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Success of Deep Neural Networks

Deep neural networks (DNN) can now match
humans on certain object and speech recognition
tasks.

DNNs are “programmed” or trained by showing it -

a large amount of labeled data. 's

This has successfully replaced the domain 4

knowledge model. ]
P

A successful algorithm can correctly recognize an

object it had not previously seen.

Image: Goodfellow, et al., Deep learning.




Machine Learning is More Than DNNs

Deep neural
networks

K-Means clustering

AMP :
approximate message

Convolutional

Auto-encoders - -
belief propagation

expectation
propagation




What is Classification?

A classification algorithm specifies which of £ categories some input belongs to

estimate Z

input: noisy observatio

source X
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Simple Example of Classification

output: one color




Simple Example of Classification
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Simple Example of Classification

Classifier: Q(y) = z

/

strawberry




Machine Learning for Communications

What communications problems can be solved using machine learning?

e Machine learning is a collection of tools

e There are various problems to solve within the field of communications
“Machine learning for communications” means finding the right tool for your problem.
Should I use deep neural networks for my problem?

e If you have a large amount of data, then yes

e No data? Better to use other machine learning techniques

Machine learning is much broader than deep neural networks




Outline

Present three motivating problems and solutions using machine learning:
1. Low-latency communications: Soft-input decoding of BCH codes
Solution: Deep neural network as a decoding algorithm
2. Optimal quantization of channels
Solution: K-means algorithm for quantization

3. Fixed-point implementation of LDPC decoders targeted at VLSI

Solutions: Application of K-means algorithm to novel max-LUT method




Reliable Communications over Unreliable Channels

information codeword x received y estimated codeword X

parity H
0 B IJ i

NOISY
ﬁ
CHANNEL DECODER

ENCODER

Good channel (few errors) — high code rate R (few parity bits)




Reliable Communications over Unreliable Channels

information codeword x received y estimated codeword X

It
OOO ENCODER OOO Zﬁono : On NOISY HH [ l | H» DECODER —VOOO
CHANNEL :

Good channel (few errors) — high code rate R (few parity bits)

Bad channel (many errors) — low code rate R (many parity bits)




Reasons for Success of LDPC Codes

Low-density parity-check (LDPC) codes are widely used. In communications standards:
e 5G

e Wiki, WiMax, video broadcasting

e Ethernet over twisted pair

e Flash memories, SSD drives, hard drives

Reasons for success of LDPC code:
e LDPC codes are good codes — as block length increases, can approach Shannon limit

e LDPC decoding complexity is linear in the block length




LDPC code is defined by a low-density parity-check matrix H

A codeword x satisfies Hx = 0 mod 2

Low-Density Parity-Check (LDPC) Codes

check nodes
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Decoding LDPC Codes

Input from channel

input from channel



Decoding LDPC Codes
Variable-to-check messages
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[teration 1 (first half):

pass channel messages to check nodes



Decoding LDPC Codes
Check-to-Variable Messages
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[teration 1 (second half):
check nodes perform processing,

pass results to variable nodes



Decoding LDPC Codes
Variable-to-check messages
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[teration 2 (first half):
variable nodes perform processing,

pass results to check nodes



1terate

Decoding LDPC Codes
Continue lteratively

In practice, perform 5 to 50 iterations. Stop when:
e Codeword is detected Hx = 0

e maximum number of iterations reached



Motivation 1: Low-Latency Communications

Ultra-low latency communications is a key component of 5G wireless

networks

Enable IoT-like applications: Real-time control in autonomous vehicles,

factory automation, robots, UAVs and more.

For highly reliable physical layer, short block-length error-correcting

codes are needed.
BCH codes are error-correcting codes with an algebraic construction

At short-to-medium block lengths, they are the best known codes




Decoding BCH Codes Using Belief Propagation?

e There are good hard-input decoding algorithms for BCH codes
e There are no good soft-input decoding algorithms

* BCH codes have high-density check matrix

* Traditional belief-propagation decoding does not work well

because the graph is dense, not sparse.

e Can we make a good soft-input BCH decoder using a deep neural

network?




