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Abstract

Nowadays, computers have become an essential device of almost every activity for every-
body at any age. From personal demands to industrial and business sectors, they are used
to improve human life as well as the efficiency and the productivity. The more important
they are, the more attractive target they become for being attacked and serving malicious
purposes. There are various threats to a computer system. One of the most common
manners that penetrates or damages a system with bad impacts to most of the computer
users is malware. Malware detection and malware classification are two of the most at-
tractive problems in not only industry area but also academic research. The bits-based
fingerprint also known as the signature-based pattern recognition is applied popularly
in commercial anti-virus software due to its light-weight and fast features. However, it
is easily cheated by advanced polymorphic techniques in malware. Therefore, malware
analyses based on control flow graph (CFG) have been attracting a lot of attention, e.g.,
VxClass at Google. Semantic fingerprints are used to defeat advanced techniques of mal-
ware, which cause the restriction of bits-based fingerprints. They consist of code and CFG
fragments that are acquired by disassembly. But malware classification requires further
investigation of CFGs more deeply to clarify what types of techniques are applied. Our
long-term target is to classify malware based on the observation of acquired obfuscation
techniques. Therefore, we need to precisely generate highly accurate CFG of x86 binary
that involves typical obfuscation techniques.

Hence, in order to construct the CFG, our collaboration at Ho Chi Minh City University
of Technology have been developing BE-PUM (Binary Emulation for PUshdown Model
generation), which is a binary analyzer. BE-PUM concentrates on malware, which is often
small and obfuscated. BE-PUM applies symbolic execution to analyze an input file and
constructs CFG for the given file. The binary emulator of BE-PUM takes responsibility
for handling assembly instructions. Each instruction can modify the environment and the
path condition in BE-PUM according to the Architectures Software Developer’s Manual
in English provided by Intel. There are several remaining problems in BE-PUM need to
be addressed, such as the loop handling for the efficiency and huge manual effort for the
implementation of symbolic execution.

This research is dealing with the second problem, especially the lack of x86 binary em-
ulation support, which restricts the ability of analysis due to the unexpected termination
when an input file involves an unsupported x86 binary instruction. Hence, an output
CFG may miss disassembling significant characteristics for malware detection. Among
more than 500 common x86 instructions, BE-PUM supports about 250 instructions after
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3-years human effort. The emulator implementation and the path condition generation
starts manually from reading its x86 assembly instruction specification in natural lan-
guage (NL) and its pseudo-code description. However, the idea for using a commercial
emulator is not enough since path conditions must be maintained for symbolic execution.
Our aim is to automate the implementation of x86 binary emulation, based on know-how
obtained during manual implementation.

However, writing computer programs from using natural language description is a chal-
lenging problem. Specifications in NL can be long, complicated or ambiguous, whereas
programs have to be explicit, restricted and formal. Not only reducing manual implemen-
tation tasks, it may allow a product line-like approach to different platforms other than
x86. In natural language processing, the semantic analysis that maps natural language
sentences into a formal representation is semantic parsing. Recently, there are several
works in semantic parsing. They have exploited natural language to address problems in
domain specific applications, such as recipe from the description, robot commands, oper-
ating systems, scripts in smart-phone and spreadsheet data analysis. In order to develop
such language-to-code systems, efforts for manually constructing parsers or large corpus
of appropriate training samples are generally required.

Based on our observation, we found that x86 instruction specifications have particular
features, such as type convention specified by Intel, the pseudo-code and the flag-change
description, which may often contain informal keywords. These keywords require Natural
Language Processing (NLP) to extract their semantics. From the obtained semantic,
the emulator can be automatically generated. In order to claim the correctness of the
generation, the information about the operand types and the pseudo-code in the document
can also be used for the automatic test-case generation. In NLP, the ambiguity of the
semantic parsing and interpretation is one of difficulties. However, we can apply testing
to explicitly choose and clarify the accurate interpretation.

The research will contribute not only for automatic enhancement of BE-PUM, which
is regarded as a case study of automatic code generation under rigid natural language
specification and executable environments, but also automatic test data generation for
validating whether implementation matches to the specification documents. We address
the problem of automatic generation by building a parser to take advantage of pseudo-code
and applying simple techniques in NLP to extract appropriate actions for text sentences
in the flag-change descriptions. The flag-change description shows how an instruction
execution affects to system flags. It consists of one or more sentences, in which each one
can be classified into two types including an interpretation and an essential supplement for
the pseudo-code accompanying within the same document. By measuring the similarity
between a sentence in the flag-change description and prepared template sentences, the
system can extract the way how system flags mentioned are affected. As a result of
observation, the number of the template sentences is set to be five. To establish the
final sensible decisions, the research needs to accomplish a statistic on the total collected
sentences. However, there are still several ambiguous parts in pseudo-code which cannot
be overcome. By manually preparing beforehand prerequisites for such unclear pieces,
the approach can achieve the good efficiency with the minimum human effort. After
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that, to verify the generated code for the binary emulation, we have to carry out a
testing by comparing a pair of environments before and after executing an instruction in
a commercial emulator or debugger (e.g., Intel/PIN, OllyDbg, x64dbg) in comparison with
these by BE-PUM. To ensure the correctness, the research has to conduct a testing with
high test coverage that is able to cover all of the statements in the generated code. This
task firstly requires test-cases that are binary programs containing target x86 instructions.
We aim to automatically generate them from the document. In order to generate test
programs, we have to obtain the following essential specifications. The first is conditions
for the validity of arguments (operands of instructions) to automatically generate all valid
and possible forms of a given instruction. The second is conditions for covering branches
of an execution for the test coverage.

The system requires some manual beforehand preparation as the prerequisites sup-
porting the automatic code generation for x86 binary emulation in BE-PUM. Therefore,
we manually implemented default rule-based flag-change modifications and 30 undefined
functions frequently used in pseudo-code. Finally, the system can generate successfully
299 instructions among 530 collected specifications. In addition to the current result,
the system is highly expected to be adapted to work on other specifications of different
architectures/platforms with small modifications.
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Chapter 1

Introduction

Motivation and Problems

Malware is an general term used for referring to several forms of malicious software,
including computer viruses, trojan horses, ransomware, spyware, adware and other un-
wanted programs. They are defined by their malicious aim which counteracts the expec-
tations of users and damages computer systems. Their releases accomplish infection and
harm via binary executable files, without source code. In order to hide and make them
more difficult to be detected by typical binary pattern recognitions and dynamic analyses
the obfuscation techniques are utilized in malware. They are the obfuscation (e.g., dead
code insertion, instruction replacement and indirect jump), polymorphic algorithms (e.g.,
self modification and self encryption) and the sandbox detection (s.t. they do not reveal
malicious behaviors in an emulator or a virtual environment). So that Symantec admits
that commercial anti-virus software can detect less than 45% of the threats in 2015.

Model checking based approaches are attractive and draw many consideration for
malware detection. First of all, a binary executable file is analyzed in order to obtain
its abstract model, e.g., Control Flow Graph (CFG). Then, we can carry out analysis
techniques based on model checking [19] [4] [8] [7] to complete the detection task. However,
the challenge of this approach is on the model generation part because of the obfuscation
techniques. The model checking part is more likely.

There are various analysis and model generation tools for a binary executable program,
such as BIRD, CodeSurfer/x86, BINCOA/OSMODE, Renovo and Syman. However,
Syman is the only tool having the support of system calls with a Window API emu-
lator. BE-PUM (Binary Emulation for PUshdown Model Generation) [16] is a binary
analyzer and focuses on malware program. BE-PUM applies dynamic symbolic execution
to analyze an input file and constructs its Control Flow Graph (CFG). Binary emulator
in BE-PUM takes responsibility for handling assembly instructions. Each instruction can
modify the environment and path condition in BE-PUM according to the Architectures
Software Developer’s Manual from Intel written in English.

There are several remaining problems in BE-PUM need to be addressed, such as efficient
loop handling and huge manual effort for implementation in symbolic execution. This
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research is dealing with the second problem. The lack of x86 binary emulation support
causes the unexpected termination when an input file involves an unsupported x86 binary
instruction. Hence, an output CFG may miss to disassemble significant characteristics
of malware. Among more than 500 common x86 instructions, BE-PUM supports about
250 instructions after 3-years human effort. Typically, an emulator implementation starts
from reading its x86 assembly instruction specification and pseudo-code then writing code
manually by human. This process is repeated one by one. By observation, we found that
the Intel Software Developer’s Manual contains the pseudo-code and the “flag-affected”
descriptions of x86 semantics, which may contain informal keywords. These keywords
require Natural Language Processing (NLP) to extract its semantics. From the obtained
semantic, the dynamic symbolic execution can be automatically generated. In order to
claim the correctness of the generation, the information about the operand types and
the pseudo-code in the document can also be used for the automatic test-case generation
which consists of the ambiguity removal in NLP and the conformance testing.

