
Introduction to Low-Density
Parity Check Codes

Brian Kurkoski
kurkoski@ice.uec.ac.jp

Review block codes
History
Low Density Parity Check Codes
Gallager’s LDPC code construction
Bipartite Graphs — the Tanner Graph
Overview of decoding algorithms

Bit Flipping decoding
Soldier Counting problem
Message passing decoding

Outline: Low Density Parity Check Codes

^

The Communications Problem

The problem is to communicate reliably over a noisy channel.
Let x be the transmitted data, and y be the received sequence:

x = (1 0 0 0) → y = (1 0 0 1).
The approach to solve the problem is to add redundancy:

x = (1 0 0 0 1 1 1) → y = (1 0 0 1 1 1 1) → x = (1 0 0 0 1 1 1).

Using this redundancy, the decoder can estimate the original data.

Encoder x yChannel Decoder

Figure 1.

x

^
K

{ {

N-K

The Communications Problem
The problem is solved by using error-correcting codes, ECC. Consider a
major class of ECC: linear block codes over the binary field F2.
Block code has length N,
and has 2K codewords which form a subspace of (F2)N.
The code’s rate is R = K/N.

A block code C is defined by a (N-K)-by-N parity check matrix H. The code
is the set of length-N vectors x = (x1 x2 … xN) such that:

x·Ht = 0
Let u = (u1 u2 … uK) be a length K vector of information. Let G be a K-by-N
generator matrix for C:

uG = x.
Arithmetic is performed over the binary field F2.

All codes have an important property,
the minimum distance.

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

Parity Check Matrices
A binary, linear error-corrrecting code can be defined by a (N–K)-by-N
parity-check matrix, H. Each row in this matrix is hi:

For example, the (7,4) Hamming code has:

This code has block length N=7, and information length K=4. The
codebook, C, is the set of length N words, x, which satisfy:

x·Ht = 0

H =

1 0 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 1 0 0 1

H =

— h1 —

— h2 —

.

.

.

— hN−K —

Codes Defined by Parity Check Matrices
The (7,4) Hamming codebook has 24=16 codewords:

C = {0000000, 1000111, 0100110,…}
It is easy to check if a length N vector, y = (y1 y2 … yN) is a codeword:

Example. For the (7,4) Hamming code:
h1: y1 + y3 + y4 + y5 = 0
h2: y1 + y2 + y4 + y6 = 0
h3: y1 + y2 + y3 + y4 + y7 = 0,

Verify that y = (1 1 1 0 0 1 1) is a (7,4) Hamming codeword:
h1: 1 + 1 + 0 + 0 = 0
h2: 1 + 1 + 0 + 1 = 1
h3: 1 + 1 + 1 + 0 + 1 = 0.

●

●
●

yHt = (y1 y2 . . . yN) ·

— h1 —
— h2 —

...
— hN−K —

t

= 0 ⇒ y is a codeword

H =

1 0 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 1 0 0 1

The Communications Problem
Given a received word y = (y1 y2 … yN), the decoder’s goal is to find the
maximum likelihood decision:

Decoder complexity is a serious restriction in using error correcting codes.
It is impractical to evaluate the above equation directly, it is exponentially
difficult.
Various types of codes:

Reed-Solomon Codes
BCH Codes
Convolutional Codes

are used in practice not only because they are good codes, but because the
decoders have reasonable complexity.

x̂ = arg max
x∈C

P (y|x)

Reducing the Gap to Capacity. Rate R=1/2 Codes
√

Shannon Limit

AWGN Channel, SNR Eb/N0 (dB)

Bi
t

Er
ro

r
Pr

ob
ab

ili
ty

1947

1948

high
complexity

5.0 dB gain

1980’s

9.6 dB
1993

2001

History of Low-Density Parity Check Codes
1948 Shannon published his famous paper on the capacity of channels with
noise
1963 Robert Gallager wrote his Ph.D. dissertation “Low Density Parity
Check Codes”. He introduced LDPC codes, analyzed them, and gave some
decoding algorithms.
Because computers at that time were not very powerful, he could not verify
that his codes could approach capacity
1982� Michael Tanner considered Gallager’s LDPC codes, and his own
structured codes. He introduced the notion of using bipartite graph,
sometimes called a Tanner graph.
1993 Turbo codes were introduced. They exceeded the performance of all
known codes, and had low decoding complexity
1995 Interest was renewed in Gallager’s LDPC codes, lead by David
MacKay and many others.
It was shown that LDPC codes can essentially achieve Shannon Capacity
on AWGN and Binary Erasure Channels.

Low-Density Parity Check Codes
A low-density parity check (LDPC) code is a linear block code whose
parity check matrix has a small number of one’s.

