
Modeling Urgency in Component-Based

Real-time Systems

Nguyen Van Tang1, Dang Van Hung2, Mizuhito Ogawa1

1 Japan Advanced Institute of Science and Technology
E-mail: {tang−nguyen,mizuhito}@jaist.ac.jp

2 United Nation University, International Institute for Software Technology
E-mail: dvh@iist.unu.edu

Abstract. A component-based realtime system is a simple model for
the server-client relation with time constraints. This paper presents an
efficient algorithm, called a blackbox testing algorithm, for detecting the
emptiness of a component-based realtime system. This algorithm was
originally proposed in [5], but with a certain flaw. We improve it and
correct the flaw by using urgency [2] of transitions.

Keywords: Component Software, Duration Automata, Automatic Ver-
ification, Real-time Systems, Model Checking.

1 Introduction

The architectural design for embedded systems often relies on specification of the
interface of components only, without accessing their internal behaviors. Based
on this observation, a simple model for component-based real-time systems based
on duration automata was proposed in [5]. A duration automaton does not have
clock variables like a time automaton [1], but simply has an upper bound and a
lower bound for each transition. A component-based real-time system is defined
as a system consisting of a host, which is a general duration automaton, and
several components which are duration automata with certain restrictions. A
component-based real-time system can be regarded as a timed automaton, thus
its emptiness is PSPACE-complete.

This paper presents an efficient algorithm for detecting the emptiness, called
a blackbox testing algorithm. This algorithm was originally proposed in [5], but
with certain flaws. We improve it and correct these flaws by using urgency of
transitions, which was firstly introduced by Bornot et. al. [2] as a technique for
choosing time deadline condition in complex system specifications.

2 Duration Automata

Duration automata was firstly introduced in [3] for modeling simple real-time
systems. A duration automaton is a finite automaton in which each transition
must occur in an associated time interval. Let R+ be the set of non-negative real
numbers, and let Intv = {[l, u] | l ∈ R+, u ∈ R+ ∪ {∞}}.

Definition 1. A duration automaton is a tuple M = 〈S, Σ̃, q, R, F 〉, where

1. S is a finite set of states,
2. Σ̃ is alphabet of actions,
3. q ∈ S is the initial state,
4. R ⊆ S × Σ̃ × Intv × S is timed transition relation, and
5. F ⊆ S is the set of final states.

Each element of M is referred by S(M), Σ̃(M), R(M), q(M), and F (M), re-
spectively. An untimed automaton untimed(M) is obtained by forgetting time
constraints, i.e., replacing R with untimed(R) = {(s, a, s′)|(s, a, [l, u], s′) ∈ R}.
As in standard terminology,

– A configuration of M is a pair (s, d) ∈ S × R+.
– The initial configuration of M is (q, 0).
– An acceptance configuration of M is a configuration (s, d) where s ∈ F .

A duration automaton is equivalent to a timed automata with a single clock
such that each transition resets it. A configuration (s, d) is regarded as a state s
with a clock d.

– A transition of M on configurations is either a time transition (s, d) δ−→
(s, d + δ) or a discrete transition (s, d) δ−→ a−→ (s′, 0) where a ∈ Σ̃, δ ≥ 0,
l ≤ d+ δ ≤ u, and (s, a, [l, u], s′) ∈ R.

– A (possibly empty) sequence w = (a1, t1)...(ak, tk) ∈ (Σ̃ × R+)∗ is a timed
word of M if and only if there is a run (s0, 0) δ1−→ a1−→ (s1, 0) δ2−→ a2−→ ...

δk−→ ak−→
(sk, 0) such that s0 = q, sk ∈ F , t1 = δ1 and ti+1−ti = δi+1 for 1 ≤ i ≤ k−1.

Theorem 1. Duration automata is closed under union, intersection and com-
plementation. Decision problems for duration automata are decidable.

Proof. (Sketch) For a given duration automaton M , one can reduce M to a
finite automaton M ′. We first list the endpoints of intervals (lower and up-
per bounds of intervals) of transitions in M as an increasing sequence, say,
0 = p0 < p1 < p2... < pn < ∞. This is possible because the number of
transitions of M is finite. Secondly, we define the set of basic intervals BI =
{[p0, p1], ..., [pn−1, pn], [pn,∞)}. Since each interval appeared in a transition of
M is the union of certain basic intervals. So, each transition of M can be
divided into several ones. For instance, (s, a, [p0, p2], s′) can be divided into
(s, a, [p0, p1], s′) and (s, a, [p1, p2], s′). We now construct a finite automaton M ′

such that S(M ′) = S(M), F (M ′) = F (M), the input alphabet ofM ′ is Σ̃(M ′) =
Σ̃(M) × BI. Let (s, (a, [pi, pi+1]), s′) ∈ R(M ′) if (s, a, [pi, pi+1], s′) ∈ R(M).
Clearly, M ′ accepts a word (a1, [l1, u1])...(an, [ln, un]) if and only if M accepts
the timed word (a1, t1)...(an, tn), where t0 = 0 and (li ≤ ti − ti−1 ≤ ui) for
1 ≤ i ≤ n. Thus, the emptiness and the closure properties of duration automata
are reduced to that of finite automata, respectively. �

