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Abstract

Nonlinear real arithmetic problem is to find the solutions in systems of equalities or
inequalities. The satisfiability problem is to decide if a given constraint in conjunctive
normal form admits a satisfiable assignment. In this research report, we study the
satisfiability problem of nonlinear real arithmetic.

For nonlinear real arithmetic problem, Collins created Cylindrical Algebraic Decompo-
sition (CAD) in 1975. For the satisfiability problem, SAT solvers and the algorithms
have been remarkably improved since mid 1990s.

We study one of the most efficient nonlinear real arithmetic solver: NLSAT. We make
sure the strategy for the performance through giving its algorithm and investigating the
source code. We also survey the algorithms of cylindrical algebraic decomposition to
understand the NLSAT implementation.
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Chapter 1

Introduction

Nonlinear real arithmetic problem is to find the solutions of xi in systems of equal-
ities or inequalities P

P =


P1(x1, . . . , xi, . . . , xn) ▷1 0

P2(x1, . . . , xi, . . . , xn) ▷2 0
...
Pj(x1, . . . , xi, . . . , xn) ▷j 0


where ▷j is either ‘‘ < " or ‘‘ = ", Pj is a n-variant k degrees polynomial such that

cn0
xkn + cn1

xk−1
n + cn2

xk−2
n + · · ·+ cnk

where coefficients cnk
are x1, . . . , xn−1-variant polynomials with integer coefficients, and

x1, . . . , xn are variables over reals.
This class of problem has a broad applications such as Polynomial Optimization, Ge-
ometric Modeling, Robot Motion Planning, and Stability Analysis [1]. Moreover, the
problem is proved decidable in 1951 by Tarski [2], and in 1975, Collins invented a signif-
icantly improved algorithm: “Cylindrical Algebraic Decomposition” for the problem in
[3]. However, Davenport and Heintz show the complexity is doubly exponential in [4],
meaning that the size and the number of variables are strongly limited.

At the same time, there is a class of satisfiability problem. That is to decide if a given
constraint in conjunctive normal form admits a satisfiable assignment. Nonlinear Real
Arithmetic Satisfiability is a problem such that

∃x1, . . . , xn(P).

1



Chapter 1 Introduction 2

The complexity of satisfiability problem is NP-complete [5], yet, the solvers and the
algorithms have been remarkably improved since mid 1990s [6]. For example, modern
SAT solvers solves 1, 000, 000+ variables boolean satisfiability problems in a few seconds
to a few minutes in 2011 [7]. Modern Nonlinear Real Arithmetic satisfiability solvers
solves n = 10+ variables, k = 6+ degrees problems in a few seconds to a few minutes in
2013 [8].

Under those circumstance, we study one of the most efficient nonlinear real arithmetic
solver: NLSAT. We make sure the strategy for the performance through giving its
algorithm and investigating the source code. We also survey the algorithms of cylindrical
algebraic decomposition to understand the NLSAT implementation.



Chapter 2

Polynomial

This chapter and the next chapter are mathematical preliminaries for Cylindrical Alge-
braic Decomposition.

In this chapter, we first see the algebraic structures such as Ring, Ideal, Field. Then,
we see Primitive Element Theorem using the algebraic structures. The theorem is used
in the Lift phase of Cylindrical Algebraic Decomposition.

The general reference here is, chapter 5 and Appendix.A in [9], chapter 2, 3, 4 in [10],
appendix in [11], chapter II, IV, V in [12], chapter 9 in [13].

2.1 Ring

We first introduce Ring. Ring is a structure only allowed addition, subtraction and
multiplication. We give here the definition.

Definition 2.1. A ring R is a set, together with two binary operations ·(multiplication)
and + (addition) on R satisfying the following conditions.

(i) ∀a, b, c ∈ R ((a+ b) + c = a+ (b+ c) ∧ (a · b) · c = a (b · c)) (associative).

(ii) ∀a, b ∈ R (a+ b = b+ a) (commutative).

(iii) ∀a, b, c ∈ R (a · (b+ c) = a · b+ a · c) (distributive).

(iv) ∀a ∈ R (∃0, 1 ∈ k (a+ 0 = a · 1 = a)) (identities).

(v) ∀a ∈ R (∃b ∈ k (a+ b = 0)) (additive inverses).

Definition 2.2. A commutative ring R is a ring, satisfies multiplicative commutative
condition,

3
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(i) ∀a, b ∈ R (a · b = b · a) (multiplicative commutative).

Definition 2.3. A polynomial ring R[x] is set of mono variant polynomials whose
coefficient is a ring.

2.2 Ideal

Ideal is a subset of a ring which is closed under addition and multiplication. We give
the definition.

Definition 2.4. Given a ring R, a subset I ⊂ R is an ideal if I satisfies the following
conditions.

(i) ∀a, b ∈ I (a+ b ∈ I).

(ii) ∀a ∈ I, b ∈ R (b · a ∈ I).

Definition 2.5. Let f ∈ R[x], we say the ideal {rf | r ∈ R[x]} is a principal ideal
generated by f, denotes ⟨f⟩.

Definition 2.6. Given a ring R, if all its ideals are principal ideal, we say it is a
principal ideal domain, or the abbrev. PID.

Example 2.1. The integer ring Z and a polynomial ring k[x] in k, are both Principal
Ideal Domain (PID).

2.3 Polynomial

Polynomial is the main structure in this research report. At the same time, polynomial
(polynomial ring) is an instance of Ring.

Definition 2.7. A polynomial f of variable x, written f(x) is such that

f(x) = c0x
m + c1x

m−1 + · · ·+ cm−1x1 + am

where each c0, . . . , cm we say a coefficient. We say the each product pair of coefficient
and variables c0x

m, . . . , c1x
m−1 a term.

Example 2.2. f(x) = 2x2 + 3x + 4y is a polynomial. 2, 3, 4y are coefficients of f(x).
2x2, 3x, 4y are terms of f(x).
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Definition 2.8. A polynomial f is a n-variant polynomial in integer Z, written
f ∈ Z[x1, . . . , xn] such that

f(x1, . . . , xn) = cn0
xkn + cn1

xk−1
n + · · ·+ cni

xk−i
n + · · ·+ cnk−1

xn + cnk
(2.1)

where cni
are n − 1-variant polynomials such that cni

(x1, . . . , xn−1) = cn−10x
l
n−1 +

cn−11x
l−1
n−1+ . . . cn−1l . If n = 1, where c1i are mono variant polynomials with coefficients

in integer such that c1i(x1) = c00x
m
1 + c01x

m−1
1 + · · ·+ c0m where c0i are integers Z.

Definition 2.9. Given a polynomial f of variable x,

f = c0x
m + c1x

m−1 + · · ·+ cm,

We say c0x
m that is the highest degree term of x in f, is the leading term of f, written

LTx(f) = c0x
m.

Definition 2.10. Given a polynomial f = c0x
m + c1x

m−1 + · · · + cm, we writes the
coefficient of the leading term of f, COEFFx(F).

Definition 2.11. Given n degrees polynomial f of variable x, we writes degx(f) = n

is the degree of the polynomial. Specially, we define degx(0) = −∞. If the polynomial
contains mono or no variable, we also writes deg(f) = n omitting the subscript variable
x.

Example 2.3. Let polynomials f, g, p are,

f = x3 + 2x2 + x+ 1, g = 3y2 + 3,

p = 0.

Then, then the degree of f is 3, the degree of g is 2, the degree of p is −∞. We write
deg(f) = 3, degy(g) = 2, deg(p) = −∞.

2.4 Field

Field is a structure which allows division in each element, in addition to the operations
of the ring. We give the definition.

Definition 2.12. A field k is a set, together with two binary operations ·(multiplication)
and +(addition) on k satisfying the following conditions.

(i) ∀a, b, c ∈ k ((a+ b) + c = a+ (b+ c) ∧ (a · b) · c = a (b · c)) (associative).
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(ii) ∀a, b, c ∈ k (a+ b = b+ a ∧ a · b = b · a) (commutative).

(iii) ∀a, b, c ∈ k (a · (b+ c) = a · b+ a · c) (distributive).

(iv) ∀a ∈ k (∃0, 1 ∈ k (a+ 0 = a · 1 = a)) (identities).

(v) ∀a ∈ k (∃b ∈ k (a+ b = 0)) (additive inverses).

(vi) ∀a ∈ k, a ̸= 0 (∃c ∈ k (a · c = 1)) (multiplicative inverse).

2.5 Extension Field

If F is a subfield of E, we say E is an extension field of F. In this section, we introduce
how to construct an extension field, through the definitions and the propositions.

Definition 2.13. Let k[x] be a polynomial ring, I ⊂ k[x] be an ideal. Given f ∈ k[x],
we say the equivalence class of f with congruence modulo I is,

[f] = {g ∈ k[x] | f− g ∈ I},

which is denoted [f].

Definition 2.14. Let I ⊂ k[x] be an ideal, the quotient ring of k[x] modulo I, is the
set of equivalence class for congruence modulo I, which is denoted k[x]/I:

k[x]/I = {[f] | f ∈ k[x]}.

Proposition 2.15. Let f ∈ k[x], set ⟨f⟩ be the principle ideal generated by f, if the f is
irreducible, quotient ring k[x]/⟨f⟩ forms a field.

Proof. We say the quotient ring satisfies the field condition (2.12). For the detail, see
proposition 4.4 in [10].

Proposition 2.16. Let f ∈ k[x] and f is irreducible, α is a root of f(x), the quotient
ring k[x]/⟨f⟩ forms an extension field of k by α which denotes f(α),

f(α) = k[x]/⟨f⟩.

Proof. See Lemma A.24 in [11], proposition 3.12 in [10].
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2.6 Minimal Polynomial

Definition 2.17. α is an algebraic number over a field k if

∃f(x) ∈ k[x] (f(α) = 0).

Definition 2.18. Let α be a algebraic number over a field k. The minimal polynomial
of α is the mono variant polynomial f(x) ∈ k[x] of lowest degree such that f(α) = 0.

2.7 Primitive Element Theorem

Finally, we see primitive element theorem which is used in the lift phase of Cylindrical
Algebraic Decomposition.

Definition 2.19. Let α be a algebraic number, let Q be the ring of rational number.
Let Q(α) be the minimal extension field of Q including α. We say Q(α) is the simple
extension on Q, and the α is the primitive element of Q(α).

Theorem 2.20. (Primitive Element Theorem) Let α,β be algebraic numbers on Q.
Then,

∃γ (Q(γ) = Q(α,β)),

the γ is the primitive element of Q(α,β).

Proof. See THEOREM 26,27 in [14], Appendix.1 in [15].

Algorithm of Primitive Elements and its minimal polynomial

We give an algorithm to get minimal polynomial for extension field. At the same time,
this algorithm is used in Lift phase of Cylindrical Algebraic Decomposition. The refer-
ence of this algorithm is [16–18].

In the algorithm, we need square free polynomial.

Definition 2.21. Let a polynomial P(x) = (x−α1)
e1(x−α2)

e2 . . . . (x−αn)
en where αn

are the roots of f(x), en are the multiplicity of the roots. Then, the square free f(x) of
P(x) is

f(x) = (x− α1)(x− α2) . . . (x− αn).

