by state ¢ + 1, is a page that has been marked invalid due to
an out-of-place write.

The controller handles the physical details of the flash
memory and presents a logical space similar to hard disk
drive to the operating system. It implements the WOM encoder
and maintains metadata. The WOM encoder encodes the data
of each write request into a WOM codeword. The metadata
includes a LPA-PPA (logical page address - physical page
address) mapping table which maps logical page addresses
into physical page addresses. Another table is maintained in
the metadata to store the current state of each physical page
(0,1,...,t+1) which indicates the number of writes available.
Once there is a change in the LPA-PPA mapping table or the
state of a physical page, the controller updates the metadata
accordingly.

This paper assumes a random uniform workload on the
logical space. This means the write requests are randomly
and independently distributed on the logical space. We are
interested in this scenario as the write amplification has the
worst performance under this random workload.

The following describes the operation of the system. Ini-
tially, the logical space is empty. Write requests come to the
logical space in a random manner. A new write is referred
to as the case where a write request addresses an empty
logical page. The controller finds a free physical page using the
metadata, encodes the data into a WOM codeword and writes
the codeword into that physical page. The LPA-PPA mapping
table is updated accordingly. If a write request addresses a
written logical page, this is called an update. Upon an update,
the controller looks up the corresponding physical page of the
addressed logical page in the LPA-PPA mapping table. The
controller checks the state of this physical page. If it is smaller
than ¢, the physical page can still be eraselessly reprogrammed
(in the case of t-write WOM code). The controller encodes
the data into a WOM codeword, eraselessly reprograms this
codeword into that physical page and adds one to the state
of this physical page in the metadata. If this physical page
is at state ¢, an out-of-place write takes place. The controller
marks that physical page as invalid (state ¢ 4 1), finds another
free physical page, writes the encoded codeword into that free
physical page and updates the LPA-PPA table.

When there are no more free pages for a requested up-
date, garbage collection is performed. This work assumes a
greedy garbage collection policy. That is, garbage collection
is triggered only when there are no free pages in the physical
space. The block with the maximum number of invalid pages

3250

—— True Average
x/2

2

0.008

8

Distribution of /
°
H

Distribution of /

— True Average —— True Average
x/2 x/2

Distribution of /

200 250

100 150
Number of Invalid Pages

@t=1

100 150
Number of Invalid Pages

(b)yt=2

200 250 200 250

100 150
Number of Invalid Pages

©t=3

Fig. 1: Distribution of number of invalid pages in a random block [

is selected for garbage collection. Once a block is selected
for garbage collection, all valid pages in this block are copied
out to some auxiliary space. The whole block is erased and
becomes free. The valid pages are then copied back and finally
the LPA-PPA mapping table is updated. We note that we use
the greedy garbage collection as it was proved to be optimal
under random workload [6]. Wear leveling algorithms are not
used. Therefore write amplification is only a result of the copy
operation in the garbage collection. We also note that we are
aware that the page writes in flash memory blocks should
be performed sequentially due to the restrictions imposed by
flash memory chips. In our model, it may happen that page
updates are not written sequentially in a block. It is possible
to guarantee this sequential write property. However, we leave
this for a future work, while in this work we allow non-
sequential writes in a block as was done in [1].

In a non-WOM-coded system, the traditional overprovision-
ing comes from the invalid pages. In a WOM-coded system,
WOM code causes data expansion by a factor of r and requires
more overprovisioning. In order to determine the expression
for both levels of overprovisioning, we propose an imaginary
memory space called *Apparent Memory’ which lies between
the logical and physical memory. The page size of the apparent
memory is the same as that of logical memory S,, and it
has the same block and page organization with the physical
memory. The only difference between the apparent memory
and physical memory is that the physical page size is larger
by a factor of r due to the WOM code. The size of the logical
memory is:

Slogical = UNpSp- “4)

The size of the apparent memory is:

Sapparent = T'NpSp,. (5)
The size of the physical memory is:

Sphysical = T NpSpr. (6)
Therefore, the traditional overprovisioning factor is:

Sapparent - Slogical o TNpSp - UNpSp _ T-U
B UN,S, U

p—)

Slogical

The total overprovisioning factor is:

Sphysical - Slogical TNPSP’I’ - UNPSP . Tr—-U

Ptotal — -

Slogical UNpSp U
®)
The two overprovisioning factors are related by:
1
_ Protal + _ 1. 9)
r

This work applies for both SLC and MLC flash memory.
The distinction is that, g-level MLC WOM codes are used for
g-level MLC flash.

III. WRITE AMPLIFICATION ANALYSIS

This section derives an expression for the write amplifica-
tion in a WOM-coded system. There are two techniques that
were developed for non-WOM coded systems. The first was
proposed by Agarwal et al [2]. They expressed the average
number of invalid pages in a random physical block in two
ways and obtained the expression for write amplification by
setting these two expressions equal. The second technique
finds two ways to express the number of invalid pages in the
block selected for garbage collection, and derived the expres-
sion for write amplification by setting these two equations
equal [7],

1+ Protal

WA= ,
1 + Ptotal + W((*]. — ptota|)671*Ptotal)

(10)

where W(z) is the Lambert W Function. This technique has
also been used in the scenario where TRIM commands are
used [17]. In a non-WOM coded system, this technique gives
a more accurate expression. Accordingly, Eq. (10) will be used
for the write amplification in a non-WOM-coded system. In
this analysis, for WOM-coded system however, Agarwal et al’s
technique will be used because the latter technique cannot find
a closed-form solution for write amplification in WOM-coded
system.

It is shown later that write amplification depends on the
number of invalid pages in the block selected for garbage
collection, denoted x. Therefore, an expression for z must be
found in order to obtain the expression for write amplification.

3251

Two methods are used to find the expression for the average
number of invalid pages in a block over the physical space
denoted a,. The expression for x is obtained by setting these
two expressions equal.

Let I denote the number of invalid pages in a randomly
selected block in the physical space. Extensive simulation
shows that, after a sufficiently large number of logical writes
this distribution becomes stationary [2]. Another interesting
point is that, the use of WOM codes changes the distribution
of I. Fig. la shows this distribution in a non-WOM-coded
system, namely ¢ = 1 where U = 1280, p = 0.25, N, = 256.
Simulation shows that, when ¢ > 2, the distribution of I
appears roughly symmetric. Fig. 1b and Fig. 1c show the
distribution of I when U = 1280, N, = 256, ¢ = 1024
with ¢ = 2, protal = 0.3 and ¢ = 3, proral = 0.4 respectively.
The minimum value of the distribution is 0 and the maximum
value is x, the number of invalid pages in the block selected
for garbage collection (recall the greedy garbage collection
policy). The first way to find the expression for ay, is to analyze
the distribution of I.

When the distribution is symmetric, the following is a good
approximation:

(1)

The true average E(/) and the approximation § are shown in
Fig. 1. Agarwal et al. approximated the distribution of I when
t = 1 (Fig. 1a) as a uniform distribution. Clearly, this approach
achieves higher accuracy when ¢ > 2, that is, in WOM-coded
system shown in Fig. 1b, lc. This justifies using Agarwal’s
approach in this analysis.

The second way to obtain an expression for a, is to average
the total number of invalid pages over the number of blocks.
After a sufficiently large number of logical writes, there are
UN, valid pages in the physical space and therefore (T —
U)N, invalid pages. Referring to Eq. (7), let p denote the
proportion of invalid pages in the entire physical space:

T-U p
=—=— 12
P T T+, (12)
The average number of invalid pages in a block is then:
P
a,=Np=N,—"—. 13
p pP P1 1o (13)