3 Synchronized Composition Systems

Duration interface automata is duration automata in which the input alphabet
Σ̃ is decomposed into pairwise disjoint alphabets Σ,Δ and ∇, which correspond
to internal, input and output actions, respectively.

Definition 2. A host is a duration interface automaton. A component is a
duration interface automaton X = 〈S,Σ ∪Δ ∪∇, q, R, F 〉 that satisfies:

– Σ = ∅ (i.e., no “explicit” internal actions).
– (s, a, [l, u], s′) ∈ R ∧ a ∈ Δ implies l = 0 ∧ u = ∞ (i.e., an input can occur

anytime).
– (s, a, [l, u], s′) ∈ R ∧ a ∈ ∇ implies u = ∞ (i.e., when an output is ready, it

can be sent at any time afterward).

Definition 3. A synchronized composition system Sys = 〈M,X1, · · · , Xk〉 con-
sists of a single host M and components X1, · · · , Xk such that Σ̃(Xi)∩Σ̃(Xj) = ∅
for each i �= j, Σ(M) ∩ Σ̃(Xi) = ∅ for each i, Δ(M) =

⋃k
i=1 ∇(Xk), ∇(M) =

⋃k
i=1Δ(Xk), and

– The set of configurations is {((s0, d0), (s1, d1), · · · , (sk, dk) | s0 ∈ S(M), s1 ∈
S(X1), · · · , sk ∈ S(Xk), di ∈ R+}.

– A transition is ((s0, d0), (s1, d1), .., (sk, dk)) δ−→ a−→ ((s′0, d
′
0), (s

′
1, d

′
1), .., (s

′
k, d

′
k))

for δ ≥ 0 and a ∈ ⋃k
i=1 Σ̃(Xi), if there exists i with 1 ≤ i ≤ k such that

• a ∈ Σ̃(Xi),
• l0 ≤ d0 + δ ≤ u0 and li ≤ di + δ ≤ ui (called synchronization condition)

for (si, a, [li, ui], s′i) ∈ R(Xi) and (s0, a, [l0, u0], s′0) ∈ R(M),
• d′0 = d′i = 0, and
• (s′j , d

′
j) = (sj , dj + δ) for j �= 0, i.

– A run is a sequence of transitions that starts from the initial configuration
((q(M), 0), (q(X1), 0), · · · , (q(xk), 0)).

– A timed word (a1, t1) · · · (ak, tk) with t1 = δ1 and ti+1 = ti + δi+1 is accepted
if there is a run ((q(M), 0), (q(X1), 0), · · · , (q(xk), 0)) δ1−→ a1−→ · · · δk−→ ak−→
((s0, d0), (s1, d1), .., (sk, dk)) with s0 ∈ F (M), s1 ∈ F (X1), · · · , sk ∈ F (Xk).

Theorem 2. A synchronized composition system Sys = 〈M,X1, · · · , Xk〉 is a
timed automaton with k+1 clocks such that each transition with a time constraint
li ≤ di ≤ ui on a clock di will reset di to 0.

Proof. (Sketch) Let C be the set of time constraints [lj, uj] appearing in a host
M and components Xi. Note that lj , uj ∈ R

+. Assume that we can choose C′ (a
digitization of C) consisting of rational time constraints [l′j , u

′
j] such that there is

a run of Sys if and only if there is a run of Sys′, where Sys′ is obtained replacing
each [lj , uj] with its digitization [l′j , u

′
j]. Then, the proof has done.

