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Abstract

There are lots of SQL dialects, e.g., MySQL, various versions of Oracle, and Microsoft
SQL Server, ProgreSQL, and more. They share common semantics on standard table op-
erations (with slight syntax differences), which appear in a textbook of Relational database
management systems (RDBMSs). However, detailed semantics with non-regular opera-
tions, e.g., SELECT 1 + "1a", varies in details, and most of programmers in development
do not aware of such differences. They are typically coercion, NULL, the name space, and
error handling. Even a standard operation JOIN varies depending on types (including
bit-width) of arguments.

This thesis investigates detailed semantics of the core of SQL, specifically on MySQL
and Oraclell. First, we observe their formal semantics by testing queries on boundary
cases. Next, the semantics of the core of MySQL is implemented on the K framework.
We call it KSQL, which covers basic table operations, like selection, creation, deletion,
update, and insertion. They are defined with the features of coercion, NULL, and the
name space convention. Lastly, we discuss on current limitations and difficulties in KSQL
implementation.
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Chapter 1

Introduction

Formal semantics of a programming language is required in many views. For instance, un-
derstanding detailed behaviour of languages reduces bugs of implementation. Automatic
support by verification / analysis tools is constructed on formal semantics. Although
formal semantics is often embedded into algorithms and/or implementation of such tools,
there are several attempts to define formal semantics alone, e.g., Java [4], ANSI-C [3], PHP
[11], Verilog [6], Scheme [5], x86 [2], and HTML5 [7]. Among them, for Java, ANSI-C,
Verilog, and Scheme are implemented on K framework, thus executable.

Our aim is to give formal semantics of SQL, and clarify their differences among SQL
dialects, e.g., MySQL, various versions of Oracle, Microsoft SQL Server, ProgreSQL, and
more. They share common semantics on standard table operations (with slight syntax
differences), like selection, insertion, deletion, creation, update, and join which are popular
in a textbook of relational database management systems (RDBMSs). However, consider
the following query. What do MySQL and Oraclel1 return?

MySQL query : SELECT 1 4 ""
Oracle query : SELECT 1 + ’’ FROM DUAL;

One possibility is simply an error, because the addition + accepts numbers as its argu-
ments. However, the addition of integer and string is valid in MySQL and Oraclell, and
they return 1 and >’ (empty string), respectively.

In this thesis, formal semantics of the core (a subset) of SQL is investigated. We first
compare detailed semantics of MySQL and Oraclell, and next, the semantics of the core
of MySQL is implemented on K-framework. We call it KSQL, which covers basic table
operations, like selection, creation, deletion, update, and insertion.

In our study, we found two main issues to cause semantic differences between MySQL
and Oraclell.

e Operations on boundary values, e.g., coercion, NULL, the name space convention,
and error handling.



Two different layers, logical and physical models of data types. Dialects have their
own design of data types. For example, Oraclel1 has NUMBER type, which allows
users to specify the precision and the scale factor, while MySQL has predefined
data types, such as TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT cor-
responding to 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit integers, respectively.

In this thesis, we investigate the first issue, specifically, coercion, NULL, and the name
space management, over basic operations. They are implemented on K framework [9],
which is constructed on Maude, a programming language based on algebraic specification.
Algebraic specification consists of rewriting rules (equations) over terms with sorts. We
describe states of SQL as terms and SQL (small step) operational semantics of SQL as
rewriting rules.

Lastly, we discuss on current limitations and difficulties in KSQL implementation.

Contributions

Our contributions are:

The formal semantics of the core SQL language including selection, insertion, cre-
ation, deletion, and update statements.

Differences between MySQL and Oraclell: coercion, NULL, and the name space
convention.

Semantics definition on K framework of detailed behaviour: coercion, NULL, and the
name space convention in MySQL.

Explanation and analysis of difficulties for defining semantics of SQL.

This thesis is organized as follows:

Chapter 2 provides technical background about term rewriting systems and algebraic
specification.

Chapter 3 provides a brief introduction of K framework.

Chapter 4 explains differences and choices among SQL semantics, based on obser-
vation on boundary cases.

Chapter 5 describes basic description of semantics of MySQL on K framework.

Chapter 6 describes semantics of coercion, NULL, and the name space convention of
MySQL on K framework.

Chapter 7 discuses on related work.

Chapter 8 concludes the thesis and mentions future direction.



Chapter 2

Preliminaries

In this chapter, we explain term rewriting in the first section and algebraic specification
in the second section.

2.1 Term rewriting system

Definition 2.1. Let V be a countable set of variables, and F a set of function symbols
associated with an arity mapping ar : F — N. We call F a signature and f € F has
arity n if there exists n € N which satisfies ar(f) = n. We call a function f constant if

ar(f) =0.

Definition 2.2. The set T(F,V) of terms over the signature F is the smallest set sat-
1sfying the following conditions:

o ifr eV thenx € T(F,V),
o ifty,....t, € T(F,V) and f € F which has arity n then f(t1,...,t,) € T(F,V).

Example 2.3. LetV = {z,y} and F = {0, s,+} withar(0) =0, ar(s) = 1, and ar(+) = 2.
Then the following terms are members of T(F,V): 0,s(0),s(z), s(s(x)), 0+ s(0), and
x+s(y).

Definition 2.4. Lett € T(F,V). We inductively define the set V (t) of variables occurring
i t as follows:

RG ifteV
V(t) = { U, V() ift=f(t1,...,tn)



Definition 2.5. A position is a sequence of positive integers. The position of empty
sequence is denoted by € and the concatenation of positions p and q is p.q. The set Pos(t)
of positions of a term t is

Pos(t) {e} iftey
{e} UUicicnlip | p € Pos(ti)} ift = f(t1,...,tn)

Definition 2.6. A subterm t |, of t at the position p is inductively defined as follows:

1], = t ifp=ce
! tilg ift= f(t1,...,t,) and p =i.q

Definition 2.7. Ift' is a term, A term t[t'], denotes a term that is obtained from t by
replacing the subterm at the position p with t':

), = {tl e

flta, .. ity - ta) ift=f(t1,...,tp) and p = i.q

Example 2.8 (Continued from Example 2.3). Lett = (0+s(z))+(y+s(x)). Then we have
Pos(t) = {e,1,11,12,121,2,21,22,221}. We have t|;; = 0,t|a21 = x and t|2[0]; = 0+s(x).

Definition 2.9. A rewrite rule is a pair (I,r) of terms that | € V and V(r) C V(I). A
rewrite rule (I,r) is denoted by I — r. A term rewriting system (TRS) R is a set of
rewrite rules over the signature F.

Example 2.10 (Continued from Example 2.3). We can define the term rewriting system
R as below:

O+y—uy
s(z)+y — s(x+y).



2.2 Algebraic specification

Sort is a set of values. Ordered sorts are sorts with partial relation between them, called
subsort relation. We use sorts to define a domain and range of functions. Partial relation
gives the benefit of sort inheritance, such that if A is subsort of B, then every variable
or constant of A is also variable or constant of B. Moreover, ordered sorts are useful for
overloading of functions. Since the SQL language has many data types, sets of values,
throughout this thesis, we adopt order-sorted term rewriting. In this section we recall the
notations for order-sorted terms.
Let S be a set of sorts equipped with a subsort relation C on S.

Definition 2.11. Let F be a set of pairs (f,7) with a function symbol f and 7 € S*.
The set F s an order-sorted signature if the implication

nkEn - mET,

To C 7

holds for all (f, 7y ---1,10),(f, 7 -7h7) € F. A pair (f,71---7,70) is denoted by f :
TL X +++ X T, — Tp where n is an arity of f.

Example 2.12. Let § = {Int, NeList, List} and C its subsort order on relation with
Int C NelList C List. The set F consisting of

nil : List cons : List X List — List head : NeList — Int
cons : NeList x List — NeList tail : NeList — List

forms an order-sorted signature.

We extend term with sorted terms. Let F be an order-sorted signature and V a set of
variables resulting from the disjoint union of infinite sets V7 for all sorts 7 € S.

Definition 2.13. The sort judgement ¢ : 7 is defined by the next inference rules:

r eV fix- X1, —=>17€EF ti:7 foralli t:7 T CrT

x:T fltr, .o ty) o T t:T

The set {t | t: 7 for some 7} is denoted by T(F,V) and its elements are called (well-
sorted) terms.

Example 2.14. Let S = {Nat, Bool} and F a set of S-sorted signature consisting of the
following:

eq : Nat x Nat — Bool + : Nat x Nat — Nat true : Bool
s : Nat — Nat & : Bool x Bool — Bool false : Bool
0: Nat



Let VNt = Lo 9y} and VB! = {p,q}. Then sorted terms x,y,0,s(0),s(z),s(y), s(s(z)),
and eq(s(z),s(y)), p, true & p, p & q are members of T(F,V) while true + s(0),
1 & false, and eq(true,0) are not.

Definition 2.15. A substitution o is a map from V to T (F,V) if the following conditions
hold:

o [fz:7 and o(z) : 7' are the sort judgements of terms x and o(x), then T =7’

e the domain of o is finite, where the domain of o is given by dom(c) = {x € V|

o(z) #x }

We extend substitution definition to a term t as follow:

o(t) = t if t is a variable and (t,t') € o
flo(tr), ... o(tn)) ift=f(t1,...,tn)

We write to for o(t).

Example 2.16. Consider the substitution 0 = {x — x + z,y — x}. Ift = x + (s(y) +
(z 4 x)), then to = (x + z) + (s(z) + (z + (x + 2))).

Definition 2.17. An equality is a pair denoted by | =~ r where [, r are order-sorted terms
which satisfy 1 : 7 and v : 7', and then 7 = 7'. We call a set of equalities £ an equation
system. We define ¢ the smallest equivalence relation which Cllo| ~¢ C[ro] holds for
all equations | =~ r € &€, contexts C, and substitution o.

Definition 2.18. An order-sorted rewrite rule is a rewrite rule | — r which satisfies: | : T
and r : 7', and then 7" © 7. We call a set of order-sorted rewrite rules R an order-sorted
term rewriting system.

Definition 2.19. Given an order-sorted rewriting system R and an order-sorted equation
system €. A term t rewrites to t' with a rewrite relation —g /e, in rewriting modulo
equations, if there exists a rewrite rule | — r € R, a term C, a position p, and a
substitution o such that t =¢ Clo(l)],, and t' =¢ Clo(r)],. We write t —g/e t' and call it
a rewrite step. When & is empty, we simply write — instead of —g /.



Example 2.20 (Continued from Example 2.14). We can define the sorted term rewriting
system R as below:

eq(0,0) — true
q(0,s(0)) — false
q(s(0),0) — false
eq(s(x),s(y)) — eq(z,y)
O4+y—=vy
s(z) +y — sz +y)
false & p — false

(0]

®

true & false — false

true & true — true

For instance, computation of s(0) 4+ s(0)) +s(0) is done by the following rewrite steps:

eq(s(0) +s(0),s(0)) & true —% eq(0 + s(s(0)),s(s(0))) & true
o eq(s(s(0)),5(5(0))) & true
—r €q(s(0),s(0)) & true

—r €q(0,0) & true

—x true & true

—R true.

Example 2.21. Given a sorted term rewriting system R and an equation system £ as
below:
D B — el Ty y-x
€-r =z (x-y) -z =z (y-=2)

2)-1)-3) =grse ((3-2)-1) holds by the following sequence:
) —=r ((1-2)-3) ~¢ ((3-2)-1) while (((1-2)-1)-3) =% ((3-2)-1)

QX

Then the rewrite step ((

(1-
(((1-2)-1)-3) =¢ (((1-1)-2)-3

does not hold.



Chapter 3

K framework

The K framework is an executable framework of the language definition. Formalizing a
language in the K framework automatically supplies the K analysis tools. K defines a TRS
R and an equation system & together with their (sorted) signature. In this chapter, we
will explain and basic definitions using in the K framework, and show a simple example,
called language SIMPLE, to show the use in the K framework.

3.1 Basic description in K

Syntax

We can define syntax definition of sorts of a language as follows:

7= f(r,..., )

which stands for
fim X X1 =T

where 7, ..., 7, and 7 are sorts of the language and f is a function symbol of the language.
In the K framework, such a syntax is declared by the keyword syntax. We can extend
the syntax of sort 7 by overwriting new BNF definitions. For instance, we want the sort
7 to have terms 7 - - - 7,,, we can overwrite the BNF syntax of sort 7 as follows:

Tu=1 - T =1,
This is equivalent to 7 == t; | ... | t,. In addition, when we define the structure of sort
7 as follows:
To=T| .| T
where 7, ..., 7, are sorts, this yields subsort relations  C 7,...,7, C 7.



Definition 3.1. Let W is a set of context variables denoted by {Oy,...,0,}. An n-hole
context is a term in T (F,V UW) with the constraint that each hole O € W is appeared
only once. Given a substitution o = {y > t1,...,0, — t,} we write Cty,...,t,] for
Co.

We prepare new syntactical notations of rewrite rules.
Notation 3.2. Let C' be an n-hole context. A single step rewrite rule of form Clty, ..., 0, —
Clry, ...,y is denoted by
14 ly
C {—1, o —}
(A1 Tn
In the K framework such a rule is declared as a keyword rule.

Example 3.3. Consider a rewrite system R written by the new syntactical form.:

eq(0,0) eq(0,s(0)) +(0,9)
true false Y

eq(s(0),0) +(s(2),y)
x y false s(+(z,y)

These rules are corresponding to normal rewrite rules as follows:

eq(0,0) — true
0,s(0)) — false

)
,5(0))
eq(s(0),0) — false
eq(s(z),s(y)) — eq(x y)
+(0,9) =
) =

y
+(s(),y ( (z,9)).

The variables in W are used to identify the positions where rewriting takes place.
The notation above specifies the subterms to be rewritten and write the rewritten terms
underneath.

The K framework provides several (predefined) sorts together with related rewrite rules.

Definition 3.4. A list, map, and bag are defined as follows:
List ::= ¢, | List :: List | T

Map ::= €y | Map :: Map | Binding
Bag ::=€p | Bag * Bag | T



where Binding ::= 1 — T3 and 7,7, and Ty are sorts.

A list of sort T is a term of concatenation, denoted by ::, of sorts T in T (F) equipped
with a term rewriting system R and a map of binding is a term of concatenation of
Binding, denoted by ::, equipped with a term rewriting system Ry; where:

RM:{ELZZI’ —>3:} RM:{EL::Q: —>x}

Remark. The parametric polymorphism is not supported. Therefore we have to explicitly
declare the sorts of elements. However, in the most of cases the ordered sort of element
is clear from the context, we will omit the sort information.

A cell of sort T is a term denoted by:

C@ll = <T>Label

where Label can be any string. A bag of sort T is a term of the AC operator x of sorts T
in T (F) equipped with a term rewriting system Rp and an equation system Ep where:

B _fxxy SETER
Rp={ep*z vuj gB_{(x*y)*z %a:*(y*z)}

In this thesis we denote

Ty nTy e by [T, .. mpl, or (T, .., xy)
(k1= yr) s n (T yn) ey by {xi—= oy, T =y}, and
Ty koxxykeg by {my,co- xnt
For any list L = [x1,...,x;,...,2,], we denote i-th element x; of list L as L[i]. A parallel

product of lists is a function ® : List x List which is defined as follows:

[xl, - ,l’z] (%9 [y1, ce ,yn] = [(Il,?ﬂ), sy (xmyn)]

Given a list A = [(x1,11), ..., (Tn,Yn)], we write A(x;) for y;. Configuration is a bag of
cells.

Computation

Computation is a top-level sort which extends all defined sorts in the language definition.
We call the sort of computation K. We consider the structure of sort K as follows:

K = e | KnAK|O

Sort K is the smallest sort which respects to C among sorts defined in K. We can consider
sort K as a list of any sort , in which the concatenation operator is represented by ~. ¢
is a predefined constant of sort K used for sequencing the K terms to be executed. Sort
K is equipped with the next rewriting system R:

R:{(—:Kmx —>x}

10



Strictness Attribute

Strictness attribute is an attribute on a function symbol to define its evaluation strategy.
For function f : 71 X - - - X 7, evaluation strategy of f is a list of integers i where 1 <17 < n.
The K framework will automatically generate rewrite rules depending on the strictness
attribute. The strict attribute is corresponding to non-deterministic evaluation strategy.
The attribute seqstrict shows an sequential ordering of evaluation among arguments.

Example 3.5. We set a function _+ _ to evaluate its arguments from the left-to-right
manner. We annotate seqstrict attribute of -+ _, which is equivalent to the evaluation
strategy (1,2). The K framework automatically generates the following four rewrite rules

(taken from [10]).

ay +ay = a; ~ (O + a)
i1~ (O +ag) = i1 +a

i1+ ay — ag ~ (ip + 0)
ip ~ (i1 +0) — i1 + iy

where ay,ay are variables of sort K, and 1,12 are variables of sort Int. The evaluation
of (1+2)+ (3+4) is the following rewrite steps:
1+2)+B+4) > 1+2)~(0+(3+4))

=3 (O+(3+4))

— 34+ (3+4)

— (34+4) ~ (3490)

-7~ (3+90)

—3+7

— 10

Configurations

The K framework represents a state of program by a configuration. Configuration contains
terms of a program and the state environments. In the K definition, we have to specify
an initial configuration for initial state when we run a program for a language.

Example 3.6. The initial configuration of program x = 1;y = 2; in the language SIMPLE
(see section 3.2) is defined by the following term constructed by three cells.

<X - 1’y - 2’>K * <€M>em) * <O>loc

11



Notation 3.7. The K framework provides notations, defined by " and ‘- - -, to represent
an anonymous, unnamed, variable in the rewrite rules. Symbol " is used when a variable
1s appeared only in the left-hand side of the rule. Symbol ©-- -’ is used when a variable is
appeared both in the left-hand side and right-hand side of the rule. When we use “--- " in
a cell, we usually omit ;" (comma) and brackets for List notation and ‘~’ for sort K.

The K framework represents an empty value €. by .7 (dot followed by the sort name).