Our aim is to automate the implementation of x86 binary emulation, based on know-
hows obtained during manual implementation. The research will contribute not only for
automatic enhancement of BE-PUM, which is regarded as a case study of automatic code
generation under semi-formal natural language specification and executable environments,
but also automatic test data generation for validating whether implementation matches
to the specification documents.

Contribution

We observe that the generation of x86 instruction emulator from its natural language
specification requires restricted information. Besides, testing with executable test-cases
and comparing the before and after environments in BE-PUM with the environments in a
debugger can be applied to avoid ambiguity in information extracted from the document.
At the moment, we have constructed a system for x86 instruction emulator generation.

• The system collected about 530 x86 instruction specifications from
http://www.felixcloutier.com/x86/.

• The system can extract x86 semantics and generate instruction emulator. There are
about 300 instruction supports having been successfully generated and tested.

• The generated instruction supports allow BE-PUM to handle more x86 instructions
and point out 4 errors in manual implementations.

The thesis is organized in 10 chapters. Chapter 2 brings the brief background knowl-
edge. Chapter 3 and 4 introduces BE-PUM system and our observation of the specification
from Intel with NLP techniques used for the research. Chapter 5 shows our significant
observations for deciding the method and implementation. Chapter 6 and 7 describe in
detail our methodology to extract x86 semantics in which the binary emulation, the path
condition and the test-cases to cover branches are generated. Chapter 8 and 9 expresses
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our implementation and experiments. And lastly, the chapter 10 discusses our conclusion
and future works.
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Chapter 2

x86 Architecture and Malicious
Threats

2.1 x86 Instruction

x86 is a family of backward-compatible instruction set architectures. The term “x86”
derives from the names of several processor ending with “86”1. Nowadays, x86 usually
implies a binary compatibility with the x86 32-bit instruction set. It obeys the design
of complex instruction set computing (CISC), where single instructions can execute sev-
eral low-level operations (such as a load from memory, an arithmetic operation, and a
memory store).2 3 The x86 instruction set is a set of assembly instructions supported by
x86-compatible processors. These instructions have variable binary lengths and variable
operands (i.e. accompany with no operand or up to 3 operands).

A typical x86 32-bit processor consists of the following components:

• 8 general-purpose registers (GPR)
The following list shows the order that is used not only in a push-to-stack operation,
but also for covering back to the register later.

1. Accumulator register (AX): arithmetic operations

2. Counter register (CX): shift/rotate instructions and loops

3. Data register (DX): arithmetic operations and I/O operations

4. Base register (BX): pointer to data (located in segment register DS)

5. Stack Pointer register (SP): pointer to the top of the stack

6. Stack Base Pointer register (BP): pointer to the base of the stack

7. Source Index register (SI): pointer to a source in stream operations

1https://en.wikipedia.org/wiki/X86
2https://en.wikipedia.org/wiki/Complex instruction set computer
3Tanenbaum, Andrew S. (2006) Structured Computer Organization, Fifth Edition, Pearson Education,

Inc. Upper Saddle River, NJ.

4



Figure 2.1: Registers in an x86 processor

8. Destination Index register (DI): pointer to a destination in stream operations

General-purpose registers can be accessed in 16-bit and 32-bit modes. In 16-bit
mode, a register is recognized by its two-letter according to the list above. In 32-bit
mode, these abbreviations are prefixed with a letter ‘E’ (extended). For instances,
‘EAX’ is the 32-bit accumulator register. The first four registers (AX, CX, DX and
BX) can be accessed in their size of two 8-bit, by replacing the letter ‘X’ with the
letter ‘H’ (higher part) or ‘L’ (lower part).

Figure 2.2: Registers in an x86 processor

• 6 segment registers:

– Stack Segment (SS): pointer to the stack
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– Code Segment (CS): pointer to the code

– Data Segment (DS): pointer to the data

– Extra Segment (ES): pointer to extra data

– F Segment (FS): pointer to more extra data (comes after ’E’)

– G Segment (GS): pointer to still more extra data (comes after ’F’)

• Flags register (EFLAGS) is a 32-bit register used as the list of bits that stores
Boolean values, representing characteristics of results of operations, and the proces-
sor state as follows:

– Carry Flag (CF): it is set when the last arithmetic operation carries (addi-
tion) or borrows (subtraction) a high-oder bit (leftmost) outside the size of of
registers.

– Parity Flag (PF): it is cleared if the number of 1-b.its in the last arithmetic
operation is a multiple of 2, otherwise the set value is stored

– Adjust Flag (AF): the carry of the last arithmetic operation on Binary Code
Decimal (BCD) numbers

– Zero Flag (ZF): the result of an operation is zero (0) or not.

– Sign Flag (SF): it indicates the result of an operation. The negative result sets
it to 1.

– Trap Flag (TF): single-step mode indication for debugging.

– Interruption Flag (TF): if interrupts are enabled, it contains set value.

– Direction Flag (DF): stream direction indicates the direction for moving or
comparing is left or right.

– Overflow Flag (OF): if a register can not contain the signed arithmetic opera-
tions result due to a too large value, the flag is set.

• The instruction pointer, which is represented by EIP register, contains the address
of the next instruction to be executed.

• The memory uses the little-endian architecture. It means that multi-byte values are
written least significant byte first.

• The stack (Last In First Out data structure) stores values which are popped from
it in the reverse order that they are pushed onto. It is the temporary storage that
allows a processor to rapidly save and retrieve data.
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2.2 Malware Techniques on x86 Instructions

Malware detection and malware classification are two of the most attractive problems
in not only industry area but also academic research. Bits-based fingerprint also known
as signature-based for pattern recognition is applied popularly in commercial anti-virus
software due to its light-weight and fast features. However, it is easily cheated by advanced
polymorphic techniques in malware. Therefore, malware detection based on control flow
graph (CFG) has been appealing to a lot of attention recently. Semantic fingerprints
[11] [2] are used to defeat advanced techniques of malware, which cause the restriction of
bits-based fingerprints. They consist of code and CFG fragments that are acquired by
disassembly. But malware classification requires further precise CFG to investigate more
deeply what types of techniques are applied.

Nevertheless, the task of obtaining precise CFG is difficult. In general, there are three
steps applied in malware techniques:

1. Obfuscation (i.e., complicating work flows in order to discard the signature-based
detection) and anti-debug to curtail malicious characteristics during virtual envi-
ronment emulation.

2. Infection, i.e., a malware embeds itself in other executable programs.

3. Malicious actions (e.g., taking control illegally, destroying data, information theft).

Our long-term target is to classify malware based on the observation of acquired obfus-
cation techniques. Therefore, we need to precisely generate highly accurate CFG of x86
binary that involves typical obfuscation techniques. The typical obfuscation techniques
such as indirect jump, dead code insertion, instruction replacement and self modification
can overcome commercial dissemblers (e.g., IDA Pro, Capstone). Besides, if a malware is
executed in a sandbox environment in order to observe behaviors and its CFG, sandbox
detection may help it to curtail malicious characteristics.

For example, we present the technique indirect jump, which hides the target location in
a register or memory, used in a code fragment from the real malware Virus.Adson.1559 in
the below code section. The code shows that it eventually wants to call the Windows API
FindFirstFileA by dynamically loading the library Kernel32 beforehand and calling the
Windows API GetProcAddress. As for the two first instructions, the value of the pointer
to Kernel32 handler and the string “FindFirstFileA” are pushed in the stack. Next,
GetProcAddress is invoked and the address of FindFirstFileA is returned and stored
in the register EAX. Finally, the instruction at 004024B3 call FindFirstFileA through
the technique indirect jump.

004024 A6 PUSH EAX ; Kernel32 Handle

004024 A7 PUSH DWORD PTR SS:[EBP + 403236] ; 'FindFirstFileA '
004024 AD CALL DWORD PTR SS:[EBP + 40323A] ; Call GetProcAddress

004024 B3 JMP EAX ; Call FindFirstFileA

7



Chapter 3

Dynamic Symbolic Execution of
Binary and BE-PUM System

3.1 Binary Emulation and Path Condition for Sym-

bolic Execution

Symbolic execution, a natural extension of normal execution, is a traditional technique
to execute a program symbolically. It is extended to accept symbolic inputs and construct
symbolic formulas as output. It maintains the state of a program execution (l, pc) that
includes a instruction location l and a path condition pc. The path condition pc is a
boolean expression over symbolic values interpreting the precondition from the program
entry point to the current instruction l. If it satisfiable, the execution path is feasible.

