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Just Enough Information Theory

R~ px(z NOISY
CHANNEL
What is the best code we can design? (laude Shannon:

R < C = maxI(X:Y mutual information

px () is the highest
Code rate < Channel Capacity achievable rate




Highest Achievable Rate for a
Communications over a Quantized Channel

Quantizer

Given a channel, find the quantizer () which maximizes the achievable rate:

C = max I(X;Z)

We will fix the input distribution px(x).

Jointly optimizing () and px(z) is a much more difficult problem.




Comparison of Optimization Problems

Rate-distortion Channel Quantization
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Concave optimization—easy Global optimization,
Arimoto-Blahut, etc. hard!




Motivation 1: “Digitization”
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AWGN ~ N(0,0°)

AWGN channel output

(Given a continuous-output channel, we want to create a discrete version

e LFor example, digital circuits deal with discrete values.
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Motivation 1: “Digitization”

—1 +1

AWGN channel output

(Given a continuous-output channel, we want to create a discrete version

e For example, digital circuits deal with discrete values.

e A quantizer ) maps real values Y to discrete values Z € {1,..., M}

e How to choose the “quantization boundaries” to max I(X;Z)?

X. Ma, X. Zhang, H. Yu, and A. Kavcic, “Optimal quantization for soft-decision decoding revisited, in Proc. Int.

Symp. Inform. Theory Appl., Xian, China, Oct. 2002



“Quantization” of Discrete Memoryless Channel

Pr(Y|X) 0 Given a discrete memoryless channel
X > Y \ Z and input distribution pxy(x, y),
find the quantizer () which maximizes
mutual information:

) @

() , Q" = arg max I[(X;Z)

\ '/‘ with |Z| < [Y].
o= o =

A\ : ..

7/““ Z| > |Y| is trivial.

>
( “Channel downgrading” in polar code

design.
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Factor Graph

N

Encoder-side function f

A

L; is a noisy version of X;

/ is a noisy version of X

Motivation 2: Lookup Tables for Decoding

Lookup table:
/=LUT(L;, Ly)

Lo
.11 2 3 4
1 |4 4 3 3
215 5 5 4
315 5 4 4
413 3 2 9
5 02 [2]1 1
6 11 1 1 1

max I (Xs; LUT(Ly, Ly))
LUT

J. Lewandowsky, M. Stark, and G. Bauch, “Information bottleneck graphs for receiver design,’ in Proceedings of
|IEEE International Symposium on Information Theory. IEEE, July 2016, pp. 2888—-2892.



Handwriting Recognition Is
Typical Example of Classification
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Deep neural networks solve this problem well, but are a bit complicated

Wikimedia/Josef Steppan using MNIST data set




Simple Example of Classification

output: one color




Simple Example of Classification

Classifier: Q(y) = z

/

strawberry




Goal and Outline

Discuss tools for classification which can be applied to channel quantization

Can find effective or even optimal methods for channel quantization

Outline
e K-Means algorithm with Fuclidean metrics
e K-Means with generalized metrics
e “convexity theorem” by Burshtein et al
e Backwards channel perspective
e Three particular cases:
e (Quantizaiton of arbitrary DMC using K-Means
e Optimal quantization of binary input DMC using dynamic programming

e (Quantization of binary-input, continuous-output channels




K-Means Algorithm

K-means algorithm partitions n observations into £
clusters — each observation belongs to the cluster
with the nearest mean. Can also be seen as vector

quantization.

Attempts to minimize mean-squared of quantization

min £[(X - Q(X))?]

Not optimal, but works well. Widely used in machine

learning.
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Two Observations

e (Given reconstruction points
mi, Mo, ..., Mg, the reconstruction
region should minimize the aver-
age error. Or, any point y should
be assigned to the closest point
1.

e Within some region R;, its recon-
struction point m; should be up-
dated to minimize the average er-
ror for that region.




K-Means Algorithm with Euclidean
Distance Metric

0.9 v O
1. given n-dimensional data set, randomly choose — osf b
+ T ++ T
. S S
K means (centroids) o R i
1iterate . . °¢1 N ;#%
2. Assignment step K clusters consists of data . W Ay
. . . . t++ i T {i
points closest to its mean in Euclidean . A ’E%
. + T ++ +“_:+
distance 03] AR
0.2 +
3. Update step move the mean to the center of iteration #0
0.1

0 01 02 03 04 05 06 07 08 09 1

the cluster wikipedia

Nearest in Euclidean-distance sense. What about other metrics?




