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Abstract

Based on the observation that “program analysis is abstraction plus model checking”,
this paper investigates pushdown model checking based approach on interprocedural
program analyses for mono-thread Java. The running example is an interprocedual
dead code detection under PER (partial equivalence relation) based abstraction.
The prototype implementation combines SOOT as preprocessing to convert Java to
Jimple and the Weighted PDS (pushdown system) library as the back-end model
checking engine. With these existing tools, we developed an interprocedural dead
code analyzer for mono-thread Java with around 1500 lines of Java codes. This
analysis framework enables us a rapid prototyping for an interprocedual analysis
design.
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1 Introduction

Program analysis is abstraction plus model checking[1,2]. With the progress
on model checking algorithms and model checker implementations, this slo-
gan enables us to separate design (abstraction) and implementation (backend
model checking) of a program analysis.

Popular model checkers, such as Spin, NuSMV/SMV, are model check-
ers on finite state space; thus, a data flow analysis based on them is essen-
tially intraprocedural[3]. Recently, several pushdown model checkers, such
as Moped [10], Weighted PDS library [11], WPDS++ library [12], become
available. They enable us to design an interprocedural analysis based on them.

The difficulty of interprocedural analysis is to handle:

• Interprocedural control flows, i.e., every calls and returns need to correctly
match one another.

• Variable scope management, i.e., local variables in different procedure calls
need to be correctly distinguished.

• Aliasing and parameter passing mechanisms, i.e., parameter alias and pass-
ing (e.g., call-by-value, call-by-reference) need to be correctly traced.

The first problem is naturally solved with pushdown systems by remem-
bering the return point of a procedure call with the stack. The second problem
can be solved by renaming variables for finite model checking; but for push-
down model checking, such solution results infinitely many variable names.
For the last problem, proper abstractions are needed to handle interactions
among procedures and the aliasing among variables.

This paper investigates interprocedural program analyses for mono-thread
Java based on weighted pushdown model checking. Our prototype implemen-
tation using existing tools enables us a rapid prototyping of an interprocedural
analysis design. The running example is an interprocedural dead code detec-
tion under PER based abstraction [8].

The prototype is implemented with SOOT as Java preprocessing and the
Weighted PDS library as the back-end model checking engine. First, a Java
program is converted into Jimple, which is a typed 3-address intermediate
representation, for the ease of abstraction to a weighted pushdown system.
During this conversion, the call graph generation is borrowed from SOOT [13]
to handle virtual method calls. pointer-to analysis will be needed to handle
the aliasing among variables for more precise analysis.

Second, perform abstraction to be accepted by Weighted PDS library. This
phase is implemented as 1500 lines of Java code. Then, an interprocedual
analysis is reduced to a generalized pushdown reachablity problem; this is
solved by weighted pushdown model checking under a user-designed bounded
idempotent semiring.

The rest of the paper is organized as follows: Section 2 briefly introduces
weighted pushdown model checking problems. Section 3 describes abstraction
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from Java programs to pushdown systems. The design of an interprocedural
dead code detection based on weighted pushdown model checking is presented
in Section 4. Section 5 shows the prototype framework and implementation.
Section 6 and 7 discusses related work and future work.

2 Weighted Pushdown Model Checking

Definition 2.1 A pushdown system P = (Q, Γ, ∆, q0, w0) is a pushdown
automata regardless of input, where Q is a finite set of states, Γ is a finite set
of stack alphabet, ∆ is a mapping from Q×Γ to finite subsets of Q×Γ∗, q0 ∈ Q
is the initial state, w0 ∈ Γ∗ is the initial stack contents. A configuration of
P is a pair 〈q, w〉, where q ∈ Q and w ∈ Γ∗. And 〈q, wi〉 ↪→ 〈q′, wj〉 if
((q, wi), (q

′, wj)) ∈ ∆.

A pushdown system is a transition system with a finite set of control states
and an unbounded stack. A weighted pushdown system associates a weight, in
a bounded idempotent semiring to each transition rule of a pushdown system.

Definition 2.2 A bounded idempotent semiring is a quintuple S = (D,⊕,⊗, 0, 1),
where D is a set, 0 and 1 are elements of D, and ⊕ and ⊗ are binary operators
on D such that

(i) (D,⊕) is commutative monoid with 0 as its neutral element, and where
⊕ is idempotent.

(ii) (D,⊗) is a monoid with 1 as the neutral element.

(iii) ⊗ distributes over ⊕, that is, ∀a, b, c ∈ D, a⊗ (b⊕ c) = (a⊗ b)⊕ (a ⊗ c)
and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c).

(iv) 0 is an annihilator with respect to ⊗, that is, ∀a ∈ D, a⊗ 0 = 0⊗ a = 0.