Furthermore, it is defined by f(x) such that GCD(f, f ′) = 1, where f ′ is the derivative
of f.
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In other words, the square free is the polynomial that multiple roots are removed from
the factorization.

To calculate the square free we give SQFree algorithm.

Algorithm 1 SQFree(P)
INPUT: P = (x− α1)

e1(x− α2)
e2 . . . . (x− αn)

en

OUTPUT: f = (x− α1)(x− α2) . . . (x− αn)

f := P

while h = GCD(f, f ′) ̸= 1 do
f := h

end while
return f

Proof. We use the property that GCD(P, P ′) reduce the number of the multiplicity of
the roots. For instance, let P(x) = (x + α1)

2(x + α2)
3. From the product rule, the

derivative of P(x) be,

P ′ = 2(x+ α1)(x+ α2)
3 + (x+ α2)

23(x+ α2)
2

= (x+ α1)(x+ α2)
2(2(x+ α2)

2 + 3(x+ α1)(x+ α2)).

This means GCD(P, P ′) = (x+α1)(x+α2)
2 whose multiplicity of roots ei are ei = ei−1.

We continue the calculation in the while loop without loss of generality, finally we get
the square free where all ei = 1 when GCD(f, f ′) = 1 .

Theorem 2.22. Let g(x, α) be the minimal polynomial for an algebraic number β over
Q(α), and f(y) be the minimal polynomial for an algebraic number α over Q. If h that is
the power of g(x, α) is square free, then Q(α,β) = Q(β), and h(x) in Q as the minimal
polynomial of g(x, α).

Proof. See Theorem 3.2 in [17], Lemma 3.1 in [18], Lemma 3.2 in [16]

As a constructive proof of the theorem (2.22), we give the following algorithm. Here, we
use the Resultant(f, g) in (3.4), to calculate the power of g(x, α).
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Algorithm 2 MinPolByPrimElem(α, β)
INPUT: α = f(y) over Q, β = g(x, α) over Q(α)
OUTPUT: the minimal polynomials for γ where Q(α,β) = Q(γ), and for β h(x) over
Q

s := 0

h(x) = Resultanty(f(y), g(x, y))
while GCD(h(x), h(x) ′) ̸= 1 do

s := s+ 1

h(x) = Resultanty(f(y), g(x− sy, y))
end while
γ = sα+ β

return γ, h(x)

In the while loop, we calculate g(x − sy, y), if α = y2 − 2, β = x2 + y2 + 4, and s = 1,
then from g(x− sy, y), we get (x− y)2 + y2 + 4.



Chapter 3

Greatest Common Divisor

In this chapter, we introduce the theorems and algorithms related to Greatest Common
Divisor for Cylindrical Algebraic Decomposition.

The reference of the definitions, theorems and the proofs in this chapter are Chapter 1
in [9], Chapter 4, 5 in [19], Chapter 2 in [20], Chapter 9 in [13], Chapter 3 in [21].

3.1 Greatest Common Divisor

We first define greatest common divisor in this section.

Definition 3.1. The polynomial q is a divisor of a polynomial f if f = aq for some
polynomial a.

Definition 3.2. A polynomial h is the greatest common divisor of two polynomials
f and g which is denoted GCD(f, g), if h is a divisor of both f and g, and all other divisors
of both f and g are divisor of h.

Example 3.1. Let f, g, f(x) = x3 − 6x2 + 11x − 6, g(x) = x2 − 2x + 1. Then h =

GCD(f, g) = x − 1 is the greatest common divisor of g and f. Since the factorization of
f, g is f(x) = (x−1)(x−2)(x−3), g(x) = (x−1)2, thus h = x−1 is the greatest common
divisor.

10
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3.2 Euclidean Algorithm

Given polynomials f(x) and f1(x), where deg(f) ≥ deg(f1), then divide f(x) with f1(x).
We write f(x) by the following equation,

f(x) = q(x)f1(x) + f2(x), (3.1)

where q(x) is the quotient, f1(x) is the divisor, f2(x) is the reminder. In polynomial
division, the reminder has always lower degree than the divisor. We say deg(fi) >

deg(fi+1). So here it is deg(f1) > deg(f2).

Continuously, we write,

f1(x) = q1(x)f2(x) + f3(x) (3.2)

f2(x) = q2(x)f3(x) + f4(x) (3.3)

. . . (3.4)

fk−1(x) = qk(x)fk(x) + 0 (3.5)

Since the degree of reminder is always lower than the divisor, so that the procedure is
stopped when the reminder is 0 at (3.5).

Now, we prove the following proposition.

Proposition 3.3. Given the above polynomials f(x), f1(x), and the reminders f2, . . . , fk−1,
and the last divisor fk, then we say

GCD(f, f1) = GCD(f1, f2) = · · · = GCD(fk, 0) = fk.

Proof. The crucial equation in the above proposition is,

GCD(f, f1) = GCD(f1, f2). (3.6)

First, we say GCD(f, f1) =⇒ GCD(f1, f2).

Let h = GCD(f, f1), then h is a common divisor of f and f1 by the definition of greatest
common divisor (3.2). From the equation (3.1), we write

f2(x) = f(x) − q(x)f1(x)

= (Ah) − q(x)(Bh)

= h(A− q(x)B).
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Thus h is also a divisor of f2. So h is a common divisor of f1 and f2. Furthermore,
there is no other common divisor of f1 and f2 greater than h, because if such divisor
h ′ = GCD(f1, f2) exists, the h ′ is also a divisor of f, then h ′ = GCD(f, f1). However it
contradicts how we took h = GCD(f, f1). Thus h is the greatest, and h = GCD(f1, f2). So
GCD(f, f1) =⇒ GCD(f1, f2).

Next, we say the opposite direction GCD(f1, f2) =⇒ GCD(f, f1).

If h2 = GCD(f1, f2), the h2 is a divisor of f, because

f(x) = q(x)f1(x) + f2(x)

= q(x)Ah2 + Bh2

= h2(q(x)A+ B).

So GCD(f1, f2) =⇒ GCD(f, f1). Thus, it is proved that GCD(f, f1) = GCD(f1, f2).

We apply the same procedure on GCD(f1, f2), . . . , GCD(fk, 0). So the remaining to show is
GCD(fk, 0) = fk. This is obvious from the definition of greatest common divisor. Thus,

GCD(f, f1) = GCD(f1, f2) = · · · = GCD(fk, 0) = fk.

From the proposition, we give an algorithm to calculate the greatest common divisor.

Algorithm 3 Euclidean(f, f1)
INPUT: f, f1 are polynomial
OUTPUT: h is the greatest common divisor of the given polynomials
h := f

d := f1
while d ̸= 0 do

r := h−Qd ▷ Find Q and calculate r

h := d

d := r

return h
end while
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Example 3.2. Given f = x3−6x2+11x−6, f1 = x2−2x+1, Euclidean(f, f1) calculates
the following. In the first loop:

h = x3 − 6x2 + 11x− 6

d = x2 − 2x+ 1

r = (x3 − 6x2 + 11x− 6) − (x− 4)(x2 − 2x+ 1) = 2(x− 1)

h = x2 − 2x+ 1

d = 2(x− 1).

In the second loop,

h = x2 − 2x+ 1

d = 2(x− 1)

r = x2 − 2x+ 1−
1

2
(x− 1)2(x− 1) = x2 − 2x+ 1− (x− 1)(x− 1) = 0

h = x− 1

d = 0.

Then it stops since d = 0, and returns Euclidean(f, f1) = h = x− 1.

3.3 Resultant

We introduce resultant as a condition of a common root.

Definition 3.4. The resultant denoted Resultantx(f, g) of the two polynomials

f(x) =a0x
m + a1x

m−1 + · · ·+ am

g(x) =b0x
n + b1x

n−1 + · · ·+ bn

where a0 and b0 are not 0, is a polynomial in the ai and bi, such that Resultantx(f, g) =
0 if and only if f and g have a common root.

Remark 3.5. We also denote Resultant(f, g) omitting the subscript x, if the variable is
obvious.

We give here how to construct Resultant(f, g).

Let the root of f be α1 . . . αm, and the root of g be β1 . . . βm. Then write f and g :

f(x) = a0(x− α1)(x− α2) . . . (x− αm), (3.7)

g(x) = b0(x− β1)(x− β2) . . . (x− βn). (3.8)
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Based on this, we define Resultant(f, g) as the following three equivalent forms,

Rresultant(f, g) = an
0b

m
0 (α1 − β1) . . . (αm − βn) (3.9)

= bm
0 g(α1) . . . g(αm) (3.10)

= (−1)mnf(β1) . . . f(βn). (3.11)

From (3.9), we say Resulant(f, g) = 0 if and only if f and g have a common root.
Because if any αi and βj are the same, the right hand side must be 0, else it is never
become 0. So Resultant(f, g) = 0.

Then, we prove that the above Resultant(f, g) is written in the coefficients ai and bi.

Proposition 3.6. Resultant(f, g) is written in the coefficients of the given two poly-
nomials.

Proof. From (3.10) or (3.11), Resultant(f, g) be a symmetric function of αi or βi, and
symmetric function is represented by the elementary symmetric polynomials. More-
over, elementary symmetric polynomials is represented by the coefficients of the given
polynomial:

α1 + α2 + . . . αm = −a1,

α1α2 + . . . αm−1αm = a2,

...

α1α2 . . . αm = (−1)mam.

Thus Resultant(f, g) is written in the coefficients of the given two polynomials.

From the discussion on (3.9) and the proposition (3.6), our construction of Resultant(f, g)
satisfies the resultant definition.

Sylvester Matrix

We introduce the definition of sylvester matrix as a matrix representation of resultant.
Thanks to the matrix representation, we can calculate the resultant efficiently.

Definition 3.7. Let polynomials f, g be,

f = amx
m + am−1x

m−1 + . . . a0, (3.12)

g = bnx
n + bn−1x

n−1 + . . . b0. (3.13)
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Then the sylvester matrix is a m+ n matrix which denoted Sylvester(f, g) such that

Sylvester(f, g) =



am am−1 . . . a1 a0 0 0 0

0 am am−1 . . . a1 a0 0 0
... . . . . . . . . . 0

0 0 0 am am−1 . . . a1 a0

bn bn−1 . . . b1 b0 0 0 0

0 bn bn−1 . . . b1 b0 0 0
... . . . . . . . . .
0 0 0 bn bn−1 . . . b1 b0


.

We say the next theorem with sylvester matrix.

Theorem 3.8. The determinant of Sylvester(f, g) is equal to Resultant(f, g).

To prove the theorem, we first prove the following lemma.

Lemma 3.9. Given two polynomial f, g where deg(f) ≥ deg(g), then there is a common
factor if and only if Af + Bg = 0 where A and B are nonzero polynomials, and those
degrees be deg(A) ≤ deg(g) − 1, deg(B) ≤ deg(f) − 1.

Proof. Assume h is a common factor of f and g, we write,

f = hf ′,

g = hg ′.

Now let A = g ′, B = −f ′, then,

Af+ Bg = g ′hf ′ + (−f ′)g

= gf ′ − gf ′

= 0.