K-Means with Generalized Metrics

Ceneralize Fuclidean distance KL divergence, Gini index,
objective function: min F [(X _ Q(X))Z} |%I> Hamming error, Itakura-Saito,
Q logistic loss, etc.

Change the Assignment/Update “local” function in the to match the objective function.

Chou 1991 — Generalized K-means algorithm
with a KL divergence and other metrics

Burshtein et al 1992 An optimal cluster is

Coppersmith et al 1999 Similar to

Burshtein et al, clusters are separated by a

convex for a wide variety objective functions hyperplane.
A A | | | | | | L) | | | | | |
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K-Means with Generalized Metrics
Chou 1991 — Generalized K-means algorithm
with a KL divergence and other metrics

Burshtein et al 1992 An optimal cluster is
convex for a wide variety objective functions

Coppersmith et al 1999 Similar to

Burshtein et al, clusters are separated by a

hyperplane.

bbbttt oo

1991 1992 1993 1994 1995 1996 1997 19981999 2000 2001 2002 20p3 2004 20

Tishby et al 1999 Information bottleneck method. Kogan et al 2003. K-means algorithm using KL
K-means with KL divergence is a special case divergence “KL Means” algorithm

Banerjee et al 2005 Generalized K-means for

Bregman divergences, including KL divergence, etc.

Banerjee et al 2005 “Update step” uses same
centroid calculation for many metrics

Two independent streams: Tishby et al, Banerjee et al did not cite the Chou stream.




Optimality of Assignment Step

Consider a broad class of convex objective functions.

There exists an optimal assignment such that each

o O
. . o
cluster is a convex set in the “backward channel” ® ®
e ©
The Annals of Statistics
1992, Vol. 20, No. 3, 1637-1646
MINIMUM IMPURITY PARTITIONS O °
By DAvID BURSHTEIN, VINCENT DELLA PIETRA, DIMITRI KANEVSKY
AND ARTHUR NADAS
2. Results.
THEOREM 1. For any C: Z'— € there exists a C: %— € such that
V(C(Y)) < W(C) and such that C~(¢) is convex for all ¢ € €.
@

Significance: for a wide variety of objective functions, the search

can be restricted to convex clusters.




Original Problem: Maximization of Mutual Information

Pr(Y|X)

X — s Y ¢ \ Z (Given a discrete memoryless channel

and input distribution pxy(z, y),
find the quantizer () which maximizes

Y Q mutual information:
X o 5 )
- Q" = arg max I(X;Z)
N4
\\("‘ with [Z] < |Y|
‘VV
‘<AOA -~
NG
//‘ Z| > |Y| is trivial.
-




Problem Setup and Backwards Channel

Assume pxy(z,y) is known; X is discrete. Examples
show Y 1is discrete, but results can be extend to con-

X tinuous case. Running example:
1 7
» Xe{l,2, 3}
A‘(". Y € {red, lime, yellow, orange, green, brown }
‘) ‘4{0{( ; Y ; g€, g ;

YN O
//,"“ Work with the backward channel:
3

u, = | Pr(X = 1]Y = ¢),...,Pr(X = J|Y = y)

Justity this later.




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X = 1|Y = y), Pr(X = 2|Y = y), Pr(X = 3|Y = y)

u, = |1 0 0] u, =010

probability

simplex

u, = |00 1]




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X = 1|Y = y), Pr(X = 2|Y = y), Pr(X = 3|Y = y)

Yured:[lo()] uy = [100] u, = [0 10]
: <
1 / Wime = [0.8,0.2, 0]
\‘(,'. Uyellow — [03,02,05]
2 XX

VA
V/"V‘“ Ugrange = [0.33,0.33,0.34]
‘// Fach output y is a
3

reen = 10.3,0.3,0.4 L ,
e | | point in the simplex

Uprown = [0.8,0.1,0.1]




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X = 1|Y = y), Pr(X = 2|Y = y), Pr(X = 3|Y = y)

Y

s = [1.0.0 u, = |1 0 0] u, =010
'\/similar .\

Wime = [0.8, 0.2, 0]

. Uyellow — 0.3, 0.2, 0.5]
T similar

|
range = [0.33,0.33,0.34) 7
| Fach output y is a

reen = 10.3,0.3,0.4 L ,
e | point in the simplex

Uprown = [0.8,0.1,0.1]




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X = 1|Y = y), Pr(X = 2|Y = y), Pr(X = 3|Y = y)

Y

u, =010

X
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Visualizing the "Means
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Visualizing the “Means”

px|z(x|z) as well as pxy(z|y)

1/
' 71744 /07
77U/
— il
S ey,
’ o0 / ‘ 1;£liIiI4/.