Let rat(C) be the set of rational numbers appearing in C and let m be a
common multiplier of dominators of positive elements in rat(C). Let irr(C) be the
set of irrational numbers appearing in C and let lin(C) be the set of all possible

linear combinations of irr(C) with natural numbers (i.e., lin(C) = {n1α1 + · · ·+
nlαl | nj ∈ N, αj ∈ irr(C)}). Assume that (α, β) is the pair such that α ∈ irr(C),
β ∈ lin(C), and εα,β = α

β − [α
β] > 0. Since a pair (α, β) with α ∈ irr(C),

β ∈ lin(C), and β < α is finitely many, (α, β) with εα,β to be the least exists.
We choose a sufficient large multiplier m̄ of m such that 1

m̄ < min(εα,β

2 ,
1−εα,β

2),
and set l′j = [m̄lj]

m̄ and u′j = [m̄uj]
m̄ for each lj, uj ∈ C. �

Example 1. Fig. 3 shows a simple synchronized composition system Sys = 〈X1, X2〉
and its corresponding timed automaton A.

q2q1q0

s1,q1s0,q0 s2,q1
c

c, [1,5]a, [0,3]

b

x: =0
y: =0

a

Sys = <M,X1>

s3,q2

s1s0 s2
c,[2,3]b,[0,1]a, [1,2]

s3

Timed
Automaton A

1 <= x <= 2, x:=0
0 <= y <= 3,

 y:=0
0 <= x <= 1,

x:=0
2 <= x <= 3
1 <= y <= 5

Fig. 1. Synchronized Composition System as a Timed Automaton

From Theorem 2, the emptiness problem of a component-based realtime sys-
tem is decidable. However, its complexity is expensive, i.e., PSPACE-complete [1]
after digitization of time constraints.

4 Component-based realtime systems

Definition 4. A component X is input/output deterministic if

– for a ∈ Δ(X), (s, a, [0,∞), s′), (s, a, [0,∞), s”) ∈ R(X) implies s” = s′ (in-
put determinism), and

– for b ∈ ∇(X) and b′ ∈ ∇(X)∪Δ(X), (s, b, [l,∞), s′), (s, b′, [l′, u′], s”) ∈ R(X)
implies s” = s′, l′ = l, u′ = ∞, and b′ = b (output determinism).

A synchronized composition system Sys = 〈M,X1, · · · , Xk〉 is a component-
based realtime system [5] if each component Xi is input/output deterministic.

Definition 5. We borrow notations from Definition 3. In a component-based
system Sys = 〈M,X1, · · · , Xk〉, a transition ((s0, d0), (s1, d1), .., (sk, dk)) δ−→ a−→
((s′0, d

′
0), (s

′
1, d

′
1), .., (s

′
k, d

′
k)) is urgent if δ is the minimum among synchroniza-

tion conditions of all possible transitions from ((s0, d0), (s1, d1), .., (sk, dk)), and
delayable otherwise. We also say a corresponding transition (s0, a, [l0, u0], s′0) ∈
R(M) of a host is urgent, and delayable otherwise.

Definition 6. Let w = (a1, t1) · · · (ak, tk) and let ai ∈ A. For B ⊆ A, the
projection w|B is the subsequence of w obtained by filtering each element (aj , tj)
with aj ∈ B. For aj ∈ B, (ah, th) is a local predecessor of (aj , tj) wrt B, if
ah ∈ B, h < j, and ai �∈ B for each i with h < i < j.

Definition 7. Let Sys = 〈M,X1, · · · , Xk〉 be a component-based real-time sys-
tem. For a timed word w = (a1, t1)...(an, tn), let aj ∈ ∇(Xi) and let (ah, th) be
the local predecessor of (aj , tj) wrt Σ̃(Xi). For (s′, aj , [dj ,∞), s”) ∈ R(Xi) with

q(Xi)
untime(w|Σ̃(Xi)

)−−−−−−−−−−−→ s′ in untimed(Xi), dj is the minimum delay at (aj , tj).

Definition 8. A consecutive sequence of transitions (si−1, ai, [li, ui], si) ∈ R(M)
(i = 1, · · · , n) is called an accepted sequence of transitions of the host M if
s0 = q(M) and sn ∈ F (M).

Note that such a minimum delay is well-defined, since each component in Sys
is input/output deterministic. Let r be the number of states of M , and let m is
the maximal number of states of components Xj , j ≤ k. Let P be the length of
the longest path (number of transitions) from the initial state to a final state of
M in which any cycle is not repeated more than r ∗mk times. The next theorem
reduces the emptiness of a whole component-base realtime system to that of its
host under certain conditions.