Example 3.8. The rewrite rule

(St ) v o),

in the language SIMPLE definition can be defined as

(o~ D (e Vo goal),,

As long as we use cells on the top level we may omit cells that we do not touch.

3.2 Example of K

We briefly describe the K framework by using a simple example to show how we can define
a language in K.

Figure 2.1 shows the definitions in K of the language SIMPLE. There are three parts we
have to define: syntax, configuration, and rewrite rules.

Syntax of SIMPLE

For syntax definition, we define two new sorts which are Exp, expression, and Stmt, state-
ment. Exp is formed by Int, Integer, or construct of plus, Exp + Exp. The plus construct
is associated with strict attribute which means that its arguments must be evaluated
before applying any rule to the construct. Stmt is formed by assignment from expression
to variable name, Id, or is formed by sequencing of statements. In assignment construct,
it is associated with strict(2) which means Exp terms must be evaluated before applying
any rule to assignment construct. Additionally, the associativity is associated to the syn-
tax definition, for sequencing statement we associate left, which means left associativity.

Initial configuration of SIMPLE

For the language SIMPLE, we define the initial configuration as:

<$PGM . K>K <€M>em;‘

12



imodule SIMPLE
2 syntax Exp
3 I EXp
| syntax Stmt
5 | Stmt
syntax KResul

configuration
<k> $PGM:K
<env> .Map

I1:Int
<k> V
<env>
<k> V
<env>

rule S1 S2

1sendmodule

rule +

13 rule

15 rule

>

Figure 3.1: Definition of the language SIMPLE in K

= Int
+" Exp [strict]
= Id "=" Exp ";" [strict (2)]
Stmt [left]
t = Int
</k>
</env>
I2:Int => I1 +Int I2
I:Int ; => </k>
V I-> (_ => 1) </env>
I:Int ; => </k>
=>V |->1 </env>
S1 > S2

13



K cell contains a term (abstract syntax tree) of the input language, denoted by $PGM.
The env cell contains an empty map.
Rules of SIMPLE

In simple language, there are four rewrite rules which are corresponding to the following
rewrite rules:

]1+]2 V =1 _
1, =2 3;< > <-~~VH—««~>
Il+Int12 €k K I env
9. Sng A <V:I, > < EM >
. SIWSQ ’ €k K Vi I/ enw

The first rule says that the operator of plus with two integer arguments are rewritten to
the primitive operator +1,, for the addition (on integers), which is predefined function in
the K framework. The second rule manages statements S; and S, to be ordered in terms
of sort K. The third rule is an assignment rule which rewrites the assignment statement
into empty unit of sort K and change the value in env map when map already has index
V. The fourth rule is an assignment rule which rewrites the assignment statement into
the empty unit of sort K and inserts a new pair of V' +— I to enwv.

Suppose that we have a program TEST as below:

$PGM = x=3;y=5; x=3 + 5;

If we run the input program using K interpreter then we get the following rewrite steps:

(s i) (o).

—7 <[y=5;x:3 + 5;]>K<[x — 3]>m
—* <[x:3 + 5;]>K<[:c — 3,y — 5]>
— <[X:8;]>K<[ZL‘ = 3,y — 5]>
—t <eL>K<[x 8,y > 5]>

ENV
eEnv

EeENv

3.3 Support environment of the K framework

Based on formal semantics definition, the K framework provides analysis/verification tools
[9] which are automatically derived as in figure 3.2.

Once we compile (“kompile” command) the definition in the K framework, it is trans-
lated into Maude in which analysis tools are prepared.

14



‘ Parser ‘ ‘ Compiler

Formal definition ‘ | Debugger |

‘ Interpreter ‘ (syntax and semantics) |

‘ Model checker ‘

Figure 3.2: Analysis and verification tools [9]

Parser

The K framework uses SDF for parser generation. SDF generates the abstract-syntax
tree from a grammar described in algebraic specification.

Interpreter

This is an immediate benefit of the language definition in the K framework. The K
framework interprets K term by transforming it to Maude and Maude interprets it by
rewriting.

Compiler

The K framework prepares a compiler written in Maude. It transforms K definition into
Maude code. It has been replacing from Maude compiler to equivalent transformation in
Java which is currently operating in some part of compilation.

Debugger

The K framework adopts Maude debugger by inserting a break point into K description.
It is then translated into Maude code tagged with the break point. Maude debugger
traces the execution and stop at each break point until the entire execution is done.

15



pakakornéubuntu:-/Desktop/k/Test/SIMPLES kompile simple.k
pakakornéubuntu:-/Desktop/k/Test/SIMPLES krun Test/test.simple
<k

Figure 3.3: Result after running the program TEST with SIMPLE language

Model checker

The K framework supports for concurrent programming which can have non-deterministic
behaviours. Maude provides search command to see all possible behaviours and the K
framework makes use of it for model checking. The model checker in the K framework
adopts linear temporal logic (LTL) benefited from a (model-checker) built-in provided by
Maude.

For example, when we can compile this language SIMPLE by using K compiler and run
the program by K interpreter, and then we get the following result as Figure 3.3.

16



Chapter 4

SQL semantics

4.1 SQL table operations and treatments

In SQL database system, all data are stored in the tables. The following are basic defini-
tions.

e A field, attribute, and column refer to a data value.

A data type of field is a domain of value.

A record is a composition of values.

e A table is a collection of records.
e A database is a set of tables.
Typically table operations include

e Selection: SELECT fields FROM list_of _tables WHERE predicate ;
This statement defines what column to be retrieved in fields , which table in
list_of _tables, and condition for filtering in predicate.

e Creation: CREATE TABLE table_name (list,f.olumn_definition) ;
This statement creates the table with name given by table_name and the column
definitions in list,f, olumn_definition with the type, the column name, the key as-
signment, etc.

e Insertion: INSERT INTO table_name (columngefinition) VALUE (values) ;
This statement inserts a new record to the table name table_name. Such a new
record has the fields as list,f.olumn and its values as values.
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e Deletion: DELETE FROM table_name WHERE predicate ;
This statement deletes elements in the table table_name such that the predicate
predicate are satisfied.

e Update: UPDATE table_.name SET assignments WHERE predicate ;
This statement updates records of the table table_name with the assignment assignments
which satisfied predicate.

Standard table operations among SQL dialects share similar semantics described in a
textbook except for variations of syntax. However they vary in details, especially non-
regular operations such as:

e (1) Treatment of NULL value The treatment of NULL is one of the most important
issues. The differences come from the meaning of this value. This different meanings
bring confusion to the definition of semantics.

e (2) Coercion among types Coercion are implicitly conversion of types of argu-
ments, e.g., 1 4+ "1a" requires coercion from string to integer.

¢ (3) Boolean data types SQL dialects have different representation of the boolean
data type. Some simply uses zero and non-zero like MySQL. Some omits the like
Oraclell.

e (4) Error handling The ways of error handling can be the following: error con-
stant, explicit error messages, and replacing with possible values. Normally, we can
see error handling by printing error messages, but in real SQL dialects, they have
their own specific purposes to use the error constant for error representation.

e (5) Name space When we want to refer to an specific object, such as a column
name in SQL language, we have to identify the name space or path direct to such
a column. The name space is designed differently among SQL dialects. This leads
difference among SQL dialects.

Among these differences we focus on coercion, NULL, and the name space by comparison
between MySQL and Oraclell.

4.2 Coercion

Data type represents a set of values, e.g., 32-bit integer (denoted by INT) and text string
(denoted by TEXT) in MySQL. SQL has types of arguments of operations. However, for
flexibility, it converts types to fit an operation by coercion. Coercion consists of rules to
convert one type of an object to a new object/value with a different type.
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Example 4.1. MySQL executes the statement SELECT 1+ "1". The result of the this
statement is 2. Basically, operator + takes two arguments of integers, but MySQL extends
the definition to cover other types. MySQL treats Int + String as Int + Int by applying
implicit type conversion from String to Int which converse "1" to 1.

Here we show some possible choices of coercion.
Coercion to boolean type

e Non-zero values are converted to TRUE and 0 is converted to FALSE,
e Any string is converted to FALSE,

e Any string is converted to integer and then converted to boolean by the first choice.
Coercion to integer type

e FALSE is converted to 0 and TRUE is converted to 1,
FALSE and TRUE are converted to errors,

e Numbered string is converted to corresponded integers otherwise an error,

Mixed-content string is converted to number content of maximum-length numbered
substring starting at first character otherwise zero.

Coercion to string type

e Number is converted to numbered string,

e Number is converted to an error.

MySQL considers TRUE and FALSE as aliases of 1 and 0, respectively. We start from
examples in table 4.1 and their results to observe the semantics definition of the operator
+. For testing queries, we use selection syntax "SELECT Fxp ;" in MySQL. However,
Oraclell does not allow selection of boolean expressions BExp as the columnm we need
to distinguish queries on miBexp such thtat "SELECT 1 FROM DUAL WHERE BFEzp;". Table
4.1, 4.2, and 4.3 show comparison between MySQL and Oraclell on 4+, <=, and &&,
respectively. Here are our observation.

e In MySQL TRUE is considered as 1 and FALSE is considered as 0.
e Application of <= with two string is considered as string comparison.

e In Oracle, we can see that all queries confirm coercion from integer to string. How-
ever, coercion can accept only numbered content and does not accept TRUE and
FALSE.

e In Oraclell all queries result errors. This confirms us that Oraclell does not allow
1, 0, TRUE, and FALSE for the arguments.

19



No. | Ezp in MySQL | result (MySQL) | result (Oracle)
111+ 1; 2 2
211 4+ 2; 3 3
311+ "1y 2 2
41"+ 1, 2 2
S R L 2 2
6 "1 + "2"; 3 3
7| TRUE + 1 ; 2 error
8 | FALSE + 1 ; 1 error
9 | TRUE + FALSE ; 1 error
100 + "a"; 0 error
1111 4+ "a"; 1 error
1210 + "1a"; 1 error
131 4+ "2a"; 3 error
141 4+ "1a1"; 2 error
1510 + "-1"; —1 -1
16 |0 4+ "-1a"; —1 error
17| "-1a" 4 "-1a"; —2 error
18 | TRUE + "-1a" ; 0 error

Table 4.1: Testing queries for coercion of + in MySQL and Oracle
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No. | Ezp in MySQL | result (MySQL) | result (Oracle)
111<=1; 1 1
211<=0; 0 emp tbl
311<="1", 1 1
4| """ <=1 1 1
511 <="0",; 0 emp tbl
6]1<="a" 0 error
711<="1a"; 1 error
8 | TRUE <=0 ; 0 error
9 | TRUE <=1 ; 1 error

10 | 2 <= TRUE ; 0 error
11 | FALSE <=1 ; 1 error
12 | TRUE <= FALSE ; 0 error
13 | "1 <= "2"; 1 1
14 | "2" <= "1 0 emp tbl
15 H_1l| <: ||1l| ’ 1 1
16 | "-2" <= "-1"; 0 emp tbl
17 I|all <: llb|l ; 1 1
18 | "p" <= "a" ; 0 emp tbl
19 | "a" <= "ab" ; 1 1
20 | "bb" <= "ac" ; 0 emp tbl
21 n_n <: ll_2l| 7 1 1
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No. | Ezp in MySQL | result (MySQL) | result (Oracle)
111&&1; 1 error
21 1&&0; 0 error
31 1&& 1", 1 error
4| "1 && 1 1 error
51 "1 && "1 1 error
6| "1" && "O" ; 0 error
7 | TRUE && 1 ; 1 error
8 | FALSE && 1 ; 0 error
9 | TRUE && FALSE ; 0 error

10 | 1 && "a" 0 error
11 | 1 && "1a" ; 1 error
12 | 1 && "1al" 1 error
13| "a" && "a" 0 error

Table 4.3: Testing queries for coercion of && in MySQL and Oraclell

Next we give our hypothesis.
e MySQL uses zero and non-zero to represent FALSE and TRUE.

o In MySQL coercion from string to integer type will return numbered content of
maximum-length numbered substring starting at first character otherwise it returns
ZEro.

e In Oracle, we guess that boolean primitive data are implicit values which Oraclell
does not provide users for direct usage. We can use boolean expression only in
condition expression and there is no coercion from other types to boolean type. For
coercion from string to integer type, Oraclell can convert only numbered content
of string.

4.3 Interpretation of NULL value

SQL has a special value NULL, which is treated differently among SQL dialects. There are
choices on handling NULL:

e NULL is an undefined (missing) value,
e NULL is an error,

e NULL is the empty string,
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No. Ezp in MySQL result (MySQL) | result (Oracle)
101+ 1, P 2
2|1 4+ NULL ; NULL 27
3 | NULL + 1; NULL »
4 | NULL + NULL ; NULL ?
5 | NULL || TRUE ; 1 error
6 | TRUE || NULL ; 1 error
7 | NULL && FALSE ; 0 error
8 | FALSE && NULL ; 0 error
9 | concat(’1’,NULL) ; NULL 12

Table 4.4: Testing queries for NULL (undefined) treatment in MySQL and Oracle

e NULL is FALSE.

For example, consider queries in Table 4.4.

Student
"No. Name

1 NULL

2  Kim

3 Few

4 Nat

When we execute SELECT * FROM Student, we cannot decide whether we should present
the row containing NULL value. If we present, one might have a question that what name
of the student number one is. If we do not present, one might have a question that why
the table has the number one. MySQL regards NULL as:

e NULL means a missing or undefined value,
e NULL means an error (when it occurs),

whereas Oraclell regards it as the empty string. We observe them by examples. The
expression of operator +, ||, &&, and concat (OR, AND, and || in Oraclell) to investigate
how MySQL and Oraclell treat (in table 4.4). In MySQL, we observe that if + is strict
on NULL as well as other arithmetic and comparison operators. For boolean operations
NULL as an unknown value of Kleene’s three value logic is observed in MySQL. They are
shown in queries 5-9 in table 4.4. In Oracle, NULL is considered as the empty string. The
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No. Ezp in MySQL result (MySQL) | result (Oracle)
1 | NULL ; NULL 0
2 | CONCAT(NULL, 1) ; NULL 10
3 | CONCAT(NULL, "1") ; NULL 71
4 | NULL IS NULL ; (BEzp) 1 1
5| " IS NULL ; (BEup) 0 1

Table 4.5: Testing queries for NULL (undefined) treatment in string expression in MySQL

and Oracle

No. | Ezp in MySQL | result (MySQL) | result (Oracle)
111/0; NULL error
211%0; NULL 1

Table 4.6: Testing queries for NULL (error) treatment in MySQL and Oracle

query 9 in Table 4.4 and Table 4.5 show the contrast. For MySQL, the queries in Table
4.5 show that even NULL in string behaves as an unknown value and is not equal to the
empty string. As NULL is also used as failure of the evaluation in Table 4.6. In Oraclell,
an error is shown by the error messages (“error”) and NULL is the empty string. Thus,
1 4 NULL contains coercion on 1 from Int to (null) string where MySQL treats it as the
sum with an undefined value (then NULL is returned).

The execution of 1/0 and 1%0 (zero-divisor) should return errors, but MySQL returns
NULL for an error. While Oraclel1 does not use NULL for an error, but an error message
is returned.

4.4 Name space

MySQL and Oraclell have the name space depending on how to handle table names. For
instance, an operation with the same table, like the self join and product, how to make
them unique. Possible choices of the name space are:

e Name conflict is not allowed,

e Identifying an object by prefixes of the database name and the table name (as in
MySQL),
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No. Query result
1 | SELECT 1 FROM T JOIN T error
2 | SELECT 1 FROM T JOIN T AS T2 1

Table 4.7: Testing queries for treatment conflict name space in MySQL

e Identifying an object by prefixes of the account name and the table name (as in
Oracle),

e Identifying an object by prefixes of the database name, the schema name, and the
table name (as in PostgreSQL).

These designs of the name space are to make identification of each object unique.

We observe the behaviour in MySQL in Table 4.7. The query 1 shows that both MySQL
and Oracle do not accept self join operation due to ambiguity of names. However, they
solve such a problem by allowing user to give alias as in the query 2.

T1 T2
Ayt Brexr Ayt Boyr
1 n a” 1 1
2 Ilb n 2 O

What if we execute SELECT A FROM T1 JOIN T27 This query causes an error because both
MySQL and Oracle do not know which attribute A we refer from tables T1 and T2. We
can make the attribute A clear by providing a name space as SELECT T1.A FROM T1 JOIN T2
or SELECT D.T1.A FROM T1 JOIN T2. We call such multiple parts of identifier as qualifier.
Oraclell does similarly but with a different name space, SELECT T1.A FROM T1 JOIN T2 or
SELECT U.T1.A FROM T1 JOIN T2.

Form out observation we expect that MySQL accesses one object by identifying the
database name and the object name, like DatabaseName.TableName. In contrast, Oraclell
accesses one object by identifying the user name and the object name, like Owner.TableName,
and PostgreSQL does with the database name, the schema name, and the table name,
like DatabaseName.SchemaName.TableName.
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Chapter 5

KSQL description of standard table
operations

We present our formalization of database systems, which we named KSQL. Typical SQL
queries are creation, update, and retrieval of tables in a database. First we formalize
tables. In KSQL, we prepare three sorts Int, Bool, and String. Int literal value represents
an integer. Bool values are represented by zero and one. Our semantics stays at logical
level and ignores bit-length at physical level. Here we have the subsort relation Bool T Int.
String values are represented by starting and ending with double quote (") which contain
text in between. We simply call fields for terms of sort Field, values for those of Val, data
types for those of DataType, and (table) identifiers for terms of Id. In KSQL, we omit
the physical level variations of data types, and then we denote INT for the integer data
type and TEXT for the string data type. In this chapter we present basic definition of its
syntax, configuration, and rewrite rules.

5.1 Syntax

Definition 5.1. A Field element is a tuple of field and data type. A Schema is a list of
field elements, and a record is a tuple of values. We denote a set of schemas by Schema
and a set of lists of records by Record. We define a table as the triple (T, S, R) of an
identifier T, a schema S, and a list R of records, denoted by T[S : R].

