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The Communications Problem

lx,
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Figure 1.

The problem is to communicate reliably over a noisy channel.

Let x be the transmitted data, and y be the received sequence:
x=(1000 — y=(1001.

The approach to solve the problem is to add redundancy:

x=(1000111) — y=(1001111) — £=(1000111).
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Using this redundancy, the decoder can estimate the original data.



The Communications Problem

The problem is solved by using error-correcting codes, ECC. Consider a
major class of ECC: linear block codes over the binary field F..

Block code has length N;

and has 2K codewords which form a subspace of (F,)N.

The code’s rate is R = K/N.

A block code C is defined by a (N-K)-by-N parity check matrix H. The code
is the set of length-N vectors x = (x1 X; ... xx) such that:

x-Ht=0

Let w = (u1 u; ... ux) be a length K vector of information. Let G be a K-by-N
generator matrix for C:

uG =x. ey (ORI
Arithmetic is performed over the binary field F.. 0]0]1
152N L
All codes have an important property,
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the minimum distance.
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Parity Check Matrices

A binary, linear error-corrrecting code can be defined by a (N-K)-by-N
parity-check matrix, H. Each row in this matrix is b;:
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For example, the (7,4) Hamming code has:
e el ke e (e )&
= | a7 el o X My <o )
I The 0 sl

This code has block length N=7, and information length K=4. The
codebook, C, is the set of length N words, x, which satisfy:

x-Ht=0



Codes Defined by Parity Check Matrices

The (7,4) Hamming codebook has 24=16 codewords:
C ={0000000, 1000111, 0100110,...}

It is easy to check if a length N vector, y = (y1 ¥, ... yn) is a codeword:
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yH" = (y1 y2...YN) - : = 0 = y is a codeword
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Example. For the (7,4) Hamming code:

ha: y1 +y; +y4 + y5 =0 iSRS P
h: y1 + vy, +y4 + y6 =0 =il L il e i)
hy: y1 +v2 +y; +y, +y, =0, il i Gl e A

Verify thaty=(1110011) is a (7,4) Hamming codeword:
hifed s 412400 +50:=0
hysleele ot 0+ 1o=7]
hssl=etl A1+ 0 51 = 0




The Communications Problem

Given a received word y = (y1 y- ... yn), the decoder’s goal is to find the
maximum likelihood decision:

S =
x = arg max P(y|x)

Decoder complexity is a serious restriction in using error correcting codes.
It is impractical to evaluate the above equation directly; it is exponentially

difficult.

Various types of codes:
» Reed-Solomon Codes
» BCH Codes
» Convolutional Codes

are used in practice not only because they are good codes, but because the
decoders have reasonable complexity.



Reducing the Gap to Capacity. Rate R=1/2 Codes
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History of Low-Density Parity Check Codes

1948 Shannon published his famous paper on the capacity of channels with
noise

1963 Robert Gallager wrote his Ph.D. dissertation “Low Density Parity
Check Codes”. He introduced LDPC codes, analyzed them, and gave some
decoding algorithms.

Because computers at that time were not very powerful, he could not verify
that his codes could approach capacity

1982 Michael Tanner considered Gallager’s LDPC codes, and his own
structured codes. He introduced the notion of using bipartite graph,
sometimes called a Tanner graph.

1993 Turbo codes were introduced. They exceeded the performance of all
known codes, and had low decoding complexity

1995 Interest was renewed in Gallager’s LDPC codes, lead by David
MacKay and many others.

It was shown that LDPC codes can essentially achieve Shannon Capacity
on AWGN and Binary Erasure Channels.



Low-Density Parity Check Codes

A low-density parity check (LDPC) code is a linear block code whose

parity check matrix has a small number of one’s.
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The number of 1’s in an LDPC code’s matrix grows linearly with the size N.

The number of 1’s in a regular-density matrix grows as N-(M-N).



LDPC Code Constructions

Note that @/ linear codes have a parity check matrix, and thus can be
decoded using message-passing decoding.

However, not all codes are well-suited for this decoding algorithm.

Semi-random Construction

Regular LDPC Codes (1962, Gallager)

Irregular LDPC (Richardson and Urbanke, Luby et al.)
MacKay Codes

Structured Constructions

Finite-Geometry based constructions (Kou, Lin, Fossorier)
Quasicyclic LDPC Codes (Lin)

combinatorial LDPC codes (Vasic, et al.)

LDPC array codes (Fan)



Regular LDPC Codes

The parity check matrix for a (j,k) regular LDPC Code has; one’s in

each column, and % one’s in each row.

Gallager’s construction technique:

1. Code parameters N, K, 7, k are given.
NEEaRE

2. Construct the following matrix with 7 rows and N columns:
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3. Let m(H1) be a pseudo-random column permutation of H.