The number of 1’s in an LDPC code’s matrix grows linearly with the size N.
The number of 1’s in a regular-density matrix grows as N·(M-N).

H =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

LDPC Code Constructions
Note that a# linear codes have a parity check matrix, and thus can be
decoded using message-passing decoding.
However, not all codes are well-suited for this decoding algorithm.

Semi-random Construction
Regular LDPC Codes (1962, Gallager)
Irregular LDPC (Richardson and Urbanke, Luby et al.)
MacKay Codes
Structured Constructions
Finite-Geometry based constructions (Kou, Lin, Fossorier)
Quasicyclic LDPC Codes (Lin)
combinatorial LDPC codes (Vasic, et al.)
LDPC array codes (Fan)

Regular LDPC Codes
The parity check matrix for a (j,k) regular LDPC Code has j one’s in
each column, and k one’s in each row.

Gallager’s construction technique:
1. Code parameters N, K, j, k are given.
2. Construct the following matrix with rows and N columns:

3. Let π(H1) be a pseudo-random column permutation of H1.
4. Construct regular LDPC check matrix by stacking j submatrices:

H1 =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

N − K

j

H =

H1

π(H1)

π(H1)

Regular LDPC Code Example
This code has N=20, K = 5, j=3, k=4.

The number of ones is N·j = (N–K)·k. From this, it is easy to show that the
rate of the code is:

In this example, R = 1 - 3/4 = 1/4.

H =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

R = 1 −

j

k

Bipartite Graphs
A simple undirected graph G: = (V,E) is called a bipartite graph if there
exists a partition of the vertex set so that both V1 and V2 are independent
sets. We often write G: = (V1 + V2, E) to denote a bipartite graph with
partitions V1 and V2.

V, vertex set
E, edge set

Undirected Graph (V,E)

V1, V2 node set
E, edge set

Bipartite Graph (V1+V2,E)

V2

V1

E

Graph Representations of Codes—Tanner Graph
A Tanner Graph is a bipartite graph which represents the parity check
matrix of an error correcting code.

H is the (N–K)-by-N parity check matrix. The Tanner graph has:
N bit nodes (or variable nodes), represented by circles.
N–K check nodes, represented by squares.
There is an edge between bit node i and check node j if there is a one in
row i and column j of H.
Example:

H =

[
1 1 0 0

1 0 1 1

]1 2 3 4

A

B

1 2 3 4

A B

Tanner Graph

Cycles and Girth of Tanner Graphs

A cycle of length L in a Tanner graph is a path of L edges which closes back
on itself

The girth of a Tanner graph is the minimum cycle length of the graph.

Cycle
L=4

Cycle
L=6

H =

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 0 1 0

0 0 0 1 1 1

Decoding Algorithms
Gallager’s Bit Flipping algorithm for LDPC codes
Message-passing algorithms:

“Soldier Counting” algorithm
Probablisitic Decoding of LDPC Codes.

Bit Flipping Decoding: Channel
Gallager’s bit-flipping algorithm is for decoding on the binary symmetric
channel (BSC).
The BSC has transition probability p.

Transmitted Sequence Received Sequence
 x = 0 0 0 0 0 0 y = 0 0 1 0 1 0

z is the noise sequence: y = x + z.
LDPC codes are linear codes: x1 + x2 is a codeword.
⇒ considering the all-zeros codeword is sufficient.

Encoder
1-p

1-p
p

p

Channel: BSC(p)

Bit-flipping
Decoder

x y

1 1

0 0

Consider the following parity check matrix H:

This code has N=7 bits, and K=6 parity checks.
It has rate R=6/7, and only two codewords {0000000,1111111}
(H is one possible parity check matrix for the repeat code)
The Tanner graph corresponding to the parity check matrix:

Bit Flipping Decoding: Example Code

H =

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 1 1 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 1 0 1

Gallager’s Bit-Flipping Algorithm
1. Compute each parity check, for received y
2. For each bit, count the number of failing parity checks
3. For the bit(s) with the largest number of failed parity checks, flip the
associated input y.
4. Repeat steps 1-3 until all the parity checks are satisfied, or a stopping
condition is reached.

Bit Flipping Decoding: Decoding Algorithm

x = 0 0 0 0 0 0 0 → y = 0 1 0 0 1 0 0

0 1 0 0 1 0 0

 ✕ ✕ ● ✕ ✕ ✕

1 2 1 1 3 1 1

→0

Gallager’s Bit-Flipping Algorithm
1. Compute each parity check, for received y
2. For each bit, count the number of failing parity checks
3. For the bit(s) with the largest number of failed parity checks, flip the
associated input y.
4. Repeat steps 1-3 until all the parity checks are satisfied, or a stopping
condition is reached.