Example 5.2. Consider the two tables T1[S : Ry] and T2[Sy : Ry] with

S, = [(A, INT), (B, TEXT)] Sy = [(A, INT), (B, INT)|
Ry =1[(1,"a"),(2,"5"), (3, "c")] Ry = [(1, TRUE), (2, TRUE), (2, FALSE) |
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Note that TRUE and FALSE are aliases of 1 and O respectively. These tables are visualized
as follows:

T1 T2
Aryr Brexr Amr  Cor
1 "a" 1 TRUE
2 "p" 2 TRUE
3 " 3 FALSE

Intuitively, a database is a set of tables. However, SQL supports aliases for table
identifiers in order to solve name conflict problem. We address this functionality by
separating identifiers from their entities.

We formalize the core part of syntax for SQL queries.

Definition 5.3. Queries or statements in KSQL are defined as follows:

Query ::= CREATE TABLE Id ( FieldDclx ) ;
| INSERT INTO Id ( Field« ) VALUES ( Valx ) ;
| SELECT ProjectionEzp FROM Id WHERE Exp ;
| Query Query

In KSQL we do not care the data types, thus in creation of table semantics we omit to
do data type checking of values. We assume that expression FExp and ProjectionExp are

defined as follows:

Exp = Id | Int | String | Exp o Exp
ProjectionEzp ::= x | Field (, Field)x
FieldDcl ::= Field DataType
DataType ::= INT | TEXT

where o € {+, —,=,<}. Field (, Field)x stands for a non-empty list.

For convenience, we use T for a table identifier, n for a natural number, S and S’ for
schemas, R for a list of records, r for a record, and f for a field. We start with syntax of
store definition which is a function will be used in the semantics of CREATE.

Definition 5.4. Syntax of store is given by the next grammar:
K = ...| store Table

Then we define auxiliary functions doGetTable, doCondition, and doProjection which
will be used in the semantics of SELECT.
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Definition 5.5. The syntaz of doGetTable, doCondition, and doProjection are given
by:

Table ::= doGetTable( Id )
| doCondition( Table , Exp )
| doProjection( Table , ProjectionExp )

5.2 Configuration

Definition 5.6. Let S be a set of schemas, and R a set of lists of records. A (database)
configuration is term of the form:

Configuration ::= <K> <Me> <MS> <MT> <Nat>
K env schema records loc

where M, : Id — Nat, M, : Nat — S, and M, : Nat — R.

Example 5.7 (Continued from Example 5.2). We define a configuration for the database
consisting of the tables T1 and T2 as below:

({5),
<

1—0,T1+— 1]>

ENV

schema

[T
([0 [(a, INT), (B, TEXT)}, 1+ [(A, INT), (C, INT)]])
0= [(L, "a"), (2, "0"), (3, "e")], 1= [(1,1), (2, 1), (370)]]>

\
2.

5.3 Rewrite rules

records

Before we define the semantics of table creation, we need to define the evaluation of store.
store function moves a table content from the cell of K into the cells of env, schema,
and records in the configuration.
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Definition 5.8. The semantics of store is given by the following two rules:

| T[S : R] _ T[S : R]
1. <StOI‘e€K o >K 9. <SJCOI‘e€€J\I/§ o >K
<.”T'_>n”.>env <.”Tf—>n>env
_ €
< n'_>§ ”‘>sch6ma < n'i/ls>schema
_ €
< ne E .”>Tecords < n'—J‘>/[R>records
<n = n 4+ 1>loc

There are two rewrite rules for store evaluation. The first rule is applied when we
already have identifier T" in the enwv cell. In contrast, the second rule is applied when we
have no identifier T" in the env cell. We will use store to define the semantics of CREATE.
CREATE query is used to create table together with a list of fields declaration.

Definition 5.9. The evaluation of CREATE is defined as follows:

< CREATE TABLE T(Fd) ; >
T|[createSchema(Fd) : €, | ™~ store ¢ K

where createSchema is a function defined as below:

createSchema(Fd) = [f | f d € Fd for some data type d|

Here we use the comprehension notation [... | ...]. The K framework does not support
it but we can easily translate such a notation to corresponding recursive definitions in the
K framework. We briefly explain the evaluation of table creation. The evaluation of table
creation creates structure of the table T' containing fields from a list of field declaration
Fd and then use store evaluation to store the table in the configuration.

The evaluation of insertion is to insert a new record to configuration.

Definition 5.10. The evaluation of INSERT is defined as follows:
<INSERT INTO T'(S) VALUES(Vs);: >
K

€K

&
2 AL e

G5

where we assume that list Vs of values and the schema S have the same number of
elements.

29



When inserting a new record, KSQL first find the location in the enwv cell and then
store schema and a new record of values in schema and records cells respectively.

Selection is the most complicated. As its syntax indicates, it consists of three ingre-
dients. It begins with the table retrieval part, the condition part, and the projection
part. Their semantics is defined by auxiliary functions doGetTable,doCondition, and
doProjection.

Definition 5.11. The semantics of doGetTable is defined as follows:

(TSR

- T=L ... >

<..
< L S ...>88h6ma
<..

-L|—>R---> .
records

Before we define doCondition, we need two more auxiliary functions eval and filter.
The function eval is to evaluate an expression using data in a record which specific to a
schema. The function filter is to filter a list of records, which satisfy the condition for
a specific schema, .

Definition 5.12. For an identifier I, integers n and m, a string s, and a value v, we
inductively define the eval function as follows:

eval : Schema X Record x Exp — FExp

eval(S,r, [ ( r) (1)

eval(S,r,n

eval(S,r,s

+ eval(S,r,m)
eval(S,r,n — —eval(S,r,m)

(
(

= eval(S,r,m)
( )

< eval(S,r,m

) =
) =
) =

eval(S,r, n—i—m)-eval S.r,n
m) =
) = eval(S,r,n
)

(

= eval(S,r,n
(
(

S— N N

(
eval(S,r,n=m
(

eval(S,r,n < m)=eval(S,r,n

Definition 5.13. The definition of filter for a schema S, a list R of records, and an
expression F is defined by:

filter: Schema X Records x Exp — Records
filter(S,R,E)=[r € R|eval(S,r,E)=1]
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Definition 5.14. The semantics of doCondition is defined as follows:

<doCondition(T[ S:R]E) >
T[S :filter(S, R, E) | K

The last auxiliary function is doProjection. Similar to doCondition, we need one
more auxiliary function project, to project only attributes that we need.

Definition 5.15. The definition of project for a schema S, a R list of records, and a
new schema S’ is defined as follows:

project : Schema x Records x Schema — Records
project(S, R, 5") = [[(S@r)(f) [ f € 5T|re R

Definition 5.16. The semantics of doProjection s defined as follows:

L. <doProjection(T[ S:R], %) > 5. <doProjection(T[ S:R1,S5) >
' T[S:R] K project(S, R, S’) K

The first rule contains %, which means all of attributes, return table without change.
The second rule projects only needed attributes, defined by S’ from the table.

Selection query executes table name to get the table content (doGetTable), then filters
its records that satisfy expression (doCondition), and finally projects only needed specific
attributes (doProjection).

Definition 5.17. The semantics of SELECT s defined as follows:

< SELECT P FROM T WHERE F ; >
doGetTable(7T) ~ doCondition({,E) m doProjection(Q, P) K

In addition to the definition above, we need structural rules, which instantiates a value
to ¢ and change the sequence of queries into the list of K terms.

Definition 5.18. The structural rules for an instantiation of table to { by tables are
defined as follows:

<T[S : R] ~ store ¢ >
store T[S : R] K
<T[S : R] ~ doCondition(Q, E) >
doCondition(T'[S : R|, F) K
<T[S : R| ~ doProjection(Q,P) >
doProjection(7'[S : R], P) K
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Definition 5.19. The structural rule for transform a term of a sequence of queries into
a list of K terms is defined as follows:

Q1 Q2 K
The rule above gets a term formed by (); and ()2 and then rewrite it into a K term
Q1 ~ @>. This is because the K framework will try to rewrite the first argument of K
terms until it reaches normal form, it then unifies the first term to the next term.

We have done the minimal semantics of selection, creation, and insertion queries. Now
we introduce an example which we will use the above semantics to evaluate.

Example 5.20. Let Q) = Sy,...,S5 with for convenience, we first introduce statement
variables Sy, ..., S5 where

Sy = CREATE TABLE T1(A INT,B TEXT) ;
S, = INSERT INTO T1(A,B) VALUES(1, "a") ;
Sy = INSERT INTO T1(A,B) VALUES(2, "b") ;
S, = INSERT INTO T1(A,B) VALUES(3, "c") ;
S5 = SELECT * FROM T1 WHERE A > 1 ;

The query @ is evaluated as follows:
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(518 8 8u8), o where Co=(en) (ew) | (en) (o)
L <51 A Sy~ S5 Sy~ 55>K ,

¥ <T1 A store O A Sy~ Sy~ Sy A S5>K )

—* <store Ty Sy S3 Sy S5> Ch
K

Ly <52 AN S3 Sy S5>K Cy where Co = D <0 — €L>

Lo Ll

records

and D = <[T1 > 0]> <0 — [(A, INT), (B, TEXT)]>$Ch6ma<1>lOC

ENV

Ss N Sy S5> Cs  where C3 = D <0 = [(1, ”a”)]>

records

Sy S5> Cy where Cy =D <0 = [(1, "a"), (2, ”b”)}>

records

Ss > Cs where C5 = <O = [(1, "a"), (2, "v"), (3, "c”)]>records

doGetTable(T1) »~ doCondition({,A > 1) ~ doProjection(Q, *)> Cs
K

T, »~ doCondition({,A > 1) ~ doProjection({, )> Cs
K

T, ~ doProjection(Q, *)> Cs
K

* (T3 ™~ doProjection(Q, )> Cs
K

doProjection(7}, )> Cs
K

=+
-
-
-
-
<doCond1t10n T, A > 1) ~ doProjection(), *)>K Cs
K
{
K
(

*T>

_h I R T
AII\/T BTEXT AII\/T BTEXT AII\/'T BTEXT
1 nat 2 "y 1
2 nyn 3 nett
3 net
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Chapter 6

KSQL descriptions of coercion, NULL,
and name space in MySQL

6.1 Coercion in arithmetic and boolean operations

We define semantics of coercion on K framework as we have observed in the section 4.
First we recall the structure of expressions as show below:

FEzp :=--- | Exp o Ezp | NOT Exp

where o € {+,—,x,/,%,=,>=,><=,<,! =/||,&&} and Exp is an expression which
refers to an integers or string value.

K framework provides functions that take one literal value and convert it from one type
to string and from string to another type.

Definition 6.1. The K framework provides functions for types conversion as follow:

tokenToString : Token — String
parseToken : 7 x String — Token

where Token is a set of literal values (string and integer). The function tokenToString
converts the value into corresponded string and parseToken returns the literal value cor-
responds to the sort T that its value is described in the String.

From the two functions above, we construct a new function by combining them as fol-
lows:

C : 11 X 19 x Token, — Token,,
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which convert the value v of the sort T, corresponding to the value of the sort 7. We
simply denote Cr,—r,(v) for C(1,Ta,v). We call C a coercion function and we denote the
coercion function for operator f by C’.

In MySQL, TRUE and FALSE are aliases of 1 and 0 respectively.
Definition 6.2. The coercion function from Int to Bool is defined as follows:

. , 0ifi=0
Int—)Bool(Z) = {

1 otherwise

where i is an integer.
Conversion from String to Int is more complicated.

Definition 6.3. The coercion function from String to Int is defined as follows:
——N—
n if s is [+—]7[0 — 9]+ [0 — 9]7(.)

0 otherwise

Cg‘tringﬁlnt (S) =

where n is an integer.

Now, we define the semantics of arithmetic and boolean operators with support coer-
cion.

Definition 6.4. Let i,i1, and iy be integers and s, sy, and sy strings. The semantics of
arithmetic operator o is defined as:

il @) iQ 108
: 2 ——-
m to CString%Int(S)
so1 510 So
Y Coromom(5) o e (1) 0 Corm (52)
String— Int String— Int\°1 String— Int \°2

where o € {+,—,%,/,%} and m is the value after execution of normal arithmetic of
integers i1 and 1s.
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Definition 6.5. Let b, by, and by be boolean values, let i,i1, and iy be integers, and let
s, 81, and So be strings. The semantics of logical operator o is defined as:

b1 O bg b o1
1: 2: S -
m bo C[nt—)Bool(Z)
3 i0b 11 O 1y
. o . . o . o .
Int—)Bool(Z> ob Int—)Bool(h) o C[nt—)Bool@Q)
108 s01
T —2 5 5= .
to CString—)lnt(‘S) String—>[nt(8) o1
S1 0 S
7

g’tring%]nt (81) © Cg'trmgﬂlnt (82)

where o € {&&, ||} and m is the value after execution of normal boolean operation of by

and bs.
Next we formalize the semantics of comparison operators.

Definition 6.6. Let i,i1, and i be integers and let s, s1, and sy be strings. The semantics
of comparison operator ¢ is defined as follows:

11 © 19 10 S
; o
m Lo CString%Int(S)
s o1 S1 ¢ So
S - S —
String—>[nt(8> o1 81 COlex 82

where o € {=,<,<,>,>,#}, m is 1 if i1 0 iy holds, and m is 0 otherwise and ¢1ex 1S

string comparison corresponds to lexicographical ordering on strings.

The type coercion function Cg,;,, 1, i defined as same as Cg,;ny— ;- Table 6.1, 6.2,
and 6.3 show testing results between KSQL and MySQL.

6.2 Treatment of NULL value

Definition 6.7. NULL is a constant of sort Val.

As we have observed behaviour of NULL in section 4 we could see that NULL is bottom
data type which we consider an error constant. NULL follows to strict semantics.

Definition 6.8. For each operator f : 73 X «++ X Tygr X *++ X T, — T, the semantics of
NULL is defined as follows:
f(eq,...,NULL, ..., e,)
NULL ’
where eq, ..., e, are expressions and Tyyrr.
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No. query result (MySQL) | result (KSQL)
1| SELECT I + 1; 2 2
2 | SELECT 1 + 2; 3 3
3| SELECT 1 + "1" 2 2
4 | SELECT "1" + 1; 2 2
5| SELECT "1" + "1 ; 2 2
6 | SELECT "1" + "2"; 3 3
7 | SELECT TRUE + 1 ; 2 2
8 | SELECT FALSE + 1 ; 1 1
9 | SELECT TRUE + FALSE ; 1 1
10 | SELECT 0 + "a" 0 0
11 | SELECT 1 + "a"; 1 1
12 | SELECT 0 + "1a" ; 1 1
13 | SELECT 1 + "2a"; 3 3
14 | SELECT 1 + "1lal"; 2 2
15 | SELECT 0 + "-1" ; 1 1
16 | SELECT 0 + "-1a" ; —1 -1
17 | SELECT "-1a" + "-1a"; -2 —2
18 | SELECT TRUE + "-1a" ; 0 0

Table 6.1: Comparison of coercion testing of + between MySQL and KSQL
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Number Query result (MySQL) | result (KSQL)
SELECT 1 <= 1 ;
SELECT 1 <=0 ;
SELECT 1 <= "1" :
SELECT "1" <=1 ;
SELECT 1 <= "Q" ;
SELECT 1 <= "a"
SELECT 1 <= "1a" ;
SELECT TRUE <= 0 ;
SELECT TRUE <=1 ;

10 | SELECT 2 <= TRUE ;

11 | SELECT FALSE <= 1 ;
12 | SELECT TRUE <= FALSE ;
13 | SELECT "1" <= "2" |
14 | SELECT "2" <= "1" ;
15 | SELECT "-1" <= "1";
16 | SELECT "-2" <= "-1";
17 | SELECT "a" <= "b" :
18 | SELECT "b" <= "a" ;
19 | SELECT "a" <= "ab" ;
20 | SELECT "bb" <= "ac" ;
21 | SELECT "-" <= "-2" ;

O 1O Ui Wi+

Ne}

—H O R OFROHROROHOROFROORRFROHR

1
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Table 6.2: Comparison of coercion testing of < between MySQL and KSQL
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No. Query result (MySQL) | result (KSQL)
1| SELECT 1 && 1 ; 1 1
2 | SELECT 1 && 0 ; 0 0
3 | SELECT 1 && "1" 1 1
4 | SELECT "1" && 1 1 1
5 | SELECT "1" && "1" ; 1 1
6 | SELECT "1" && "O" ; 0 0
7 | SELECT TRUE && 1 ; 1 1
8 | SELECT FALSE && 1 0 0
9 | SELECT TRUE && FALSE ; 0 0

10 | SELECT 1 && "a" 0 0
11 | SELECT 1 && "1a" ; 1 1
12 | SELECT 1 && "1al" : 1 1
13 | SELECT "a" && "a" 0 0

Table 6.3: Comparison of coercion testing of && between MySQL and KSQL

The semantics of NULL in MySQL is two fold.

e Description of an error, which obeys strict semantics (Def. 6.7)

e The bottom constant in three-valued logic (Def. 6.8)

If a function is boolean operation, NULL behaves as the bottom constant. Otherwise NULL
is an error constant.