Setting Eq. (11) and Eq. (13), the two expressions for ay,
to be equal,

2p
1+p
Notice that x < Np. Substituting Eq. (14) into this equation
yields, p < 1. It should also hold that p > 0 (refer to Eq. (7)).
Therefore, Eq. (14) is valid only when

z=N, (14)

0<p<l. (15)

The following derives the expression for write amplification.
From the definition of write amplification Eq. (1), the write
amplification for the ¢ > 2 WOM-coded system is approxi-
mated by:

N+ (t—1)x
N tw

WA , (16)

28

T T T T T T T
q=32 — * — No WOM Code

% —*— Analysis

26F —&— Simulation

Write Amplification

28 T T T

t=8 — % — No WOM Code
—*— Analysis
—=&— Simulation

26 A

24r

S
[
T

Write Amplification

1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Protal

Fig. 3: Comparison of simulation and analysis for different ¢
when ¢=16.

which is demonstrated in Appendix. Substituting Eq. (14) the
expression for = into Eq. (16),

2tp — 1
WA= PEL (59 (17)
2tp
Substitute piora) for p using Eq. (9),
1 T
WA= —2t—-14 ——), (t>2). 18)
2t(Protal + 1 —71 () (

Substitute pioral into Eq. (15) using Eq. (9), the condition under
which Eq. (18) holds is,
r

—_— > 1.
Ptotal +1 -Tr

19)

Using the equality of Eq. (3), the expansion penalty factor
of capacity-achieving t-write WOM code, into Eq. (18), the
lower bound of write amplification is

t
(ptotal + 1) Iqu (q+§71) —t

), (t=2).
(20)

1
> —
WA—Qt(Qt 1+

3252

Substitute Eq. (3) into Eq. (19), Eq. (20) is valid only when
t
(protal + 1) log, (F171) =t

From Eq. (20) we can see that the write amplification
decreases when piora increases. It is easily shown that write
amplification decreases when ¢ increases. Therefore, from
the point view of reducing write amplification, piotal and g
should be as large as possible, within the limits of practical
constraints. The influence of ¢ over write amplification is
not obvious. Through evaluation of Eq. (20) for practical g
(¢ £16), t = 2 yields the minimal write amplification. This
is not true when ¢ is large. For example, when ¢ = 128 and
Protal = 0.5, t = 3 yields the best result.

> 1.

ey

IV. SIMULATION AND DISCUSSION

Simulations are run to show the validity of Eq. (20), shown
in Fig. 2, 3. Clearly, Eq. (20) gives an accurate prediction
to the simulation value. Fig. 2 is obtained when U = 1024,
t = 2 with varying ¢ and pioa. 7 is determined by Eq.
(3). Fig. 2 shows that the write amplification decreases as
Protal and ¢ increases. It can be seen that when ¢ is small,
considerable reduction on the write amplification can be
achieved by increasing q. However, the influence of g over
the write amplification becomes small when q is large enough.
This figure also shows that when ¢ is large enough, write
amplification can be smaller over all pioa values than that
without WOM code. Fig. 3 is obtained when U = 1024,
g = 16 with varying ¢ and piotal. 7 is determined by Eq.
(3). We can see that when ¢ = 16, a lower write amplification
is achieved with smaller ¢. The write amplification becomes
large very quickly as ¢ grows. Applying two-write WOM code
results in a better write amplification than that without WOM
code when pioral > 0.3.

At this point, it is clear that applying WOM code may
achieve a lower write amplification than that without WOM
code. One interesting point is to find out the condition under
which applying WOM code can achieve a lower write am-
plification. Setting the expression for write amplification of a
WOM-coded system Eq. (20) and a non-WOM-coded system
Eq. (10) to be equal,

t
(Protal + 1) logq (quiil) —t
1+ Ptotal

= Q)
1+ Protal + W((—]_ — ptota|)6717ptotal)

1
—(2t—1+

2t)

Obviously this equation is hard to solve. However, it can
be used for numeric evaluation to find out when applying
WOM code can achieve a lower write amplification. Values of
Protal Where the WOM-coded system achieves the same write
amplification as the non-WOM-coded system is shown in Fig.
4. The parameter points (g, piotal) for a specific ¢ below the
corresponding curve means a lower write amplification without
WOM code. The points above means applying WOM codes
yields better results.