As for symbolic execution, a variable’s value can be represented by a symbolic value
or a symbolic expression [9]. For instance, the value of the register eax in computer can
be presented by a symbolic expression “α1 + α2 + 5”, where {αi} is the set of symbolic
constants. Then, an environment is obtained by collecting all variables and their cor-
responding values. A path condition is a logical constraint over symbolic for the path
from the entry point to a particular location in a program. The program updates both of
its environment and path conditions during its execution flows. Thus, according to the
theory, a state of these two components need to be maintained. However, in practice,
the environment and the path conditions are usually implemented separately in order to
decrease memory space and update the environment easily.

In each step of on-the-fly manner, we can obtain an x86 assembly instruction asm
(together with its parameters) by disassembling a binary sequence of an input program at
a specific location k. If the instruction asm is not an external function call (i.e. invoking a
system call of an operating system), it will be handled the binary emulation in BE-PUM.
According to the semantic of asm extracted from the Intel manual, the binary emulation
will modify the state of the environment and the path conditions.

Based on our observation, most of data instructions (e.g., inc, mov, add) do not cause
branching on a CFG or affect to the path conditions. Except that parameters in con-
junction with values in the environment lead to exceptions and make the path condition
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unfeasible. For example, the state of the path condition P is ({eax = α1, ebx = α2}, true)
(for simplicity, many variables of the environment are omitted) and the next x86 instruc-
tion asm is “inc eax”. The x86 instruction “inc” adds one to the operand “eax” according
to the Intel manual. Thus, the path condition P ′ is ({eax = α1 +1, ebx = α2}, true) with-
out the update of the path constraint. As for data instructions, the next location depends
on the length of the instruction asm statically.

However, control instructions (e.g., jz, jc, jmp) may cause branching because of multiple
possible destinations. The next location can not be statically decided if a condition or a
target address of the instruction consists of symbolic values. Symbolic execution can deal
with them to explore destinations in two ways:

• Static symbolic execution finds candidates statically. It checks whether each
destination P ′ where PathConst′ is feasible or unfeasible by the satisfaction of
PathConst ∧ next = PathConst′.

• Dynamic symbolic execution explores next destinations P ′, P ′′, . . . by testing
satisfiable instances of PathConst (concolic testing) [17].

Figure 3.1: An illustration of the generation of multiple destinations

3.2 What is BE-PUM

BE-PUM (Binary Emulation for PUshdown Model generation) is a binary analyzer.
Currently, BE-PUM concentrates on malware, which are often small and obfuscated. BE-
PUM inputs an x86/Win32 executable binary file and then outputs its CFG (control
flow graph). In order to construct the CFG, BE-PUM chooses on-the-fly manner to
symbolically execute the input program. There are two reasons for BE-PUM to prefer
on-the-fly-construction of CFG:

• From the perspective of binary level, data and instructions are treated in the same
way. Hence, the execution of binary can modify not only data, but also instructions
of the given binary executable.
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• The current instruction together with environment determine the location of the
next instruction while executing the program. For instance, if the current instruction
is an indirect jump operation “jump eax”, then the next instruction is relied on the
value of the register eax at that time.

Symbolic execution is adapted to execute the input program in BE-PUM. By con-
colic testing with a instance of pc, BE-PUM is able to decide the next instruction. An
implementation of virtual simulation is compulsory for handling stepwise executions.

The implementation of BE-PUM is written in Java. We use the figure 3.2 to
represent and briefly describe the architecture of BE-PUM. BE-PUM reuses and takes
advantage of JakStab 0.8.3 to disassemble binary code of an input executable file to as-
sembly instructions. Besides, SMT Z3.4.3 is also applied as a backend engine to produce a
test instance for concolic testing. The architecture of BE-PUM consists of three elements:
symbolic execution, binary emulation, and CFG storage. One symbolic state is taken out
of the frontiers in turn at the ends of explored execution paths. Then, the symbolic
execution attempts to extend one more step from it. If the instruction is a arithmetic
instruction (i.e., only update the environment and the next location is statically deter-
mined), BE-PUM will simply disassemble the next instruction. If a control instruction
(e.g., conditional jump instruction) is encountered, we will apply the concolic testing to
figure out the next location. Thereafter it find out a new CFG node or CFG edge, this
new exploded information is stored in the CFG storage and the frontiers obtain a corre-
sponding configuration. This repetitive process keep continuing until either we explore all
branches, or encounter an unsupported instruction, a system call or an unknown address.

BE-PUM executes an input program symbolically on the path condition pc
(on the symbolic value) and the environment Env (the mapping table storing variables
and their corresponding values), which are independent, in the implementation. The
environment Env is represented by the tuple (EnvR, EnvS, EnvM), where EnvR, EnvS
and EnvM contains values of the register, the stack and the memory (excludes the stack
values), respectively. For a memory location k = EnvR(eip), let asm = instr(EnvM , k)
be an x86 instruction (with its arguments) obtained by disassembling a sequence binary
code starting from k. A binary emulation is used for handling x86 assembly instructions
of the given executable file. According to the technical description of Intel software
developer’s manual, the binary emulation is implemented to deal with the modification
on the environment and the path condition of the current x86 instruction asm.

The binary emulation in BE-PUM (described in the figure 3.3) consists of three
components: a pre-condition P , the binary emulation, and a post-condition P . The path
condition in BE-PUM is presented by a tuple (Env, PathConst). The PathConst is
a boolean expression over symbolic values, represents the condition for the path from
the initial entry point to the current location k and never contains any variables of the
environment Env. The path condition also can be branched due to several causes. One
of these reasons is multiple possible destinations, which is produced by a conditional
jump instruction whose condition contains symbolic values. Currently, BE-PUM can
handles about 250 x86 instructions and they were manually implemented. However, these
implementations may consists of errors and there are more or less 500 x86 instructions in
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Figure 3.2: BE-PUM architecture

total. The lack of supporting in binary emulation may cause an unexpected termination
in BE-PUM. For that reason, in order to enhance the ability of BE-PUM and reduce
human intervention, we aim to conduct the research in the hope of applying its method
to expand BE-PUM into other platforms (e.g., ARM).
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Figure 3.3: The binary emulation in BE-PUM
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Chapter 4

Natural Language Processing in
Automatic Generation of Dynamic
Symbolic Execution

4.1 x86 Specification In Intel Software Developer’s

Manual

The x86 instruction set document are officially published in the Intel Software Developer’s
Manual under the PDF format. This such format hinders the automatic parsing on
the content of document. Therefore, it turns out that the extraction module need an
alternative format of such manual that is easier to be parsed. The alternative document
consists of numerous HTML web pages (semi-structured data) and each page (e.g., the
figure 4.1) is a specification of an x86 instruction. Each specification of an x86 instruction
contains the following descriptions in order:

• Instruction name: It indicates the instruction(s) is(are) specified in the current
specification.

• Type information table: It consists of several rows, in which each row mentions
one specific opcode (operation code), which is represented in hexadecimal number
and is the piece of a machine language instruction that implies the instruction to
be executed, a corresponding assembly statement with valid operand type(s) and
its description.

• Instruction description: It describes the function and operation of the current
instruction(s) in natural language.

• Pseudo-code (operation): By using pseudo-code, it specifies the operation which
describes how the environment is affected after an execution of the mentioned in-
struction(s).
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• Flag-change description: It is described in natural language by one or many
sentences. For each sentence, it mentions flags and an effect that will be applied
on these such flags. Due to the small amount of all sentences appearing in the
total specifications, we give a try to the most naive manner to extract the effect
to mentioned flags by measuring the similarity of a given sentence with sentence
templates. Then, the system is hoped to acquire a good result with the minimal
effort of this approach.

Figure 4.1: An sample of the specification of CWD/CDQ instructions

4.2 WordNet and Sentence Similarity

WordNet[15] is a large semantic lexicon database for English. It contains nouns, verbs,
adjectives and adverbs and groups them into sets of synonyms (synset) which expressing
a distinct concept i.e. one sense. If a word has more than one sense, it will appear in
several synsets. Synsets are organized into hierarchies based on the hypernym/hyponym
relation. As for two given concepts X and Y , if X is a kind of Y , then Y is hypernym of
X and X is hyponym of Y. WordNet 3.0 provides 117,798 nouns in 82,115 synsets, 11,529
verbs in 13,767 synsets, 21,479 adjectives in 18,156 synsets, and 4,481 adverbs in 3,621
synsets, in a total of 155,287 words in 117,659 synsets.1 The figure 4.2 shows an example
of the hypernym/hyponym taxonomy in WordNet which is used for several word-to-word
similarity measurements. A common parent of two synsets is known as a subsumer. The

1http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
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least common subsumer (LCS) is the subsumer that does not have any hyponym which
is also a subsumer of two given synsets. In other words, the LCS is the closest subsumer
to the concerning synsets. For example, the synset “wheeled vehicle” is the LCS of two
synsets “car” and “truck”.