Definition 6.9. The semantics of boolean operators

NOT : Bool && : Bool x Bool — Bool || - Bool x Bool — Bool
are defined as follows:
&& | TRUE NULL FALSE | |TRUE NULL FALSE | NOT
TRUE | TRUE NULL FALSE  TRUE | TRUE TRUE TRUE TRUE | FALSE
NULL | NULL NULL FALSE  NULL | TRUE NULL NULL NULL | NULL

FALSE | FALSE FALSE FALSE FALSE | TRUE NULL FALSE FALSE | TRUE
Lastly we have two special rules for zero-divisor in / and % operators.
Definition 6.10. The semantics of zero-divisors of operators | and % are defined as
e / 0 — NULL e % 0 — NULL

The other errors for other operators are defined similarly using NULL representation.
However, we cannot generalize NULL semantics for each operator.
The tables 6.4, 6.5, and 6.6 show testing results on NULL between MySQL and KSQL.
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No. Query result (MySQL) | result (KSQL)
1| SELECT I + 1; 2 2
2 | SELECT 1 + NULL ; NULL NULL
3 | SELECT NULL + 1 ; NULL NULL
4 | SELECT NULL + NULL ; NULL NULL
5 | SELECT NULL H TRUE ; 1 1
6 SELECT'TRUE‘|NULL; 1 1
7 | SELECT NULL && FALSE ; 0 0
8 | SELECT FALSE && NULL ; 0 0

Table 6.4: Comparison of NULL (undefined) execution between MySQL and KSQL

MySQL query

result (MySQL)

result (KSQL)

Tt = W N e

SELECT NULL ;

SELECT CONCAT(NULL, 1) ;
SELECT CONCAT(NULL, "1") ;
SELECT NULL IS NULL ;
SELECT "" IS NULL ;

NULL

NULL

NULL
1
0

NULL

NULL

NULL
1
0

Table 6.5: Comparison of NULL (undefined) of string function between MySQL and KSQL

No. Query result (MySQL) | result (KSQL)
1| SELECT1/0; NULL NULL
2 | SELECT 1 % O ; NULL NULL

Table 6.6: Comparison of NULL (error) execution between MySQL and KSQL
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6.3 Name space

KSQL supports the name space (only table name). We keep field name in the form
TableName.FieldName and schema is the set of those form. The semantics is modified to
support this field name extension.

Definition 6.11. The evaluation of CREATE is defined as follows:

< CREATE TABLE T'(Fd) : >
T[createSchema(T, F'd) : ¢, | ~ store ¢ K

where T' is a table identifier and createSchema is a function defined as below:

createSchema(T, Fd) = [T.f | f d € Fd for some data type d|

MySQL allows a user to identify a field by either by field name or by the table
name with the field name. We define a function to unify them to the latter form, i.e.,
TableName. FieldName.

Definition 6.12. The function uniform is defined as follows:
uniform(7,S) =[T.f | fe SVT.f€S5]
Corresponding to this function, each operation is redefined.

Definition 6.13. The semantics of SELECT is redefined as follows:

< SELECT P FROM T WHERE F ; >
doGetTable(T) ~ doCondition({,E) m doProjection({,uniform(7, P)) K

For other rules, we need to redefine in a similar way.

6.4 Limits and difficulties in KSQL

Coercion

To support type coercion, we need to define many rewrite rules. For instance the semantics
of + and < operators are four rewrite rules for each, instead of one. This is to support
coercion from string to integer.

Our basic implementation of coercion in KSQL is case analysis. If f has n-arguments
and consider coercion from sort 7; to 7/ (1 < i < n). Then direct encoding

Flteota) = F(CL L (), CL L (1))
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(if Cj_:_m, (t;) # t; for some i) is 2™ — 1 rules.
Furlthermore, if we have m different sorts, Each combination requires such rewrite rules
and the total number of rewrite rules is (m — 1)(2" — 1).
Furthermore, if there are p operators fi,. .., f, in a language, each of them hasny,...,n,

arguments respectively. Then the number of rewrite rules becomes

¥P (m—1)(2" —1).

In current KSQL of coercion among types section, there are 13 operators and 2 sorts.
Each operator has 2 arguments thus we need 39 rules (instead of 13 rules).

This exponential growth prohibits to apply our current method to a practical languages,
There are several possibility to reduce the number of rules First idea is to separate op-
erators into groups of operators, which usually have the same type of argument. For
example, arithmetic operators and string operators have certain similar structure in each
category. By defining new structure of expressions as below:

Opu=+|—[x|/]%
AEzxp ::= AEzp Op AFExp

The type of these operators’ arguments is integer type. Then we can simply define
semantics of coercion as rules 2, 3, 4 in Definition 6.5 by replacing o with Op. This can
reduce the number of rules from 15 to 3.

Second idea would be to use inheritance of ordered sort. But we have not investigate
so far.

Treatment of NULL

As we have seen that the semantics to support NULL requires many rewrite rules.

For an operator f that is not NULL-handling function, e.g,IS NULL, IS NOT NULL, or
IFNULL, has multiple arguments. If n-arguments, n-rules are required. Suppose that
there are p operators f,..., f, with n;,...,n, arguments, respectively. Then the number
of rewrite rules is

¥ in,.

Additionally, we have to define rules for error handling. It is difficult to observe all
behaviours of error handling exactly.

Although the number of rewrite rules for NULL treatment is not important because it
is not exponential. Still it is difficult because MySQL has many error-handling solutions.
Further investigation will be required.
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Logical and physical model of data types

For integer and string data types, KSQL supports unbounded integers and unbounded
strings. In fact, MySQL has variation of data types. For example, the integer data type
varies TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT for 8-bit, 16-bit, 32-
bit, 64-bit, and 128-bit integers, respectively. Current implementation of KSQL does not
support for such variation of data types. This is because when we insert a datum into a
field of integer, MySQL solves overflow and underflow of such integer by bounding theirs
value to the maximum and minimum values. Hence, for each operation of integers, we
need more complex semantics to support such variations.

Uniqueness of primary key

Oraclell and MySQL do not allow duplication of the primary key. When the primary key
has duplicated values, Oraclel1 and MySQL return errors. In current implementation of
KSQL, each record has a product type and thus allows duplicated records. This difficulty
can be simply solved by defining a function type. For instance, consider a record that
contains three integer columns, A, B, and C. Suppose that primary key contains only
attribute A. Then a record (1,2, 3) is a relation represented by (1, [2, 3]) instead of a list
[1,2,3]. We can define a type of records as Int — (Int x Int) instead of Int x Int x Int.

43



Chapter 7

Related work

There are several existing works on giving explicit formal semantics. We overview such
works in three views.

e Formal semantics of SQL [§]

e Formal semantics of other programming languages: PHP [11], DATALOG [1], self-
modifying x86 [2].

e Executable formal semantics on K framework: JAVA [4], Verilog [6], Scheme [5],
and C [3].

7.1 Formal semantics of SQL language

The semantics of it is based on first-order-logic (FOL) and this leads to the problem of
NULL definition.

Negri, Pelagatti, and Sbattella (1991) gave a formal semantics of SQL queries [8].
The work starts with translation of SQL to a formal model consisting a set of rules in
first order logic. The formal model is called Extended Three Valued Predicate Calculus
(E3VPC). However, their semantics is still missing the real semantics, e.g. NULL. First,
an undefined value NULL in MySQL is in Kleene’s three valued logic and notion standard
FOL. Secondly, their semantics focuses on the selection query only while ours semantics
additionally define creation, deletion, update, and insertion.

7.2 Other formal semantics

PHP Tozawa, Tatsubori, Onodera and Minamide (2009) gave the definition of a copy-
on-write semantics of PHP language [11]. The semantics is used to solve copy-on-assignment,
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which causes copy overhead. Copy-on-write model is formalized by using graph rewriting.

DATALOG Alpuente, Feliu, Joubert, and Villanueva (2010) formalized the definition
of DATALOG in rewriting logic using Maude for implementation [1]. DATALOG is also
a relational query language,beyond RDB like SQL. It is a subset of Prolog (Prolog with
only predicates and constants) and allow recursive expressions. Their focus is more on
standard operations, but not on boundary cases.

x86 Bonfante, Marion, and Reynaud-Plantey (2009) gave the formal semantics for self-
modifying x86 programs [2]. A self-modifying binary program can be constructively
rewritten to a non-modifying program.

7.3 Executable formal semantics on K framework

There are several programming languages being defined on the K framework. They have
motivated a core SQL language in the K framework.

Java Farzan, Chen, Meseguer, and Rosu (2004) gave the semantic of a program analysis
framework for Java [4]. The semantics can be applied to model-checker provided by K
framework.

Scheme Meredith, Hills, and Rosu (2007) defined an equational semantics of Scheme
[5]. The semantics includes the support for macros.

Verilog Meredith, Katelman, Meseguer, and Rosu (2010) gave a formal executable se-
mantics of Verilog [6]. Their semantics is used to emulate programs and search on its
behaviours.

C Ellison and Rosu (2012) gave of an executable formal semantics of C [3]. Contribu-
tions of this work are not only the formal semantics itself, but also illustrating away to
discover bugs and the use of K framework for defining non-deterministic behaviours of a
C program.
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Chapter 8

Conclusion

In this thesis, we investigated formal semantics of the core of SQL dialects, specifically
MySQL and Oraclell. The former is implemented in the K framework.

We found semantics differences on coercion of types, interpretation of NULL, the name
space management, error handling, and logical /physical model of data types. Among the
differences, we focus on the first three parts. We observe differences between MySQL and
Oraclel1:

e Consider coercion from a string to an integer. Oracle returns errors if a string
contains non-digit characters, while MySQL tries to conceal this problem.

e MySQL interprets NULL as an undefined value for inputs of operations. However,
NULL is also used as the return of an error like zero divisor. Surprisingly, MySQL
farther accepts NULL IS NULL as 1 (TRUE). We feel that these behaviour is quite
confusing. Oraclell has more reasonable behaviour. It interprets NULL as the empty
string. An error is reported by an error message, not resulting NULL as an output.

e Oraclell and MySQL adopt different name space. The name space is the matter
when the table with the same name appears repeatedly. For instance, self-join and
self-product are such cases. Both MySQL and Oracle refuse them.

Our work is just to open possibility of formal semantics of SQL. There are several
obstructions to be tackled as future work.

e Current implementation of coercion is based on case analysis, which explodes with
an exponentially many number of rewrite rules. (NULL requires similar case analysis,
but the number of rules is fixed.) It can be reduced by unifying similar cases. Other
possibility is to use inheritance among ordered sorts.

e Currently a table is defined to have a product type, and the uniqueness of the
primary key is not easy to guarantee. This can be solved by applying a function
type for a table.
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e Currently KSQL ignores physical models (bit-length) of data types, which affects
the semantics of JOIN operator.
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Appendix A

SQL semantics in K-framework

A.1 Expression Syntax

module EXP-SYNTAX
syntax Boolean
syntax Null ::=
syntax Val ::=
syntax Vals ::=
syntax Exp ::=
syntax KResult
syntax Exp ::=

n_n

v

Exp
Exp
Exp
Exp
Exp
Exp
Exp
syntax Ex =

nyn
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
"NOT
Exp
Exp
Exp
Exp

—V—VV————  — — — — ——VV"® —V ———— vV

:= "TRUE" | "FALSE"
"NULL"
Int | Bool | Float | String | Null
List{Val, ","}
Val | Id
1= #Int | #Bool | Id | #String
"(" Exp ")" [bracket]
Exp [strict]
"x" Exp [strict, left]
"/" Exp [strict, left]
"DIV" Exp [strict, left]
"MOD" Exp [strict, left]
"%" Exp [strict, left]
"+" Exp [strict, left]
"-" Exp [strict, left]
"(" Exp ")" [bracket]
Exp [strict]
"=" Exp [strict, non-assoc]
">=" Exp [strict, non-assoc]
">" Exp [strict, non-assoc]
"<=" Exp [strict, non-assoc]
"<" Exp [strict, non-assoc]
"I=" Exp [strict, non-assoc]
"<>" Exp [strict, non-assoc]
"IS" "TRUE" [strict]
"IS" "FALSE" [strict]
"IS" "NULL" [strict]
"IS" "UNKNOWN" [strict]
"IS" "NOT" "TRUE" [strict]
"IS" "NOT" "FALSE" [strict]
"IS" "NOT" "NULL" [strict]
"IS" "NOT" "UNKNOWN" [strict]
" Exp [strict]
"&&" Exp [strict (1), left]
"AND" Exp [strict (1), left]
"|I" Exp [strict, left]
"OR" Exp [strict, left]
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syntax Exp ::= "CONCAT" "(" Vals ")" [strict]

"ELT" "(" Int "," Strings ")" [strict]
"FIELD" " (" String "," Strings "y [strict]

"INSERT" "(" String "," Int "," Int "," Strings ")" [strict]

"INSTR" " (" String "," String ")" [strict]

|
|
|
|
| "LENGTH" "(" String ")" [strict]
| "LOCATE" "(" String "," String ")" [strict]
| "LOCATE" "(" String "," String "," Int ")" [strict]
| "TRIM" "(" String ")" [strict]
| "LTRIM" "(" String ")" [strict]
| "RTRIM" "(" String ")" [strict]
| "POSITION" "(" String "IN" String ")" [strict]
| "REPEAT" "(" String "," Int ")" [strict]
| "REPLACE" " (" String "," String "," String ")"  [strict]
| "LEFT" "(" String "," Int ")" [strict]
| "RIGHT" " (" String "," Int ")" [strict]
| "SPACE" "(" Int ")" [strict]
| "SUBSTRING" " (" String "," Int ")" [strict]
| "SUBSTRING" " (" String "FROM" Int ")" [strict]
| "SUBSTRING" " (" String "," Int "," Int ")" [strict]
| "SUBSTRING" " (" String "FROM" Int "FOR" Int ")" [strict]

syntax Ints ::= List{Int,","} [strict]

syntax Strings ::= List{String,","} [strict]

syntax Exps ::= List{Exp,","} [strict]

syntax Ids = List{Id,","}

syntax Bool ::= in( String , Strings)

syntax Int ::= getOrd(String) [strict]

syntax String ::= intToChar (Int) [function]

syntax Int ::= charToInt(String) [function]

syntax Int ::= strcmp(String,String) [function]

syntax Int ::= cmpChar(String,String) [function]

syntax Int ::= cmpChar (String,String) [function]

syntax Int ::= convertsi(String) [function]

syntax Int ::= firstLetterAt(String) [function]

endmodule

A.2 Expression Semantics

1module EXP
imports EXP-SYNTAX

2

rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule

TRUE:Boolean => 1 [anywhere]

FALSE:Boolean => 0 [anywhere]
true:Boolean => 1

false:Boolean => 0

10 =>1

! I:Int => 0 when I =Int O

! NULL => NULL

- I:Int => 0 -Int I

I1:Int * I2:Int => I1 *Int I2

I1:Int / I2:Int => I1 /Int I2 when I2 =/=K O
I1:Int / I2:Int => NULL when I2 ==K O

I1:Int DIV I2:Int => I1 /Int I2 when I2 =/=K 0
I1:Int DIV I2:Int => NULL when I2 ==K O

I1:Int MOD I2:Int => I1 %Int I2 when I2 =/=K O
I1:Int MOD I2:Int => NULL when I2 ==K O

I1:Int % I2:Int => I1 %Int I2 when I2 =/=K O
I1:Int % I2:Int => NULL when I2 ==K O

I1:Int + I2:Int => I1 +Int I2

I1:Int - I2:Int => I1 -Int I2
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rule
rule
rule
rule
rule
rule
rule
rule

rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule

rule
rule
rule

rule
rule
rule
rule

rule
rule
rule
rule

rule
rule
rule
rule

rule
rule
rule
rule

rule
rule
rule
rule
rule
rule
rule
rule
rule

I1:Int >= I2:Int => 1 when I1 >=Int I2
I1:Int >= I2:Int => 0 when I1 <Int I2
I1:Int > I2:Int => 1 when Il >Int I2

I1:Int > I2:Int => 0 when Il <=Int I2
I1:Int <= I2:Int => 1 when I1 <=Int I2
I1:Int <= I2:Int => 0 when I1 >Int I2
I1:Int < I2:Int => 1 when Il <Int I2

I1:Int < I2:Int => 0 when Il >=Int I2

S:String + I:Int => convertsi(S) + I [anywhere]
I:Int + S:String => I + convertsi(S) [anywherel
S1:String + S2:String => convertsi(S1) + convertsi(S2)
S:String - I:Int => convertsi(S) - I [anywhere]
I:Int - S:String => I - convertsi(S) [anywhere]
S1:String - S2:String => convertsi(S1) - convertsi(S2)
S:String * I:Int => convertsi(S) * I [anywhere]
I:Int * S:String => I * convertsi(S) [anywhere]
S1:String * S2:String => convertsi(S1) * convertsi(S2)
S:String / I:Int => convertsi(S) / I [anywhere]
I:Int / S:String => I / convertsi(S) [anywhere]

S1:String / S2:String => convertsi(S1) / convertsi(S2)
S:String DIV I:Int => convertsi(S) DIV I [anywherel
I:Int DIV S:String => I DIV convertsi(S) [anywhere]

S1:String DIV S2:String => convertsi(S1) DIV convertsi (S2)

S:String % I:Int => convertsi(S) % I [anywhere]
I:Int % S:String => I % convertsi(S) [anywhere]
S1:String % S2:String => convertsi(S1) ¥ convertsi(S2)

Fl1:Float * F2:Float => F1 *Float F2
I1:Int * F2:Float => Int2Float(Il1) * F2
Fl:Float * I2:Int => F1 * Int2Float(I2)

Fl1:Float / F2:Float => F1 /Float F2 when F2 =/=K 0
F1:Float / F2:Float => NULL when F2 ==K 0

Fl1:Float DIV F2:Float => F1 /Float F2 when F2 =/=K 0
Fl1:Float DIV F2:Float => NULL when F2 ==K 0

I1:Int / F2:Float => Int2Float(I1l) / F2
Fl1:Float / I2:Int => F1 / Int2Float(I2)
I1:Int DIV F2:Float => Int2Float(I1) DIV F2
Fl1:Float DIV I2:Int => F1 DIV Int2Float (I2)

Fl:Float MOD F2:Float => F1 %Float F2 when F2 =/=K 0
Fl1:Float MOD F2:Float => NULL when F2 ==K 0

F1:Float % F2:Float => F1 J)Float F2 when F2 =/=K 0
F1:Float % F2:Float => NULL when F2 ==K 0

I1:Int MOD F2:Float => Int2Float(I1) MOD F2
F1:Float MOD I2:Int => F1 MOD Int2Float(I2)
I1:Int % F2:Float => Int2Float(Il1) % F2
Fl1:Float % I2:Int => F1 % Int2Float(I2)

Fl1:Float + F2:Float => F1 +Float F2

I1:Int + F2:Float => Int2Float(I1) + F2
Fl1:Float + I2:Int => F1 + Int2Float(I2)
Fl1:Float - F2:Float => F1 -Float F2