(v) The partial order � defined as: ∀a, b ∈ D, a � b iff a ⊕ b = a

Intuition behind ⊗ and ⊕ of weights is:

• A weight intends a function to represent how a property is carried at each
step of program execution.

• f ⊗ g intends the composition g ◦ f .

• f ⊕ g intends the conservative approximation at the meet of two dataflow,
such as in the case of a conditional sentence.

Thus, a weighted pushdown system naturally represents how properties are
carried at each transition, which is an abstraction of a step of program execu-
tion.

Definition 2.3 A weighted pushdown system is a triple W = (P, S, f),
where P = (Q, Γ, ∆, q0, w0) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a
bounded idempotent semiring, and f : ∆ → D is a function that assigns a
value from D to each rule of P.
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The generalized reachability of a weighted pushdown system is to examine
all paths leading to a set of configurations of interest.

Definition 2.4 Given a weighted pushdown system W = (P, S, f), where
P = (Q, Γ, ∆, q0, w0) is the pushdown system, and S = (D,⊕,⊗, 0, 1) is the
bounded idempotent semiring. Assume σ = [r0, ..., rk] be a sequence of push-
down rules, where ri ∈ ∆, 0 ≤ i ≤ k, and v(σ) = f(r0) ⊗ ... ⊗ f(rk), let
path(c,c′) denotes the set of all rule sequences that transform c into c′. Let
C ⊆ P × Γ∗, the generalized pushdown reachability problem is to find
for each c ∈ P × Γ∗:

δ(c) =
⊕

{v(σ)|σ ∈ path(c, c′), c′ ∈ C}

An algorithm for solving the generalized reachablity problem is presented
in [5]. It is implemented as libraries, Weighted PDS [11] and WPDS++ [12].
We will apply the former in our prototype implementation.

3 Abstraction from Java programs to Pushdown Sys-

tems

Abstraction is a fundamental step for analyses based on model checking. The
primary task is how to abstract a problem and encode it into the underlined
model (transition system) of the back-end model checking engine. The preci-
sion and correctness of an analysis depends on that of abstractions.

Example 3.1 is used to illustrate our scenario thoroughout the paper.

Example 3.1 Figure 1 (a) shows a Java program with three classes: Example,
Call, and CallSuper. The class Call inherits the class CallSuper and re-
defines the call method for calculating the factorial of some integer a, with
an integer b. At the virtual call site of line number n, the method call of the
class Call should be invoked at runtime. Note that b is a dead parameter.

3.1 Interprocedural Control Flows

Instead of abstracting programs directly, control flow graphs (CFG) are first
prepared for each procedure. However, it is not easy to get a precise inter-
prcedural control flow graph (or supergraph) for Java, due to polymorphism
and dynamic binding of virtual method calls.

In Example 3.1, reference variable cs may point to instances of either the
class CallSuper or Call at runtime. At the virtual call site n, cs will invoke the
method call from the class Call instead of the declared type class CallSuper.
To identify virtual method calls, type analysis is usually made to compute
the possible type sets of reference variables at virtual call sites. At the first
stage, we make use of the results of call graph generated by SOOT. It is a set
of possible call edges among procedures with consideration on virtual method
calls.
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Figure 1 (b) shows part of the supergraph of the Java program in Example
3.1. Compared with CFGs from intraprocedural cases, three more kinds of
edges are added [6]:

• A call edge from the call site to the entry point of callee procedure.

• A return edge back from the callee procedure to the return point of caller
procedure.

• A call to return edge from call site to the return point of this call.

Note that, the control flow corresponding to the call to return edge does not
exist in the actual program execution. However, this edge depict the semanti-
cal changes of data flows when a call is invoked. During a procedure call, local
variables in the caller procedure keep unchanged and can take a short-cut on
the control flows by introducing the call to return edge. call to return edge
will be kept in the abstractions for our running example.

3.2 Abstract Parameter Passing and Return

In an interprocedural case, a problem is how to abstract interactions among
procedures through parameter passings and return values. We use an abstract
parameter passing mechanism to handle these interactions, which is realized by
introducing two extra kinds of global variables for procedure parameters and
return values respectively. In particular, variables for procedure parameters
are characterized by their positions declared instead of only by names.

This approach is shown in Figure 1 (b) with Example 3.1, in which only
the static class member f is “global”. To depict the interactions among proce-
dures, two extra kinds of global variables are introduced: the integer parame-
ter variables call arg0, call arg1 for the method call and the integer return
variable r int . The introduction of parameter and return variables correctly
depict the localness of local variables. Whenever a procedure is invoked, the
corresponding procedure variables are assigned if they exist. Whenever a pro-
cedure invocation returns with some non-void value, the global return variable
with coincident type is assigned. Local variables within one procedure are al-
ways unseen to others.