251

151

0.5

0 3
10 10

Fig. 4: Values of piotal for which the WOM coded and non-
WOM-coded system have the same write amplification.

For a 16-level-cell flash memory [10], when two-write
WOM code is used with a total overprovisioning of 0.8, a
write amplification of 1.1704 can be achieved, whereas the
write amplification without WOM code is 1.3653.

APPENDIX

Write amplification is defined as the average number of
physical writes per logical write. The following determines the
average number of physical writes and logical writes between
two garbage collections respectively. Between two garbage
collections, x invalid pages are collected, which means, N, —x
valid pages are copied out and back (recall the general steps of
garbage collection). This results in N, — = physical writes. It
is shown in Lemma 1 that, between two garbage collections,
there are an average of tx logical writes. These tx logical
writes corresponds to tx physical writes. Therefore, there are
N, — x +tx = N, + (t — 1)z physical writes and ¢z logical
writes between two garbage collections. Write amplification
should be

No+(t— 1z
N tw '

WA (23)

Lemma 1: There are tx logical writes between two garbage
collections.

The following proves Lemma 1. When ¢-write WOM code
is used, one physical page has ¢ 4 2 levels. Denote page state
1as V; (0 £i <t+1). To prove Lemma 1, the following
assumption is needed.

Assumption 1: The number of V; pages on the entire phys-
ical space after a garbage collection Vi converge to a constant
after a sufficiently large number of logical writes, E(V{) = vt.

This is verified by simulation, Fig. 5, which shows the
convergence of VEi (i=0,1,...,5) when Ur = 1024, piotal =
1, ¢ =2, t =4 and r is determined by Eq. (3).

Consider two adjacent garbage collections. Suppose the
total number of logical writes between these two garbage
collections is t,. Assume all these logical writes fall on
different pages because the probability of one logical page

3253

Valid Page (\/1, Vz, Vs’ V4)

Invalid Page (\/5)

Number of Pages

Free Page (VD)
. .
0 5000 10000
Number of Garbage Collections

15000

Fig. 5: Convergence of V¢ and V¢ to constants after suffi-
ciently large number of user writes

being updated more than once between two adjacent garbage
collections is estimated to be at the magnitude of 10~7 for a
small flash of 128 MB. This probability becomes smaller as
the size of the flash grows larger.

Right after the first of the two adjacent garbage collections,
there are x free (Vo) pages and vl number of V; pages in
the physical space, where ¢ = 1,2...,¢ + 1. Before the next
garbage collection, some logical pages are updated causing
their corresponding valid pages (V; pages where 1 < i < ¢)
updated into V;;; pages. Because the total number of logical
pages is Zzzlvé, which equals the total number of valid
pages in the physical space, and there are vg (1 < ¢ < ¢)
logical pages corresponding to V; (1 < ¢ < t) valid pages in
the physical space, the probability of a V; (1 < ¢ < t) valid
page being updated between two garbage collections is

v

t kK’
k=1 VE

(24)

due to the randomly distributed nature of logical writes.
There are t, logical writes between two garbage collections.
Therefore, between the two garbage collections, the number
of V; (1 <1 < t) pages updated into V,;; pages is
v
t
e VE
At the same time, the number of V,;_; pages updated into V;
(2 <1 <t+1) pages between the two garbage collections is

ty. (25)

i—1
VE

7
Dot VE
According to Assumption 1, v remains constant. Therefore,
setting Eq. (26), the number of V,;_; pages becoming V,; pages
and Eq. (25), the number of V; pages becoming V,; 1 pages
to be equal

ty. (26)

i 1
Ve

t
D k=1 ”’E

2'7
Ve

prd 7 -
D k=1 vé

t ty. 27)