I1:Int - F2:Float => Int2Float(Il1) - F2
F1:Float - I2:Int => F1 - Int2Float(I2)
Fl1:Float >= F2:Float => 1 when F1 >=Float F2
Fl1:Float >= F2:Float => 0 when F1 <Float F2
I1:Int >= F2:Float => Int2Float(I1) >= F2

o1

[anywhere]

[anywhere]

[anywhere]

[anywhere]

[anywhere]

[anywhere]
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rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule

rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule

rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule
rule

rule
rule
rule
rule
rule
rule
rule
rule
rule
rule

:Float >= I2:Int =
:Float > F2:Float
:Float > F2:Float

:Int > F2:Float =>
:Float > I2:Int =>
:Float <= F2:Float
:Float <= F2:Float
:Int <= F2:Float =
:Float <= I2:Int =
:Float < F2:Float

> F1 >= Int2Float(I2)
=> 1 when F1 >Float F2
=> 0 when F1 <=Float F2
Int2Float (I1) > F2

F1 > Int2Float (I2)

=> 1 when F1 <=Float F2
=> 0 when F1 >Float F2
> Int2Float (I1) <= F2
> F1 <= Int2Float(I2)
=> 1 when F1 <Float F2

F1:Float < F2:Float => 0 when F1 >=Float F2
I1:Int < F2:Float => Int2Float(I1) < F2
Fl1:Float < I2:Int => F1 < Int2Float(I2)
S:String = I:Int => convertsi(S) = I [anywhere]
I:Int = S:String => I = convertsi(S) [anywhere]
S:String < I:Int => convertsi(S) < I [anywhere]
I:Int < S:String => I < convertsi(S) [anywhere]
S:String <= I:Int => convertsi(S) <= I [anywhere]
I:Int <= S:String => I <= convertsi(S) [anywhere]
S:String > I:Int => convertsi(S) > I [anywhere]
I:Int > S:String => I > convertsi(S) [anywhere]
S:String >= I:Int => convertsi(S) >= I [anywhere]
I:Int >= S:String => I >= convertsi(S) [anywhere]
S:String != I:Int => convertsi(S) != I [anywhere]
I:Int != S:String => I != convertsi(S) [anywherel
S:String <> I:Int => convertsi(S) <> I [anywhere]
I:Int <> S:S8tring => I <> convertsi(S) [anywhere]
I1:Int = I2:Int => 1 when I1 =Int I2 [anywhere]
I1:Int = I2:Int => O when I1 =/=Int I2 [anywhere]
I1:Int != I2:Int => 1 when Il =/=Int I2 [anywhere]
I1:Int != I2:Int => O when I1 =Int I2 [anywhere]
Fl:Float = F2:Float => 1 when F1 ==Float F2 [anywhere]
Fi1:Float = F2:Float => 0 when F1 =/=Float F2 [anywhere]
Fl1:Float != F2:Float => 1 when F1 =/=Float F2 [anywhere]
Fi1:Float != F2:Float => 0 when F1 ==Float F2 [anywhere]
S1:String >= S2:String => 1 when strcmp(S1,S2) >=Int O
S1:String >= S2:String => 0 when strcmp(S1,S2) =Int -1
S1:String > S2:String => 1 when strcmp(S1,S82) =Int 1
S1:String > S2:String => 0 when strcmp(S1,S52) <=Int O
S1:String < S2:String => 1 when strcmp(S1,S2) =Int -1
S1:String < S2:String => 0 when strcmp(S1,S2) >=Int O
S1:String <= S2:String => 1 when strcmp(S1,S2) <=Int O
S1:String <= S2:String => 0 when strcmp(S1,S2) =Int 1
S1:String = S2:String => 1 when strcmp(S1,S82) =Int O
S1:String = S2:String => 0 when strcmp(S81,S82) =/=Int O
S1:String != S2:String => 1 when strcmp(S1,S52) =/=Int O
S1:String != S82:String => 0 when strcmp(S1,S2) =Int O
(N1 <> N2) => N1 != N2 [anywhere]
NULL + _ => NULL

+ NULL => NULL
NULL - _ => NULL
_ - NULL => NULL
NULL * _ => NULL

* NULL => NULL
NULL / _ => NULL
_ / NULL => NULL
NULL DIV => NULL

DIV NULL => NULL
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[anywhere]
[anywhere]
[anywherel
[anywhere]
[anywherel
[anywhere]
[anywhere]
[anywhere]
[anywhere]
[anywhere]
[anywhere]



| rule NULL MOD _ => NULL
145 rule _ MOD NULL => NULL

146 rule NULL % _ => NULL
147 rule _ % NULL => NULL
148 rule NULL <= _ => NULL
149 rule _ <= NULL => NULL
150 rule NULL < _ => NULL
151 rule _ < NULL => NULL
152 rule NULL = _ => NULL
153 rule _ = NULL => NULL
154 rule NULL != _ => NULL
155 rule _ != NULL => NULL
156 rule NULL <> _ => NULL
157 rule _ <> NULL => NULL
158 rule NULL >= _ => NULL
159 rule _ >= NULL => NULL
160 rule NULL > => NULL

161 rule _ > NULL => NULL

163 rule I:Int IS TRUE => 1 when I =/=K O

164 rule 0 IS TRUE => 0

165 rule NULL IS TRUE => O

166 rule A IS TRUE => 0 when A ==Int O

167 rule I:Int IS FALSE => 0 when I =/=K 0
168 rule 0 IS FALSE => 1

169 rule NULL IS FALSE => 0

170 rule A IS FALSE => 1 when A ==Int O

rule I:Int IS UNKNOWN => O when I =/=K O
rule O IS UNKNOWN => 0

rule NULL IS UNKNOWN => 1

rule A IS UNKNOWN => 1 when A ==K
rule I:Int IS NULL => O when I =/=K 0
rule 0 IS NULL => O

rule NULL IS NULL => 1

rule A IS NULL => 0 when A ==K NULL

(SIS NIVC I R
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180 rule I:Int IS NOT TRUE => O when I =/=K O

181 rule 0 IS NOT TRUE => 1

182 rule NULL IS NOT TRUE => 1

183 rule A IS NOT TRUE => 0 when A ==Int O

184 rule I:Int IS NOT FALSE => 1 when I =/=K 0
185 rule 0 IS NOT FALSE => 0

186 rule NULL IS NOT FALSE => 1

187 rule A IS NOT FALSE => 1 when A ==Int O

188 rule I:Int IS NOT UNKNOWN => 1 when I =/=K 0
189 rule O IS NOT UNKNOWN => 1

190 rule NULL IS NOT UNKNOWN => 0O

191 rule A IS NOT UNKNOWN => O when A ==K NULL
192 rule I:Int IS NOT NULL => 1 when I =/=K O
193 rule 0 IS NOT NULL => 1

194 rule NULL IS NOT NULL => O

195 rule A IS NOT NULL => 0 when A ==K NULL

196

197 rule 0 && 0 => O

198 rule 0 && 1 => 0

199 rule 0 && NULL => 0

200 rule I:Int &% O => 0 when I =/=K 0

201 rule I:Int && 1 => 1 when I =/=K 0

202 rule I:Int && NULL => NULL when I =/=K O

203 rule NULL && O => O
204 rule NULL && I:Int => NULL when I =/=K O
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205 rule NULL && NULL => NULL

206 rule I1:Int && S2:String => Il && convertsi(S2)

207 rule S1:String && I2:Int => convertsi(S1) && I2

208 rule S1:String && S2:String => convertsi(S1) && convertsi(S2)
209

1 rule B1:Bool || B2:Bool => Bl orBool B2
2 rule Bl1:Bool OR B2:Bool => Bl orBool B2

| rule CONCAT(.Vals) => ""

5 rule CONCAT(S:String) => S

6 rule CONCAT(S:String, Vs:Vals) => CONCAT(Vs) ~> S +String HOLE

7 rule S2:String “> S1 +String HOLE => S1 +String S2 [structurall]
8 rule NULL ~> S1 +String HOLE => NULL [structurall

0 rule CONCAT(NULL, Vs:Vals) => NULL
rule CONCAT(I:Int, Vs:Vals) => CONCAT(Int2String(I),Vs)
rule CONCAT(F:Float, Vs:Vals) => CONCAT(Float2String(F),Vs)

210 rule O || 0 => 0
211 rule O || I:Int => 1 when I =/=K 0
212 rule O || NULL => NULL

13 rule I:Int || O => 1 when I =/=K 0

14 rule I:Int || I => 1 when I =/=K O

15 rule I:Int || NULL => 1

16 rule NULL || O => NULL

17 rule NULL || I:Int => 1 when I =/=K O

18 rule NULL || NULL => NULL

19 rule I1:Int || S2:String => I1 || convertsi(S2)
20 rule S1:String || I2:Int => convertsi(S1) || I2
21 rule S1:String || S2:String => convertsi(S1) || convertsi(S2)
29

23 rule I:Int && B => B when I =/=K 0

24 rule O & B => 0

25 rule I:Int || B => 1 when I =/=K 0

26 rule O || B => B

27 rule I:Int AND B => B when I =/=K 0

28 rule O AND B => 0

29 rule I:Int OR B => 1 when I =/=K 0

30 rule 0 OR B => B

31 rule I1 AND I2 => I1 && I2

32 rule I1 OR I2 => I1 || I2

33

34 rule NOT O => 1

35 rule NOT I:Int => O when I =/=Int O

36 rule NOT NULL => NULL

37

38

39 rule B1l:Bool && B2:Bool => Bl andBool B2
10 rule B1:Bool AND B2:Bool => Bl andBool B2
4

1

1

1

1

1

|

4

1

rule ELT(1, S:String , Ss:Strings) => S
56 rule ELT(N:Int, S:String, Ss:Strings) => ELT(N -Int 1, Ss)

58 rule FIELD(S:String, Ss:Strings) => 0 when notBool in(S,Ss)
59 rule FIELD(S:String, .Strings) => 0

60 rule FIELD(S:String, S2:String, Ss:Strings) => 1 when S ==String S2

61 rule FIELD(S:String, S2:String, Ss:Strings) => 1 + FIELD(S,Ss) when notBool (S
==String S2)

NN NN NNNNDRNNNDNRNNRNDNDNNRDNDNNNNNNNNNNDNNRDNRNNRDNDNNNNND N
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2
63 rule INSERT(S1:String, P:Int, L:Int, S2:String) => (substrString(Si, 0, P -Int 1)
+String S2) +String (substrString(S1l, (P -Int 1) +Int L, lengthString(S1)))
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rule INSTR(S1:String, S2:String) => findString(S1,S82,3) +Int 1

rule LENGTH(S:String) => lengthString(S)

rule LOCATE(Sub:String, S:String) => findString(S,Sub,0) +Int 1

rule LOCATE(Sub:String, S:String, P:Int) => findString(S,Sub,P) +Int 1
rule POSITION( Sub:String IN S:String) => findString(S,Sub,0) +Int 1
rule TRIM(S:String) => trim(S)

rule LTRIM(S:String) => ltrim(S)

rule RTRIM(S:String) => rtrim(S)

rule REPEAT(S:String,0) => ""

rule REPEAT(S:String, N:Int) => REPEAT(S, (N -Int 1)) ~> S +String HOLE
rule S2:String "> S +String HOLE => S +String S2 [structural]

rule REPLACE(S:String, FromS:String, ToS:String) => replaceAll(S,FromS,ToS)
rule LEFT(S:String, L:Int) => substrString(S,0,L)

rule RIGHT(S:String, L:Int) => substrString(S,lengthString(S) -Int L, lengthString(S))

rule SPACE(0) => ""

rule SPACE(N:Int) => SPACE(N -Int 1) ~> HOLE +String " "

rule S:String ~> HOLE +String S2 => S +String S2 [structurall

rule SUBSTRING(S:String, StartP:Int) => substrString(S, StartP -Int 1,
lengthString (S))

rule SUBSTRING(S:String FROM StartP:Int) => substrString(S, StartP -Int 1,
lengthString(S))

rule SUBSTRING(S:String , StartP:Int , Len:Int) => substrString(S, StartP -Int 1,
(StartP -Int 1) +Int Len)

rule SUBSTRING(S:String FROM StartP:Int FOR Len:Int) => substrString(S, StartP -Int
1, (StartP -Int 1) +Int Len)

rule in(S:String , .Strings ) => false [anywhere]
rule in(S:String , S2:String , Ss:Strings) => true when S ==String S2 [anywhere]

rule in(S:String , S2:String , Ss:Strings) => in(S, Ss) when S =/=String S2 [anywhere]

rule strcmp("","") => 0
rule strcmp("",S:String) => -1 when lengthString(S) >Int O
rule strcmp(S:String,"") => 1 when lengthString(S) >Int O
rule strcmp(S1:String,S2:String) => strcmp(substrString(S1,1,lengthString(S1)),
substrString(82,1,lengthString(S2))) when ordChar (substrString(S1,0,1)) ==Int
ordChar (substrString(82,0,1))
rule strcmp(S1:String,S2:String) => cmpChar (substrString(S1,0,1),
substrString(S2,0,1)) when ordChar (substrString(S1,0,1)) =/=Int
ordChar (substrString(S2,0,1))

rule cmpChar(S1:String,S2:String) => -1 when ordChar(S1) <Int ordChar(S2)
rule cmpChar (81:String,S2:String) => 0 when ordChar(S1) ==Int ordChar (S2)
rule cmpChar(S1:String,S2:String) => 1 when ordChar(S1) >Int ordChar (S2)

rule intToChar (I:Int) => chrChar(I)
rule charToInt(S:String) => ordChar (S)

rule convertsi(S:String) => 0 when notBool (#isDigit(substrString(S,0,1)) orBool

(substrString(S,0,1) ==String "+" orBool substrString(S,0,1) ==String "-"))
rule convertsi(S:String) => 0 when (substrString(S,0,1) ==String "+" orBool
substrString(S,0,1) ==String "-") andBool (notBool #isDigit (substrString(s,1,2)))

rule convertsi(S:String) => String2Int(substrString(S,1,(1 +Int

firstLetterAt (substrString(S,1,lengthString(S)))))) when substrString(S,0,1)
==String "+" andBool #isDigit(substrString(S,1,2))

rule convertsi(S:String) => String2Int(substrString(S,0,(1 +Int

firstLetterAt (substrString(S,1,lengthString(S)))))) when substrString(S,0,1)
==String "-" andBool #isDigit (substrString(S,1,2))

rule convertsi(S:String) => String2Int (substrString(S,0,1 +Int

firstLetterAt (substrString(S,1,lengthString(S))))) when #isDigit (substrString(S,0,1))

rule firstLetterAt("") => 0

25



310 rule firstLetterAt(S:String) => (1 +Int
firstLetterAt (substrString(S,1,lengthString(S)))) when #isDigit (substrString(S,0,1))
311
312 rule firstLetterAt(S:String) => 0 when notBool #isDigit(substrString(S,0,1))
313
314 endmodule

A.3 Table Syntax

1
2module TABLE-SYNTAX
3 imports EXP

4 syntax DataType ::= "INT" | "BOOL" | "TEXT" | "FLOAT"
5////***%x Representation *xx*xx/////
6 syntax #TableElement ::= "e(" Vals ")" [strict]
7 syntax TableElement ::= #TableElement
8 syntax TableElements ::= List{TableElement,","} [strict]
9 syntax #Record ::= "r[" TableElements "]" [strict]
10 syntax Record ::= #Record
11 syntax #Field ::= "f(" String "," DataType "," Bool "," Bool ")"
12 syntax Field ::= #Field
13 syntax Fields ::= List{Field,","} [strict]
14 syntax #Schema ::= "s[" Fields "]" [strict]
15 syntax Schema ::= #Schema
16 syntax #Table ::= Id "[" Schema ":" Record "1" [strict]
17 syntax Val ::= FieldRep
18 syntax FieldRep ::= FieldRepl | FieldRep2
19 syntax FieldRepl ::= Id | "¢" I4 "‘"
20 syntax FieldRepls ::= List{FieldRepl,","}
1 syntax FieldRep2 ::= Id "." Id
2 syntax Collumn ::= FieldRep
3 syntax Collumns ::= List{FieldRep,","}
4 syntax KResult ::= #Record | #Field | #Schema | #Table | #TableElement

5////**%%x Main function *xx*xx/////

NN NN NNNNN

7 syntax Table ::= #Table

8 | Table "union" Table [strict]

9 | Table "intersect" Table [strict]

30 | Table "difference" Table [strict]

31 | Table "cartesian" Table [strict]

32 | Table "x" Table [strict]

33

34 syntax Table ::= union(Table,Table) [strict]

35 syntax Table = difference(Table, Table) [strict]

36 syntax Table = intersect(Table,Table) [strict]

37 syntax Table ::= catesian(Table,Table) [strict]

38 syntax Record ::= union(Record,Record) [strict]

39 syntax Record = difference (Record,Record) [strict]

10 syntax Record = intersect (Record,Record) [strict]

11 syntax Record ::= catesian(Record,Record) [strict]

12 syntax Table ::= join(Table,Table) [strict]

43 syntax Table : join(Table, Table , Exp) [strict (1,2)]

14 syntax Table ::= leftJoin(Table,Table, Exp) [strict(1,2)]

15 syntax Table ::= rightJoin(Table, Table, Exp) [strict(1,2)]

16 syntax Table ::= select(Table,Exp) [strict (1)]

17 syntax Record ::= leftJoin2(Schema,Schema,Record,Record,Exp)
18 syntax Record ::= unionLeftJoin(Schema,bSchema,TableElement ,Record)
19 syntax Record ::= rightJoin2(Schema,Schema,Record,Record, Exp)
50 syntax Record ::= unionRightJoin(Schema,Schema,TableElement ,Record)
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2////**x* Auxiliary function *x*xx/////