Figure 4.2: A fragment example of hierarchy in WordNet

Given two text inputs T1 and T2, we would like to automatically measure their sentence
similarity in meaning by deriving a score. Thus, it goes beyond the plain lexical matching
method. The knowledge-based measure of text semantic similarity (Mihalcea, R, et al.,
2006) [14] is a simple approach but achieve an acceptable result for this task. A formula
of this method is used for computing a similarity score and accomplished by combining
measurements of word-to-word similarity and word specificity. The consideration of word
specificity supports the formula to give a higher weight when matching a pair of specific
words and give less importance to a measurement between generic concepts. In order to
determine the specificity of words, it uses the inverse document frequency (idf ) introduced
by Sparck-Jones (1972). The idf is a statistic that reflects the importance of a word
belonging to a document in a collection. It is defined as the total number of documents
in the collection divided by the total number of documents consisting that word.

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
where N is the total number of documents in the collection and |{d ∈ D : t ∈ d}| is number
of documents where the word t appears.

There are a number of measures that were well-developed and work well on the hierarchy
of WordNet for the task of measuring word-to-word similarity. All these measurements
accept to input as a pair of concepts and give out a value implying their similarity.
One of the popular and simple formula for this task is proposed by Wu and Palmer
(1994) [20]. Its measure is based on the depth of two given concepts and the LCS in
the WordNet taxonomy. Then, these values are combined into a similarity score by the
following formula:
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simwup(concept1, concept2) =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)

The formula of sentence similarity is defined by firstly picking each word w in the
sentence S1 and attempting to identify the word in the sentence S2 that forms the highest
word-to-word similarity (maxSim(w, S2)). The same process is carried out for each word
in the sentence S2 afterward. Next, the obtained word similarities are multiplied with the
corresponding word specificity. Finally, these values are summed up, normalized with the
length of each sentence and combined with a simple average.

sim(S1, S2) =
1

2

(∑
w∈{S1}(maxSim(w, S2) ∗ idf(w)))∑

w∈{S1} idf(w))

+

∑
w∈{S2}(maxSim(w, S1) ∗ idf(w)))∑

w∈{S2} idf(w))

)

maxSim(w, S) = max [simwup(w, s)|s ∈ S]
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Chapter 5

Observation on Automatic
Generation with Specification

5.1 Required x86 Specification

The manual of x86 instructions consists of various specifications, in the context of this
research we only need a few parts of them. Concerning the entire system, we have to
extract specific information for corresponding tasks as follows:

• To implement the dynamic symbolic execution, we have to extract operations of x86
instructions to update the environment and generate next path conditions when a
current execution causes branching.

• To verify the generated code for the binary emulation, we have to carry out a testing
by comparing a pair of environments before and after executing an instruction in
a real emulator (e.g., Intel/PIN, OllyDbg, x64dbg) with another pair in BE-PUM.
This task requires test-cases that are binary programs containing corresponding
target x86 instructions. We aim to automatically generate them from the document.
In order to generate test programs, we have to obtains the following specifications:

– Conditions for the validity of arguments (operands of instructions): To au-
tomatically generate all possible forms of a given instruction, the number of
operands (in the range of zero to three) and data types of them must be valid
and initialized before invoking the instruction in a test program.

– Conditions for covering branches of an execution: In an operation of each
instruction, there may be more than one execution flow. For entering a branch,
we can find at least one set of valid initialized operands. To satisfy the test
coverage, several test programs in which each branch have to be executed need
to be generated automatically.
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5.1.1 Specification for Generation

First and foremost, the most important requirement for the generation is the operation
of x86 instructions. Each document of an x86 instruction contains the pseudo-code
section and the “flags-affected” description. They describe how an instruction
execution affects to the environment. The “flags-affected” section consists of one or several
sentences. From our observation, each sentence can be categorized into the following two
cases and automatically classified by the manner described in the section 6.2

• An interpretation describes the way the pseudo-code section updating system
flags in English. We ignore this kind of sentence in the specification. We observe
that a sentence is an interpretation when the mentioned system flags are also appear
in the pseudo-code section.

• An essential supplement supplies the modifications of system flags that the
pseudo-code section does not represent. The mentioned system flags in this case
are not included in the pseudo-code section based on our observation. For solving
this problem, we extract system flag names from the sentence and predict its action
by measuring the similarity between it and prepared template sentences.

Figure 5.1: Examples of an interpretation and an essential supplement of “flags-affected”
descriptions

For example, the figure 5.1 shows the pseudo-code parts and the “flags-affected” de-
scriptions of two instructions AAA and AND. In regard to the specification of AAA, the
first sentence of the “flags-affected” description explains the effects of the pseudo-code to
the two system flags AF and CF. As for the instruction AND, there is no statement about
the changes of the system flags OF, CF, SF, ZF and PF in the pseudo-code. However,
they are described in natural language by the “flags-affected” description.
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From our observation, a document (i.e., a web page) can specify descriptions
for more than one instruction. In this case, the pseudo-code contains the operations
that can be applied for many instructions. These documents are recognized by their titles.
For instance, the instructions RCL, RCR, ROL, ROR are defined in the same document
labeled “RCL/RCR/ROL/ROR”. By extracting semantics from one document, we can
generate code for supporting several instructions. Besides the title which contains several
instruction names, the next indication is ending with letters “cc”. This indication implies
these documents describe conditional instructions (i.e., executed if the condition is met).
And the operation is described not only in pseudo-code but also in the type information
table. For these documents, the type information table consists of several rows, in which
each row mentions one specific instruction and its condition. For example, the figure 5.2
shows a part of the type information table in the document “Jcc”. The first row in the
table gives the condition for executing the instruction JA which is the values of CF and
ZF equal to zero.

Figure 5.2: A part of the table in the document Jcc describes conditions for the conditional
jump instructions

5.1.2 Specification for Test-case Generation

As mentioned in the section 5.1, the test-case generation requires two compulsory spec-
ifications including conditions for the validity of operands and covering branches. The
descriptions for valid operand types are described in the column Mnemonic of the
type information table (e.g., figure 5.2). After the instruction name, a sequence of valid
operand types are listed. These types are named by the conventions from Intel as sym-
bols. A symbol is a concatenation of letters and a number, which represent a data type
and a data size, respectively. The table 5.1 shows the convention for symbolizing operand
types in detail. From a type description, by replacing symbols with valid operand values,
we eventually acquire a satisfiable x86 instruction statement used in a test program. For
instance, as for the type information “ADD r/m8, imm8 ”, a candidate can be used for
testing is “ADD al, 10 ”.

The conditions for covering branches to satisfy test coverage are obtained from
the pseudo-code section of each document. The system extracts conditions from the
operation. There are several variables can appear in a condition. Some of variables are
determined by instruction statement disregarding the values of operands. For examples,
the variables NumberOfOperands and OperandSize are statically decided by the number
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Starting
letters

Data sizes
(in bits)

Description Examples

rel 8, 16, 32 A relative address rel8, rel16
r 8, 16, 32 A general-purpose register AL, AX, EAX

imm 8, 16, 32, 64
An immediate value (signed
number)

imm8 is a signed num-
ber between –128 and
+127

r/m 8, 16, 32, 64
Either the value of a
general-purpose register or
a memory operand

AL, AX, 0x4001001

m 8, 16, 32, 64, 128 An operand in memory 0x4001001

Table 5.1: The convention for symbolizing operand types from Intel

of operands of an assembly statement and the data size that the instruction operating
on (e.g., “ADDB” is the byte addition operation, thus, OperandSize is 8). Based on our
observation, the generation of test programs from the type information table can cover
branches caused by conditions that can not be affected by operand values.

5.2 Prerequisite for Automatic Generation

Because the operation of instructions are represented by pseudo-code, an informal pro-
gramming language, and there are many pieces of existing basic knowledge that are not
explicitly defined in the document, the system requires some prerequisites that need to
be prepared manually in order to automatically generate code for x86 binary emulation
in BE-PUM. These necessary preparations are reused frequently in several instructions.
Therefore, with a little manual effort, the system can deal with a large number of instruc-
tions and enhance the number of successful generated code.

The default rules of modifying system flags are compulsory prerequisites. In
the Intel software developer’s manual, there is no specification for the changes of system
flags after executing an instruction. These rules are generic and always applied to all
instructions that make use of arithmetic operations in the operation. Based on the last
arithmetic operations l and r and its result t, the final states of flags are decided. There
are 6 system flags are affected by the following rules:

1. OF: It is set to true if the last operation on signed numbers causes overflow of data.
Otherwise, its value is false.

2. SF: A positive value of t clears its value and a negative result set it to true.

3. ZF: A non-zero value of t clears it to false and a zero value of t turns it to true.

4. AF: The carry of the last arithmetic operation on Binary Code Decimal (BCD)
numbers.
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5. PF: It contains the parity bit (or check bit) of the value of t.