4. Construct regular LDPC check matrix by stacking 7 submatrices:
S

= 7T(H1)

m(Hy)



Regular LDPC Code Example
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The number of ones is N7 = (N-K)-k. From this, it is easy to show that the

rate of the code is:

J
k

R=1-

In this example, R =1 - 3/4 = 1/4.



Bipartite Graphs

» A simple undirected graph G: = (V,E) is called a bipartite graph if there
exists a partition of the vertex set so that both V| and V; are independent
sets. We often write G: = (V1 + V2, E) to denote a bipartite graph with

partitions Vi and V..
V2
E
Vi

Bipartite Graph (Vi+V2,E)

Undirected Graph (V,E)

@ V, vertexset

@O Vi, V,node set
~~ E, edge set

~ E, edge set



Graph Representations of Codes—Tanner Graph

A Tanner Graph is a bipartite graph which represents the parity check

matrix of an error correcting code.

H is the (N-K)-by-N parity check matrix. The Tanner graph has:
N bit nodes (or variable nodes), represented by circles.
N-K check nodes, represented by squares.

There is an edge between bit node 7 and check node j if there is a one in
row 7z and column j of H.

Example:
) gy
Tl e 0
H__l()ll_B
1 2 3 4

Tanner Graph



Cycles and Girth of Tanner Graphs

Cycle \
L=4
)

A c¢ycle of length L in a Tanner graph is a path of L edges which closes back
on itself

o The girth of a Tanner graph is the minimum cycle length of the graph.

=l 005050
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Decoding Algorithms

Gallager’s Bit Flipping algorithm for LDPC codes

Message-passing algorithms:

-y

“Soldier Counting” algorithm
Probablisitic Decoding of LDPC Codes.



Bit Flipping Decoding: Channel

Gallager’s bit-flipping algorithm is for decoding on the binary symmetric
channel (BSO).

The BSC has transition probability p.

1p
0 0 : C
x 0 y | Bit-tlippin
Encoder (TR o > PpIg
- Decoder
p
1 1
Channel: BSC(p)
Transmitted Sequence Received Sequence
x=000000 y=001010

Z is the noise sequence: y = X + Z.
LDPC codes are linear codes: x1 + x2 is a codeword.

= considering the all-zeros codeword is sufficient.



Bit Flipping Decoding: Example Code

Consider the following parity check matrix H:
v A=) ()
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This code has N=7 bits, and K=6 parity checks.
It has rate R=6/7, and only two codewords {0000000,1111111}

(H is one possible parity check matrix for the repeat code)

The Tanner graph corresponding to the parity check matrix:

HAL e



Bit Flipping Decoding: Decoding Algorithm

Gallager’s Bit-Flipping Algorithm
1. Compute each parity check, for received y
2. For each bit, count the number of failing parity checks

3. For the bit(s) with the largest number of failed parity checks, flip the
associated input y.

4. Repeat steps 1-3 until all the parity checks are satisfied, or a stopping
condition is reached.

x=0000000 - y=0100100

X X X X X

AR,

0




Bit Flipping Decoding: Decoding Algorithm

Gallager’s Bit-Flipping Algorithm
1. Compute each parity check, for received y
2. For each bit, count the number of failing parity checks

3. For the bit(s) with the largest number of failed parity checks, flip the
associated input y.

4. Repeat steps 1-3 until all the parity checks are satisfied, or a stopping
condition is reached.

x=0000000 - y=0100100

X X X

T B Y

1-0 O 0




Bit Flipping Decoding: Decoding Algorithm

Gallager’s Bit-Flipping Algorithm
1. Compute each parity check, for received y
2. For each bit, count the number of failing parity checks

3. For the bit(s) with the largest number of failed parity checks, flip the
associated input y.

4. Repeat steps 1-3 until all the parity checks are satisfied, or a stopping
condition is reached.

x=0000000 - y=0010100

| 0 0 0 0 0 0

0

'VALID CODEWORD!



Message Passing Problem, Soldier Counting

The Soldier Counting Problem: Each soldier in a row wants to know
the total number of soldiers.

Each soldier can only communicate with his neighbors.

How to communicate the total number to each soldier?

2+3+1 =0

Solution: Message Passing.

1. When a soldier receives a number from his left, he adds one (for himself)
and passes it to his left.

2. Similarly; for messages passing from the right.

3. A soldier with only one neighbor passes the number “one” to his neighbor.

Soldier figures due to William Ryan



SoldiersinaY

For soldiers in more complicated formations, a solution is still possible.

;%“\

The soldier with three neighbors receives two messages U1, U,. The
message that he sends onis V;=U1+ U, + 1
Important: U3 is not used in computing V3. Sum Product Update Rule.



Soldiers in A Loop

For soldiers in a loop, there is no simple message-passing solution.