* W R4
Ceee R IREY N > / '
BROSIXNRE " <,
AR «"1'«',""7') Z ) ‘4
SRS TARERT A 5"') (' /A e
NSRRI 0.9, 4' > )
A RO
\:\\I"L;"A N
RN I'# v Vo
0.0, V2

-
Da’

quantizer

outputs

/

cluster

Jee
......
_ 000000

\\\&\

7 W \
@ \\\\\\\:t\\\\\\\Q» ’
AR R r
NN =

&,
7

‘

//{6/6/«4/
w




From Mutual Information to KL Divergence

Recall: u, = [Pr(X = 1Y = y),Pr(X = 2]Y = y),...,Pr(X = J|Y = )

Random vector versions: U = [ Pr(X = 1Y), Pr(X = 2|Y),...,Pr(X = J|Y)]
V = |Pr(X=1/Z2),Pr(X=2]Y),...,Pr(X = J|Z)]

Then, the following holds:
I[(X;Y)—I(X;Z) = E(D(U||V))
D(-||-) is the Kullback-Leiber divergence and F is expectation.

Q" = arg max I[(X;Z) = arg ménE(D(UHV))

Thus, maximization of mutual information is minimization of KL divergence.




Three Particular Cases

1. General discrete quantization:
1. K-Means with KL. Divergence metrics “KL-Means”
2. Information bottleneck method
2. Binary-input, discrete output quantization: Dynamic programming quantization

3. Binary-input, continuous-output quantization with arbitrary noise




K-Means With KL Divergence Metric

“KL-Means algorithm” replace Euclidean distance with KL distance

Min KL divergence = max. mutual information

Q" = arg max I[(X;Z) = arg HgnE(D(UHV))

A. Zhang and B. Kurkoski, “Low-Complexity Quantization of Non-Binary Input DMCs” ISITA 2016.




K-Means With KL Divergence Metric

“KL-Means algorithm” replace Euclidean distance with KL distance

Min KL divergence = max. mutual information

Q" = arg max I[(X;Z) = arg mC}nE(D(UHV))

TEXT MINING WITH

INFORMATION— I HEORETIC
CLUSTERING

Motivated by the success of hybrid information-retrieval algorithms, the authors report on the
development of their hybrid clustering scheme. Scheme experiments on data in a reduced

vector space model indicate a higher performance level over several existing clustering
algorithms.

A. inary Input DMCs" ISITA 2016.

' n text mining and information retrieval, as  partitions for the second step of the procedure.
T | L I (. A S S . . .........J.....°*" - _._...1*65...20......6. ..




K-Means With KL Divergence Metric

“KL-Means algorithm” replace Euclidean distance with KL distance

Min KL divergence = max. mutual information

Q" = arg max I[(X;Z) = arg ménE(D(UHV))

IIIIIIIIIIIIIIIII

—_
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reedy Quantizer

KL Means Quantization
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o
R

Numerical results show tradeoft:

Optimal Quantizer

e increasing number of quantizer outputs

I(X;Y)—I(X;Z)

e decreases the loss of mutual information

K

Mutual information loss

10-3 lllllllllllllllll
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of quantizer outputs K

A. Zhang and B. Kurkoski, “Low-Complexity Quantization of Non-Binary Input DMCs” ISITA 2016.




Information Bottleneck Method

For Markov chain with joint distribution: /
Tishby, Pereira, Bialek (1999) gave the information X
bottleneck method which finds: Bottleneck

min I(Y;Z)— BI(X;Z)

Pz|vy (z]y) 725  Bottleneck channel. Suppose that a signal X € X={1,2,....m
goes through an intervening transition X — V — Y

When:

X p(v|x)

e (3 finite: probabilistic clustering pzyy(2|y)

Cover and Thomas, Elements Of
Information Theory, 2006.

() is the probability distribution pzyy(z|y) Problem 7.52 on page 234.

Image credit: Boris Epshtein & Lena Gorelick

e 3 — oo: hard clustring, pzv(z|y) =0 or 1




Information Bottleneck Method

B8 > 0 sweeps a kind of rate-distortion curve.