Thus we say if there is a common factor, Af+ Bg = 0.

Conversely, if Af + Bg = 0, we write Bg = −Af. So g is a divisor of the left hand
side, also the right hand side must be divided by g in the equation. At the same time
deg(A) ≤ deg(g) − 1 from the condition, meaning that A must not have all the factor
of g. So f must contains a factor of g to hold the equation. So if Af + Bg = 0, there is
a common factor of f and g.

Using this lemma, we prove the theorem (3.8).



Chapter 3 Greatest Common Divisor 16

Proof. Let f, g be (3.12), (3.13) respectively, and A, B be,

A(x) = sn−1x
n−1 + sn−2x

n−1 + · · ·+ s0, (3.14)

B(x) = tm−1x
m−1 + tm−2x

n−1 + · · ·+ t0. (3.15)

Then, we calculate Af + Bg = 0, and we compare the coefficients of power of x, we get
the following m+ n unknowns, m+ n system of linear equations.

amsn−1 + bntm−1 = 0,

am−1sn−1 + amsn−1 + bn−1tm−1 + bntm−1 = 0,

...

a0s0 + b0t0 = 0.

(3.16)

Thus it is expressed as the following matrix representation,

(sn−1, . . . , s0, tm−1, . . . , t0)Sylvester(f, g) = 0 (3.17)

At the same time, having a nonzero solution of a linear equation is equal to the coefficient
matrix determinant is 0. The determinant is exactly the determinant of Sylvester(f, g).
Also the system of liner equation (3.17) represents Af + Bg = 0. Consequently, using
the lemma (3.9), the determinant of Sylvester matrix satisfy the resultant definition
(3.4).

3.4 Sub-resultant Coefficient

In this section, we introduce sub-resultant coefficient as a representation of extended
euclidean algorithm.

3.4.1 Extended Euclidean Algorithm

When calculating Greatest Common Divisor we say the following identity.

Theorem 3.10. Given polynomials f(x), g(x). Let h = GCD(f, g). Then there exists
some polynomials A,B such that

h = Af+ Bg (3.18)
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We introduce Extended Euclidean Algorithm as a constructive proof of this theorem.

Extend Euclidean Algorithm calculates the following ai, bi besides euclidean algo-
rithm calculates the greatest common divisor. The algorithm starts f0 = f,f1 = g,
a0 = 1, a1 = 0, b0 = 0, b1 = 1.

fi−1(x) = qi(x)fi(x) + fi+1(x)

ai+1(x) = ai−1(x) − qi(x)ai(x)

bi+1(x) = bi−1(x) − qi(x)bi(x)

(3.19)

As we see in (3.5), this calculation stops when the reminder is zero,

fk−1(x) = qk(x)fk(x) + 0.

As the result, fk = GCD(f, g). Furthermore, let c be the principal coefficient of fk,
Extended Euclidean Algorithm calculates the A and B as A = ak, B = bk.

We prove the theorem (3.10) with this algorithm.

Proof. We prove the following identity by mathematical induction on i. In each step of
Extended Euclidean Algorithm, the equation

fi(x) = ai(x)f(x) + bi(x)g(x) (3.20)

holds.

When i = 1, the equation is,

f1(x) = a1(x)f(x) + b1(x)g(x).

From f1 = g, a1 = 0, b1 = 1, we rewrite the equation,

g(x) = 0f(x) + 1g(x)

g(x) = g(x).

So the claim hold on i = 1.

When i = 2, we say a2 and b2 be,

a2(x) = a0(x) − q1(x)a1(x)

= 1− q1(x)0

= 1

(3.21)
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b2(x) = b0(x) − q1(x)b1(x)

= 0− q1(x)1(x)

= q1(x).

(3.22)

From f0 = f, f1 = g, and (3.19), (3.21), (3.22), we rewrite f2 as,

f0(x) = q1(x)f1(x) + f2(x)

f2(x) = f0(x) − q1(x)f1(x)

= f(x) − q1(x)g(x)

= 1f(x) − q1(x)g(x)

= a2(x)f(x) − b2(x)g(x).

So the equation holds when i = 2.

Let us assume the claim holds until i > 2. Then i+ 1 be,

fi+1 = fi−1(x) − qi(x)fi(x)

= (f(x)ai−1 + g(x)bi−1(x)) − qi(x)(f(x)ai(x) + g(x)bi(x))

= f(x)(ai−1(x) − qi(x)ai(x)) + g(x)(bi−1(x) − qi(x)bi(x))

= f(x)ai+1 + g(x)bi+1.

By mathematical induction on i, the identity holds for all i. So the equation (3.20) holds
on fk = GCD(f, g) = h, thus there exits polynomial A,B such that h = Af+ Bg.

3.4.2 Sub-resultant coefficient

In the previous section, we see extended euclidean algorithm which calculates GCD(f, g) =

Af+Bg. We defines j-th sub-resultant coefficient as a representation of the greatest com-
mon divisor calculation.

Definition 3.11. We define j-th sub-resultant coefficient from the equation of ex-
tended euclidean algorithm (3.19). We write f, g, h,A, B be,

f = amx
m + · · ·+ a1x+ a0,

g = bnx
n + · · ·+ b1x+ b0,

h = cjx
j + · · ·+ c1x+ c0,

A = sn−j−1x
n−j−1 + · · ·+ s1x+ s0,

B = tm−j−1x
m−j−1 + · · ·+ t1x+ t0
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Then from the equation h = Af+ Bg (3.18), and comparing the coefficients of power of
x, we get the following m+ n− 2j unknowns, m+ n− 2j system of linear equations.

sn−j−1am + tm−j−1bn = 0,

sn−j−1am−1 + sn−j−2am + tm−j−1bn−1 + tm−j−2bn = 0,

...

sja0 + sj−1a1 + · · ·+ s0aj + tjb0 + tj−1b1 + . . . t0bj = cj

(3.23)

Remark 3.12. Why think m + n − 2j unknown is because the j-th degree is essential
to think GCD(f, g), the lower j − 1-th to 0-th degrees coefficients are removed from the
systems of linear equations.

Thinking in matrix representation we get the following W and Rj.

W = (sn−j−1, . . . , s0, tm−j−1, . . . , t0)

Rj(f, g) =



am am−1 . . . aj aj−1 . . . a1 a0 0

0 am am−1 . . . aj aj−1 . . . a1 a0

... . . . . . . ...

0 0 0 am . . . . . . aj aj−1

...
0 0 0 0 am . . . aj aj−1

0 0 0 0 0 am . . . . . . aj

bn bn−1 . . . bj bj−1 . . . b1 b0 0

0 bn bn−1 . . . bj bj−1 . . . b1 b0

... . . . . . . ...
0 0 0 bn bn−1 . . . bj bj−1 . . .

0 0 0 0 bn bn−1 . . . bj bj−1

0 0 0 0 0 bn bn−1 . . . bj




n− j


m− j

Then we write Af+ Bg = h (3.18) as,

WRj(f, g) = (0, . . . , 0, cj) (3.24)

We say the determinant of Rj(f, g) as j-th sub-resultant coefficient denotes PCSj(f, g).

3.4.3 The degree of Greatest Common Divisor

Using the j-th sub-resultant coefficient, we get the degree of greatest common divisors
without calculating the GCD itself.
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Theorem 3.13. Given polynomial f, g where deg(f) = m, deg(g) = n.

For all 0 ≤ l < j,

deg(GCD(f, g)) = l ⇔ PSCj(f, g) = 0∧ PSCl(f, g) ̸= 0. (3.25)

Proof. Here we sketch the proof.

First we say deg(GCD(f, g)) = l ⇒ PSCj(f, g) = 0∧ PSCl(f, g) ̸= 0.

If there is a solution on W of 3.24, the deg(Af + Bg) = j, and the GCD(f, g) divides
Af+ Bg. So l = deg(h) ≤ (deg(Af+ Bg)) = j.

This means PSCj(f, g) ̸= 0 ⇒ l ≤ j. The contraposition is for all j where 0 ≤ j < l ⇒
PSCj(f, g) = 0.

Next we say PSCl(f, g) ̸= 0. If PCSl(f, g) = 0, it contradict how we construct WRl(f, g) =

(0, 0, . . . , cl) in 3.24 so PCSl(f, g) ̸= 0.

Last we say opposite direction, For all l, 0 ≤ l < j, PSCj(f, g) = 0 ∧ PSCl(f, g) ̸= 0 ⇒
deg(GCD(f, g)) = l.

From how we construct WRj(f, g), PSCdeg(GCD(f,g))(f, g) ̸= 0, so l ≤ deg(GCD(f, g)). Since
GCD(f, g) divides Af + Bg, we say deg(GCD(f, g)) ≤ deg(Af + Bg) = l. Thus we say
deg(GCD(f, g)) = l.

The detailed proofs can be found in Theorem 3.1 in [21], and another way of proof using
the Least Common Multiple of f and g is found in proposition 4.25 in [22].
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SAT/SMT solver

This chapter is a preliminary of NLSAT that is a SMT solver specialized to non linear
real arithmetic.

Here we introduce the ideas of SAT, SMT solvers and its algorithms. We assume basic
knowledge of propositional logic and predicate logic in this chapter.

4.1 SAT Solver

In this section, we first give the definitions related to SAT solver. Then, introduce an
algorithm of SAT solvers.

Definition 4.1. We say a Satisfiability Problem is to decide if there is an assignment
to make the given CNF formula satisfiable (SAT), or not (UNSAT)

Definition 4.2. We say a set is CNF if it consists of conjunctive clauses whose each
clauses consists of a disjunction of literals.

Example 4.1. φ = (A∨ B∨ C)∧ (¬A∨ C)∧ (¬B∨ C∨D)

where φ is a CNF.

The above example is SAT. A∧ ¬B∧ C is an satisfiable assignment.

From now on, we writes CNF by set for convenience. We writes a set of literals
{l1, l2, l3, l4} as the clause (l1 ∨ l2 ∨ l3 ∨ l4). Moreover, we writes a set of clauses
{C1, C2, C3} as a conjunctive normal form C1 ∧ C2 ∧ C3. So we can write the above
CNF by the set {{A,B,C}, {¬A,C}, {¬B,C,D}}

Definition 4.3. SAT solver is a program to solve Satisfiability Problem.

21
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DPLL Algorithm

In this section, we introduce an algorithm named DPLL which solves Satisfiability Prob-
lem with the following techniques.

Depth First Search in Binary Decision Tree: DPLL algorithms searches the sat-
isfiable assignments in the binary decision tree of all the literals. The tree height is
at most n where n is the number of literals. It recursively decides an assignment
of literal which is either True or False. Each time it decides an assignment, it
tests whether the current assignments satisfy the given CNF. If un-satisified, it
backtracks the tree.

Unit-Resolution: Unit-Resolution (or Unit Propagation) is a way to apply an inference
rule. It picks the literal from the unit clauses as the decided literal.

Conflict-Driven Clause Learning (CDCL): CDCL adds a new clause into the orig-
inal CNF when DPLL detects a conflict so that it will realize early the decision is
not satisfiable.