Adding Neural Weights to BP Decoder

e BCH codes also have a graph, but it is dense

Neural

2y
o il !‘

Xo X4 X2 X3 X

e Cycles in the graph degrade performance of algorithm

e Add neural weights to reduce negative effects of short cycles



from channel

(discrete output)
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LDPC Iterations Unwrap the Graph

<4— iter ] —p» €¢— jter 2 —p €¢— iter ... —p




Standard Belief-Propagation Decoding

Variable Wo 1
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Modify to Add Weights

Variable Wo 1
node 2 . _y Qv,c = tanh (2 (w”l” T Z wivvriv’”))

ieN (v)\c

q1
Check
node L Few = 2tanh™" H Qv,i

1eEM(c)\v




Compare Variable Node & Pereptron
1 w1
Variabl
zr;ze C " %7 qv.c = tanh (; (wvlv + Z Wi T v
:/., ~ ieN (v)\c
g1
Check
node ~ Few = 2tanh ™ H qu,i
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Important insight: train using all-zeros

codeword
Training using RMSprop

Multiloss: optimize for all layers, not just
the final layer.

Simulation results show about 1 dB gain
over BP. Close to optimal using about 50

1terations.

Result: Deep neural network is a practical

soft-input decoding of BCH codes
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Nachmani, Marciano, Lugosch, Gross, Burshtein, Be’ery, “Deep learning methods for improved decoding of linear codes,” IEEE

Journal of Selected Topics in Signal Processing, 12(1), 119-131.




Motivation 2: Optimal Quantization of Channels
-1 +1

AV

Y
Xe{-1,+1}

Prob. distribution on

AWGN ~ N(0,0°)

AWGN channel output

(Given a continuous-output channel, we want to create a discrete version

e LFor example, digital circuits deal with discrete values.




Motivation2 : Optimal Quantization of Channels

AWGN ~ N(0,0°)

n AWG

AWGN channel output

(Given a continuous-output channel, we want to create a discrete version
e For example, digital circuits deal with discrete values.
e A quantizer ) maps real values Y to discrete values Z € {1,..., M}

e How to choose the “quantization boundaries” to max I(X;Z)?

X. Ma, X. Zhang, H. Yu, and A. Kavcic, “Optimal quantization for soft-decision decoding revisited,” in Proc. Int.
Symp. Inform. Theory Appl., Xian, China, Oct. 2002




K-Means Algorithm

The K-means algorithm is a classification algorithm.

K-means algorithm partitions n observations into k
clusters — each observation belongs to the cluster
with the nearest mean. Can also be seen as vector

quantization.

Attempts to minimize mean-squared of quantization

ménE (X = Q(X))"]

Not optimal, but works well. Widely used in machine

learning.
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K-Means Algorithm

The K-means algorithm is a classification algorithm.

K-means algorithm partitions n observations into k
clusters — each observation belongs to the cluster
with the nearest mean. Can also be seen as vector

quantization.

Attempts to minimize mean-squared of quantization

ménE (X = Q(X))"]

Not optimal, but works well. Widely used in machine

learning.
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Reconstruction Region and Means

’




K-Means Algorithm with Euclidean Distance
Metric

1. given n-dimensional data set, randomly choose

K means (centroids)

1terate . .
2. Assignment step K clusters consists of data

points closest to its mean in Euclidean

distance

3. Update step move the mean to the center of

the cluster




Randomly generate data from one of three classes:

3 Initial means are

selected randomly

K =
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Update the mean




Find reconstruction regions




Find center of each cluster
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Finished: ) L 4

Each point is classified into
one of three regions.

Good approximation of the
underlying classes.




Just Enough Information Theory

R~ px(z NOISY
CHANNEL
What is the best code we can design? (laude Shannon:

R < C = maxI(X:Y mutual information

px () is the highest
Code rate < Channel Capacity achievable rate




Highest Achievable Rate for
Communications over a Quantized Channel

X P

Quantizer

Given a channel, find the quantizer () which maximizes the achievable rate:

C = max I(X;Z)

We will fix the input distribution px(x).

Jointly optimizing () and px(z) is a much more difficult problem.




Connecting Classification and Quantization

Pr(Y[X)

X"y © 7

Given a discrete memoryless channel
and input distribution pxv(z,y),

find the quantizer () which maximizes
mutual information:

Q" = arg max I[(X;Z)

with |Z]| < |Y].

Z| > |Y]| is trivial.