That is

vE =t (i =2,..,1). (28)

Fig. 5 illustrates this when ¢ = 4. Between the two garbage
collections, tviévktu V, pages are updated into V;;; namely
invalid pages. The new data of these updates are written to the
x free pages. Therefore, the number of V; pages updated is
equal to the number of free pages z.

t
VE

—_—t, = . (29)
22:1 U’E
Because of Eq. (28),
¢
1
tvak - _. (30)
D k=1 Vg ¢
Substitute Eq. (30) into Eq. (29),
ty =tz (31)
This completes the proof.
REFERENCES

[1] A.Jagmohan et al., “Write amplification reduction in NAND flash through
multi-write coding”, in IEEE 26th Symp. Mass Storage Syst. Technologies
(MSST), 2010, pp. 1-6.

[2] R. Agarwal and M. Marrow, “A closed-form expression for write ampli-
fication in NAND flash”, in IEEE Globecom 2010 workshop Applicat.
Commun. Theory Emerging Memory Technologies, 2010, pp. 1908-1912.

[3] T.-S. Chung et al., “A survey of Flash Translation Layer”, J. Syst. Archit,
vol. 55, pp. 332-343, May, 2009.

[4] W. Bux, “Performance evaluation of the write operation in flash-based
solid-state drives”, IBM Research, Zurich, Rschlikon, Rep. RZ3757, 2009.

[5] X.-Y. Hu et al., “Write amplification analysis in flash-based solid-state
drives”, in Proc. ACM SysStor: Israeli Experimental Syst. Conf., May
2009.

[6] X.-Y. Hu and R. Haas, “The fundamental limit of flash random write
performance: understanding, analysis and performance modelling”, IBM
Research, Rep. RZ 3771, Mar. 2010.

[7] L.J. Xiang and B. M. Kurkoski, “An improved analytical expression
for write amplification in NAND flash”, in Proc. Int. Conf. Computing,
Networking Commun., Maui, Hawaii, USA, Jan. 2012.

[8] R. L. Rivest and A. Shamir, “How to reuse a write - once memory”, in
Proc. ACM STOC, 1982, pp. 105-113.

[9] F.-W.Fuand A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph”, IEEE Trans. Inf. Theory, vol. 45, no. 1, Jan. 1999.

[10] N. Shibata et al. “A 70 nm 16 gb 16-Level-Cell NAND ash memory”,
IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 929-937, 2008.

[11] R. Gabrys et al., “Non-binary WOM-codes for multilevel flash memo-
ries”, in Inform. Theory Workshop, pp. 40-44, Oct. 2011.

[12] S. Kayser et al., “Multiple-write WOM-codes”, in Proc. of 2010 48th
Annual Allerton Conf. Commun., Control, Computing , Allerton, pp. 1062-
1068, Otc. 2010.

[13] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write
once memory codes for multilevel flash memories”, in Proc. 2011 IEEE
Int. Symp. Inform. Theory, pp. 2517-2521, Jul. 2011.

[14] Y. Li et al. “A 16 Gb 3-bit per cell (X3) NAND flash memory on 56
nm technology with 8 MB/s write rate”, IEEE J. Solid-State Circuits, vol.
44, no. 1, pp. 195-207, Jan. 2009.

[15] T. Futatsuyama et al., “A 113mm2 32Gb 3b/cell NAND flash memory”,
in IEEE Int. Solid-State Circuits Conf., pp. 242-243, Feb. 2009.

[16] C. Trinh and N. Shibata et al., “A 5.6MB/s 64Gb 4b/cell NAND flash
memory in 43nm CMOS”, in IEEE Int. Solid-State Circuits Conf., pp.
246-247, Feb. 2009.

[17] T. Frankie et al., “The effect of TRIM requests on write amplification
in solid state drives”, in Seventh Int. Conf. Commun., Internet, Inform.
Technology, Baltimore, MD, USA, May, 2012.

3254