Non-Chronological Backtracking: Non-Chronogical Backtracking is a backtracking
which backtracks previous wrong decision. As the result it backtracks more than
one step in the tree using the information of the conflicts called Implication
Graph.

Definition 4.4. If a clause contains only one literal, it is called a unit clause, also we
denote by literal(unit clause) as the literal.

Example 4.2. {C}, {A}, {¬B} are unit clauses. {C,¬A}, {B,A,C}, {} are not unit clauses.
literal({C}) = C.

First, we give the algorithm of Unit Resolution to explain the pure functionality.
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Algorithm 4 UnitResolution(a CNF φ)
INPUT: A CNF φ

OUTPUT: A set of decided literals D picked from unit clauses or derived from φ by
resolution.

F := φ

D := ∅
for all C ∈ F ∧ C is a unit clause do

l := literal(C)
D := D ∪ {l}

for all ¬l ∈ C ∈ F do
C := C \ {¬l} ▷ Remove the literal because l∨ ¬l

if C is a unit clause then
D := D ∪ {literal(C)} ▷ Add the decision as the result of resolution

end if
end for

end for
return D

Example 4.3. Let φ = {{A,¬B}, {B}, {B,C}, {E, F}}, the result of UnitResolution(φ) is
D = {A,B}. Let φ = {{¬B,C}, {B}, the result is D = {B,C}
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In DPLL algorithm, the conflicts are occurred inside UnitResolution, thus we extend
the algorithm to do Conflict Driven Clause learning so that we can use it in DPLL
algorithm.

Algorithm 5 UnitResolution+(a CNF φ, decision set D)
INPUT: A CNF φ, decision set D

OUTPUT: The decided literals D, the conflict reason clauses (assertion clauses) A.

F := φ

D := D ∪ { a set of literal of unit clauses in F}

A := ∅
i := 0 ▷ The clause index of given CNF
G := a dictionary ▷ We assume we have dictionary data structure

while D ̸= ∅ do
l := D[i]
for all ¬l ∈ C ∈ F do

C := C \ {¬l}

j := the index of C
G[j] := G[j] ∪ {l} ▷ We make a graph to know where come from the conflict

end for
if i is the last index of D then

for all C ∈ F ∧ C is a unit clause do
D := D ∪ {literal(C)}

end for
end if
if i is the last index of D then

return D,A

end if
i := i+ 1

end while

if C ∈ F∧ C = ∅ then
j := the index of C
A := G[j]
return D,A ▷ We found a contradiction

end if
return D,A ▷ We come here when D = ∅
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Finally, we give the DPLL algorithm using UnitResolution+ algorithm.

Algorithm 6 DPLL(a CNF φ)
INPUT: A CNF φ

OUTPUT: SAT or UNSAT, and if SAT, returns satisfiable assignments D, else returns
D := ∅

F = φ

D = ∅ ▷ decided literals
L = ∅ ▷ L is learnt clauses from conflict

while true do
D ′, A := UnitResolution+(F ∪ L,D)
if D ′ = D∧A ̸= ∅ then

return UNSAT, D := ∅ ▷ It conflicts without any new decisions, meaning
UNSAT

end if
D := D’
if A ̸= ∅ then

S := the second clause from the last in A

s := the index of S in D

D := first s items in D ▷ Non-chronological Backtracking
L := L ∪ ¬A ▷ Conflict-Driven Clause Learning

else
if l ∈ C ∈ F∧ {l,¬l} /∈ D then

D := D ∪ {l or ¬l not in D} ▷ select l or ¬l as the decision
else

return SAT, D
end if

end if
end while

4.2 SMT solver

In this section, we first give the definitions related to SMT solver. Then, we overview
the SMT solvers approachs. Finally, give an algorithm for SMT solver.

Definition 4.5. We say a Satisfiability Modulo Theories (SMT) Problem is
to decide if there is an assignment to make the given formulas with respect to some
background theories expressed in first-order logic satisfiable (SAT), or not (UNSAT).
Furthermore, we say T -formula as the formulas.

Example 4.4. x > y ∧ ¬(x < y − 2) is a T -formula. To decide the satisfiability is a
SMT problem.

Definition 4.6. SMT solver is a program to solve the SMT problem.
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Next, we define theory solver for SMT solvers. SMT sovlers solve SMT problems with
theory solvers.

Definition 4.7. A theory solver is a decision procedure which determines the given
set of conjunction of formula conflicts or not in the theory T .

4.2.1 Approach of SMT solvers

Here we overview the approaches of SMT solvers with the following three definitions.

Definition 4.8. Eager approach (or Eager SMT Techniques [23]) to SMT is trans-
lating T -formula into a satisfiability preserved boolean CNF. Then check the boolean
satisfiability with SAT solver.

Remark 4.9. The translation is different than boolean abstraction T2B (we see in next
section). The Eager approach translations are for example, per-constraint encoding
in [24], small domain encoding in [25] for Logic of Equality with Uninterpreted
Functions (EUF).

Definition 4.10. Lazy approach (or Lazy SMT Techniques [23]) to SMT solver is
using theory solver for conjunction of theory literals in a SMT solver.

Remark 4.11. Nieuwenhuis, Olivers, and Tinelli use the word eager and lazy to explain
their DPLL(T) framework in [23]. In the paper, eager means using theory solvers early,
lazy means using theory solvers late.

Definition 4.12. Splitting on demand [26] is a sub approach of Lazy approach.
Splitting on demand is doing case splitting inside theory solvers internally. It decides
both boolean literals and also its variables inside the theory literals. Both boolean
literals and the variable inside theory literals are handled in the same engine.

4.2.2 A DPLL(T) algorithm

DPLL(T) is an extension of DPLL algorithm which employs theory solvers for SMT
problems. Since DPLL(T) employs theory solver, it is a lazy approach SMT solver.

We give here an algorithm T -DPLL it is a very lazy variation of the DPLL(T).

First, we defines the sub algorithms of T -DPLL: T2B, B2T, and T -Solver.

T2B is a algorithm to do boolean abstraction of T -formula.
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Algorithm 7 T2B(a T -formula φ)
INPUT: A T -formula φ

OUTPUT: A CNF of φ

F := ∅
for all C ∈ φ do

C ′ := ∅
for all l ∈ C do

if l is a formula then
B := add a boolean variable expressed the formula l

C ′ := C ∪ B

else
C ′ := C ∪ l

end if
end for
F := F ∪ C ′

end for
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B2T is an opposite function of T2B.

Algorithm 8 B2T(a CNF φ)
INPUT: A CNF φ

OUTPUT: A T -formula of φ

F := ∅
for all C ∈ φ do

C ′ := ∅
for all B ∈ C do

if B is a boolean value expressed a formula f then
C ′ := C ∪ f

else
C ′ := C ∪ B

end if
end for
F := F ∪ C ′

end for

The next T -Solver is an abstract algorithm for any theory solvers. The algorithm detail
is different depended on the theories.

Algorithm 9 T -Solver(a set of boolean values or formulas ∆)
INPUT: A conjunctive boolean values or formulas ∆

OUTPUT: A conjunctive boolean values or formulas ∆ ′, if given ∆ conflicts, ∆ ′ is
backtracked from ∆ due to the conflict.
A conflict clauses Γ , where Γ ⊆ ∆.

while l ∈ ∆ do
if l is a formula then

x := is the solution of l by the decision procedure of the theory T
for all δ ⊆ ∆∧ l /∈ δ do

if x conflict with δ then
Γ ⊆ (l∪ δ) ▷ To find conflict clauses Γ is a blackbox depended on the theory
S := is the second from the last of Γ
s := is the index of S in ∆

∆ ′ := first s items of ∆ ▷ remove ls+1 . . . ln in ∆

return ∆ ′, Γ
end if

end for
end if

end while
return ∆, Γ = ∅
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Finally, we define T -DPLL algorithm as a very lazy variation DPLL(T).

Algorithm 10 T -DPLL(a T -formula φ)
INPUT: A T -formula φ

OUTPUT: SAT or UNSAT. If SAT, also returns satisfiable assignments

F = φ

D = ∅ ▷ decided boolean literals
L = ∅ ▷ L is learnt clauses from conflict

while true do
Ψ := T2B(F ∪ L) ▷ Boolean abstraction
status, D := DPLL(Ψ,D) ▷ Calls DPLL SAT solver
if status = UNSAT then

return UNSAT
else

∆ := B2T(D)
∆ ′, Γ = T -Solver(∆) ▷ Theory level check, backtrack and clause learning
if Γ = ∅ then

return SAT, ∆ ′ ▷ If conflict clauses are empty, it means SAT
else

D := T2B(∆ ′) ▷ ∆ ′ are backtracked formulas
L := L ∪ T2B(¬Γ) ▷ Γ are conflict clauses

end if
end if

end while
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Cylindrical Algebraic
Decomposition

Cylindrical Algebraic Decomposition (CAD) is an efficient algorithm for Nonlinear Real
Arithmetic as we see in the introduction.

In this section, we see the algorithms of Cylindrical Algebraic Decomposition.

The general reference of this section is chapter 1, 2 in [27], chapter 3, 4 in [21], chapter
3 in [19].

5.1 Quantifier Elimination

Quantifier Elimination is a way to get the equivalent quantifier free formula from quan-
tified formula.

The crucial points of Quantifier Elimination in Nonlinear real arithmetic are Talski-
Seidenburg theorem and Tomm’s lemma.

First, we see Talski-Seidenberg Theorem.

Theorem 5.1 (Talski-Seidenberg Theorem). Given a system of polynomial equalities
and inequalities in the variables x1, . . . , xn and xn+1 in R with coefficients in Z

P =


P1(x1, . . . , xn, xn+1) ▷1 0

P2(x1, . . . , xn, xn+1) ▷2 0
...
Pm(x1, . . . , xn, xn+1) ▷m 0


30
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where the △m are = or ̸= or > or ≥, produces a finite set Q1(x1, . . . , xn), …, Qk(x1, . . . , xn)

of systems of polynomial equations and inequalities in x1, . . . , xn with coefficients in Z
such that, for every α ∈ Rn, the system P has a real solution if and only if one of the
Q1(α) . . . Qk(α) is satisfied.

This theorem says ∃xn+1(P(x1, . . . , xn, xn+1)) is equivalent to the disjunction
∨i=k

i=1(Qi(x1, . . . , xn)).
Meaning that there is an algorithm for eliminating the real variable x.

Proof. Section 1.3 in [27]

Next, we see Thom’s lemma.

Lemma 5.2. (Thom’s lemma) The conjunction of the inverse image of the sign of the
derivatives of degree m mono-variant polynomial F such that {x ∈ R |

∧
f∈F sign(f(x)) =

ε(f)}, where ε(f) is a sign condition in {−,+, 0}, F = {f, f ′, . . . , f(m)}, is either a point,
an open interval, or the empty set.

This lemma says the regions that consist of the roots and between the roots are definable
with the conjunction of the sign conditions.

An algorithm for the theorem and the lemma is Cylindrical Algebraic Decomposi-
tion we see in the following sections.