6. CF: It indicates the carry from left-most bit after the last arithmetic operation. For
instance, when the last operation is addition, its value is true only if both l and r
are positive and t is negative, or both l and r are negative and t is positive.

The prerequisites for undefined functions in pseudo-code helps the system out
to successfully automatically generate code. The pseudo-code sections consists of several
ambiguous function calls. Extracting semantics and specifications for these functions is
difficult. Besides, they are reused many times in individual instructions, by the manual
implementation for ambiguous functions, we can still enhance the ability of BE-PUM with
the minimum human effort.
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Chapter 6

Specification Extraction

6.1 Operation from Pseudo-code

The description of each x86 instruction always consists of a pseudo-code section, which
describes operation in an informal programing language. It is the most important part
in the description that is used for automatically extracting semantic and generating code
for the binary emulation in BE-PUM. Unfortunately, there is not the certain definition
for the syntax of the pseudo-code presented in the document.

From our observation, the pseudo-code can be parsed by a simple parser because
the syntax is not complicated. Therefore, we observed and deduced manually the context
free grammar (including 20 rules) for parsing the pseudo-code as follows:

code → s t a t e m e n t+
s t a t e m e n t → b l o c k

| s t r u c t u r e d S t a t e m e n t
| e x c e p t i o n S t a t e m e n t ` ; '
| s i m p l e S t a t e m e n t ` ; '

b l o c k → `{ ' s t a t e m e n t ∗ `} '
s i m p l e S t a t e m e n t → ass ignmentSta tement

| e x p r e s s i o n
| breakSta tement

s t r u c t u r e d S t a t e m e n t → c o n d i t i o n a l S t a t e m e n t
| r e p e t i t i v e S t a t e m e n t
| forLoopStatement
| s w i t c h S t a t e m e n t

e x c e p t i o n S t a t e m e n t → `#' IDENT
p a r a m e t e r L i s t → e x p r e s s i o n ( ` , ' e x p r e s s i o n )∗
ass ignmentSta tement → <assoc=r i g h t> e x p r e s s i o n `=' e x p r e s s i o n

| `( ' p a r a m e t e r L i s t `) ' `=' e x p r e s s i o n
e x p r e s s i o n → (`+ ' | `− ')? f a c t o r

| `˜ ' e x p r e s s i o n
| f a c t o r ` . ' i d e n t i f i e r
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| e x p r e s s i o n ( `∗ ' | `/ ' | `div ' | '% ') e x p r e s s i o n
| e x p r e s s i o n ( ` | ' | `& ') e x p r e s s i o n
| e x p r e s s i o n (`+ ' | `− ') e x p r e s s i o n
| e x p r e s s i o n (`<<' | `>>') e x p r e s s i o n
| e x p r e s s i o n (`==' | `!= ' | `>' | `<' | `<=' | `>=')

e x p r e s s i o n
| e x p r e s s i o n ( ` | | ' | `ˆ ' | `&&') e x p r e s s i o n
| <assoc=r i g h t> e x p r e s s i o n `=' e x p r e s s i o n

i n d e x i n g → i d e n t i f i e r ` [ ' e x p r e s s i o n ` . . ' e x p r e s s i o n ` ] '
| i d e n t i f i e r ` [ ' e x p r e s s i o n ` : ' e x p r e s s i o n ` ] '
| i d e n t i f i e r ` [ ' e x p r e s s i o n ` ] '

c o n c a t e n a t e → i d e n t i f i e r ` : ' i d e n t i f i e r
f a c t o r → i d e n t i f i e r

| f u n c C a l l
| `( ' e x p r e s s i o n `) '
| uns ignedCons tant
| i n d e x i n g
| a c ce s s Ad d r es s
| c o n c a t e n a t e

a c ce s s Ad d r es s → ( `CS : ' | `SS : ' | `DS : ' ) e x p r e s s i o n
f u n c C a l l → IDENT `( ' p a r a m e t e r L i s t ? `) '
uns ignedCons tant → NUM INT | NUM HEX | STRING LITERAL
c o n d i t i o n a l S t a t e m e n t → ` i f ' `( ' e x p r e s s i o n `) '

s t a t e m e n t (` e l s e ' s t a t e m e n t )?
r e p e t i t i v e S t a t e m e n t → ` whi l e ' `( ' e x p r e s s i o n `) ' s t a t e m e n t
forLoopStatement → ` for ' `( ' ass ignmentSta tement+ ` ; '

e x p r e s s i o n ` ; ' e x p r e s s i o n `) ' s t a t e m e n t
s w i t c h S t a t e m e n t → ` swi tch ' `( ' e x p r e s s i o n `) ' `{ '

caseSta tement+ `} '
caseSta tement → `case ' e x p r e s s i o n ` : ' s t a t e m e n t ∗

An abstract syntax tree (AST) can be obtained from a pseudo-code section by
parsing. It is a representation as a tree of a programing language source code. The AST
represents the abstract syntactic structure and usually forms an input of code analysis and
code generation. However, the code generation can not directly uses the AST obtained
from the pseudo-code since it consists of redundant information. A computer processor
has several operating modes such as real mode, protected mode and virtual mode to
be selected and executed on. Thus, the Intel software developer’s manual also describes
operations for all supported modes. Nevertheless, BE-PUM concentrates on malware that
shows its behaviors in the real environment status.

Hence, the system need to removes all dead branches (i.e., the branches describ-
ing the operations in non-real modes) before moving to the next step. The specification
from Intel has the convention for using some variables in the following list to imply oper-
ating modes of computer.
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• PE: boolean variable representing protected mode

• VM: boolean variable representing virtual mode

• IOPL: integer variable representing I/O privilege level

Then, in the real mode, the values of both PE and VM have to be zero (false). The
system can identify dead branches by statically evaluating conditional expressions, and
consequently point out the expressions whose values are always concrete. The figure
6.1 shows an example of removing dead code from the pseudo-code of the instruction
PUSHF/PUSHFD. As for the first conditional statement, by calculating the condition
with the fixed zero values of PE and VM, it turns out that the second branch will never
be executed. Therefore, in this case, the system only keeps the first branch of the first
conditional statement in the pseudo-code section and dismisses everything else.

Figure 6.1: An example of the pseudo-code containing dead code in the description of
PUSHF/PUSHFD

Code analysis is applied on the AST that has been pruned dead branches in order
to extracts essential information for code generation. It extracts variables (including
registers, flags, defined variables, global variables, etc.) and function calls. We define the
following notations for this extraction task:

• The set of registers: R = {‘EAX’, ‘EBX’, ‘ECX’, ‘EDX’, ‘AX’, ‘AH’, ‘AL’, ‘BX’,
‘BH’, ‘BL’, ‘CX’, ‘CH’, ‘CL’, ‘ESI’, ‘EDI’, ‘ESP’, ‘EBP’, ‘EIP’, ‘DX’, ‘DH’, ‘DL’,
‘SI’, ‘DI’, ‘SP’, ‘BP’, ‘DS’, ‘ES’, ‘FS’, ‘CS’, ‘SS’, ‘GS’}

• The set of registers system flags: F = {‘AF’, ‘CF’, ‘DF’, ‘IF’, ‘OF’, ‘PF’, ‘SF’, ‘TF’,
‘ZF’}

• The set of variables: V = the set of identifies appearing in a given AST

• The set of indicated flags: IF = V ∩ F (i.e., the flags appearing in a given AST)
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• The set of indicated registers: IR = V ∩ R (i.e., the registers appearing in a given
AST)

• The set of updated variables: UV = {x|x ∈ V ∧ x appears in the left hand side
of assignment statements}

• The set of flags updated in a given AST: UF = IF ∩ UV

• The set of flags specified in flag-change specification: FF

• The set of global variables: G = specific variables and used in all descriptions (e.g.,
Destination, Source, OperandSize, etc.)

• The set of unknown variables: U = V −G− F −R− UV

By observation, we consider variables in U are operands of a given instruction.
The corresponding positions of operands are unclear at the time of code generation. There-
fore, the system need to produce a combination of operands and feasible positions. Then
it generates code for each case and carries out a test to clarify which one is correct.
For example, the pseudo-code in the description for the instruction BTS contains two
unknown variables (U = {‘BistBase’, ‘BitOffSet’}). Hence, the system attempts to pro-
duce the possible forms of the current instruction including ‘BTS BitBase BitOffSet ’ and
‘BTS BitOffSet BitBase’. In other words, there are possibilities for the positions of the
operands. The first possibility is ‘BistBase’ at the first operand and ‘BitOffSet’ at the
second operand. The second one is ‘BitOffSet’ at the first operand and ‘BistBase’ at the
second operand. For each case, the system can generate the corresponding code for the
binary emulation. The testing step finally is performed to clarify the correct one, which
is ‘BTS BitBase BitOffSet ’.