Theorem 3. Let Sys = 〈M,X1, · · · , Xk〉 be a component-based realtime system.
There is an accepted timed word of Sys if and only if there are an accepted
sequence of transitions of the host M σ = (s0, a1, [l1, u1], s1)(s1, a2, [l2, u2], s3)...
(sn−1, an, [ln, un], sn) with the length n ≤ P , and a real number sequence 0 =
t0 ≤ t1 ≤ · · · ≤ tn satisfying following conditions:

– wi = a1a2...an|Σ̃(Xi)
is accepted by untimed(Xi) for each i with 1 ≤ i ≤ k,

– li ≤ ti − ti−1 ≤ ui for all i with 1 ≤ i ≤ n,
– When aj ∈ ∇(Xi), let (ah, th) be the local predecessor of (aj , tj) wrt Σ̃(Xi)

and let dj be the minimum delay at (aj , tj). Then,
• tj − th ≥ dj , and
• if a transition (sj , 0) δ−→ aj−→ (sj+1, 0) is urgent, tj = min {t | t − th ≥
dj ∧ lj ≤ t− tj−1 ≤ uj}.

Proof. (Sketch) We only have to prove the bound P in “only if” part. Assume
that a timed word w = (a1, t1) · · · (an, tn) is accepted by Sys. Timed word w
is inductively computed by constructing an accepted sequence of transitions
φ = (s0, a1, [l1, u1], s1)(s1, a2, [l2, u2], s3) · · · (sn−1, an, [ln, un], sn) of the host M .
If n ≤ P , the proof is done. If n > P , then φ must include at least a cycle c with
more than r ∗mk repetitions. By the pumping lemma like argument, we can find
a shorter accepted sequence of transitions of M that satisfies all the conditions
in the Theorem. �

In the next section, the blackbox testing algorithm will be presented by
searching an accepted sequence of the host M satisfying the conditions in The-
orem 3 up to the length P .

5 Checking Emptiness of Component-based Realtime
Systems

The emptiness problem for a system plays a key role in checking the safety.
An algorithm for checking the emptiness of a component-based system using
black box testing was originally proposed in [5]. However, there is a flaw such
that a component-based realtime system is empty, whereas the algorithm in [5]
reports that the system is not empty. For instance, consider the following simple
example.

Example 2. Let Sys = 〈M,X〉 where M is a host and X is a component.

– M = 〈{s0, s1, s′1}, {a}, s0, {(s0, a, [2, 4], s1), (s0, a, [5, 10], s′1)}, {s′1}〉.
– X = 〈{q0, q1}, {a}, q0, {(q0, a, [3,∞), q1)}, {q1}〉.

In [5], the state (s′1, q1) is regarded as a successor of (s0, q0). But, (s′1, q1) is not
reachable from (s0, q0). This is due to the fact that Sys has already changed
from (s0, q0) to (s1, q1) at some point in the time interval [3,4].

To deal with this problem, we introduce urgency for transitions to specify
time deadline condition of configurations. For the emptiness problem, we first
use the BlackboxTest algorithm proposed in [5] for solving membership for a
component. Secondly, we construct Algorithm 1 to compute time deadline condi-
tion of a given configuration. Lastly, with the aid of Algorithm 1 and Theorem 3,
we construct Algorithm 2 to check the emptiness of a component-based system
using black box testing.

For a sequence of transitions φ, let label(φ) denote the sequence of the labels
corresponding to φ. For a given prefix of a generated sequence of transitions
σ = e1e2...en, where ei = (si−1, ai, [li, ui], si) ∈ R(M) (i =1..n). Suppose that
t0, t1, ..., tn are inductively computed in advance. Time deadline of sn along σ is
denoted by deadlineσ(sn). It can be computed by the following algorithm:

Algorithm 1. Deadlineσ(sn): (Check the conditions (2) and (3) of Theorem 3)

Input: A prefix-generated sequence σ = e1e2...en

Output: deadlineσ(sn).
Method:

1. Compute the set R(sn) := {e | e = (sn, a, [l, u], s) ∈ R(M)}.
2. deadline := ∞. For j ≤ k let mj be the largest index of σ such that amj ∈
Σ̃(Xj) if it exists, otherwise, set mj = 0. For each e = (sn, a, [l, u], s) ∈
R(sn).
(a) If a ∈ �(Xj)∪Σ(M), if BlackboxTest(Xj , label(σ)|Σ̃(Xj))= “yes” and
u < deadline then deadline := u.

(b) If a ∈ ∇(Xj). If BlackboxTest(Xj , label(σ)|Σ̃(Xj)
) = “yes”, let d be

the value of dXj .

– Case 1: e is delayable. If tn − tmj + u ≥ d and u < deadline then
deadline := u.

– Case 2: e is urgent.
• If tn − tmj + l ≤ d ≤ tn − tmj + u and d− (tn − tmj) < deadline

then deadline := d− (tn − tmj).
• If tn − tmj + l ≥ d and l < deadline then deadline := l.