5.2 Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition creates the sign invariant regions called Cells from
the given systems of polynomial equations and inequalities P. The CAD algorithms is
divided into the following three algorithms:

Projection: Projection algorithm does mapping from n + 1-variant Rn+1 space to n-
variant Rn space with the fact that the sign is changed only when the number of
roots is changed. Projection uses sub-resultant coefficients to know the degrees
of several GCDs so that we can make sure the number of common roots and the
number of roots without multiplicity.

Base: Base algorithm captures, and expresses where is the roots with sturm algorithm.
Furthermore, base algorithm decompose mono variant R space into sign invariant
regions with the roots.
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Lift: Lift algorithm does backward mapping from n to n + 1 assigning the sample
value that is initially picked-up from the sign invariant regions made by base
algorithm. Lift algorithm also calculates the minimal polynomial with primitive
element algorithm when the sample point is an algebraic number, not a rational.
At last, lift algorithm decomposes n-variant Rn space into sign invariant regions
employing the base algorithm over the minimal polynomial.

5.3 Definition and Notation

In this section, we give the definition and the notation for Cylindrical Algebraic Decom-
position.

The definitions here follows [28] and [29].

Definition 5.3 (Semi-algebraic set). A set is a semi-algebraic set if it is constructed
by finitely many applications of union, intersection and complement operation on sets
of the form

{x ∈ Rn | f(x) ≥ 0},

where f ∈ R[x1, . . . , xn].

Example 5.1. (−x − 6 > 0) ∧ (x4 − 4 < 0), (x = 0) ∨ (x2 − 8 < 0) are semi algebraic
set.

Definition 5.4. The function sign : R → {−1, 0, 1} is defined by

sign(r) =


1 if r > 0,

0 if r = 0,

−1 if r < 0.

Definition 5.5. Let C ⊂ Rn and f ∈ K[x1, . . . , xn]. Then f is sign-invariant on C, if
∀α,β ∈ C sign(f(α)) = sign(f(β)). Given a set F = {f1, . . . , fm) where each element is
f ∈ K[x1, . . . , xn], we say the set is F-sign-invariant if all f is sign-invariant on C.

Definition 5.6. A region R is a connected subset of Rn.

Definition 5.7. Given a region R, cylinder over R, written Z(R) is the set,

Z(R) = R× R1 = {(α, x) | α ∈ R, x ∈ R1).

Definition 5.8. Let f, f1, f2 be continuous functions on a region R. A f-section of Z(R)
is the set

{(α, f(α)) | α ∈ R}
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and a (f1, f2)-sector of Z(R) is the set

{(α,β) | α ∈ R, f1(α) < β < f2(α)}.

Definition 5.9. Given a region R, a decomposition of R is a finite disjoint regions Ci

whose union is R,

R =

k∪
i=0

Ci, Ci ∩ Cj = ∅, i ̸= j.

Definition 5.10. Given a region R, a stack over R is a decomposition which consists
of fi-sections and (fi, fi+1)-sectors.

Definition 5.11. A decomposition D of Rn is cylindrical if

n = 1, D is a stack over R1.

n > 1, there is a decomposition D ′ =
∪k

i=0Ci of Rn−1 such that for each region Ci, there
is a subset of D which is a stack over Ci.

Definition 5.12. A Cylindrical Algebraic Decomposition (CAD) of Rn is a de-
composition which is cylindrical and all its component is a semi-algebraic set.

Definition 5.13. Each component that is made by Cylindrical Algebraic Decomposi-
tion(CAD) is also called CAD, or Cell.

5.4 Projection

We introduce a definition delineable which is play an essential role in CAD Projection.

Definition 5.14. We say F = f1, . . . , fr ⊂ Q[x1, . . . , xn] is delineable on C ′ if

1. The total number of complex roots of fi is remains invariant,

2. the total number of distinct complex roots of fi is remains invariant,

3. the total number of common complex roots of fi and fj is remains invariant (count-
ing multiplicity).

The crucial idea of projection phase is finding a regions where the given polynomials has
the constant number of real roots. To find such a region, we count the complex roots in
delineable definition.

Because the only time to change the number of real roots is, the pair of complex conjugate
roots becomes real roots, or the real root becomes the pair of complex conjugate roots.
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To transition from the pair of complex conjugate to a real root, it must go through a real
double root. The opposite transition is also must once become a real double root. Thus
if the number of complex roots and distinct complex roots remains invariant, the both
transition: complex to real, real to complex must not be occur. Therefore the number
of real roots is remains invariant in the definition of delineable.

Projection Algorithm

With the delineable definition, and j-th sub-resultant coefficient (3.11) with the theorem
of the degree GCD (3.13), we give Projection algorithm.

To define the algorithm we give a function Tk which takes until the k-th degree terms
from the polynomial. Tk(f) = ckx

k+· · ·+c0 where f is k ≤ n degree polynomial such that
f = cnx

n+ · · ·+c1x+c0. Why we need this function is because the degree of polynomial
depends on the given value of the variant, for example f(0, y) = 3x2+xy2+y = y. Then
degy(f) = 2, but degy(f(0, y)) = 1.

Algorithm 11 Projection1(Fn)
INPUT: n-variant m polynomials Fn ▷ Fn = F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)
OUTPUT: a finite set of n− 1 variant polynomials

α := {x1, . . . , xn−1}

while f(x1, . . . , xn−1, xn) ∈ F do
F ′ = ∅
k := deg(COEFFxn(f))
if k ̸= 0 then

F ′ := F ′ ∪ COEFFxn(f)
end if
for all 0 ≤ l ≤ k, where k = degxn(f(α)) do

if PSCl(Tk(f), Tk(f
′)) ̸= constant value then

F ′ := F ′ ∪ PSCl(Tk(f), Tk(f
′))

end if
end for

end while
for all 0 ≤ i < j ≤ m, 0 ≤ l < k, fi, fj ∈ F , where k = min{degxn(fi), degxn(fj)} do

ki := degxn(fi(α))
kj := degxn(fj(α))
if PSCl(Tki(fi), Tkj(fj)) ̸= constant value then

F ′ := F ′ ∪ PSCk(Tkj(fi), Tkj(fj))
end if

end for
return F ′
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Since Projection1 erase one variable from the polynomials, we recursively apply Projection1

until it is mono variant polynomials.

Algorithm 12 Projection(Fn)
INPUT: n-variant m polynomials Fn

OUTPUT: a finite set of 1, . . . , n-variant polynomials F1, . . . ,Fn

for i = n to i = 2 do
Fi−1 := Projection1(Fi)

end for
return F1, . . . ,Fn

Example 5.2. Given F2 = {f1 = −x2+y3+3y2−2, f2 = x2+y2+6y+1, f3 = xy−x−6},
Projection1(F2) be the following.

First, the COEFFy(fi) be {−x2 − 2, x2 + 1, x, −x− 6}.

In f1 and f2, y’s coefficient is always 1 so for any y the degree is 2. However in f3, the
coefficient of y is x, thus we need to calculate Tk(f3), T0(f3) = −x−6, T1(f3) = xy−x−6.

Next, calculating PSCk(fi, f
′
i) and PSCk(fi, fj), we get, PSC0(f, f

′) = 27x4−108, PSC0(f2, f2) =

4x2−32, PSC0(f1, T1(f3)) = x5−2x3−54x2−216x−216, PSC0(f1, T0(f3)) = −x3−18x2−

108x − 216, PSC0(f2, T1(f3)) = x4 + 8x2 + 48x + 36, PSC0(f2, T0(f3)) = x2 + 12x + 36.
Thus omitting the constant multiples, we get
Projection1(F2) = F1 = {−x2 − 2, x2 + 1, x,−x − 6, x4 − 4, x2 − 8, x6 − 17x4 + 61x2 +

188, x5 − 2x3 − 54x2 − 216x− 216,−x3 − 18x2 − 108x− 216, x4 + 8x2 + 48x+ 36}

5.5 Base

5.5.1 Sturm’s theorem

Definition 5.15. (Sturm sequence) Given a f, let f1 = f,f2 = f ′, we calculate a variation
of euclidean algorithm whose difference is the sign of the reminder,

f1 = q1f1 − f3

f2 = q2f3 − f4

...

fk−1 = fk−1fk + 0,

where fk = GCD(f, f1). This is called a strum sequence of f.
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Example 5.3. Let f = x5 − 2x3 − 54x2 − 216x − 216, the sturm sequence fi be f1 =

x5−2x3−54x2−216x−216, f2 = 5x4−6x2−108x−216, f3 = 4x3+162x2+864x+1080,
f4 = − 28461

4
x2 − 42282x− 54459,f5 = −215267040x− 396154368.

Definition 5.16. We writes the number of sign variation f with sturm sequence on
x ∈ R which denote Vf(x).

Example 5.4. Given f = x5 − 2x3 − 54x2 − 216x − 216, the values on x = 10 are
{90224, 48104, 5984,−1188804,− 2548824768

90003169
, 416110841209179

558688977025
}, the signs are {+,+,+,−,−,+},

thus the number of sign variations Vf(10) = 2.

Theorem 5.17 (Sturm’s Theorem). Let f(x) be a mono variant polynomial, a, b ∈ R
where a < b. The number of roots of f in the interval (a, b) is equal to V(a) − V(b).

Proof. See §15 in [19], or section 1.1 in [27].

5.5.2 Root finding algorithm

We give the algorithm to capture where is the real roots with sturm sequence. To start
using strum sequence, we need a sane bound of the roots of a polynomial.

Proposition 5.18 (A root bound). Let f = a0x
m + a1x

m−1 + · · · + am, where a0 ̸= 0.
If r is a root of f, set M = maxi=1,...,m(ai), then

|r| ≤ M+ 1 (5.1)

and denotes M+ 1 be bound(f).

Proof. See §19 in [19].

This root bound is not the best, however we use this here because it is easy to understand.

Using the root bound, we give RootInterval algorithm to get the intervals where are the
real roots.
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Algorithm 13 RootInterval(f)
INPUT: a mono variant polynomial f
OUTPUT: the real roots intervals [a0, b0] . . . [an, bn]

a := −bound(f)
b := bound(f)
e := b

r := ∅

if Vf(a) − Vf(e) = 0 then
return ∅

end if

while a ̸= e do
while Vf(a) − Vf(b) > 1 do

b = b/2

end while
r := [a, b] + r

a := b

b := e

end while

Given a mono variant polynomial f, this root interval algorithm returns the all real root
intervals.

5.5.3 Base Algorithm

With the RootInterval algorithm by strum sequence and the square free polynomial
algorithm by GCD, we give Base algorithm.

Algorithm 14 Base(F1)
INPUT: a finite set of mono variant polynomials F1

OUTPUT: the real roots and the intervals R
Π(f) := SQfree(

∏
f∈F1

(f)) ▷ get the square free polynomial to get different roots
R := ∅
while f ∈ Π(f) do

if deg(f) = 1 then
R := R∪ the solution of f ▷ if f = x+ 1, x = −1

else
I := RootInterval(f)
for all I ∈ I do

R := R ∪ {f, I} ▷ add the polynomial and the interval
end for

end if
end while
return R
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In this algorithm we calculate the square free polynomial after we make the product of
polynomials. We keep the polynomials inside the production. For example if the square
free polynomial is Π(f) = (x − 1)(x2 + 2), we keep the formula, we do not calculate
(x− 1)(x2 + 2) = x3 − x2 + 2x− 2 so that we can get the linear solutions.