3 syntax Id ::= "tmp"
54 syntax Int
55

= getIndex(Schema,String) [strict]

syntax Int = getIndex2(Schema,String) [strict]
56 syntax Exp ::= getValue(TableElement ,Exp) [strict]
57 syntax Record ::= filter (Schema,Record,Exp) [strict(1,2)]
58 syntax SelectElement ::= s(Int,TableElement) [strict]
59 syntax KResult ::= SelectElement
60 syntax Exp ::= eval(Schema,TableElement ,Exp) [strict(1,2)]
61 syntax Field ::= getFieldFromSchema(Collumn, Schema) [strict]
62 syntax Table ::= project(Table,Schema) [strict]
63 syntax Record ::= project2(Record,Schema,Schema) [strict]
64 syntax TableElement ::= project3(TableElement ,Schema,Schema) [strict]
65 syntax Val ::= getValue(Schema,TableElement ,String) [strict]
66 syntax Table ::= rename(Table,Id) [strict]
67 syntax Table ::= changeFieldNameCorrespondToTable (Table) [strict]
68 syntax Field ::= rename(Field,String) [strict]
69 syntax Fields ::= concatFieldName (Schema, Id) [strict]
70 syntax String ::= changeFieldRepIntoStringName( FieldRep ) [strict]
71 syntax String ::= changeFieldRepIntoStringName( Id , Id ) [strict]
72 syntax Schema ::= excludeFields(Schema,FieldRepls)
73 syntax Schema ::= excludeField(Schema,FieldRepl)
74
75 syntax TableElement ::= addNullElementOnBottom(TableElement ,Int) [strict]
76 syntax TableElement ::= addNullElementOnTop(TableElement ,Int) [strict]
77 syntax Int ::= numberOfElementInRecord(Record) [strict]
78 syntax TableElement ::= addElementOnBottom(TableElement ,Val) [strict]
79 syntax TableElement ::= addElementOnTop(TableElement ,bVal) [strict]
80 syntax K ::= if (Int,K,K)
81 syntax Schema ::= addElement(Field,Schema) [strict]
82 syntax Schema ::= concat(Schema, Schema) [strict]
83 syntax Record ::= concat(Record, Record) [strict]
84 syntax TableElement ::= append(TableElement ,h TableElement) [strict]
85 syntax TableElement ::= addTopElement(Val , TableElement) [strict]
86 syntax Record ::= addElement(TableElement ,Record) [strict]
87 syntax Record ::= appendElementToRecord(TableElement ,Record) [strict]
88 syntax Int ::= numberOfFields(Schema) [strict]
89 syntax Bool ::= checkUnionCompatible( Schema , Schema) [strict]
20 syntax Bool ::= isTableElementEqual( TableElement ,TableElement) [strict]
91 syntax Bool consistOf (Record,TableElement) [strict]

92 syntax Bool ::= in( String , Ids)
93 syntax K ::= num(Ids)
94endmodule

A.4 Table Semantics

1module TABLE
: imports TABLE-SYNTAX

////***x* Main function xx*xx/////

5 rule T1:Table cartesian T2:Table => catesian(T1, T2) [anywherel]

6 rule T1:Table union T2:Table => union(T1,T2) [anywhere]

7 rule T1:Table difference T2:Table => difference(T1,T2) [anywhere]
8 rule T1:Table intersect T2:Table => intersect(T1,T2) [anywhere]

3
3
1

10 // Union
11 rule union(Id1:Id[S1:Schema : R1:Record] , Id2:Id[S2:Schema : R2:Record]) =>
union(R1,R2) ~> tmp[S1 : HOLE] when checkUnionCompatible(S1,S2) [structurall
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rule union(R,r[.TableElements]) => R [anywhere,structural]
rule union(r[.TableElements],R) => R [anywhere,structurall
rule union(r[T:TableElement ,Ts:TableElements],R) => union(r[Ts],R) when

consist0f (R,T) [anywherel]
rule union(r[T1:TableElement,

Tsl:TableElements] ,r[T2:TableElement ,Ts2:TableElements]) => union(r[Ts1],r[T2,Ts2])
“> addElement (T1,HOLE) when notBool

consistOf (r[T2:TableElement ,Ts2:TableElements],T1) [anywhere]

// Difference
rule difference(Id1:Id[S1:Schema : Ri1:Record] , Id2:Id[S2:Schema : R2:Record]) =>
difference(R1,R2) > tmp[S1 : HOLE ] when checkUnionCompatible(S1,S2)

rule difference(r[.TableElements],R) => r[.TableElements] [structurall

rule difference(r[T:TableElement ,Ts:TableElements],R) => difference(r[Ts],R) when
consist0f (R, T)

rule difference(r[T:TableElement ,Ts:TableElements],R) => difference(r[Ts],R) ~>
addElement (T, HOLE ) when notBool consistO0f(R,T)

// Intersect
rule intersect (Id1:Id[S1:Schema : R1:Record] , Id2:Id[S2:Schema : R2:Record]) =>
intersect (R1,R2) ~> tmp[S1: HOLE ] when checkUnionCompatible(S1,S2)
rule intersect(r[.TableElements],R) => r[.TableElements] [structurall
rule intersect(r[T:TableElement ,Ts:TableElements],R) => intersect(r[Ts],R) when
notBool consistOf (R,T)
rule intersect(r[T1:TableElement,

Tsl:TableElements] ,r[T2:TableElement ,Ts2:TableElements]) => intersect(r[Tsi1],r([Ts2])
"> addElement (T1, HOLE ) when consistOf (r[T2:TableElement ,Ts2:TableElements],T1)

// Catesian

rule catesian(r[.TableElements],_) => r[.TableElements] [structurall]

rule catesian(r[El:TableElement, Esl:TableElements],r[Es2:TableElements]) =>

concat (appendElementToRecord (El,r[Es2]),catesian(r[Es1l],r[Es2]))

rule catesian(T1:Id[S1:Schema : R1:Record],T2:Id[S2:Schema : R2:Record]) =>

tmp [concat (S1,S2) : catesian(R1,R2)]

rule T1l:Table cartesian T2:Table =>
catesian(changeFieldNameCorrespondToTable (T1) ,changeFieldNameCorrespondToTable (T2))

// Renaming
rule rename (T1:Id[S:Schema : R:Record], T2:Id) => T2[S : R] [anywhere]
rule rename(f(_,T,B1,B2),S82:String) => £(S2,T,B1,B2) [anywhere]

rule concatFieldName(s[.Fields],T:Id) => .Fields [anywhere]
rule concatFieldName (s[f(F:String ,DT:DataType ,B1:Bool ,B2:Bool) ,Fs:Fields],T:Id) =>
rename (f (F,DT,B1,B2) ,(#tokenToString(T) +String ".") +String F),

concatFieldName (s [Fs],T) [anywhere]

// cross join

rule join(T1:Table, T2:Table) => T1 cartesian T2

rule join(T1:Table, T2:Table, E:Exp) => Tl cartesian T2 ~> select( HOLE , E)
rule T:#Table ~> select (HOLE , E) => select(T,E) [structurall

// left join
rule leftJoin(T1:Id[ S1:Schema : R1] , T2:Id[ S2:Schema : R2:Record ], E:Exp) =>
tmp[ concat(S1,S2) : leftJoin2(S1,S2, R1,R2,E) 1]

rule leftJoin2(S1:Schema,S2:Schema, r[ .TableElements], R:Record, E:Exp) => rl[
.TableElements ]

rule leftJoin2(S1:Schema,S2:Schema, r[TEl:TableElement, TEs:TableElements],
R:Record, E:Exp) => filter (concat(S1,S82),catesian( r[ TE1 ], R), E) ~>
unionLeftJoin (S1,S2,TE1,HOLE) ~> union (HOLE,leftJoin2(S1,S2,r[TEs],R,E))

rule Result :#Record ~> unionLeftJoin(S1:Schema,S2:Schema,T:TableElement ,HOLE) =>
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62

63

unionLeftJoin(S1,82,T,Result) [structurall

rule Result :#Record ~>

union (HOLE,leftJoin2(S1:Schema,S2:Schema,Rl1:Record,R2:Record ,E:Exp)) =>
union(Result,leftJoin2(S1,8S2,R1,R2,E)) [structurall

rule unionLeftJoin(S1:Schema,S2:Schema,T:TableElement ,Result:Record) =>
numberOfElementInRecord (Result) = 0 ~> if (HOLE, r[
addNullElementOnBottom (T, numberOfFields (S2)) ], Result)

// rightjoin
rule rightJoin(T1:Id[ S1:Schema : R1] , T2:Id[ S2:Schema : R2:Record ], E:Exp) =>
tmp[ concat(S1,S2) : rightJoin2(S1,S2, R1,R2,E) ]

rule rightJoin2(S1:Schema,S2:Schema, R:Record ,r[ .TableElements], E:Exp) => r[
.TableElements ]
rule rightJoin2(S1:Schema,S2:Schema, R:Record, r[TEl:TableElement,
TEs:TableElements], E:Exp) => filter (concat(S1,82),catesian( R, r[ TE1 1), E) ~>
unionRightJoin(S1,S2,TE1,HOLE) ~> union(HOLE,rightJoin2(S1,S2,R,r[TEs],E))
rule Result:#Record ~> unionRightJoin(S1:Schema,S2:Schema,T:TableElement ,HOLE) =>
unionRightJoin(S1,S82,T,Result) [structurall
rule Result :#Record 7>

union (HOLE ,rightJoin2(S1:Schema,S2:Schema,R1:Record ,R2:Record,E:Exp)) =>

union (Result ,rightJoin2(S1,S2,R1,R2,E)) [structurall
rule unionRightJoin(S1:Schema,S2:Schema,T:TableElement ,Result:Record) =>
numberOfElementInRecord (Result) = 0 ~> if (HOLE, r[
addNullElementOnTop (T, number0fFields(S2)) ], Result)

////***x Auxiliary function *x*xxx/////

rule getIndex(s[ .Fields 1, S2:String) => NULL [anywherel

rule getIndex(s[f(S1:String,_,_,_) , Fs:Fields] , S2:String) => 0 when S1 ==String S2
[anywhere]

rule getIndex(s[f(S1:String,_,_,_) , Fs:Fields] , S2:String) => (getIndex(s[Fs],S2) +
1) when notBool S1 ==String S2 [anywhere]

rule getIndex2(s[ .Fields ], S2:String) => NULL [anywhere]

rule getIndex2(s[f(S1:String,_,_,_) , Fs:Fields] , S2:String) => 0 when
substrString (81, (findChar(S1,".",0) +Int 1),lengthString(S1)) ==String S2 [anywherel

rule getIndex2(s[f(S1:String,_,_,_) , Fs:Fields] , S2:String) => (getIndex2(s[Fs],S2)
+ 1) when substrString(S1,(findChar(S1,".",0) +Int 1),lengthString(S1)) =/=String S2
[anywhere]

rule excludeFields(S:Schema, .FieldRepls) => S [anywhere]
rule excludeFields(S:Schema, F:FieldRepl ,Fs:FieldRepls) =>
excludeFields (excludeField(S,F),Fs) [anywhere]
rule changeFieldRepIntoStringName( I1:Id . I2:Id ) => ((#tokenToString(Il) +String
".") +8tring #tokenToString(I2)) [anywhere]
rule changeFieldRepIntoStringName( T:Id , F:Id ) => ((#tokenToString(T) +String
".") +String #tokenToString(F)) [anywhere]

rule excludeField(s[.Fields] , ¢ I:Id ‘) => s[ .Fields 1] [anywhere]
rule excludeField(s[ f(FN:String,D:DataType,B1:Bool,B2:Bool) , Fs:Fields] , ¢ I:Id )
=> excludeField(s[Fs], ¢ I ) when substrString(FN,(findChar (FN,".",0) +Int
1) ,1lengthString (FN)) ==String #tokenToString(I) [anywhere]
rule excludeField(s[ f(FN:String,D:DataType,Bl:Bool,B2:Bool) , Fs:Fields] , ¢ I:Id )
=> addElement (f (FN,D,B1,B2),excludeField(s[Fs], ¢ I ‘)) when
substrString (FN, (findChar (FN,".",0) +Int 1),lengthString(FN)) =/=String
#tokenToString(I) [anywhere]
rule excludeField(s[.Fields] , I:Id ) => s[ .Fields ] [anywhere]
rule excludeField(s[ f(FN:String,D:DataType,Bl1:Bool,B2:Bool) , Fs:Fields] , I:Id )
=> excludeField(s[Fs], ¢ I ¢) when substrString(FN,(findChar(FN,".",0) +Int
1) ,lengthString (FN)) ==String #tokenToString(I) [anywherel]
rule excludeField(s[ f(FN:String ,D:DataType,B1:Bool,B2:Bool) , Fs:Fields] , I:Id ) =>
addElement (£ (FN,D,B1,B2) ,excludeField(s[Fs], ¢ I ¢)) when
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substrString (FN, (findChar (FN,".",0) +Int 1),lengthString(FN)) =/=String
#tokenToString (I) [anywhere]

rule getValue(_, NULL) => NULL

rule getValue(e(V:Val, _), 0) =>V

rule getValue(e(_,Vs:Vals),I:Int) => getValue(e(Vs),I -Int 1)

rule getValue(s[.Fields],e(Vs:Vals),S2:String) => NULL [structural]

rule getValue(s[f(S1:String,D:DataType,B1,B2),Fs:Fields],e(V:Val,Vs:Vals),S2:String)
=> V when S1 ==String S2

rule getValue(s[f(S1:String,D:DataType,B1,B2),Fs:Fields],e(V:Val,Vs:Vals),S2:String)
=> getValue(s[Fs],e(Vs),S2) when S1 =/=String S2

rule select(I:Id[ S:Schema : R:Record ] , E:Exp ) => filter(S,R,E) “> I[ S : HOLE ]

rule R:Record "> T[ S : HOLE ] => T[ S : R 1] [structurall

rule r[ Ts:TableElements ] “> s(0 , T:TableElement) => r[Ts]

rule r[ Ts:TableElements ] ~> s(I:Int , T:TableElement) => r[T,Ts] when I =/=Int O

rule r[ .TableElements ] ~> s(I:Int, T:TableElement) => r[T] when I =/=Int O

rule r[ .TableElements ] ~> s(0, T:TableElement) => r[ .TableElements ]

rule filter( S, r[ .TableElements ] , E ) => r[ .TableElements ] [structurall
rule filter( S:Schema, r[ Tl:TableElement , Ts:TableElements ], E:Exp ) =>
eval(S,T1,E) ~> s(HOLE,T1) ~> filter(S,r[Ts],E)

rule I:Int ~> s(HOLE,T:TableElement) => s(I,T)

rule S:SelectElement ~> R:Record => R ~> S [structurall]

rule project(T:Id[ Si1:Schema : R:Record], S2:Schema) => T[ S2 : project2( R,S1,52)]
rule project2(r[ .TableElements], S1,S82) => r[ .TableElements]

rule project2(r[ T:TableElement , Ts:TableElements], S1:Schema , S2:Schema) =>
addElement (project3(T,S1,82) ,project2(r[Ts],S1,S52))

rule project3(T:TableElement ,S:Schema,s[ .Fields]) => e(.Vals)

rule project3(T:TableElement ,S:Schema,s[ f(FN:String,_,_,_), Fs:Fields]) =>
getValue (T,getIndex(S,FN)) ~> addElementOnTop(project3(T,S,s[Fs]),HOLE)

rule NULL ~> addElementOnTop(T,HOLE) => addElementOnTop (T,NULL)

rule V:Val ~> addElementOnTop(T,HOLE) => addElementOnTop (T,V)

rule eval(_,T,NULL) => NULL

rule eval(_,T,B:Bool) => B

rule eval(_,T,I:Int) => 1

rule eval(_,T,S:String) => S

rule eval(S:Schema,T:TableElement ,I:Id) => getValue(T,getIndex2(S,#tokenToString(I)))
~> eval(S,T,HOLE)

rule eval(S:Schema,T:TableElement,‘ I:Id ¢) =>

getValue (T,getIndex2(S,#tokenToString (I))) ~> eval(S,T,HOLE)

rule eval(S:Schema,T:TableElement ,F:FieldRep) =>

getValue (T,getIndex (S, changeFieldRepIntoStringName(F))) ~> eval(S,T,HOLE)
rule V:Val ~> eval(S,T,HOLE) => eval(S,T,V) [structurall

rule eval(S,T, - E:Exp) => - eval(S,T,E)

rule eval(S,T, E1:Exp * E2:Exp) => eval(S,T, E1) * eval(S,T,E2)
rule eval(S,T, E1:Exp / E2:Exp) => eval(S,T, E1) / eval(S,T,E2)
rule eval(S,T, E1:Exp DIV E2:Exp) => eval(S,T, E1) DIV eval(S,T,E2)
rule eval(S,T, E1:Exp MOD E2:Exp) => eval(S,T, E1) MOD eval(S,T,E2)
rule eval(S,T, El1:Exp % E2:Exp) => eval(S,T, E1) % eval(S,T,E2)
rule eval(S,T, E1:Exp + E2:Exp) => eval(S,T, E1) + eval(S,T,E2)
rule eval(S,T, E1:Exp - E2:Exp) => eval(S,T, E1) - eval(S,T,E2)
rule eval(S,T, ! E:Exp) => ! eval(S,T,E)

rule eval(S,T, E1:Exp = E2:Exp) => eval(S,T, E1) = eval(S,T,E2)
rule eval(S,T, E1:Exp >= E2:Exp) => eval(S,T, E1) >= eval(S,T,E2)
rule eval(S,T, E1:Exp > E2:Exp) => eval(S,T, E1) > eval(S,T,E2)
rule eval(S,T, E1:Exp <= E2:Exp) => eval(S,T, E1) < eval(S,T,E2)
rule eval(S,T, E1:Exp < E2:Exp) => eval(S,T, E1) < eval(S,T,E2)
rule eval(S,T, E1:Exp != E2:Exp) => eval(S,T, E1) != eval(S,T,E2)
rule eval(S,T, E1:Exp <> E2:Exp) => eval(S,T, E1) <> eval(S,T,E2)
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137 rule eval(S,T, E:Exp IS TRUE) => eval(S,T, E) IS TRUE