Figure 6.2: An example of the determination of positions of operands in a set U

6.2 Flag Modification from Natural Language Spec-

ification

As mentioned in the section 5.1.1, a flag-change description describes how an instruction
execution affects to system flags in natural language. It consists of one or more sentences,
in which each one can be classified into two types including an interpretation and an
essential supplement.
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By measuring the similarity between a sentence in flag-change description
and prepared template sentences, the system can extract the way how system flags
mentioned are affected. Intuitively, we notice that there are at least three operations
that can be applied on system flags. They are “do nothing”, “set to 1” and “clear to
0”. From our observation, there are two more operations including “set according to the
result” and “set according to the value of a register”. As a result, the number of template
sentences is supposed to be five. To establish the final sensible decisions, the research
need to accomplish a statistic on the total 289 sentences. Due to the simplify of such
sentences and based on our observation, the statistic is performed by grouping sentences
having the same last word. Eventually, it leads to the conclusion for the templates, which
occupy the majority of cases, as showed in the table 6.1.

Template
Proportion

(%)
Implication

“None” 32.2% There is no system flags which are affected
“The flags are undefined” 17% The system flags mentioned in the

sentence will be modified by the
default rules (see 5.2)

“The flags are set accord-
ing to the result”

8.3%

“The flags are cleared” 6.2%
The value of the system flags mentioned
in the sentence will be cleared to zero

“The flags are unaffected” 3.8%
There is not effect to the system flags men-
tioned in the sentence

Table 6.1: The selected templates and their implications

The interpretation is ignored due to the ambiguity of natural language and the
clarity of pseudo-code. There are two steps to deal with this task:

• From a flag-change description, the system extracts system flags mentioned and
represents them in the set FF .

• The system only makes use of the set of the flags that do not appear in pseudo-code:
FF ′ = FF − UF

For example, the flag-change description of the instruction AAA consists of the interpreta-
tion at the first sentence (figure 6.3). This such sentence mentions the modification of two
flags including ‘AF’ and ‘CF’, which are elements of the set FF . From the pseudo-code
section, the system extracts the set UF , which contains the same elements as the set FF .
Therefore, the specification of modification on these two system flags in the flag-change
description are disregarded.

6.3 Type Information

A type information table (e.g., the figure 5.2) specifies not only possible prototypes but
also conditions for execution of a document. It consists of several rows and three columns.
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Figure 6.3: An example of the determination of the interpretation in flag-change descrip-
tion

Among these rows, each one describes a specific prototype and its condition. The system
extracts information on the second column (“Mnemonic”) and the third column (“De-
scription”).

• In the case that the table that does not contain conditions for execution, only the
second column is needed in order to extract possible prototypes for generating test
programs.

• If the table contains conditions for execution, in addition to the necessary infor-
mation as below, each row of the third column need to be parsed to obtain the
condition being dedicated to the instruction name in the second column.
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Chapter 7

Automatic Generation

7.1 Test-case Generation

The operation of an x86 instruction consists of several branches. To ensure the correctness,
the research has to conduct a testing with high test coverage that is able to cover all of
the statements in the generated code. The generated code can have the following cases.

• An operation consists of procedures for dealing with several instructions.

〈Problem〉 A grouped specification, whose the indication is its title, can specify
descriptions for more than one instruction. The same pseudo-code section in this
kind of specification can be applied for many instructions. For instance, the instruc-
tions including FADD, FADDP and FIADD are defined in the same specification
labeled “FADD/FADDP/FIADD” (the figure 7.1 shows the pseudo-code section of
the specification).

〈Solution〉 A type information table of such the specification consists of all instruc-
tion names together with valid operands that can invoke all instructions described
in the pseudo-code section. Therefore, based on the type information table, the
system generates test programs in the case of grouped specification.

Figure 7.1: An example of the pseudo-code section that describes operations for multiple
instructions

• An operation consists of procedures for dealing with several ways of inputing operands.

〈Problem〉 Concerning the properties of operand, such as operand size and number
of operands, an instruction may have several way to behave and affect to the en-
vironment. For instance, the operation specification for “CBW/CWDE”, which is
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showed in the figure 7.2, has two ways to affect to the environment. If the operand
size is 16, the value of the register AX will be modified. Otherwise, the register
EAX will be updated.

〈Solution〉 A type information table of the specification in this case consists of
all possible types of operands. The testing can cover all treatments for individual
operand properties by generating test programs from this such table.

Figure 7.2: An example of the pseudo-code section that describes operations for multiple
types of operands

• An operation consists of various conditional statements with conditions formed from
elements of environment.

〈Problem〉 Depending on the state of an initialized environment, an instruction
may has many ways to behave. The figure 7.3 shows an example of branching in
operation (of the instruction AAA) based on the values of the register AL and the
flag AF.

〈Solution〉 In principle, the system need to explore all feasible branches. And for
each branch, a path condition can be acquired by the similar methodology of BE-
PUM. Thereafter, by conducting concolic-testing in turn for each path condition, the
system can eventually obtains concrete instances as required initialized arguments
for test programs that can cover all branches. Based on our observation, there
are only 6 specifications that modifies values of operands in conditional expressions
before evaluating them. For example, the figure 7.4 shows the pseudo-code section of
the instruction TEST. For choosing a branch, the operation invokes an evaluation
of the expression “Temporary = 0”, where the value of “Temporary” is decided by
a fore-assignment.

The statistic turns out that most of the specifications do not update the environ-
ment before executing a conditional statement involving the environment state. It
leads to the fact that the implementation for an automatic generic test-case genera-
tion system can take more time than a manual test-case generation. In addition to,
branches and conditions in specifications are not complicated. Hence, in the case of
conditional expressions with modification, we manually add more test-cases to sat-
isfy test coverage. As for conditional expressions without modification (150 cases),
the system extracts conditional expressions and generates combinations of them in
both cases being true and false. Then, the concolic-testing are directly performed
to obtain necessary inputs.
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Figure 7.3: An example of the pseudo-code section that consists of a conditional expression
without the modification of operands in the expression

Figure 7.4: An example of the pseudo-code section that consists of a conditional expression
with the modification of operands in the expression

7.2 Conformance Testing

After the code generation and test-case generation, the system need to conduct a testing
to clarify the correctness of generated code in the binary emulation of BE-PUM. The
idea is to compare a pair of environments before and after executing an instruction in
a commercial emulator/debugger (e.g., Intel/PIN, OllyDbg, x64dbg) with another pair
in BE-PUM (illustrated by the figure 7.5). By executing the testing task for each test
program in the set of generated test-cases, the system not only verifies whether generated
code of an instruction is correct or not, but also clarifies the accurate choice for positions
of operands in the set U (see 6.1).
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Figure 7.5: An illustration of clarification by comparing environments in BE-PUM and
debugger
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Chapter 8

Implementation

The implementation of automatic generation of x86 instructions for the binary emulation
in BE-PUM is written in Java, Python, Velocity script language and context free gram-
mar for ANTLRv4. The entire system is divided into 3 modules including extraction,
generation and testing.

8.1 Module Extraction

As mentioned in the section 6, this module firstly performs the extraction task and obtains
raw information as the figure 8.1.

Figure 8.1: Information extraction from specification

In the implementation, Jsoup1, which is a Java HTML Parser library, is used for
parsing specification in HTML data structure. The necessary information is located in
fixed and orderly tags in each specification. The module can easily extracts instruction
name from the second h1 tag. Type information table, pseudo-code and “flags-affected”
description are acquired by parsing the first, third and forth table tags, respectively.

ANTLR (ANother Tool for Language Recognition) v42 accepts the context free
grammar mentioned in the section 6.1, which is rewritten according to the syntax of the

1jsoup: Java HTML Parser - https://jsoup.org/
2ANTLR (ANother Tool for Language Recognition) - http://www.antlr.org/
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tool, as the input and generates a parser for pseudo-code. Then, an abstract syntax tree
(AST) is obtained by applying the parser on the acquired pseudo-code section.

An implementation of the simple boolean expression evaluator is required
for pruning dead branches from the AST afterwards. The evaluator obeys short-circuit
evaluation strategy, where if the expression contains more than one sub-expressions, the
second sub-expression is evaluated only if the first one can not be sufficient for determining
the returned value of the expression. As for the AND operation, if there is at least one
sub-expression evaluates to false, the final result must be false. And in the case of the
OR operation, if one or more sub-expressions evaluate to true, the true value is returned.
The evaluator turns the variables including PE and VM into zero before evaluating. If all
factor in the expression is evaluable, the result is concrete boolean value; otherwise, it is
an unknown value. The module only removes the branch that gets the false conditional
expression. After all, the pruned AST is traversed to apply code analysis and extract sets
of variables and function calls as described in the section 6.1.