Example 5.5. Given F1 = {f1 = −x−6, f2 = x5−2x3−54x2−216x−216, }, Base(F1) =

R1 is {−6, {f1 = x5 − 2x3 − 54x2 − 216x− 216, I = [4.8, 4.9]}}.

5.6 Lift

In this section, we give Lift algorithm. Inside the algorithm, we use sample points.

Definition 5.19. Given real roots with the intervals, sample points are the real points
and the intermediate point between the roots.

Example 5.6. If given real roots with the intervals {0, {[x2 − 2],−1, 5 − 1.4}, 1, {x2 −

2, [1.4, 1.5]}, 4}, a sample points are {−1, 0,−1, {x2−2, [−1, 5−1.4]}, 0, {[x2−2], 1.4, 1.5}, 2, 4, 5}.

With sample points, we define Lift algorithm.

Algorithm 15 Lift1(Fn+1, Rn)
INPUT: a finite set of n+ 1-variant polynomials Fn+1,
and the real roots Rn for n variant polynomials Fn

OUTPUT: the real roots R×Rn for n+ 1-variant polynomials Fn+1

Sn := sample points for the real roots Rn

F1 = ∅ ▷ mono variant polynomials
for all f ∈ Fn+1 do

for all S ∈ Sn do
for all s ∈ S if s is a real number for xi do

f := f[xi/s] ▷ replace the variable with the real number s

end for
for all p ∈ S if p is a polynomial for xj do

f := MinPolByPrimElem(f, p) ▷ ie f = f(x, x1), p = p(x)
end for
F1 := F1 ∪ f

end for
end for
R := Base(F1)
return R×Rn ▷ Cartesian product

Given a finite set of 2-variant polynomials F2, and the real roots R1 for mono variant
polynomials F1, this Lift1 calculates R2 real roots for 2 variant polynomials F2. Meaning
that it lift up the mono variant polynomial to n-variant polynomials.
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We define Lift algorithm recursively using Lift1. It calculate the real roots of n-variant
polynomials Fn.

Algorithm 16 Lift({F1, . . . ,Fn}, R1)
INPUT: a finite family of n-variant polynomials set F1, . . . ,Fn,
and the real roots R1 for mono variant polynomials F1

OUTPUT: the real roots R2, . . . ,Rn for 2 to n-variant polynomials F2, . . . ,Fn

for i = 2 to i = n do
Ri := Lift1(Fi,Ri−1)

end for
return R2, . . . ,Rn

Example 5.7. Let F2 = {F1 = −xy − x − 6}, R1 = {−6, {f1 = x5 − 2x3 − 54x2 −

216x − 216, I = [4.8, 4.9]}}. Since F1(−6) = −6y, the root is y = 0. For x = {f1 =

x5 − 2x3 − 54x2 − 216x − 216, I = [4.8, 4.9]}, F1 be y5 + y4 − 5y3 + y2 + 4y − 38 by
MinPolByPrimElem, and the root be y = {y5 + y4 − 5y3 + y2 + 4y − 38, I = [2.1, 2.3]}.
Thus Lift1(F1,R1) = R2 = {0, {y5 + y4 − 5y3 + y2 + 4y− 38, I = [2.1, 2.3]}}

5.7 Quantifier Elimination by Cylindrical Algebraic De-
composition

5.7.1 QE-CAD Algorithm

We give the algorithm doing Quantifier Elimination by Cylindrical Algebraic Decompo-
sition: named QE-CAD algorithm. To define the algorithm, we make two sub algorithm
Sign, and ThomsEncoding. Sign algorithm determines the sign of the given polyno-
mial at the point where includes algebraic numbers. ThomsEncoding defines the Cell
which is given by a sample point, using Thom’s lemma (5.2).
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Algorithm 17 Sign(f, α)
INPUT: a n-variant polynomial f, and
the point α = (r1, . . . , rn) in the sample points Sn that specify a cell
OUTPUT: the sign of the polynomial f at the point α

if all r ∈ α are real numbers then
return sign(f(α)) ▷ assign the real numbers, and get the sign with sign function

end if
for i = 1 to = n do

if ri ∈ α∧ ri is a real number then
f = f[xi/ri] ▷ replace the variable with the real number

end if
end for
for all r ∈ α∧ r is an algebraic number do

f ′ := the defined polynomial of r
f = f/f ′ ▷ f divide by f ′

end for
if f = 0 then

return 0 ▷ if it is divided, the sign is 0

else
for all ri ∈ α, ri is an algebraic number do

I := get the interval of ri
m := get a point inside the interval I

end for
f = f[xi/ri] ▷ since the point is not 0, so the sign does not change in the interval

end if
return sign(f)
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Algorithm 18 ThomsEncoding(Fn, α)
INPUT: a set of n-variant polynomials Fn, and
the point α = (r1, . . . , rn) in the sample points Sn that specify a cell
OUTPUT: The definition of the cell expressed by the semi-algebraic set

Π(F) := SQFree(
∏

f∈F (f))
T := ∅

for i = 0 to i = deg(Π(F)) do
f(i) := i-th derivative of Π(F) ▷ 0-th derivative is f itself f(0) = f

σi := Sign(f(i), α)
▷ := set either “>”,“=” or “<” by the sign σi

T := f(i) ▷ 0
T := ∪ T

end for
return

∧
T∈T (T) ▷ returns the conjunction f ▷1 0 ∧ f(1) ▷2 0 ∧ . . . ∧ f(n) ▷n 0

Algorithm 19 QE-CAD(P)
INPUT: a system of m polynomial equalities or inequalities P
OUTPUT: a set of cells such that the cells satisfy the P

Fn := the polynomials of P
F1, . . . ,Fn := Projection(Fn)
R1 := Base(F1)
R2, . . . ,Rn := Lift({F1, . . . ,Fn},R1)
S2 := the sample points of Rn

C = ∅
for all α = (r1, r2, . . . , rn) ∈ Sn do

for all i = 1 to i = m, Sign(f, α) satisfies Pi ∈ P, where f is a polynomial of Pi do
T := ThomsEncoding(Fn, α)
C := C ∪ T

end for
end for
return C
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5.7.2 Example of QE-CAD

In this section, we see how QE-CAD works by an example.

Let P(x, y) = {−x2 + y3 + 3y2 − 2 < 0, x2 + y2 + 6y + 1 < 0, xy − x − 6 > 0}, and the
quantified formula be ∃y(P(x, y)).

QE-CAD(∃y(P(x, y))) is calculated by the following procedure,

F2 = {−x2 + y3 + 3y2 − 2, x2 + y2 + 6y+ 1, x, xy− x− 6 > 0}.

Projection(F2) = F1

={−x− 6, x2 − 8, x4 + 8x2 + 48x+ 36,

x, x4 − 4, x5 − 2x3 − 54x2 − 216x− 216}

Base(F1) =R1

={−6,

{x2 − 8, [−2.9,−2.8]},

{x4 + 8x2 + 48x+ 36, [−2.4,−2.3]},

{x4 − 4, [−1.5,−1.4]},

{x4 + 8x2 + 48x+ 36, I = [−0.9,−0.8]},

0,

{x4 − 4, [1.4,−1.5]},

{x2 − 8, [2.8, 2.9]},

{x5 − 2x3 − 54x2 − 216x− 216, [4.8, 4.9]}}

From R1, we get 19 cells C1, . . . , C19. Checking the sign of the sample points, we get the
following 5 cells that satisfy P.

C5 ={x | {f = x2 − 8, [−2.9,−2.8]} < x < {x4 + 8x2 + 48x+ 36, [−2.4,−2.3]}}

C6 =x = {x4 + 8x2 + 48x+ 36, [−2.4,−2.3]}

C7 ={x | {x4 + 8x2 + 48x+ 36, [−2.4,−2.3]} < x < {x4 − 4, [−1.5,−1.4]}}

C8 =x = {x4 − 4, [−1.5,−1.4]}

C9 ={x | {x4 − 4, [−1.5,−1.4]} < x < {x4 + 8x2 + 48x+ 36, [−0.9,−0.8]}}

Next, for ThomsEncoding, we check the signs of polynomials in F1 above the cells.
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C5 C6 C7 C8 C9
−x− 6 - - - - -
x2 − 8 - - - - -
x4 + 8x2 + 48x+ 36 + 0 - - -
x - - - - -
x4 − 4 + + + 0 -
x5 − 2x3 − 54x2 − 216x− 216 - - - - -

In this example, the signs of polynomials f ∈ F2 isolate the cells, thus ThomsEncoding
does not require to calculate the derivatives. Each cell is defined by the conjunctions of
the signs as a semi-algebraic set.

C5 =(−x− 6 < 0)∧ (x2 − 8 < 0)∧ (x4 + 8x2 + 48x+ 36 > 0)∧ (x < 0)∧ (x4 − 4 > 0)∧

(x5 − 2x3 − 54x2 − 216x− 216 < 0)

C6 =(−x− 6 < 0)∧ (x2 − 8 < 0)∧ (x4 + 8x2 + 48x+ 36 = 0)∧ (x < 0)∧ (x4 − 4 > 0)∧

(x5 − 2x3 − 54x2 − 216x− 216 < 0)

C7 =(−x− 6 < 0)∧ (x2 − 8 < 0)∧ (x4 + 8x2 + 48x+ 36 < 0)∧ (x < 0)∧ (x4 − 4 > 0)∧

(x5 − 2x3 − 54x2 − 216x− 216 < 0)

C8 =(−x− 6 < 0)∧ (x2 − 8 < 0)∧ (x4 + 8x2 + 48x+ 36 < 0)∧ (x < 0)∧ (x4 − 4 = 0)∧

(x5 − 2x3 − 54x2 − 216x− 216 < 0)

C9 =(−x− 6 < 0)∧ (x2 − 8 < 0)∧ (x4 + 8x2 + 48x+ 36 < 0)∧ (x < 0)∧ (x4 − 4 < 0)∧

(x5 − 2x3 − 54x2 − 216x− 216 < 0)

The quantified elimination result is the disjunction of the cell definitions.

∃y(P(x, y)) = C5 ∨ C6 ∨ C7 ∨ C8 ∨ C9.
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NLSAT

6.1 Introduction

NLSAT takes on the part of nonlinear real arithmetic inside SMT solver Z3 [30], thus it
solves the satisfiability problem of nonlinear real arithmetic.

NLSAT is characterized by the following two features.

1. Projection-Based Explanation and Model-Based Projection

2. Model Construction Satsifiability Calculus

6.1.1 Projection-Based Explanation and Model-Based Projection

Projection-Based Explanation and Model-Based Projection [31, 32]: is the usage of CAD
algorithm in NLSAT.

When NLSAT detects a conflict, projection-based explanation creates new polyno-
mial literals by CAD algorithm which explains the conflict that is expressed as a CAD
cell. In other words, the conflict is a cell where is not satisfiable in the current trail. To
do this, NLSAT defines explain function.