138 rule eval(S,T, E:Exp IS FALSE) => eval(S,T, E) IS FALSE

139 rule eval(S,T, E:Exp IS NULL) => eval(S,T, E) IS NULL

140 rule eval(S,T, E:Exp IS UNKNOWN) => eval(S,T, E) IS UNKNOWN

141 rule eval(S,T, E:Exp IS NOT TRUE) => eval(S,T, E) IS NOT TRUE

142 rule eval(S,T, E:Exp IS NOT FALSE) => eval(S,T, E) IS NOT FALSE

143 rule eval(S,T, E:Exp IS NOT NULL) => eval(S,T, E) IS NOT NULL

144 rule eval(S,T, E:Exp IS NOT UNKNOWN) => eval(S,T, E) IS NOT UNKNOWN

145 rule eval(S,T, NOT E:Exp ) => NOT eval(S,T, E)

146 rule eval(S,T, E1:Exp && E2:Exp) => eval(S,T, E1) && eval(S,T,E2)

147 rule eval(S,T, E1:Exp AND E2:Exp) => eval(S,T, E1) AND eval(S,T,E2)

148 rule eval(S,T, E1:Exp || E2:Exp) => eval(S,T, E1) || eval(S,T,E2)

149 rule eval(S,T, E1:Exp OR E2:Exp) => eval(S,T, E1) OR eval(S,T,E2)

50 rule eval(S,T, CONCAT(Vs:Vals)) => CONCAT(Vs)

1 rule eval(S,T, ELT(I:Int,Ss:Strings)) => ELT(I,Ss)

2 rule eval(S,T, FIELD(S1:String,Ss:Strings)) => FIELD(S1,Ss)

3 rule eval(S,T, INSERT(S1:String,Il1:Int,I2:Int,Ss:Strings)) => INSERT(S1,I1,I2,Ss)

1 rule eval(S,T, INSTR(S1:String,S2:String)) => INSTR(S1,S52)

5 rule eval(S,T, LENGTH(S1:String)) => LENGTH(S1)

56 rule eval(S,T, LOCATE(S1:String,S2:String)) => LOCATE(S1,S2)

57 rule eval(S,T, LOCATE(S1:String,S2:String,I:Int)) => LOCATE(S1,S2,I)

158 rule eval(S,T, TRIM(S1:String)) => TRIM(S1)

159 rule eval(S,T, LTRIM(Sl:String)) => LTRIM(S1)

160 rule eval(S,T, RTRIM(S1:String)) => RTRIM(S1)

161 rule eval(S,T, POSITION(S1:String IN S2:String)) => POSITION(S1 IN S2)

162 rule eval(S,T, REPEAT(S1:String, I:Int)) => REPEAT(S1,I)

163 rule eval(S,T, LEFT(S1:String, I:Int)) => LEFT(S1,I)

164 rule eval(S,T, RIGHT(S1:String, I:Int)) => RIGHT(S1,I)

165 rule eval(S,T, SPACE(I:Int)) => SPACE(I)

166 rule eval(S,T, SUBSTRING(S1:String,I:Int)) => SUBSTRING(S1,I)

167 rule eval(S,T, SUBSTRING(S1:String FROM I:Int)) => SUBSTRING(S1 FROM I)

168 rule eval(S,T, SUBSTRING(S1:String, I1:Int, I2:Int)) => SUBSTRING(S1,I1,I2)

169 rule eval(S,T, SUBSTRING(Sl:String FROM I1:Int FOR I2:Int)) => SUBSTRING(S1 FROM I1
FOR I2)

171 rule getFieldFromSchema(I:Id,s[ f(FN2,T:DataType,Bl1:Bool,B2:Bool), Fs:Fields]) =>
f(FN2,T:DataType ,B1:Bool ,B2:Bool) when #tokenToString(I) ==String
substrString (FN2, (findChar (FN2,".",0) +Int 1),lengthString(FN2)) [anywhere]

172 rule getFieldFromSchema(¢ I:Id ¢,s[ £(FN2,T:DataType,B1:Bool,B2:Bool), Fs:Fields]) =>
f(FN2,T:DataType ,B1:Bool ,B2:Bool) when #tokenToString(I) ==String
substrString (FN2, (findChar (FN2,"." ,0) +Int 1),lengthString(FN2)) [anywhere]

173 rule getFieldFromSchema (F:FieldRepl,s[ f(FN2,T:DataType ,B1:Bool,B2:Bool), Fs:Fields])
=> f(FN2,T:DataType,B1:Bool,B2:Bool) when changeFieldRepIntoStringName (F) ==String
FN2 [anywhere]

174 rule getFieldFromSchema(C:Collumn,s[ f(FN2,T:DataType,Bl:Bool,B2:Bool), Fs:Fields])
=> getFieldFromSchema(C,s[Fs]) [anywhere]

Il
v

176 rule changeFieldNameCorrespondToTable(T:Id[S:Schema : R:Recordl])
T:Id[s[concatFieldName(S,T)] : R] when T =/=K tmp [anywhere]

177 rule changeFieldNameCorrespondToTable(T:Id[S:Schema : R:Record]) => T:Id[S : R] when
T ==K tmp [anywhere]

178

179 rule addNullElementOnBottom (T:TableElement ,0) => T [anywhere]

180 rule addNullElementOnBottom (T:TableElement ,I:Int) =>
addNullElementOnBottom (append (T,e(NULL)), I -Int 1) [anywhere]

181

182 rule addNullElementOnTop (T:TableElement ,0) => T [anywhere]

183 rule addNullElementOnTop (T:TableElement ,I:Int) =>
addNullElementOnTop (addTopElement (NULL,T), I -Int 1) [anywherel

184

185 rule numberOfElementInRecord(r[ .TableElements ]) => 0 [anywherel]
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186 rule numberOfElementInRecord(r[ T:TableElement, Ts:TableElements]) => 1 +
numberOfElementInRecord (r[Ts]) [anywherel

187 rule addElementOnBottom (T:TableElement ,V:Val) => append(T,e(V)) [anywherel
188 rule addElementOnTop(e( Vs:Vals ),V:Val) => e(V,Vs) [anywherel

189 rule if(I:Int,K1,K2) => K1 when I =/=Int O [anywherel]

190 rule if (0,K1,K2) => K2 [anywhere]

191 rule I:#Int ~> if (HOLE,K1:K,K2:K) => if (I,K1,K2) [anywhere]

192 rule addElement (T:TableElement ,r[Ts:TableElements]) => r[T,Ts] [anywhere]

193 rule addElement (F:Field,s[Fs:Fields]) => s[F,Fs] [anywhere]

194 rule concat(s[.Fields], S:Schema) => S [anywhere]

195 rule concat(s[F1:Field,Fs1:Fields],s[Fs2:Fields]) => concat(s[Fs1],s[Fs2]) ~>
addElement (F1, HOLE ) [anywherel

196rule concat(r[.TableElements], R:Record) => R [anywherel

197 rule concat(r[T1:TableElement ,Tbl:TableElements],r[Tb2:TableElements]) =>
concat (r[Tb1] ,r[Tb2]) ~> addElement(T1, HOLE ) [structurall] [anywherel]

198 rule S:#Schema ~> addElement (F:Field , HOLE ) => addElement( F, S)
[anywhere ,structurall

199 rule R:#Record "> tmp [S : HOLE ] => tmp [S : RI] [anywhere ,structural]

200 rule R:#Record ~“> addElement( T1:TableElement, HOLE ) => addElement (T1,R)
[anywhere,structural]

201 rule append(e(.Vals),e(Vs:Vals)) => e(Vs) [anywhere]

202 rule append(e(V:Val, Vsl:Vals) ,e(Vs2:Vals)) => append(e(Vsl),e(Vs2)) ~>
addTopElement (V , HOLE ) [anywherel
203 rule addTopElement(V:Val,e(.Vals)) => e(V) [anywhere]

204 rule addTopElement(V:Val,e(Vs:Vals)) => e(V,Vs) [anywhere]

205 rule T:#TableElement ~> addTopElement(V:Val , HOLE) => addTopElement( V , T)
[structurall

206 rule addElement (E:TableElement ,r[Es:TableElements]) => r[E,Es]

207 rule appendElementToRecord(El,r[.TableElements]) => r[.TableElements] [structurall

208 rule appendElementToRecord(El:TableElement ,r[E2:TableElement ,Es:TableElements]) =>
addElement (append (E1,E2) ,appendElementToRecord (E1,r[Es]))

209 rule numberOfFields(s[.Fields]) => 0 [anywhere,structural]

210 rule numberOfFields(s[_, Fs:Fields]) => 1 +Int numberOfFields(s[Fs]) [anywhere]

211 rule checkUnionCompatible(s[.Fields] , s[.Fields]) => true [anywhere,structurall

212 rule checkUnionCompatible(s[.Fields] , s[_]) => false [anywhere,structural]

213 rule checkUnionCompatible(s[_] , s[.Fields]) => false [anywhere,structurall

214 rule checkUnionCompatible(s[f(S1:String,T1:DataType,_,_),
Fs1:Fields],s[f(S2:String,T2:DataType,_,_), Fs2:Fields]) =>
checkUnionCompatible (s[Fs1],s[Fs2]) when S1 ==K S2 andBool T1 ==K T2 [anywhere]

215 rule checkUnionCompatible(s[f(S1:String,T1:DataType,_,_),
_1,s[f(S2:String,T2:DataType,_,_), _]1) => false when S1 =/=K S2 orBool T1 =/=K T2
[anywhere]

216 rule isTableElementEqual(e(.Vals),e(.Vals)) => true [anywhere ,structural]

217 rule isTableElementEqual(e(V1:Val,Vsl1:Vals),e(V2:Val,Vs2:Vals)) => false when V1 =/=K
V2 [anywhere]

218 rule isTableElementEqual(e(V1:Val,Vsl:Vals),e(V2:Val,Vs2:Vals)) =>
isTableElementEqual (e(Vs1) ,e(Vs2)) when V1 ==K V2 [anywhere]

219 rule consistOf (r[.TableElements] , E2) => false [anywhere,structurall

220 rule consistOf (r[El1:TableElement ,Ts:TableElements] , E2) => true when
isTableElementEqual (E1,E2) [anywhere]

221 rule consistOf (r[El1:TableElement ,Ts:TableElements] , E2) =>
consistOf (r[Ts:TableElements] , E2) when notBool isTableElementEqual (E1,E2)
[anywhere]

222 rule in( S:String , .Ids ) => false [anywherel]

223 rule in(S:String , I1:Id , Is:Ids) => true when S ==String #tokenToString(I1l)
[anywhere]

224 rule in(S:String , I1:Id , Is:Ids) => in(S, Is) when S =/=String #tokenToString(I1l)
[anywhere]

25 rule num(.Ids) => 0

26 rule num(_, Xs:Ids) => num(Xs) +Int 1

27endmodule
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A.5 SQL Syntax

imodule SQL-SYNTAX
2 imports TABLE

3 syntax Table ::= Stm

4 syntax Stm ::= CreateStm | InsertStm | SelectStm | UpdateStm | DeleteStm | DropStm
5 syntax Stms ::= Stm | Stms Stms [left,structurall

6

7 syntax Table = doGetTableExp (TableExp) [strict]

8 syntax Table
9 syntax Table

doConditionExp (Table ,ConditionExp) [strict]
doProjectionExp(Table ,ProjectionExp) [strict]

11 // Store
12 syntax K ::= "store" Table

14 // Create

15 syntax CreateStm ::= "CREATE" "TABLE" Id "(" FieldDcls ")" ";"

16 | "CREATE" "TABLE" Id "(" FieldDcls "," CreateOptionList ")" ";"
17 syntax ProjectionExp ::= "x" | AsClauseOrCollumns

syntax AsClauseOrCollumn ::= Collumn | AsClause

syntax AsClauseOrCollumns ::= List{AsClauseOrCollumn,","}

syntax AsClause ::= Collumn "AS" Collumn

syntax ConditionExp ::= "WHERE" Exp

N o= O © ®

syntax FieldDcl ::= Id DataType

syntax FieldDcls ::= List{FieldDcl,","}

syntax CreateOption ::= "PRIMARY" "KEY" "(" Ids ")"

syntax CreateOptionList ::= List{CreateOption,","}

syntax K ::= doCreateOption( CreateOptionList , Table)

syntax Schema ::= createSchemaFromCollumns (AsClauseOrCollumns , Schema) [strict]
syntax Fields ::= makeField( FieldDcls ) [strict]

syntax Table ::= setPrimaryKey( Ids, Table ) [strict]

syntax Schema ::= setPrimaryKey( Ids , Schema ) [strict]

-

// Select
syntax SelectStm ::= "SELECT" Exp ";"
| "SELECT" ProjectionExp TableExp ";"
36 | "SELECT" ProjectionExp TableExp ConditionExp ";"

W oW W W W WNNNNNDNNNNLW
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38 // Insert
39 syntax InsertStm ::= "INSERT" "INTO" Id "(" Ids ")" "VALUES" "(" Vals ")" ";"

11 // Delete

12 syntax DeleteStm ::= "DELETE" TableExp ConditionExp ";"

13 syntax Table ::= doDeleteRecords(Table, Exp) [strict (1)]
44 syntax Record deleteAllWhere (Schema ,Record,Exp) [strict(1,2)]
syntax Record ::= delete(TableElement ,Record) [strict]

1
]

7 // Drop
syntax DropStm ::= "DROP" "TABLE" Ids ";"
syntax K ::= dropTable(Ids) [strict]

(SIS I N U NG N
O ©

// Join
syntax Table getTableFromId (Id)
syntax Table ::= getTableFromIds (Ids)

SIS )
[SL I R

syntax TableExp ::= "FROM" Ids [strict]
| "FROM" JoinExp [strict]

SIS IS

o

syntax JoinExp ::= Ids "JOIN" Ids [strict(1,2)]
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59 | Ids "JOIN" Ids JoinCondition [strict (1,2)]
60 | Ids "INNER" "JOIN" Ids [strict(1,2)]
61 | Ids "INNER" "JOIN" Ids JoinCondition [strict (1,2)]
62 | Ids "CROSS" "JOIN" Ids [strict]
63 | Ids "CROSS" "JOIN" Ids JoinCondition [strict]
64 | Ids "LEFT" "JOIN" Ids JoinCondition [strict (1,2)]
65 | Ids "LEFT" "OQUTER" "JOIN" Ids JoinCondition [strict(1,2)]
66 | Ids "RIGHT" "JOIN" Ids JoinCondition [strict(1,2)]
67 | Ids "RIGHT" "OQUTER" "JOIN" Ids JoinCondition [strict(1,2)]
68 | Ids "NATURAL" "JOIN" Ids [strict(1,2)]
69 | Ids "NATURAL" "LEFT" "JOIN" Ids [strict(1,2)]
70 | Ids "NATURAL" "LEFT" "QOUTER" "JOIN" Ids [strict(1,2)]
7 | Ids "NATURAL" "RIGHT" "JOIN" Ids [strict(1,2)]
| Ids "NATURAL" "RIGHT" "OUTER" "JOIN" Ids [strict(1,2)]

[SENTNEVU R R

7 syntax Table ::= joinUsing(Table,Table,Exp,FieldRepls) [strict(1,2,4)]

7 syntax Table ::= leftJoinUsing(Table,Table ,Exp,FieldRepls) [strict(1,2,4)]

7 syntax Table ::= rightJoinUsing(Table,Table ,Exp,FieldRepls) [strict(1,2,4)]
76 syntax Table ::= naturalJoin(Table, Table) [strict]

77 syntax Table ::= naturalleftJoin(Table, Table) [strict]

78 syntax JoinCondition ::= OnClause | UsingClause

79 syntax Table ::= naturalleftJoin(Table, Table) [strict]

80 syntax Table ::= naturalRightJoin(Table,Table) [strict]

8

82 syntax OnClause ::= "ON" Exp

83 syntax UsingClause ::= "USING" "(" Collumns ")"

84 syntax Exp changeCommonCollumnToEqualExp (Id, Id, FieldRepls)

85 syntax KResult ::= FieldRep | FieldEquality

86 syntax FieldEquality ::= FieldRep "=" FieldRep

87 syntax Ids commonField (Schema,Schema) [strict]

88 syntax Bool ::= hasCommonField(Schema,Field) [strict]

8¢

90// Update

91 syntax UpdateStm ::= "UPDATE" Id "SET" AssignValues "WHERE" Exp ";" [strict(1,2)]
92 syntax #AssignValue ::= Id "=" Val

93 | String "=" Val

94 syntax AssignValue ::= #AssignValue

95 | Id "=" Exp [strict]

96 | String "=" Exp [strict]

97 syntax KResult ::= #AssignValue | AsClause

98 syntax AssignValues = List{AssignValue,","}

99 syntax Table ::= doUpdateValues (Table,Exp,AssignValues) [strict(1,3)]
100 syntax Record ::= updateAllWhere(Schema, Record, Exp, AssignValues) [strict (1,2,4)]
101 syntax TableElement update (Schema, TableElement, AssignValues ) [strict]
102 syntax TableElement ::= update2(Schema, TableElement, AssignValue ) [strict]
103 syntax Field ::= changeFieldNameTo(Field,String) [strict]

104 endmodule

1

2
3
3

1
5

A.6 SQL Semantics

module SQL
imports SQL-SYNTAX

// Configuration

configuration <T color = "red">
<k> $PGM:K </k>
<env color =
<store color =

<schema color =
<record color =

"blue">

.Map </env>
"green">

"pink">
"orange">
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</store>
<nextloc color = "yellow"> O </nextloc>
</T>

////**x* Main function **x*////

~

// Delete

rule DELETE FROM I:Id WHERE E:Exp ; => getTableFromId(I) ~> doDeleteRecords (HOLE,E)
“> store HOLE

rule T:#Table ~> doDeleteRecords (HOLE,E) => doDeleteRecords(T,E)

rule doDeleteRecords(I:Id[ S:Schema : R:Record ], E:Exp) => I[ S

deleteAllWhere (S,R,E)]

rule deleteAllWhere(S,r[ .TableElements ], E) => r[ .TableElements ] [structurall
rule deleteAllWhere(S,r[ T:TableElement, Ts:TableElements ], E:Exp) => eval(S,T,E) ~>
delete(T,deleteAllWhere(S,r[ Ts 1, E))

rule true ~> delete(T,D) => D

rule false ~> delete(T,D) => addElement (T,D)