NLTK (Natural Language Toolkit)3 in Python is used to take advantage of easy-to-
use interfaces such as WordNet, lemmatization and tagging. As mentioned in the section
6.2, the module prepares the sentence templates showed in the table 6.1 and measures
the similarity between each sentence in the “flags-affected” description with sentence
templates (by the method described in the section 4.2) to extract affected flags and the
corresponding code template that need to be applied for such flags. After processing
all sentences in the “flags-affected” description, several lists including affected flags with
default rules, affected flags with specified value, cleared flags, and unaffected flags are
obtained and stored into an instance of “flags-affected” data structure.

8.2 Module Generation

This module accepts extracted information from the module extraction to automatically
generate code for the binary emulation in BE-PUM. Before generating, we have to prepare
prerequisite code as mentioned in the section 5.2.

• Instruction name (title of specification): It describes the name of the instruction
that is specified in the current specification, excepts the special cases as follows:

– The name contains the character “/”: It implies the specification describes
semantic for several instructions in the same document, where each instruction
is split by such character. In this case, the same generated code will be applied
for several instructions mentioned in the title.

– The name ends with letters “cc”: It implies these documents describe condi-
tional instructions (i.e., executed if the condition is met). And the operation
is described not only in pseudo-code but also in the type information table.
For these documents, the type information table consists of several rows,
in which each row mentions one specific instruction and its condition. For

3Natural Language Toolkit - http://www.nltk.org/
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example, the figure 5.2 shows a part of the type information table in the doc-
ument “Jcc”. The first row in the table gives the condition for executing the
instruction JA which is the values of CF and ZF equal to zero.

• Abstract syntax tree: Each node in the AST is traversed to transform pseudo-
code to Java code for the binary emulation. After having traversed, the module
acquires attributes (i.e., variables used in the operation), a set of conditional ex-
pressions, an initialization code for attributes (i.e., variables need to be loaded values
before executing, for example, the value of the general-purpose register AL need to
loaded to the attribute AL) and an operation code. These such information are
stored into attributes of the object data and this module uses the object to fill code
into a dynamic template. This process is implemented in Java and Velocity4 library,
which is a Java-based template engine and allows to use a simple template language
to refer objects in Java. The dynamic template is defined as follows:

public class $data.getName() extends X86GeneratedStub {

$data.attribute

@Override

protected BPState preExecute() {

if (mConditionValueMap == null) {

mConditionValueMap = new HashMap<>();

#foreach( $entry in $data.formulaMap )

mConditionFormulaMap.put($entry.getKey(),

$entry.getValue());

#end

}

return super.preExecute();

}

@Override

protected boolean getConditionValue(int pIndex) {

switch (pIndex) {

#foreach( $entry in $data.conditionMap )

case $entry.getKey():

$entry.getValue()

#end

}

if (mConditionValueMap.get(pIndex) != null)

return mConditionValueMap.get(pIndex);

return generatePathCond(pIndex);

4The Apache Velocity Project - http://velocity.apache.org/
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}

@Override

protected void initAttributes() {

super.initAttributes();

$data.init

}

@Override

public BPState execute() {

$data.code

return null;

}

}

By using the above template, Velocity attempts to replace all strings that has the
convention $object.attributes with appropriate strings stored in object. The
library also provides the syntax for looping (by the block #foreach...#end).

• “flags-affected” data structure: The instance of “flags-affected” data structure
contains several lists including affected flags with default rules, affected flags with
specified value, cleared flags, and unaffected flags. For each list, the module applies
a relevant code template on mentioned flags.

For instance, by using the above template with extracted information from the module
extraction, the generated code for the binary emulation in the case of instruction JZ is
shown below:

public class jz extends X86GeneratedStub {

Value Destination = new LongValue(0);

Value CS = new LongValue(0);

Value EIP = new LongValue(0);

Value ZF = new LongValue(0);

@Override

protected BPState preExecute() {

if (mConditionValueMap == null) {

mConditionValueMap = new HashMap<>();

mConditionFormulaMap.put(0,

new HybridBooleanValue(ZF, "==", new LongValue(1L)));

}
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return super.preExecute();

}

@Override

protected boolean getConditionValue(int pIndex) {

if (mConditionValueMap.get(pIndex) == null)

switch (pIndex) {

case 0:

if (checkIsConcreteValues(ZF))

mConditionValueMap.put(0,

BPOperation.toLong(ZF) == 1L);

}

if (mConditionValueMap.get(pIndex) != null)

return mConditionValueMap.get(pIndex);

return generatePathCond(pIndex);

}

@Override

protected void initAttributes() {

super.initAttributes();

Destination = getValue(dest);

CS = env.getRegister().getRegisterValue("cs");

EIP = env.getRegister().getRegisterValue("eip");

ZF = env.getFlag().getZFlag();

}

@Override

public BPState execute() {

mIsSF = false; mIsCF = false; mIsZF = false;

mIsAF = false; mIsPF = false; mIsOF = false;

if (getConditionValue(0)) {

EIP = mBPOperation.add(EIP,

mFunctionCall.SignExtend(Destination));

env.getRegister().setRegisterValue("eip", EIP);

if (mOpSize == 16L) {

EIP = mBPOperation.and(EIP, new LongValue(0xFFFF));

env.getRegister().setRegisterValue("eip", EIP);

} else {

if ((BPOperation.toLong(EIP) < CodeSection.Base) ||

(BPOperation.toLong(EIP) > CodeSection.Limit)) {

return exceptionSEH();

}
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}

}

return null;

}

}

8.3 Module Testing

In order to verify automatically generated code, the module testing is conducted by two
steps:

• Test program generation: As mentioned in the section , in order to reach the
test coverage on operation of x86 instructions, which consists of several branches,
test programs are automatically generated from the type information table and
the pruned AST. The descriptions for valid operands are described in the column
Mnemonic of the table. Based on the convention shown in the table 5.1 of the
section 5.1.2, this module replaces symbols with valid operand values and acquires
an assembly statement, which is written to an assembly code file. Netwide Assembler
(NASM) 5, which is an assembler for the Intel x86 architecture, is used to compile
the assembly code file to an executable file as a test program.

In the case of operation contains various conditional statements with conditions
formed from elements of environment, the statistic shows that most of the speci-
fications do not update the environment before executing conditional statements.
For conditional expressions with modification, we manually add more test-cases to
satisfy test coverage. Concerning conditional expressions without modification, the
system extracts conditional expressions and generates combinations of them in both
cases being true and false. Then, the concolic-testing are carried out by Z3 6, which
is a theorem prover from Microsoft Research, to acquire concrete values. The figure
8.2 demonstrates this process for the pseudo-code of the instruction AAA (see 7.3).

• Comparison of environments in BE-PUM and Debugger: This step com-
pares a pair of environments before and after executing an instruction in a debugger
with another pair in BE-PUM (illustrated by the figure 7.5). In the implementa-
tion, we pick the x64dbg debugger 7, which is an open-source x64/x32 debugger
for Windows OS, due to the scriptable feature that provides an integrated scripting
language in Python. A script in Python is written to extract automatically environ-
ments on the real machine for all generated test programs. Thereafter, these such

5Netwide Assembler - http://www.nasm.us/
6Z3 - https://github.com/Z3Prover/z3/
7x64dbg - https://x64dbg.com
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Figure 8.2: An example of concolic testing on conditional expressions in pseudo-code (see
7.3)

information are used for comparison with the implementation of generated code of
the binary emulation in BE-PUM.
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Chapter 9

Experiment

9.1 Successfully Generated x86 Instruction

As mentioned in the section 5.2, the system requires some manual beforehand preparation
as the prerequisites supporting the automatic code generation for x86 binary emulation
in BE-PUM. Therefore, we manually implemented default rule-based flag-change modi-
fications and 30 undefined functions frequently used in pseudo-code. Finally, among the
specifications for 530 x86 instruction that have been collected, the system successfully
generated code for binary emulation in 299 instructions including the groups of
the following instructions:

• Arithmetic instructions, e.g., ADD, SUB, MUL, INC

• Data instructions, e.g., MOV, BSWAP, CMOVC

• Logical instructions, e.g., AND, OR, XOR, NOT

• Control instructions, e.g., JMP, JA, JZ

• Flag-control instructions, e.g., STC, CMC, CLD

• Partly FPU instructions (which work with floating-point unit registers and perform
floating-point arithmetic), e.g., FADD, FSUB, FMUL

• Partly MMX instructions (which work with MMX registers), e.g. MOVD, PADDQ,
PSUBB

The failed instructions belongs to the following groups and are explained in the section
9.3.

• Architecture dependence, e.g.,FSUBR, FSTCW

• Unsupported functions in BE-PUM, e.g., FLDENV, CVTDQ2PD
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9.2 Comparison with Manual Implementation

Beforetime the research is conducted, BE-PUM officially supported about 250 x86 in-
structions after 3-years human effort. These supports were implemented manually and
have several problems due to the limitation of writing test-case and test-coverage. In
comparison with the manual implementation, our system excels in the following points:

• The larger number of supported instructions (better than the manual implementa-
tion 49 instructions) in the shorter time period of implementation.