3. return Delainey;

With the aid of the Algorithm 1, the emptiness of a component-based real-
time system can be solved by the following testing procedure.

Algorithm 2. Non-Emptiness(Sys): (Check all conditions of Theorem 3)

Input: Component-based real-time system Sys = 〈M,X1, · · · , Xk〉
Output: “Yes” if the set of timed words of Sys is not empty, “No” otherwise.
Method:

1. Compute P . Generate all accepted sequences of transitions of M with length
less than P .

2. Check on-the-fly whether any prefix of a generated sequence satisfies the
conditions of Theorem 3. This can be done by:
For each prefix of a generated sequence of transitions σ = e1...en−1, where
ei = (si−1, ai, [li, ui], si) for each i with 1 ≤ i ≤ n−1. Suppose that t0, t1, ...tn
are inductively computed in advance. For j ≤ k let mj be the largest index
of σ such that amj ∈ Σ̃(Xj) if it exists, otherwise, let mj = 0. For each
transition en = (sn−1, an, [l, u], s) of the hostM starting from sn−1. Compute
deadlineσ(sn−1) using Algorithm 1. If l ≤ deadlineσ(sn−1) then:
(a) If an ∈ �(Xj), then if: BlackboxTest(Xj , label(σ)|Σ̃(Xj)

) = “no”,
σen does not satisfy the conditions of Theorem 3. Otherwise, σ := σen,
mj := n. If en is delayable then tn := tn−1 + u. If en is urgent then
tn := tn−1 + l.

(b) If an ∈ ∇(Xj).
If BlackboxTest (Xj , label(σ)|Σ̃(Xj)

) = “yes”, let d be the value of dXj .
Case 1: If en is delayable
i. If tn−1 − tmj + u < d : then σen does not satisfy the conditions of

Theorem 3.
ii. If tn−1 − tmj + u ≥ d : then σ := σen, mj := n, tn := tn−1 + u.

Case 2: If en is urgent
i. If tn−1 − tmj + u < d then σen does not satisfy the conditions of

Theorem 3.
ii. If (tn−1 − tmj + l) < d ≤ (tn−1 − tmj + u) then the conditions of

Theorem 3 are satisfied; update σ := σen, tn := tmj + d, mj := n.
iii. If tn−1 − tmj + l ≥ d then update σ := σen, tn := tn−1 + l, mj := n.

If BlackboxTest(Xj , label(σ)|Σ̃(Xj)
) =“no”, the conditions of Theo-

rem 3 are not satisfied.
(c) If an ∈ Σ(M) then σ := σen, tn := tn−1 + u.

3. If a generated sequence satisfying the conditions of Theorem 3 is found,
return “Yes”. Otherwise, return “No”.

The complexity for the worst cases of this algorithm is O(P 2 ∗KP+1), where
K = |Σ̃(M)| is the size of the alphabet of the system Sys. Unlike the complexity
of checking the emptiness for timed automata, this complexity does not depend
on the size of the constants occurring in the time intervals for the transitions.

6 Conclusion

This paper presented an efficient algorithm for detecting the emptiness, called
a blackbox testing algorithm. This algorithm was originally proposed in [5], but
with a certain flaw. We improved and correctd it by using urgency of transitions,
which was firstly introduced by Bornot et. al. [2] as a technique for choosing time
deadline condition in complex system specifications. The urgency enables us to
compute the deadline of an accepted behavior of a system using Algorithm 2.

Currently, the algorithm covers checking emptiness only. With the urgency,
we can describe a property in Timed Computation Tree Logic (TCTL), such as
φ =⇒ F≤tψ. The next step is to give an efficent checking algorithm for such
TLCL properties of a component-based realtime system.

Acknowledgments

This research is supported by the 21st Century COE “Verifiable and Evolvable
e-Society” funded by Japanese Ministry of Education, Culture, Sports, Science
and Technology.

References

1. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126: 183-235, 1994.

2. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In COM-
POS 1997, 103-129, Springer LNCS 1536, 1997.

3. Zhou Chaochen. Linear Duration Invariants. In Formal Techniques in Real-Time
and Fault-Tolerant Systems, pp. 86-109, Springer LNCS 963, 1994.

4. Zhe Dang and Gaoyan Xie. CTL model-checking for systems with unspecified finite
state components. In SAVCBS’04, ACM SIGSOFT 2004/FSE-12, pp. 32-38, 2004.

5. Dang Van Hung and Bui Vu Anh. Model Checking Real-time Component Based
Systems with Blackbox Testing. In the IEEE proceeding of RTCSA05, page 76-79,
Hong Kong, August 2005.