Model-based projection is a specialized CAD in the explain function. It focus only a
single cell (region), and calculates only the cell by CAD algorithms using the model in
the trail. Why it is called model-based because NLSAT trail is relaxed to store boolean
decisions and semantic decisions. A semantic decision is a real value of a semantic
variable, for example x = 1

2
.

44
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Remark 6.1. In [31, 32], they are named “projection”-based explanation, and model-
based “projection”. However, NLSAT employs projection, base and lift, and they are
model-based.

6.1.2 Model Construction Satsifiability Calculus

Different than other SMT solvers, NLSAT and its successor MCSat [33, 34] handle the
both boolean level clauses and the semantic decisions in the special trail. This approach
is an on-demand approach in SMT solver: Splitting on-demand [35]. In DPLL(T)
solver, background theory calculation is everything inside T -solver. In contrast, splitting
on-demand delegates the internal case splitting inside T -solver into DPLL engine.

With this approach, NLSAT integrate background theory algorithms into DPLL and
CDCL [33]. Thus the DPLL algorithms: unit-resolution (unit propagation), conflict-
driven clause learning, non-chlonological backtracking employ background theories in
NLSAT.

A

B

C

Conflict

T-solver

Boolean decision

T-solver

Backtracking

DPLL(T)
A

B

Conflict

Boolean decision

R-Propagate

NLSAT

x → 0

R-Explain

Semantic decision

Backtracking

R-Explain

R-Decide

The left figure is the standard DPLL(T) algorithm. The right is the NLSAT. NLSAT
decide semantic decisions with R-Decide which uses the result of the base algorithm to
know where is the roots. NLSAT unit-resolution algorithm (named R-Propagate) founds
a semantic level conflict by R-conflict, again using the result of the base. Then, NLSAT
triggers R-Explain with CAD algorithm to explain the conflict, learning new literal
(polynomial literal), and doing non-chronological backtracking includes the semantic
decisions.
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6.2 NLSAT Example

We see how NLSAT(φ) works through an example. The example problem is
φ = (−x2 + y3 + 3y3 − 2 < 0)∧ (x2 + y2 + 6y+ 1 < 0)∧ (xy− x− 6 > 0).

We first see the figure by QE-CAD algorithm to compare the difference with NLSAT
algorithm. We need to calculate 19 cells for variable x.

-6 -4 -2 0 2 4 6

-5

0

5

x

y

In the next page, we see the NLSAT(φ) calculation procedure step by step.
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M = JK (initial trail)

M = J 1

x 7→ −2 K ▷ R-decide

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0) K ▷ B-decide

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0),
3

y 7→ 0 K ▷ R-decide

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0),
3

y 7→ 0,
3

¬(xy− x− 6 > 0)↓E K
E = R-Explain(M)

= (x4 − 4 > 0 ∧ 4x3 < 0 ∧

x5 − 2x3 − 54x2 − 216x− 216 > 0) ∧

(−x2 + y3 + 3y3 − 2 < 0 ∧ xy− x− 6 < 0)
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▷ R-Propagate

(Here the M is B-Conflict because of
3

¬(xy− x− 6 > 0)↓E) ▷ AnalyzeConflict

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0), ¬(
3

x4 − 4 > 0) K ▷ BacktrackAndDecide

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0), ¬(
3

x4 − 4 > 0),
4

y 7→ −2 K ▷ R-decide

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0), ¬(
3

x4 − 4 > 0),
4

y 7→ −2,
5

−x2 + y2 + 6y+ 1 < 0 K ▷ B-Decide

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0), ¬(
3

x4 − 4 > 0),
4

y 7→ −2,
5

−x2 + y2 + 6y+ 1 < 0,
6

xy− x− 6 > 0 K ▷ B-Decide
SAT, M (x = −2, y = −2) ▷ SAT

In the above example, the explain function R-Explain calculates the single cell which is
more efficient to calculate the full CAD. Furthermore, with the result of R-Explain, we
get a stronger constraint ¬(x4 − 4 > 0). Using it, NLSAT find a solution efficiently.
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6.3 Discussion on the NLSAT implementation strategy

In this section, we discuss the NLSAT decision of the implementation.

We see these topics:

• Variable selection

• Selection for the value of a semantic decision

• Eager or lazy in NLSAT

• The algorithm of Explain

Variable selection

The variable ordering largely effects in CAD calculation. Thus how we pick-up the
variable in R-decide is import.

We denote the number of variable occurrence in the polynomial #(f, xi). If f = x3+2x+y,
#(f, x) = 2, #(f, y) = 1. x is two times, y is one time in f.

Given a polynomial f(x0, . . . , xn), NLSAT is reordering the variable as the following:

xi ≺ xj ⇔ (degxi(f) > degxj)∨ #(f, xi) > #(f, xj)∨ ((degxi(f) = degxj(f))∧ i < j).

This means high degree first, more constrained first. After reordering, it picks the smaller
variable first. This is a simple heuristic. So any other selection is considerable.

This behavior is implemented in the function heuristic_reorder() in the source:
z3/src/nlsat/nlsat_solver.cpp.

We can evaluate other options to modify the source of the function.

Selection for the value of a semantic decision

How we set the real value of a semantic decision in R-Decide effects again in CAD
especially the lifting phase. If the value is an algebraic number it is required to call
MinPolByPrimElem [Algorithm 2] which is a heavy procedure.

If it is possible, NLSAT always set the value of a variable x be a Dyadic Rationals
such that D = { p

2k
| p ∈ Z, k ∈ N}. For example, x be 0, 1,−1, 1

2
,− 1

2
, 2.

If it is not possible to set dyadic rational, nlsat set the algebraic number.
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To set this variable, NLSAT randomizes to take the k and p, and find a rational until if
the interval is 1

232
.

This randomization and the limit is implemented in the function
interval_set_manager::peek_in_complement in the source:
z3/src/nlsat/nlsat_interval_set.cpp.

We can evaluate other strategies to modify the function.

Eager or lazy in NLST

Since NLSAT employs model construction satsifiability calculus , when we call back-
ground theories is more variable than DPLL(T) solvers.

We can evaluate the behavior with changing the “lazy” option of nlsat. By default it is
set as the most eager mode.

This is implemented in the function process_arith_clause()
in the source: z3/src/nlsat/nlsat_solver.cpp.

Furthermore, comparing several versions of SMT solver yices [36] with and without
MCSat, we can make sure the contribution to the performance of model construction
satsifiability calculus.

The algorithm of Explain

As we see in the previous sections, NLSAT uses CAD for the explain function. However
it is not mandatory to use CAD for explain. Jovanovic and Moura proposed to use an
algorithm which is more efficient, but does not guarantee the termination [31].

Moreover, a singly exponential complexity algorithm that is dedicated for the satisfiabil-
ity problem of nonlinear arithmetic is proposed in the chapter 13 in [22]. To the best of
my knowledge, there is no SMT solver which implements this algorithm now in August
2016.

The NLSAT explain is implemented in the source: z3/src/nlsat/nlsat_explain.cpp.

It is possible to evaluate the choice of explain algorithm rewriting the explain algorithm
there.
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How NLSAT works

In this chapter, we give the algorithm of NLSAT to make sure how it works.

7.1 NLSAT trail

All the characteristics of NLSAT (and its successor MCSat) are come from its data
structure of trail. The technical term trail is found in modern SAT solvers, but NLSAT
relaxing the trail data-type, and the purpose. The following definition refers [34].

Definition 7.1 (trail in NLSAT). The trail in NLSAT is a sequence of trail elements:
a boolean decision, a semantic decision, a clausal propagation, a semantic propagation.

• A boolean decision is a literal L that we assume to be true. This is the same
with decided literals in modern SAT/SMT solvers.

• A semantic decision is a decision on the value of a non-Boolean variable (ie a
variable in a polynomial), it is denoted x 7→ α where α is the decision value of the
variable.

• A clausal propagation is a literal L derived to be true through clause C using
UnitResolution, which is denoted by L↓C. If C is a unit clause C = L it is denoted
by L↓.

• The level of a element in a trail is the number of decision in the trail up to and
including the element itself. Since NLSAT is branching both boolean and semantic
decision, the level is ie the number of branching. We write the level above each

element ie
level

L

50



Chapter 7 How NLSAT works 51

• A literal L is evaluated if and only if all the semantic decisions of L is available
in the trail, else the literal is undefined in the trail.

• A semantic propagation is a literal L is evaluated to be true in a trail, which
is denoted by L↓k, where the k is the level of the highest semantic decision used in
evaluating L.

Modern SAT solvers only adds boolean decision and clausal propagation into the trails.
In contrast, NLSAT is branching both in boolean and semantic level variables, and adds
both of them into the trail. Furthermore, NLSAT adds new polynomial constraints
literals, that is not available in the original T -formula, into the trail as the boolean
decision. NLSAT/MCSat uses the trail as Clause and Variable database [34].

Example 7.1. Let the T formula φ = (−x2 + y3 + 3y3 − 2 < 0)∧ (x2 + y2 + 6y+ 1 <

0)∧ (xy− x− 6 > 0). Then, a trail is

M = J 1

x 7→ −2,
2

(−x2 + y3 + 3y3 − 2 < 0),
1

¬(xy− y− 6 > 0)↓1,
2

(x2 + y2 + 6y+ 1)↓C K.
The first element is a semantic decision, the second is a boolean decision, the third is a
semantic propagation, the last is a clausal propagation.
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7.2 Projection-Based Explanation and Model-Based Pro-
jection in NLSAT

For explain, we gives R-Explain algorithm. In the algorithm we use CAD Projection
[Algorithm 12], Base [Algorithm 14], Lift [Algorithm 16].

Algorithm 20 R-Explain(M, C)
INPUT:INPUT: A trail M, and
a clause C is conflicted in M

OUTPUT:A clause E as the explanation of the conflict with CAD algorithm

N := is polynomial constraints in M ▷ This is smaller than the original constrains
x1, . . . , xn := (v1, . . . , vn), where vi is the semantic decision of xi in M

Fn := the polynomials in N
F1, . . . ,Fn := Projectione(Fn)
R1 := Base(F1) ▷ R1 is the roots of F1

C1 := is the cells by the roots R1

C1 := is the cell C1 ∈ C1 where (x1 = C1)∨ (x1 ∈ C1)
C1, . . . , Cn := Lifte(F1, . . . ,Fn, C1, {x2, . . . , xn})
E :=

∧n
i=1(Ci)

return E

First, R-Explain only Projection the literals that are next to the point by the specialized
projection Projectione. Next, R-Explain get the cell definition where the value x1 = v1 is
included from the result of Base R1. Similarly, in Projection and Lift, Projectione, Lifte
only calculate the cell where x2, . . . , xn included. Then returns E as the conjunction of
the cell definition. E express the Cell in Rn.

Why CAD in NLSAT is efficient?

Why CAD in NLSAT is efficient is because:

• The problem size is smaller than the original problem. R-Explain is targeting only
the literals (polynomial constraint) in the trail, thus most of the time it is smaller
than the original problem.