• The system points out errors in the manual implementation:

– The preprocessor JakStab of BE-PUM incorrectly disassembles the instruction
IMUL (in the case of one operand) and the instructions CWD/CDQ, where
both of them are disassembled into the same instruction.

– The implementation of the function MSB (i.e., calculating the most significant
bit) might return unexpected value in the case of inputting 32-bit argument
and affect to 8 instructions including ROR, ROL, RCL, RCR, SAL, SAR, SHL,
SHR.

– The implementation of the method evaluateAddress wrongly evaluates the
memory address which consists of segment register and might lead to the in-
correctness for instructions which reference memory.

• The system can be modified to adapt to the specification for instructions in other
architecture and help BE-PUM to expand abilities in analyzing several platforms
beyond x86.

9.3 Discussion of Failed Cases in Automatic Gener-

ation

Our system fails in automatically generating code for the remaining 131 instructions.
There are two reasons causing this problem:

• Due to the lack of support in BE-PUM for the architectures that are rarely
used such as floating-point arithmetic (with FPU register stack, XMM register, etc.),
the system can not be configured to generate proper code statements being compat-
ible existing implementation in BE-PUM. Moreover, it does not have appropriate
environment to be executed and perform testing. The tasks of supporting these such
architectures are too difficult for automation because they require certain techni-
cal know-how in computer architecture and are described in several kinds of docu-
ments. For instance, the figure 9.1 shows the pseudo-code section of the specification
for the instruction FLDENV, which consists of variables (e.g., FPUConstrolWord,
FPUStatusWord, FPUTagWord) that are available only in the partially unsupported
architecture FPU register stack.
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Figure 9.1: An example of unsupported architecture in the specification for FLDENV

• Pseudo-code invokes an unsupported function that need to be manually pre-
pared beforehand (see 5.2). At the present, the system tries to minimize the hand-
operated implementation by only manually preparing functions commonly used in
the entire manual. It turns out that the functions seldom appearing in the manual
are missing and the generated code can not invoke them. For instance, the pseudo-
code, which describes the operation for the instruction FBSTP, in the figure 9.2
calls the unprepared function BCD.

Figure 9.2: An example of unsupported function call in the specification for FBSTP

Due to the causes of fail cases in automatic generation in the above section, the system
will be improved if we eliminate the mentioned limitations. The task of implementing
lacking architectures requires human efforts because of its difficulty. And besides, to en-
sure the precision and compatibility of new architectures, the implementation ought to be
revised carefully and it is not one of repetitive works that can be handled by automation.
The simple idea for supporting new architectures without manual implementation is to
make use of an existing emulator to input arguments and receive returned values. From
our observation, instructions working on such architectures can affect to path condition.
Thus, this idea is ineffective and may cause shortcomings during disassembling.

As for unsupported functions, there are about 40 functions need to be added to the
implementation of our system. Among them, there are about 10 functions that are de-
signed to convert data type (e.g., ConvertDoubleToFloat, ConvertDoubleToInteger).
These such functions accept the same parameter type and convention. Hence, their im-
plementations may be automatically generated. The remaining functions require several
practical knowledges and are specified in separated documents. Therefore, the required
tasks for improvement need to be investigated further and are left for future work.
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Chapter 10

Related Work and Conclusion

10.1 Related Work

Writing computer programs from using natural language description is a challenging prob-
lem. The advantage of using natural language processing to automatically generate pro-
grams is to ease human effort in manual works having the characteristic of repetitiveness.
Besides, it may allow newcomer to utilize existing systems to apply them for similar
tasks. In natural language processing, the process for semantic analysis mapping natural
language sentences into a formal representation is semantic parsing. Recently, there are
several works in semantic parsing, which have exploited natural language sentences to
address problems in domain specific applications, such as recipe from description [18],
robot commands [6], operating system [1], scripts in smart-phone [13], spreadsheet data
analysis and manipulation [3]. In order to develop such language-to-code systems, ef-
forts for manually constructing parsers or large corpus of appropriate training samples
are generally required.

The approach proposed by Quirl et al [18] from Microsoft Research learns to map
simple natural language descriptions (i.e., written in the form of “if-then”) to to naturally-
happening code statements (called “recipes”). Recipes are simple rules that allow users to
control smart electric devices. There are several services and applications, such as Tasker
and IFTTT 1, provides graphic user interface to support users to create uncomplicated
programs with trigger and actions. For instance, an air-conditioner can be programmed
to be operated only in a certain period of time from 8 AM to 6 PM. This approach is
performed and evaluated on the corpus of pairs of recipe (which is thereafter extracted
to an abstract syntax tree representation) and description collected from the website of
IFTTT. It utilizes a probabilistic log-linear classifier with character and word n-gram
features in machine learning to build a correlation between queries and recipes.

NLyze [3] is a implementation of an Excel add-in using the method proposed by Gulwani
et al. Spreadsheet systems (e.g., Microsoft Excel) allows users to program scripts/macros
using a built-in library that works on string and numeral data. However, inexperienced
end users may find it too complicated to write applications as their wishes. The add-in

1If This Then That - https://ifttt.com/
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supports users to automate popular tasks by stating natural language requirements. It
makes use of a rule-based translation algorithm for converting a description in natural
language with the context of a given spreadsheet into a set of type domain-specific lan-
guage (DSL) programs. The method is dedicated to perform on spreadsheet with tasks
being the combination of actions predefined in the DSL.

Nowadays, people tend to use their electric devices in most of daily-life activities. In
order to automate and program such activities, general-purpose programming languages
such as Java, C#, Objective C are not suitable for most of end users. Instead, an end user
can interact with an assistant system (e.g., Google Assistant, Siri, Cotana) through nat-
ural language to command mobile devices. Beyond limited common instructions, Smart-
Synth [13] can synthesize smartphone automation scripts by specifying description in
natural language. Firstly, it extracts the set of components occuring in the description
and their incomplete dataflow relations by NLP techniques including regular expression,
bags-of-words [5], parse tree [10], etc. Then, rule-based relation detection algorithms and
type-based synthesis techniques are applied to discover missing dataflow relations.

As for the most related work, Le Vinh [12], our former colleague, has conducted his
Master’s thesis of automatic Windows API stub generation from natural language descrip-
tion. His thesis contributed to support a large number of API stubs in BE-PUM, which
overcomes the major cause of the unexpected termination. His research aims to avoid
ambiguity in Windows API specification. Therefore, semantic parsing has been applied
to deal with this situation and find out the correct representation of input data. Bayesian
learning and sentence similarity are applied to extract and disambiguate specifications
about data types of parameters.

Inspired by these above works and based on our observation, x86 instruction spec-
ifications have particular features, such as the type convention specified by Intel, the
pseudo-code and the “flag-affected” description. Hence, we address the problem by build-
ing a parser to take advantage of pseudo-code and applying simple techniques in NLP to
extract appropriate actions for text sentences in “flag-affected” descriptions. However,
there are still several ambiguous parts in the pseudo-code which cannot be overcome. By
manually preparing beforehand prerequisites, the approach can achieve a good efficiency
with the minimum of human effort.

10.2 Conclusion and Future Work

This thesis presents our study on automatic generation of dynamic symbolic execution
of x86 instructions from their natural language specification. The implementation target
is BE-PUM. By using the combination of the parser and simple techniques in natural
language processing, we successfully generate dynamic symbolic execution covering 299
instructions among 530 specifications collected from Intel Software Developer’s Manual.
In addition to the current result, the system is highly expected to be adapted to work on
other specifications of different architectures/platforms by small modifications.

We aim to reduce human efforts by automation on an easier part. Then human can
concentrate on real difficulties. From this view, we hope to extend the methodology to
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platforms other than x86, e.g., ARM. Beyond x86 architecture, we would like to expand
the restriction of BE-PUM in supported platforms. According to Gartner, nowadays
there are over 6 billion IoT (Internet of Things) devices in the world. Up to May 2017,
Kaspersky Lab collected several thousand individual IoT malware samples, in which a half
of them were found in 2017 (figure 10.1) 2. Besides, a case study 3 conducted by HP in
2015 claimed that 100 percents of IoT home security devices have critical vulnerabilities.
Therefore, IoT device firmwares currently become one of the significant and attractive
targets. We expect the current system can be modified to generate code for the binary
emulation that can deal with other platforms in BE-PUM.

Figure 10.1: The number of IoT malware samples detected each year (2013 - 2017)

2https://securelist.com/honeypots-and-the-internet-of-things/78751/
3http://files.asset.microfocus.com/4aa5-4759/en/4aa5-4759.pdf
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