NS
N
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Message-Passing Decoding

Important decoding algorithm has various names:
Message-passing decoding

Sum-product decoding

Probabilistic decoding

An instance of “belief propagation”

Instead of bit-flipping, the algorithm passes “probability messages” or “soft
information”

Not just BSC, but message-passing decoding works for a variety of
channels, for example AWGN, binary erasure channel.



Probabilistic Decoding

Probabilistic decoding is an instance of message passing
It is an effective way to decode LDPC Codes

Encoder

X1 ...

XN

Channel

Y1...

AR

P(ajl’yl)

Ak

P(z;|y;) leN’yN

Decoder




Message Passing

Messages are probabilities: P(x;).
u; = P(x;) is the message passed from the bit node 7 to check node 7

v;i = P(x;) is the passed from the check node ; to bit node 7

3
ﬂmzﬁ‘a\

&
S
Lo
NN
%

1 2 3 4 5 6
The bit node computes its output The check node computes its
u, from inputs v and P(x;|y;): output v, from inputs u:
o 4] Vik. ‘A

P(zily:)



The Sum-Product Update Rule

The Sum-Product Update Rule {Kschischang, et al.}:

The message sent from a node N on an edge ¢ is the

product of the local function at N with all messages

received at N on edges other than ¢, summarized for
the variable associated with e.

g i

Uik Ui Uik Uin Uik  Oin

= One message must be computed for

each edge, per check node



BSC Channel A Posteriori Probability: P( x; ! y; )

Binary Symmetric Channel — Errors are independent
The a priori information about x; are P(x = 0) = P(x = 1) = 0.5.
P(y =0) = P(y = 1) = 0.5 because of the symmetry of the channel.

Ip
X P y

<
1(OYELP Y

Channel: BSC(»)

An error occurs with probability p means:
Ply=1lx=0)=p
P(y=01lx=0)=1-p

Using Bayes’s Rule: P(2=0)
IRt (1 — "1 :p%:p
Blra—=Giy— 0 ==



AWGN Channel A Posterior: Probability: P(x;ly;)

Additive White Gaussian Noise (AWGN) Channel g N\ (0,0 2)
2 2
& Assume the z; are independent. fz(z) = L 27/20

2T 0
T Ul s EE e Q .
> Y

Zq

P(z = Oly) = P(y|z = 0) 2=V

P(y)
P(z = 0|y) = kelyt1)"/20°
Pl === ke(v—1)%/20°
k =

1
2v/2mo P(y)
Find k by Plx=0ly)+Plz=1ly) =1



Bit Node Function

At the Bit Node, we have several different estimates about a bit x:

w1 = P(x=0ly1), v, = P(x=0ly2), v; = P(x=0ly»). 5

U2

What is the combined estimate, #,=P(x=0ly1y.y;)? % s
Consider this system:
Using the identity:
I Y1, e —"0\y7) : .
P(x|lyiy2ys) _ P(x|yr) P(x|y2) P(z|ys)
1 P(x) A R Y e (5 9 K R 24 W
: We can show:
4)@ sigh e i Al I, Ple = 0lys)
b 4 i L\ = UlY;
1 Pl =Olvs,v2,%5) = 1756 olys) + T, P = 0wy

Or:
| Ys oSt 0 s V1V2V3
Q A (:C |y3> S V1UV2V3 —+ (1 2 Ul)(l = ’02)(1 = ’Ug)



Check Node Function

At the Check Node, we know x1+ x,+ ... + x, = 0.

What is v, = P(x,=0)? What is P(x,=1)?
Let pn = P(xn=0) % P(an 1).
k

et k= sz .
i=1

» Note that since x1+x, + ... + x, = 0:
Even: x, =0 1sthe same as x(n-1) =0
Odd: x,=1listhesameasx(n-/)=1
= P(x, = 0) = P(x(n-1) = 0)

o By Bayes’ Rule:
P(x» = 0) =P(x(n-2) =0, xn-1 = 0)
+ P(x(n-2) =1, xp.1 = 1)

e %((zu1 LN e s 1)

© By independence:
P(x, = 0) = P(x(n-2) = 0) P(xn-; = 0)
+ P(x(n-2) =1) P(xn-1 = 1)
Can show:

Pn=Pn-1... P1




Message Passing Decoding Algorithm

B
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- P(x1]y1) o P(zi|y:)

1. Initialize: v;; messages to be P(x;) = 0.5.

2. Compute the bit-to-check messages #;; from v;; (on the first iteration, we
use Plx; |y ).

3. Compute the check-to-bit messasges, v;; from u;;.

4. At each node, compute the temporary estimate x;. If x H? =0, then stop
decoding, X is a valid codeword.

5. Otherwise repeat until Steps 2-4 until a maximum number of iterations
has been reached.