• The special Projection, Projectione targets only the literals containing the point
which is specified the semantic decisions. For example, if the literal is f(x, y) =

x2 + y2 − 2, and current semantic decisions are x 7→ 0, y 7→ −1, Projectione

calculates f(0, y) = y2−2 and f(x,−1) = x2−1, and get the roots of x and y inside
Projectione. Similarly, for all polynomial constraint literals in M, Projectione
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calculates all the roots, then sorting the roots, finally get what semantic literals
are containing the points. Then projection only the literals.

• R-Explain only lift the single cell where the point of semantic decisions in the
current trail. It calls the special variation of Lift, Lifte which Lift only the cell.

Remark 7.2. NLSAT can calculate only open cells called Single Open Cell in [37] if the
problem is Full dimensional. Full dimensional is a problem where all the constrains are
inequalities. Since open cells represented by inequalities, it does not require to calculate
primitive element.

7.3 Model Constructing Satisfiability Calculus in NLSAT

To do CDCL for the first-order setting, we gives sub-algorithms for NLSAT. They are
Propagate, Decide, AnalyzeConflict, BackTrackAndDecide. Propagate does resolution
and checks the conflict, Decide does decide the boolean and semantic decision, Analayze-
Conflict does conflict analysis, then BackTrackAndDecide does backtracking and literal
deciding.

7.3.1 Propagate

Propagate plays an essential role whole the NLSAT. The algorithm structure is similar
to UnitResolution+ [Algorithm 5] in SAT solver. Propagate does Boolean Resolution
at the B-Resolution and runs a T -solver R-explain in the theory propagation process
R-Propagate. Then it checks if there is conflict clause with B-Conflict and R-Conflict,
while applying the propagation.

Algorithm 21 B-Propagate(M,F)
INPUT:A trail M, and a T -formula where T is non linear real arithmetic
OUTPUT: A trail M’, if propagated literal found, added the literal, else M� = M

for all C = (li, . . . , ln, L) ∈ F do
if (L,¬L) /∈ M ∧ ∀li ∈ C (¬li ∈ M) then

M ′ := M ∪ L↓C
return M ′ ▷ If one propagated literal found, it returns

end if
end for
return M
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Algorithm 22 B-Conflict(M,F)
INPUT:A trail M, and a T -formula where T is non linear real arithmetic
OUTPUT: A conflict clause A, if no conflict, it is ∅

A := ∅
for all C ∈ F do

if ∀L ∈ C(¬L ∈ M) then
A := C

return A

end if
end for
return A ▷ no conflict found

To define R-Propagate, we first define R-feasible which checks the nonlinear real arith-
metic level feasibility at the trail using Base [Algorithm 14].

Algorithm 23 R-feasible(M)
INPUT: a trail M
OUTPUT: true if all the mono variant polynomial constrains have any region to
assign a value to the variable, else false

P := a set of mono variant polynomial constraints in M

for all F ⊂ P such that each polynomial f ∈ F has the same variable do
R1 := Base(F)
x := the variable of F
if with the roots bounds for x in R1, ∃f ∈ F is false then

return false

end if
end for
return true

R-feasible calls Base to get the roots and the intervals, then calculate the bound of x
and check the semantic (nonlinear real arithmetic) literals in M whether there is some
regions to assign x or not. If no region found for some variable x, R-feasible returns
false.
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Algorithm 24 R-Propagate(M,F)
INPUT:A trail M, and a T -formula where T is non linear real arithmetic
OUTPUT:A trail M’, if propagated literal found, added the literal, else M ′ = M

for all L ∈ C∧ if L or ¬L is evaluated to undefined in M do
if L is evaluated to be false in M ∪ L then

k := is the highest level of assignment to evaluate L = false

M ′ := M ∪ L↓k ▷ Semantic propagation
return M ′

else if ¬ R-feasible(M ∪ L) then
E := R-Explain(M ∪ L) ▷ If M ∪ L is not feasible M ∪ L conflicts
M ′ := M ∪ L↓E
return M ′

end if
end for
return M

Algorithm 25 R-Conflict(M,F)
INPUT:A trail M, and a T -formula where T is non linear real arithmetic
OUTPUT: A conflict clause A, if no conflict, it is ∅

A := ∅
if ¬ R-feasible(M) then

E := R-explain(M) ▷ Conflict find in M

A := E

return A

end if
return A ▷ No conflict found
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Algorithm 26 Propagate(M,F)
INPUT: A trail M, and a T -formula F where T is non linear real arithmetic.
OUTPUT: A trail M ′ if propagated literal found, added the literal, and
a conflict clause A, if no conflict, it is ∅.
while true do

M ′ := B-Propagate(F,M)
if M == M ′, no boolean decision then

M ′ := R-Propagate(F,M)
end if
A := B-Conflict(F,M)
if A ̸= ∅, their is a conflict then

return M ′, A
end if
A := R-Conflict(F,M)
if A ̸= ∅, their is a real arithmetic conflict then

return M ′, A
end if

end while
return M ′, A := ∅

7.3.2 Decide

Since the trail in NLSAT has two types of decision: boolean decision and semantic
decision, we have two types of deciding the value procedure: B-Decide, and R-Decide.

Algorithm 27 B-Decide(L, M)
INPUT:An boolean literal L, and a trail M
OUTPUT: An boolean literal L with the level

lv is the current highest level in trail M
lv := lv+ 1 ▷ increase the level
M ′ := M ∪

lv

L

return M ′

B-Decide increase the level lv and add the literal L into the trail M with the level. The
literal itself is already selected before we call B-Decide, because the way we decide the
literal is different by the context.
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Algorithm 28 R-Decide(x, M,F)
INPUT: An algebraic number variable x, a trail M, and a T -formula F where T is
non linear real arithmetic.
OUTPUT:An algebraic number variable x with the level.

lv is the current highest level in trail M
l := is the lower bound of x
h := is the higher bound of x
Vd := {v | x ̸= v}

while true do
v := find a value (l < v < h)∧ v /∈ Vd

end while

lv := lv+ 1 ▷ increase the level
return lv

x 7→ v, where the level lv is marked over the value

To get x value, NLSAT always maintains all the variables of mono polynomial literal in
M. It tracks

• the lower bound of x by mono variant polynomial constraint L ∈ M,

• the uppper bound of x by mono variant polynomial constraint L ∈ M,

• the set Vd such that Vd{v | x ̸= v} by mono variant polynomial constraint L ∈M.

If it is possible, NLSAT always set the x be a dyadic rationals.
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7.3.3 AnalyzeConflict

The role of AnalyzeConflict is to create a new clause for the subsequent backtracking
process.

Algorithm 29 AnalyzeConflict(M,C)
INPUT:INPUT: a trail M, and a clause C is conflicted in M

OUTPUT: Conflicting clause R either boolean conflict RbConflict or semantic conflict
RsConflict that is usable for backtracking

R := C

k := is the length of M

while R ̸= ∅ do
if M[k] = L↓D ∧ ¬L ∈ R then

φ := R∧ (¬D∨ L) ▷ ie R = l1 ∨ · · ·∨ lm ∨ ¬L, (¬D∨ L) = L1 ∨ . . . Ln ∨ L

R := get l1 ∨ · · ·∨ lm ∨ L1 . . . Ln from φ ▷ Boolean resolution
end if
bCoflict := true if all the level of the literals in R is different
sConflict := true if the highest level literals in R includes semantic propagation
if bConflict then

return R as RbConflict ▷ annotate it is boolean conflict
else if sConflict then

return R as RsConflict ▷ annotate it is semantic conflict
end if
k := k− 1

end while
return R := ∅ ▷ If comes here, nowhere to backtrack. Thus it is UNSAT

At the boolean resolution in the while loop, it creates a new clause that can be used
for backtracking also for picking a new literal from the clause. Then it determines
the conflict whether it is a boolean conflict or a semantic conflict. The if condition of
bConflict and sConflict are required to do backtracking.

7.3.4 Backtracking and Clause Learning

Since the trail M contains not only boolean decision clause, the Backtracking and Clause
Learning differ from basic DPLL(T) solvers. So we define BackTrackAndDecide.
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Algorithm 30 BackTrackAndDecide(M,R)
INPUT: a trail M, and
a clause R is conflicted in M either boolean conflict RbConflict or semantic conflict
RsConflict analyzed by AnalyzeConflict
OUTPUT: a backtracked trail M added new propagated literal or boolean decision

if R is a boolean conflict clause then
lv := the second highest level in R

else if R is a semantic conflict clause then
lv := −1 from the highest level of R

end if
M ′ := remove all elements in M the level > lv

if R is a boolean conflict clause then
L↓R := L ∈ R ∧ L /∈ M ▷ By the conflict analysis it contains L that is not in M

M := M ′ ∪ L↓R
else if R is a semantic conflict clause then

L := L ∈ R ∧ L /∈ M

M := B-Decide(L, M)
end if
return M

First, we use the level to do backtracking. The reason we introduce level is to do
backtracking inside the trail.

Then we use the conflicting clause to get a literal. NLSAT does backtracking and decide
at the same time [33, 34]. NLSAT may add a new literal that is not available in the
original problem into the trail. It is because the given conflicting clause may contain a
new literal by R-explain since AnalyzeConflict added some literals from the annotation
clause of literals. The annotation clause is a set of original problems literals or the
literals by the result of R-explain.

7.4 NLSAT algorithm

With the previous algorithms, the NLSAT algorithm structure is simple. The abstract
structure is much similar to DPLL [Algorithm 6], than DPLL(T) [Algorithm 10].

NLSAT algorithm first try to do Propagate, if conflicting clause found, call Analyze-
Conflict to do backtracking, and nowhere to backtrack, it is UNSAT, else calls Back-
TrackAndDecide. If Propagate does not find a conflicting clause, then Decide a boolean
decision or semantic decision. If no more undecided boolean nor semantic value, it is
SAT.
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Algorithm 31 NLSAT(φ)
INPUT:A T -formula φ where T is non linear real arithmetic
OUTPUT: SAT or UNSAT. If SAT, also returns satisfiable assignments

M := ∅ ▷ a trail
F := φ

while true do
M ′, A := Propagate(M,F)
if A ̸= ∅ then

R := AnalyzeConflict(M,A) ▷ If Conflict clause A found, analyze it to backtrack

if R = ∅ then
return UNSAT, M =: ∅ ▷ If nowhere to backtrack, it is UNSAT

end if
M := BackTrackAndDecide(M,R)

else
if x := is a new variable ∈ F, x /∈ M then

M := R-Decide(x, M, F) ▷ add the semantic decision
else if L ∈ C ∈ F∧ {L,¬L} /∈ M then

M := B-Decide(L, M) ▷ add the boolean decision
else

return SAT, M ▷ eg ∀L ∈ C ∈ F({L∨ ¬L} ∈ M) ∧ ∀x ∈ F(x ∈ M)
end if

end if
end while



Chapter 8

Conclusion

We studied the satisfiability algorithms for nonlinear real arithmetic problem, and gives
the essential algorithms including polynomial. One of our research contribution is giving
an overview of nonlinear real arithmetic satisfiability.

Furthermore, through investigating the NLSAT algorithm and the source code, we make
sure the strategies for the performance among these topics:

• Variable selection

• Selection for the value of a semantic decision

• Eager or lazy in NLSAT

• The algorithm of Explain

We propose the way how we evaluate the alternative approaches among them.
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