Problem Setup and Backwards Channel

Assume pxy(x,y) is known; X is discrete. Examples
show Y 1is discrete, but results can be extend to con-
tinuous case. Running example:

Xed{l,2, 3}

Y € {red, lime, yellow, orange, green, brown }

' @
//,'“‘ Work with the backward channel:

u, = | Pr(X = 1]Y = ¢),...,Pr(X = J|Y = y)

Justity this later.




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X=1Y =y),Pr(X=2|Y = y), Pr(X =3|Y = y)

u, = |1 0 0] u, =010

probability

simplex

u, = |00 1]




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X=1|Y =y),Pr(X=2|Y = y),Pr(X = 3|Y = y)

Yud=[100] uy =100 u, = (0 10]
: \
1 ‘ / Wime = [0.8,0.2, 0]
\‘(,'. Uyellow — [03,02,05]
2 CExXX

V/"“‘ Uorange = [0.33,0.33,0.34]
‘// Fach output y is a
3

reen = 10.3,0.3,0.4 L ,
e | | point in the simplex

Uprown = [0.8,0.1,0.1]




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X=1Y =y),Pr(X=2|Y = y), Pr(X =3|Y = y)

Y

s = [1.0.0 u, = |1 0 0] u, =010
'\/similar .\

Wime = [0.8, 0.2, 0]

. Uyellow — 0.3, 0.2, 0.5]
T similar

|
range = [0.33,0.33,0.34) 7
| Fach output y is a

reen = 10.3,0.3,0.4 L ,
e | point in the simplex

Uprown = [0.8,0.1,0.1]




Backward Channel Pr(X | Y) as a Vector

u, = | Pr(X=1Y =y),Pr(X=2|Y = y), Pr(X =3|Y = y)

Y

u, =010

X

1 Q 7 A A O
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K-Means With KL Divergence Metric

“KL-Means algorithm” replace Euclidean distance with KL distance

U= [Pr(X=1]Y),...,Pr(X = J|Y)]
V= [Pr(X=1[2),...,Pr(X = J|Z)

Then, the following holds:
[(X;Y) —I(X;Z) = E(D(U||V))

D(-||-) is the Kullback-Leiber divergence

Q" = arg mgxI(X; /) = arg HgnE(D(UHV))

Thus, maximization of mutual information is minimization
of KL divergence.




K-Means With KL Divergence Metric

“KL-Means algorithm” replace Euclidean distance with KL distance

Min KL divergence = max. mutual information

Q" = arg max I[(X;Z) = arg ménE(D(UHV))

IIIIIIIIIIIIIIIII

—_
o

reedy Quantizer

KL Means Quantization

—
o
R

Numerical results show tradeoft:

Optimal Quantizer

e increasing number of quantizer outputs

I(X;Y)—I(X;Z)

e decreases the loss of mutual information

K

Mutual information loss

10-3 lllllllllllllllll
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of quantizer outputs K

A. Zhang and B. Kurkoski, “Low-Complexity Quantization of Non-Binary Input DMCs” ISITA 2016. -
57




Motivation 3: LDPC Decoding for VLSI

e LDPC deoders implemented in VLSI
e VLSI approximates floating point

-
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numbers using fixed point

\/] ) dmﬁ

— g R T“‘E:\“(‘T_"“““‘
e | M T
SRS IR UL

e tradeofl between number of bits and

Li-ion Battery
3_81\/::10.35th

APN: 616-00351

e “ad hoc” implementation by engineers

v
St
O
[
S
1
=31
.‘.1
1
2L
S E
m e
S E
-t
1
3 E
-
v
Y
v 4
s
Y E
‘M-
=) 83
1
S
_-‘1

mheEEbetiioLllllodO0dodddcooon

performance

Provid&fonly

Fotentialforfireor

buming.Donoiure
<assemble,punc n ;
é'uch,heat,orbur :

2y

ifixit.com

ETH Zurich http://bit.ly /2nTEfCy


http://ifixit.com

Max-LUT Method

S 2. 457
Max-LUT is a method for 1 floating point
implementing fixed-point |
LDPC decoders, using lookup
tables that maximize mutual 1.6 . ﬁxed'pomt
information. l

lookup table

o
/
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Max-LUT Method: Central Idea

Decoder Node

L; are noisy versions of X

Z is a noisy version of X

Choose LUT to maximize mutual information

max I (X33 Z) = max I (Xs; LUT(Ly, L2))



from channel

(discrete output)