Each edge in the supergraph is labelled with a transfer function. It is usu-
ally a set of mappings from program variables to some abstract data domain.
In Figure 1 (b), top could be understood as non-exist values and used for later
generation of the exploded supergraph. Please refer to [6] for formal definitions.
Some treatments on transfer functions need to be mentioned here:

• When a procedure is invoked (call edge), all local variables in the caller
procedure are assigned to top.

• When an invoked procedure returns(return edge), all local variables in the
callee procedure are assigned to top.

• All global variables are assigned to top along call to return edge.
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Although Java always uses call by value passing mechanism, a method can
still change the state of an object reference parameter. At the first stage,
only parameters of primitive types, that is numbers or Boolean values, are
handled. In our abstractions, procedures are distinguished by declared class
and procedure signatures like names and parameters. But the analysis is still
context-sensitive in the sense that parameters passed to procedures are distin-
guished. The analysis is also field-sensitive. An instance field is distinguished
by its name, type, declared class and the class instance it belongs to. To fur-
ther identify the aliasing among object reference variables, pointer-to analysis
in SOOT will be needed.

Fig. 1. (a) A Java program fragment with virtual method calls (b) A supergraph
with abstract parameter-passing

3.3 Encoding to Pushdown Systems

Recall the usual abstractions for finite model checking on programs, the prod-
uct of global variables and local variables and program control points(nodes of
the CFG) is encoded as a state of the finite transition system. For pushdown
model checking, a stack enables simulation of the runtime stack of programs.
A usual encoding is, such as in Moped, global variables are encoded as con-
trol states, and the product of local variables and program control points is
encoded as stack symbols. After all, the problem to be analyzed decides the
encoding choice.

To examine the property in terms of single variables, an edge in the super-
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graph is exploded into a set of edges with every variables as ends by a so-called
“explosion transformation”, which results in an exploded supergraph[6]. Espe-
cially, there is no edge associated with a variable where it is assigned to be
top. Provided with an exploded supergraph G of the program to be analyzed,
the encoding of the pushdown system for our running example is:

• All program variables (global variables and local variables) are encoded as
the set of control states.

• Program control points are encoded as stack symbols.

• Each edge in G is encoded as a pushdown rule according to the following
cases:
· 〈q, wi〉 ↪→ 〈q′, wk wj〉

A call edge from node wi to wk with wj as return point.
· 〈q, wi〉 ↪→ 〈q′, wj〉

An intraprocedural edge from node wi to wj.
· 〈q, wi〉 ↪→ 〈q′, ε〉

A return edge from exit node wi to corresponding return points.

4 Interprocedural Dead Code Detection

A dead code detection usually follows the used-and-defined approach [7]. That
is, some variable x of interest is evaluated with predicates “Usedx” or “De-
finedx” for every states of the transition system, and then whether the transi-
tion system violates the property of “ !Usedx W Definedx ” (W is weak until)
is model checked for all transition sequences.

Provided with pushdown model checking, an interprocedual dead code
detection based on this approach usually concerns only on global variables.
For example, when variables are passed as parameters to some procedures,
these variables are basically considered as “Used”, regardless of its effect on
the result of computation.

Our running example targets on dead code detection in a more semantical
sense. The basic intention behind is quite simple: A line of code is dead
as long as its removal does not affect the final result of interest. Instead of
used-and-defined approach, We apply PER-based abstraction [8] as a forward
abstract intepretation [4]. This approach naturally detects transitivity of dead
codes. For instance, our method directly detects L1 in the Example 4.1 is a
dead code. While the used-and-defined based approach cannot detect it unless
L2 is removed.

Example 4.1 A code fragment:

L1 x := 1; L2 y := x+1; L3 x := 3; L4 y : = x+1;
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4.1 PER based Data Abstraction

A partial equivalence relation R on a set S is a transitive and symmetric
relation S × S. If R is reflexive, it is an equivalence relation. Our abstract
data domain L is a 2 point domain based on PER [8] 4 , defined as

L = {any, id}, with the ordering any ⊃ id

With the original domain as integer Z, the concretisation γ of L is defined as

γ any = {(x, y) | x, y ∈ Z}

γ id = {(x, x) | x ∈ Z}
Where any is interpreted as anything, and id is interpreted as values being
fixed. It is easy to see that

∀l ∈ L, γ l is a PER

A finite set of transfer functions F : L → L is defined as:

F = {λx.x, λx.any, λx.id | x ∈ L}

Let f0 = λx.any, f1 = λx.x, and f2 = λx.id, it is obvious that

∀x ∈ L, f0 x ⊃ f1 x and f1 x ⊃ f2 x

We define an ordering � on F as the reverse of ⊃ as

λx.any � λx.x � λx.id

The intention for the interprocedural dead code analysis under this data
abstraction is: if a variable is assigned to be any at some line of code, and
the result is still id, then this line of code is considered as dead.