When 8 — oo we get hard clustering. In fact,
the informaiton bottleneck method becomes K-
means algorithm with KL divergence metric.
“KL means algorithm”

| |
1 5 10 15 20 25 30 35

g

B. M. Kurkoski, “On the relationship between the KL means algorithm and the information bottleneck
method,” in 11th International ITG Conference on Systems, Communications and Coding (SCC2017),

(Hamburg, Germany), pp. 1-5, February 2017.




Quantizer Design for Binary Input DMC

e Consider a binary-input channel

e LFor an optimal quantizer, there must exist an convex cluster
(Burshtein et al)

e Convex in the space:

uy = | PrlX =0|Y =y, Pr[X = 1Y = ¢

¢ Dynamic programming approach is suggested: search over
all boundaries

e Algorithm is optimal, complexity is |V

B. Kurkoski and H. Yagi, “Quantization of Binary-Input Discrete Memoryless Channels,” IEEE Trans on

Information Theory, May 2014.




Structure of Optimal Solution

KL-Means
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Structure of Optimal Solution

variance = 0.3

IKI_I-MIear)s - S K—Means - Ulnifprm

P | P
-1.5 -0.5

U o g o
-1.5 -0.5 -0.5

[(X;Z) = 0.8529  I(X;Z) = 0.8171  I(X;Z) = 0.8541
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Continuous-Output Channel Quantization

AWGN ~ N(0, %) P

Consider binary-input, continuous-output y € R channel:

For BI-AWGN solution is obvious, i.e. threshold at 0

Arbitrary, data-dependent noise py|x(y| + 1) different from pyx(y| — 1)
(Quantization to one bit

Using Burshtein et al Theorem, will not restrict ourselves to a single threshold

38




Quantization By Threshold Search

|

(Quantizer:
0.8 -
0 y<a 0.6 -
< = 04}
1 y>a |
0.2 -
Example: data-dependent - y - 0 > p ;
(Gaussian noise mixtures
0.6
0.4930
max [(X;Z) = 0.493 at  oaf
N
a* = -0.153 X 03
T 02F
0.1
O | | | | | e S, |
-6 -3 -4 -3 -2 -1 -0.153 1 2 3 4 ) 6

channel output y




Backward Channel Pr(X = z|Y = y)

“[forward channel: Pr(Y] 3 ' X1

0 | \
-4 -3 -2 -1 0) 1 2 3
_|backward channel Pr(X|Y)

.6 —

O_




Convex Backward Channel Quantizer

Threshold a. Backward channel quantizer Q):

0 Pr(X =1ly) <
z
1 Pr(X=1ly) >a

2 preimage

1S convex




Optimal Quantizer in Backward Channel

0.6
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Happens to be concave. But not in general




Even Backwards Channel is Hard

| x=1 |

| |

| |

x=0 | |

| |

| |

| |

| |

| | | —— ‘J

6 -4 2 0 2 4 6
y

| |

| |

| z=1 |

| |

v |

_________________________ 1

| |

| |

| I| | |

6 -4 2 0 2 4 6
y

0.7
0.6091

0.5
0.4

0.3
0.2
0.1

0

O 0.1 0.2

a

03953 0.5 06 0.7 08 09 1

Mutual information i1s not
convex in a




Optimal Convex Forward Quantizer

Lemma 2 If the channel log-likelihood ratio satisfies:

Pr(y|X = 1)
Pr(y| X = 0)

Pr(y'| X = 1)
Pr(y’| X = 0)

log < log

for all y < v/, then there exists an optimal forward channel quantizer Q*
which 1s a convex quantizer.

Consequences:

e For many well-behaved channels, the optimal forward channel quantizer is

Cconvex.

e The BI-AWGN channel satisfies this condition

B. M. Kurkoski and H. Yaqi, “Single-bit quantization of binary-input, continuous-output channels,” in Proceedings
of IEEE International Symposium on Information Theory, (Aachen, Germany), pp. 2088-2092, June 2017




Channel Quantization and Classification

Information Theory = Machine Learning

Classification & Quantization

Before 2002, little interest in channel quantization to maximize mutual information.
But in the 1990s the pattern recognition community had developed necessary tools

K-means with KL divergence/information bottleneck is effective but suboptimal way

to quantize channels
For binary-input, discrete-output channels, optimality is possible

For binary-input, continuous output channels, still work to be done -
9 7 45