// Update

rule UPDATE I:Id SET A:AssignValue WHERE E:Exp ; => getTableFromId(I) ~>
doUpdateValues (HOLE, E, A) ~> store HOLE

rule T:#Table ~> doUpdateValues (HOLE,E,A) => doUpdateValues(T,E,A)

rule doUpdateValues(I:Id[ S:Schema : R:Record ],E:Exp,As:AssignValues) => I[ S
updateAllWhere (S,R,E,As)]

rule updateAllWhere(S,r[ .TableElements ],E,As:AssignValues) => r[ .TableElements ]
[structurall

rule updateAllWhere(S,r[ T:TableElement, Ts:TableElements],E:Exp,As:AssignValues) =>
eval(S,T,E) ~> update(S,T,As) "> addElement (HOLE, updateAllWhere(S,r[Ts],E,As))
[structurall

rule true ~> update(S,T,As) “> addElement(HOLE, U ) => addElement (update(S,T,As) ,U)
[structurall

rule false ~> update(S,T,As) > addElement(HOLE, U ) => addElement(T,U) [structurall]

rule update(S:Schema, T:TableElement, .AssignValues) => T

rule update(S:Schema, T:TableElement, A:AssignValue , As:AssignValues) =>

update (S,update2(S,T,A),As)

rule update2( _, e(.Vals), A ) => e(.Vals) [structural]

rule update2(s[ f(FName:String,_,_,_), Fs:Fields], e(V:Val , Vs:Vals), F2Name:Id =
VNew:Val) => e(VNew,Vs) when FName ==String #tokenToString (F2Name)

rule update2(s[ f(FName:String,_,_,_), Fs:Fields], e(V:Val , Vs:Vals), F2Name:Id =

VNew:Val) => addTopElement (V,update2(s[Fs], e(Vs), F2Name = VNew)) when FName
=/=String #tokenToString(F2Name)

// Drop

rule DROP TABLE Ts:Ids ; => dropTable(Ts)

rule dropTable( .Ids ) =>

rule <k> dropTable(I1:Id, Ids) => dropTable(Ids) </k>

<env> ... ((I1 => NULL) |-> L:Int) ... </env>
<store>
<schema> ... (L |-> (S => NULL)) ... </schema>
<record> ... (L |-> (R => NULL)) ... </record>
</store>
// Get Table
rule <k> getTableFromId(I:Id) => I[ S : R] ... </k>
<env> ... (I |-> L:Int) ... </env>
<store>
<schema> ... (L |-> 8) ... </schema>
<record> ... (L |-> R) ... </record>
</store>
rule getTableFromIds( I:Id ) => getTableFromId(I) [structural ,anywhere]

rule getTableFromIds(I1:Id, Is:Ids) => join(getTableFromId(Il1),getTableFromIds(Is))
[anywhere]
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59 // Store

60 rule <k> I:Id[ S:#Schema : R:#Record] ~> store HOLE => . ... </k>
61 <env> ... I |->L ... </env>

62 <store>

63 <schema> ... L |-> (_ => 8) ... </schema>

64 <record> ... L |-> (_ =>R) ... </record>

65 </store>

66 rule <k> I:Id[ S:#Schema : R:#Record] ~> store HOLE => . ... </k>
67 <env> ... . =>1 |-> L </env>

68 <store>

L |-> S </schema>
L |-> R </record>

69 <schema>
70 <record>
</store>

<nextloc> L:Int => L +Int 1 </nextloc>

>
>

[
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rule store T:Table => T ~> store HOLE [structurall]

// Create

rule S1:Stms S2:Stms => S1 ~> S2 [structurall

rule CREATE TABLE TNAME:Id ( FDcls:FieldDcls ) ; =>
changeFieldNameCorrespondToTable (TNAME [s[ makeField( FDcls )] : r[ .TableElements ]
1) "> store HOLE

79 rule CREATE TABLE Id ( FDcls:FieldDcls , Opt:CreateOptionList ) ; =>
changeFieldNameCorrespondToTable (doCreateOption(Opt,Id[s[ makeField( FDcls )]

r[.TableElements ]1])) ~> store HOLE

1~
1o

0

81 rule makeField (.FieldDcls) => .Fields [structural,anywhere]
82 rule makeField(I:Id T:DataType, Dcls:FieldDcls) => f (#tokenToString(I) , T
,false,false) , makeField(Dcls) [anywhere]

84 rule doCreateOption( .CreateOptionList , T) => T
85 rule doCreateOption (PRIMARY KEY (KIds:Ids), Opt:CreateOptionList , T:Table) =>
doCreateOption(Opt, setPrimaryKey (KIds,T))

87 // Insert

88 rule <k> (INSERT INTO I:Id(Fs:Ids) VALUES (Vs:Vals) ; => .) ... </k>

89 <env> ... I |-> L ... </env>

90 <store>

91 <schema> ... L |[-> S ... </schema>

92 <record> ... (L |-> (r[ Es ] => concat(r[Es],r[e(Vs)]))) ... </record>
93 </store>

94

95 // Select

96 rule SELECT E:Exp ; => E
97 rule <k> SELECT P:ProjectionExp T:TableExp ;

98 => doGetTableExp(T) ~> doProjectionExp( HOLE , P ) ... </k>
99 rule <k> SELECT P:ProjectionExp T:TableExp C:ConditionExp ; => doGetTableExp(T) ~>
doConditionExp( HOLE , C ) > doProjectionExp( HOLE , P ) ... </k>

100 rule T:#Table ~> doConditionExp (HOLE,C) => doConditionExp( T , C) [structurall]

101 rule T:#Table ~> doProjectionExp( HOLE , P) => doProjectionExp(T,P) [structurall

102 rule doConditionExp(T:Table , WHERE E:Exp ) => select(T,E) [anywhere]

103 rule doProjectionExp(T:Table, * ) => T [anywhere]

104 rule doProjectionExp(T:Id[ S:Schema : R:Record], As:AsClauseOrCollumns) =>
project ((T[ S : R ]),createSchemaFromCollumns( As,S )) [anywherel

105

106 ////**** Auxiliary function *x**xx////

107 rule changeFieldNameTo (f(FN1,D:DataType,B1:Bool,B2:Bool) ,FN2:String) =>
f(substrString (FN1,0, (findChar (FN1,".",0) +Int 1)) +String FN2,D,B1,B2) [anywhere]

108 rule createSchemaFromCollumns( .AsClauseOrCollumns , S:Schema) => s[ .Fields 1]
[anywhere,structural]
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109 rule createSchemaFromCollumns (C:Collumn,Cs:AsClause0OrCollumns,S:Schema) =>

110 addElement ( getFieldFromSchema(C,S) , createSchemaFromCollumns(Cs,S)) [anywhere]

111 rule createSchemaFromCollumns (Cl:Collumn AS I:Id, Cs:AsClauseOrCollumns,S:Schema) =>

112 addElement ( changeFieldNameTo (getFieldFromSchema(C1,S), #tokenToString(I) ) ,
createSchemaFromCollumns (Cs,S)) [anywhere]

113 rule createSchemaFromCollumns (Cl1:Collumn AS ¢ I:Id ¢, Cs:AsClauseOrCollumns,S:Schema)
=> addElement( changeFieldNameTo (getFieldFromSchema(C1,S), #tokenToString(I) ) ,
createSchemaFromCollumns (Cs,S)) [anywhere]

115 rule setPrimaryKey( KIds:Ids, TName:Id[ S : R]) => TName[setPrimaryKey(KIds, S)
R] [anywhere]

116 rule setPrimaryKey( KIds:Ids , s[.Fields]) => s[.Fields] [anywhere]l

117 rule setPrimaryKey( KIds:Ids , s[f( S:String , T:DataType , Bl1, B2 ) , Fs:Fields] )
=> addElement( £(S,T,true,B2) , setPrimaryKey(KIds, s[Fs])) when in(S,KIds)
[anywhere]

118 rule setPrimaryKey( KIds:Ids , s[f( S:String , T:DataType , B1, B2 ) , Fs:Fields] )
=> addElement( £(S,T,B1,B2) , setPrimaryKey(KIds, s[Fs])) when notBool in(S,KIds)
[anywhere]

120 rule doGetTableExp (FROM Is:Ids) => getTableFromIds (Is)

121 rule doGetTableExp (FROM Isl:Ids JOIN Is2:Ids) =>
join(getTableFromIds (Isl),getTableFromIds (Is2))

122 rule doGetTableExp (FROM Isl1:Ids JOIN Is2:Ids ON E:Exp) =>
join(getTableFromIds (Isl),getTableFromIds (Is2) ,E)

123 rule doGetTableExp (FROM Is1:Id JOIN Is2:Id USING(Fs:FieldRepls)) =>
joinUsing (getTableFromIds (Is1),getTableFromIds (Is2),
changeCommonCollumnToEqualExp (Is1,Is2,Fs),Fs)

125 rule doGetTableExp (FROM Isl:Ids INNER JOIN Is2:Ids) =>
join(getTableFromIds (Isl),getTableFromIds (Is2))

126 rule doGetTableExp (FROM Is1:Ids INNER JOIN Is2:Ids ON E:Exp) =>
join(getTableFromIds (Isl) ,getTableFromIds (Is2) ,E)
127 rule doGetTableExp (FROM Is1:Id INNER JOIN Is2:Id USING(Fs:FieldRepls)) =>

joinUsing (getTableFromIds (Isl),getTableFromIds (Is2),
changeCommonCollumnToEqualExp (Isl,Is2,Fs),Fs)

129 rule joinUsing(T1:Id[S1:Schema : R1:Record] , T2:Id[S2:Schema : R2:Record] , E:Exp ,
Fs:FieldRepls) => join(T1:Id[S1:Schema : Rl:Record] , T2:Id[S2:Schema : R2:Record] ,
E:Exp) ~> project (HOLE, concat(S1,excludeFields(S2,Fs)))

130 rule T:#Table ~> project(HOLE,S) => project(T,S) [structurall

131

132 rule doGetTableExp (FROM Is1:Ids LEFT JOIN Is2:Ids ON E:Exp) => leftJoin(
getTableFromIds (Is1l), getTableFromIds(Is2) ,E)

133 rule doGetTableExp (FROM Isl:Id LEFT JOIN Is2:Id USING(Fs:FieldRepls)) =>
leftJoinUsing( getTableFromIds(Isl),
getTableFromIds (Is2),changeCommonCollumnToEqualExp (Isl,Is2,Fs) ,Fs)

134 rule doGetTableExp (FROM Is1:Ids LEFT OUTER JOIN Is2:Ids ON E:Exp) => leftJoin(
getTableFromIds (Is1), getTableFromIds(Is2) ,E)
135 rule doGetTableExp (FROM Is1:Id LEFT OUTER JOIN Is2:Id USING(Fs:FieldRepls)) =>

leftJoinUsing( getTableFromIds(Isl),
getTableFromIds (Is2),changeCommonCollumnToEqualExp (Isl1,Is2,Fs),Fs)

137 rule leftJoinUsing(T1:Id[S1:Schema : R1:Record] , T2:Id[S2:Schema : R2:Record] ,
E:Exp , Fs:FieldRepls) => leftJoin(T1:Id[S1:Schema : Rl1:Record] , T2:Id[S2:Schema
R2:Record] , E:Exp) “> project(HOLE,concat(S1l,excludeFields(S2,Fs)))

138 rule doGetTableExp (FROM Is1:Ids RIGHT JOIN Is2:Ids ON E:Exp) => rightJoin(
getTableFromIds (Is1),getTableFromIds (Is2),E)

139 rule doGetTableExp (FROM Isl:Id RIGHT JOIN Is2:Id USING(Fs:FieldRepls)) =>
rightJoinUsing (
getTableFromIds (Isl),getTableFromIds(Is2),changeCommonCollumnToEqualExp(Isl,Is2,Fs) ,Fs)

140 rule doGetTableExp (FROM Is1:Ids RIGHT OUTER JOIN Is2:Ids ON E:Exp) => rightJoin(
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getTableFromIds (Isl),getTableFromIds (Is2) ,E)

141 rule doGetTableExp (FROM Isl1:Id RIGHT OUTER JOIN Is2:Id USING(Fs:FieldRepls)) =>
rightJoinUsing (
getTableFromIds (Isl),getTableFromIds(Is2),changeCommonCollumnToEqualExp(Isl,Is2,Fs),Fs)

143 rule rightJoinUsing(T1:Id[S1:Schema : R1:Record] , T2:Id[S2:Schema : R2:Record] ,
E:Exp , Fs:FieldRepls) => rightJoin(T1:Id[S1:Schema : Ri1:Record] , T2:Id[S2:Schema
R2:Record] , E:Exp) ~> project (HOLE,concat (excludeFields(S1,Fs),S2))

145 rule doGetTableExp (FROM Is1:Ids CROSS JOIN Is2:Ids) => catesian(
getTableFromIds (Isl), getTableFromIds (Is2))

146 rule doGetTableExp (FROM Isl:Ids CROSS JOIN Is2:Ids ON E:Exp) => join(
getTableFromIds (Is1l), getTableFromIds(Is2) ,E)

147 rule doGetTableExp (FROM Is1:Id CROSS JOIN Is2:Id USING(Fs:FieldRepls)) => joinUsing(
getTableFromIds (Isl), getTableFromIds (Is2),
changeCommonCollumnToEqualExp(Is1,Is2,Fs) ,Fs)

149 rule doGetTableExp (FROM Isl1:Id NATURAL JOIN Is2:Id) =>
naturalJoin(getTableFromIds (Isl),getTableFromIds (Is2))

1
151 rule naturalJoin(T1:Id[ S1:Schema : Ri1:Record ], T2:Id[ S2:Schema : R2:Record ]) =>
joinUsing (T1[ S1 : R1],T2[ S2 : R2
],changeCommonCollumnToEqualExp (T1,T2, commonField (S1,S82)),commonField(S1,82))

53 rule doGetTableExp (FROM Isl:Id NATURAL LEFT JOIN Is2:Id) =>
naturallLeftJoin(getTableFromIds (Isl) ,getTableFromIds (Is2))

154 rule doGetTableExp (FROM Isl1:Id NATURAL LEFT OUTER JOIN Is2:Id) =>

naturallLeftJoin(getTableFromIds (Isl),getTableFromIds (Is2))

156 rule naturallLeftJoin(T1:Id[ S1:Schema : Ri1:Record ], T2:Id[ S2:Schema : R2:Record
1) => leftJoinUsing(T1[ S1 : R1],T2[ S2 : R2
],changeCommonCollumnToEqualExp (T1,T2, commonField (S1,S82)),commonField(S1,82))

58 rule doGetTableExp (FROM Isl:Id NATURAL RIGHT JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds (Isl1),getTableFromIds (Is2))

159 rule doGetTableExp (FROM Isl1:Id NATURAL RIGHT OUTER JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds (Isl),getTableFromIds (Is2))

160

161 rule changeCommonCollumnToEqualExp( T1:Id, T2:Id, .FieldRepls ) => true [anywhere]

162 rule changeCommonCollumnToEqualExp( T1:Id, T2:Id, F1:Id , Fs:FieldRepls ) =>
(((T1.F1 = T2.F1):Exp) && (changeCommonCollumnToEqualExp(T1:Id4,T2:1Id,
Fs:FieldRepls))) [anywherel

163 rule changeCommonCollumnToEqualExp( T1:Id, T2:Id , ¢ F1:Id ¢ , Fs:FieldRepls ) =>
(((T1.F1 = T2.F1):Exp) && (changeCommonCollumnToEqualExp(T1:Id,T2:Id,
Fs:FieldRepls))) [anywhere]

164

165 rule naturallLeftJoin(T1:Id[ S1:Schema : R1:Record ], T2:Id[ S2:Schema : R2:Record
1) => leftJoinUsing(T1[ S1 : R1],T2[ S2 : R2
],changeCommonCollumnToEqualExp (T1,T2, commonField (S1,82)),commonField (S1,52))

166

167 rule doGetTableExp (FROM Is1:Id NATURAL RIGHT JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds (Isl),getTableFromIds(Is2))

168 rule doGetTableExp (FROM Isl1:Id NATURAL RIGHT OUTER JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds (Isl1),getTableFromIds (Is2))

169

170 rule changeCommonCollumnToEqualExp( T1:Id, T2:Id , ¢ F1:Id ¢ , Fs:FieldRepls ) =>

(((T1.F1 = T2.F1):Exp) && (changeCommonCollumnToEqualExp(T1:Id4,T2:1Id,

Fs:FieldRepls))) [anywherel]

17
172 rule commonField(s[.Fields],S2:Schema) => .Ids [anywhere]
173 rule commonField(s[f(FN1:String,D,B1,B2), Fs:Fields],S2:Schema) =>
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3 9 -
SN

hasCommonField (S2,f (FN1:String,D,B1,B2)) ~>
if (HOLE, String2Id (substrString (FN1,(findChar (FN1,".",0) +Int 1),lengthString(FN1)))
, commonField(s[Fs],S2),commonField(s[Fs],S2)) [anywhere]

rule hasCommonField(s[ .Fields ], _ ) => false [anywhere]
rule hasCommonField (s[f(FN1:String,D,B1,B2), Fs:Fields],f(FN2:String,_,_,_)) => true
when substrString (FN1,(findChar (FN1,".",0) +Int 1),lengthString(FN1)) ==String

substrString (FN2, (findChar (FN2,".",0) +Int 1),lengthString(FN2)) [anywhere]
rule hasCommonField(s[f(FN1:String,D,B1,B2), Fs:Fields],f(FN2:String,D2,B3,B4)) =>
hasCommonField (s [Fs],f(FN2,D2,B3,B4)) when substrString(FN1,(findChar (FN1,".",0)
+Int 1),lengthString(FN1)) =/=String substrString(FN2,(findChar (FN2,".",0) +Int
1) ,1lengthString (FN2)) [anywherel]

178 endmodule
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