Bit Flipping Decoding: Decoding Algorithm

x = 0 0 0 0 0 0 0 → y = 0 1 0 0 1 0 0

0 1 0 0 0 0 0

 ✕ ✕ ✕ ● ● ●

1 3 2 1 1 0 0

→0

Gallager’s Bit-Flipping Algorithm
1. Compute each parity check, for received y
2. For each bit, count the number of failing parity checks
3. For the bit(s) with the largest number of failed parity checks, flip the
associated input y.
4. Repeat steps 1-3 until all the parity checks are satisfied, or a stopping
condition is reached.

Bit Flipping Decoding: Decoding Algorithm

x = 0 0 0 0 0 0 0 → y = 0 0 1 0 1 0 0

0 0 0 0 0 0 0

 ● ● ● ● ● ●

0 0 0 0 0 0 0

VALID CODEWORD!

Message Passing Problem, Soldier Counting
The Soldier Counting Problem: Each soldier in a row wants to know
the total number of soldiers.
Each soldier can only communicate with his neighbors.
How to communicate the total number to each soldier?

Solution: Message Passing.
1. When a soldier receives a number from his left, he adds one (for himself)
and passes it to his left.
2. Similarly, for messages passing from the right.
3. A soldier with only one neighbor passes the number “one” to his neighbor.

 3

!

Example: Distributed Soldier Counting

!

"#!$%&'()*+!(,!-!&(,)#!!!

!! .%/,0(,1!*/&)2!3-45!+%&'()*!*)4)(6)+!-!,/78)*!9*%7!5(+!*(150!:&)90;<!-''+!%,)!

9%*!5(7+)&9<!-,'!=-++)+!05)!+/7!0%!5(+!&)90!:*(150;#!!

!! >%0-&!,/78)*!%9!+%&'()*+!?!:(,4%7(,1!,/78)*;!@!:%/01%(,1!,/78)*;!

!

!

!

!

!

!

2+3+1 = 6

Soldier figures due to William Ryan

Soldiers in a Y
For soldiers in more complicated formations, a solution is still possible.

The soldier with three neighbors receives two messages U1, U2. The
message that he sends on is V3 = U1 + U2 + 1
Important: U3 is not used in computing V3. Sum Product Update Rule.

 4

!

"#!$%&'()*+!(,!-!.!/%*0-1(%,!

!! 2%3,1(,4!*3&)5!67)!80)++-4)9!17-1!+%&'()*!:!;-++)+!1%!+%&'()*!.!(+!17)!+30!

%<!-&&!(,=%0(,4!0)++-4)+>!;&3+!%,)!<%*!+%&'()*!:>!0(,3+!+%&'()*!.?+!0)++-4)!

ninformatio intrinsic n informatio extrinsic

\)(

)(

"#

"#

"$#

%

%

&
'

&
'''

X

YXnZ

XZ

X

XnZ

XYXZYX

II

IIII

!

!! 6%1-&! ,30@)*! %<! +%&'()*+! A! B0)++-4)! +%&'()*! :! ;-++)+! 1%! +%&'()*! .C! D!

B0)++-4)!+%&'()*!.!;-++)+!1%!+%&'()*!:C!

!

V3

U1

U2

U3

Soldiers in A Loop
For soldiers in a loop, there is no simple message-passing solution.

 5

!

"#!$%&'()*%+!"%+)(*+,!(!"-./0!

!! 120!,*)3()*%+!*,!3+)0+(4/05!6%!7*(4/0!.%3+)*+8!,)&()08-!09*,),:!)20&0!*,!(/,%!(!

;%,*)*70!<00=4(.>!0<<0.)!?*)2*+!)20!.-./0!(+=!)20!.%3+)!)0+=,!)%!*+<*+*)-#!

!! "%+./3,*%+5!'0,,(80@;(,,*+8!=0.%=*+8!.(++%)!40!%;)*'(/!?20+!)20!.%=0,!

8&(;2!.%+)(*+,!(!.-./0!

!

!

!

!

!

!

Message-Passing Decoding
Important decoding algorithm has various names:
Message-passing decoding
Sum-product decoding
Probabilistic decoding
An instance of “belief propagation”

Instead of bit-flipping, the algorithm passes “probability messages” or “soft
information”
Not just BSC, but message-passing decoding works for a variety of
channels, for example AWGN, binary erasure channel.

Probabilistic Decoding
Probabilistic decoding is an instance of message passing
It is an effective way to decode LDPC Codes

Encoder

x =
 x1 ... xN Channel

y =
 y1 ... yN

P (x1|y1) P (xi|yi) P (xN |yN)

Decoder

u23

u 11

u53 u54

Message Passing
Messages are probabilities: P(xi).
 uij = P(xi) is the message passed from the bit node i to check node j
lvij = P(xi) is the passed from the check node j to bit node i.