0.0 .0 O O O O O 0O 0O .0 O

LUT for Each Node, Each Iteration

<4— iter ] —p» €¢— jter 2 —p €¢— iter ... —p

Apply Max-

e construct lookup table
o get next density Pr(L|X)




Example: Three-Level Messages

Single bit z is transmitted over three parallel BEC’s

>
yr€ {0,7,1} Node estimates x
Y2 = {07?71} vE {07?71}

Y3 — {07?71}

Majority vote decoding. Examples:
ylyzygz()() 1l — x=10

binary erasure
channel (BEC)

y1y2y3:?01 — ="
y1y2y3=100 — I =

ylyzygz?l? — T =




Max-LUT Method Designs Correct Table

(O(1,1)

O
1 y2 | y1=0 y1=7 y1 =1
yl S {07?71} 1 // 0,1) O O O ?
T 2%
\O—’ “it:w‘ 7 |0 ? 1
Y2 = {07?71}/ \\ | 1 7 1 1

@ 0
w
Inft — 7

() (0,0)

The Max-LUT method designs the table above. It gives the “majority vote” rule.
Remarkably, machine learning finds optimal decoding rule without a priori knowledge
Machine-designed decoding rules can replace human-designed rules.

This example can be generalized to more levels, and arbitrary node types.




4 bits/message close to BP

OCt—pg=a =30 T T
L PN bt s g
< LUT decoding
H 10 ::ffffffffffffffffEfffEfffEfffffff'ff::3ffff3ff"ffffffffffffffffffffffffff5315ffffffff'fff-f:fffff:ffffffffffffffffff
e \V'"\yy A lut/msg
O O . LUT decoding
"C'é = 107 gD BP e
~— E - \&12\  toating-point
T\ Vet N N | W WP e
O 8 10_3::5ffffffffffffffffffffffffffffffffffffffffffff.53fffffffff.fffffffffffffffffffffffffffffffffffffffffffffffffffffff
p— QS o\
— 11 e A D
D - 9— Q -\ e
| m 10‘4__;;3;;;3:;;3:;:3:::::::::::,,___:_____:_ N
X~ % R
as S IS W
O 10_5::5fffffffffffffffffffffffffffffffffffffffffffffffffffff:ffffffffffff”ffffffgff:fffffffffffffffffffffffffffffff
g o e PG
i me=Q
107 ' ' |
1.5 2 2.5 3 3.5 4 4.5
Ey/NO

FIGURE 8. BER and WER results for the LUT decoding algorithm. d, = 4, d. = 9,
R =0.56, N = 4113, Max. Iter.= 30, Array code [2|.

F. J. Cuadros Romero and B. M. Kurkoski, “LDPC decoding mappings that maximize mutual information,” IEEE Journal on
Selected Areas in Communications, vol. 34, pp. 2391-2401, August 2016




BSC: Lower Error Floor than Sum-Product
But not lower than FAIDs

N = 2388, (d, = 3,d. = 12), R = 0.75 and Max. iter = 60

FAIDs are designed to avoid 711FA1]o

the effects of harmful 101;3

..................................................................................... /_

SUbgraphS, |OW6r|ng the o 3b1t/msgmaX—LUT ____________ Dpo’ ____________________ _
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The proposed decoding @ _6?‘4b1t/msgmaxLUT
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BI-AWGN: Lower Error Floors, Fewer lterations

N = 2048, (d, = 6,d. = 32), R = 0.84 and Max. iter = 30
This code is used in IEEE 802.3an 10GBase-T standard producing an operation of 10 Gb/s.

10°

The proposed decoding +-bit/msg max-LUT

mapping functions

- using 10 iterations can
achieve the same BER
performance than full SPA
using 30 iterations.

rd-error rate
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» using 30 Iterations can
surpass the BER
performance of full SPA
using 30 iterations. 38
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Conclusion

Now is an exciting time for the application of machine learning to

communications.

I showed two machine learning methods for three problems:

e Soft-input decoding of BCH codes using deep neural network
e (Quantization of channels using K-means algorithm

e Improved LDPC decoding using machine learning

There are many more methods and many more problems.

To learn more...




Resources: Machine Learning for Communications

Mailing List

Zr

RECOGNITION [

HDPC Mailing List: Recent papers on machine learning for - MACHINE LEARNING B

communications

http://bit.ly/hdpcML — Join or leave the list
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