1 2 3 4 5 6

1 2 3 4 5

lv23

lv 11

lv53 lv
54

The bit node computes its output
u, from inputs v and P(xi | yi):

P (xi|yi)

lvi&
lvijluiml

lvi& luijl luikl luinl

The check node computes its
output v, from inputs u:

The Sum-Product Update Rule

The Sum-Product Update Rule [Kschischang, et al.]:

The message sent from a node N on an edge elis the
product of the local function at N with all messages
received at N on edges other than e, summarized for

the variable associated with e.

lvijl luikl luinl luijl lvikl luinl luijl luikl lvinl

⇒ One message must be computed for
each edge, per check node

BSC Channel A Posteriori Probability: P(xi | yi)
Binary Symmetric Channel — Errors are independent
The a priori information about xi are P(x = 0) = P(x = 1) = 0.5.
P(y = 0) = P(y = 1) = 0.5 because of the symmetry of the channel.

An error occurs with probability p means:
P(y = 1 | x = 0) = p

P(y = 0 | x = 0) = 1-p
Using Bayes’s Rule:

1-p

1-p
p

p

Channel: BSC(p)

x y

1 1

0 0

P (x = 0|y = 1) = P (y = 1|x = 0)P (x=0)
P (y=1)

P (x = 0|y = 1) = p 0.5
0.5 = p

P (x = 0|y = 0) = 1 − p

AWGN Channel A Posteriori Probability: P(xi | yi)
Additive White Gaussian Noise (AWGN) Channel

Assume the zi are independent.

zi

yi

xi ∈ {0, 1} → {−1, +1}

zi ∼ N (0, σ2)

fZ(z) = 1√
2πσ

ez2/2σ2

P (x = 0|y) = P (y|x = 0)P (x=0)
P (y)

P (x = 0|y) = ke(y+1)2/2σ2

P (x = 1|y) = ke(y−1)2/2σ2

k = 1
2
√

2πσP (y)

Find k by P (x = 0|y) + P (x = 1|y) = 1

Bit Node Function
At the Bit Node, we have several different estimates about a bit x:
'1 = P(x=0|y1), v2 = P(x=0|y2), v3 = P(x=0|y3).
What is the combined estimate, u4=P(x=0|y1y2y3)?

Consider this system:

lv2
lv1lu4

lv3

y2

y3

x

zi

y1

zi

zi

v1 = P (x = 0|y1)

v2 = P (x = 0|y2)

v3 = P (x = 0|y3)

P (x|y1y2y3)
P (x) =

P (x|y1)
P (x)

P (x|y2)
P (x)

P (x|y3)
P (x)

Using the identity:

We can show:

P (x = 0|y1, y2, y3) =

∏
i
P (x = 0|yi)∏

i
P (x = 0|yi) +

∏
i
P (x = 0|yi)

Or:
u4 =

v1v2v3

v1v2v3 + (1 − v1)(1 − v2)(1 − v3)

Check Node Function
At the Check Node, we know x1 + x2 + … + xn = 0.
What is vn = P(xn=0)? What is P(xn=1)?
Let ρn = P(xn=0) – P(xn=1).

Let .

Note that since x1 + x2 + … + xn = 0:
Even: xn = 0 is the same as x(n-1) = 0
Odd: xn = 1 is the same as x(n-1) = 1
⇒ P(xn = 0) = P(x(n-1) = 0)

By Bayes’ Rule:
P(xn = 0) = P(x(n-2) = 0, xn-1 = 0)
 + P(x(n-2) = 1, xn-1 = 1)

By independence:
P(xn = 0) = P(x(n-2) = 0) P(xn-1 = 0)
 + P(x(n-2) = 1) P(xn-1 = 1)
Can show:
 ρn = ρn-1 … ρ1

lv(lu3l lu2l lu3l

x(k) =
k∑

i=1

xi

lx(lx3l lx2l lx1l

vn =
1

2

(
(2u1 − 1) · · · (2un−1 − 1) + 1

)

u23

u 11

u53 u54

Message Passing Decoding Algorithm

1. Initialize: vij messages to be P(xi) = 0.5.
2. Compute the bit-to-check messages uij from vij (on the first iteration, we

use P(xi | yi)).
3. Compute the check-to-bit messasges, vij from uij.
4. At each node, compute the temporary estimate xi. If x Ht = 0, then stop

decoding, x is a valid codeword.
5. Otherwise repeat until Steps 2-4 until a maximum number of iterations

has been reached.

P (x1|y1) P (xi|yi)

^
^ ^

0.5

0.
5

0.5 0.5

0.5

lv23

lv 11

lv53 lv
54