The abstract interpretation p′ of a primitive operation p is derived as
p′(l1) = l2 where l2 ∈ L is the least PER that inculdes {p(x) | x ∈ l1} for
each l1 ∈ L. Then, the result is computed by the least fixed point computa-
tion under the oredering �, which will be performed by weighted pushdown
model checking.

4.2 A bounded idempotent semiring

A bounded idempotent semiring with L as the abstract data domain is defined
as:

4 [11] uses a 3 point abstract domain {any,id,bot}. Since our focus is on “irrelevance”
not on “strictness”, bot is left out.
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(i) Weighted domain D is defined as

D = {λx.x, λx.any, λx.id, zero | x ∈ L}

where zero is naturally interpreted as that the program execution is
interrupted by an error.

(ii) 1 is defined as id = λx.x

(iii) 0 is defined as zero

(iv) The ⊗ operator composes the effects by transfer functions along one path.
The operation ⊗ on D is defined as

∀d ∈ D, zero⊗ d = d ⊗ zero = zero

∀d ∈ D, λx.x ⊗ d = d ⊗ λx.x = d

λx.any ⊗ λx.id = λx.id

λx.any ⊗ λx.any = λx.any

λx.id ⊗ λx.any = λx.any

λx.id ⊗ λx.id = λx.id

(v) The ⊕ operator combines effects on the property domain by transfer
functions from different branches. The operation ⊕ on D is defined as

∀d ∈ D, zero⊕ d = d ⊕ zero = d

∀d ∈ D, λx.any ⊕ d = d ⊕ λx.any = λx.any

λx.id ⊕ λx.id = λx.id

λx.x ⊕ λx.x = λx.x

λx.id ⊕ λx.x = λx.x ⊕ λx.id = λx.x

Distributivity of ⊗ over ⊕ is easily checked.

With the bounded idempotent semiring, the interprocedural dead code
detection works as follows: select some line of code and assign the weight of
its transition associated to be λx.any, this line of code is dead if the weight of
the result is either λx.x, or λx.id. The soundness of this analysis is guaranteed
by the facts that:

• the construction of PER-based forward abstract interpretation, and

• the conservative approximation of the definition of ⊕.

5 The Prototype Framework and Implementation

Our prototype is implemented as shown in Figure 2. It is developed with
SOOT for Java preprocessing and the WPDS library as the back-end model
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checking engine. Jimple, a typed stackless 3-address intermediate represen-
tation, is the analysis target. To make use of the existing tools enables us a
rapid prototyping for our analysis design.

The analysis procedure is illustrated with Example 3.1. In phase 1, Java
programs are first translated into Jimple with SOOT. Some sample result is
shown in (b). The phase 2 is for abstraction. The call graph, a set of possible
call edges among procedures generated by SOOT, is borrowed here. As shown
in (c), the virtual method call in Example 3.1 is resolved and the corresponding
call edge is given. The output of abstraction, as shown graphically 5 in Figure
3, is a weighted pushdown system that will be model checked in phase 3 by
the back-end model checking engine. A bounded idempotent semiring, specific
to the analysis of interest, is designed (Section 4.2) and implemented with the
weighted PDS library beforehand.

Fig. 2. A Prototype Framework

6 Related Work

Our abstraction from Java programs to weighted pushdown systems basically
follows the approach proposed in [5]. In [5], several examples of interprocedural
analyses based on weighted pushdown model checking have been investigated,
such as live variables, linear constant propagation. For instance, WPDS++
library provides an example for interprocedural live variable analysis. The
weighted domain D is defined as D = {λS.S \KillSet(i)∪GenSet(i) | i ∈ N},
where S is the finite set of variable alphabet, N is labels of all the program
statements. These previous case studies basically consider global variables
only, whereas our analysis handles local variables and interactions among pro-
cedures.

5 This graphical drawing is part of our implementation. It is automatically generated for
debugging purpose.
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Example_void_main_java_lang_String

Example_Int_call_Int_Int

Fig. 3. An exploded Interprocedural Control Flow Graph

Bandera [14] is a a tool set for analysis generation for Java programs.
It provides model constructions from Java programs to the inputs of several
popular finite model checkers. Bandera also works on Jimple and it borrows
the implementation framework of SOOT to realize their own JCCC compiler.
JCCC provides extra functions for tracking errors back to Java source codes.
Currently, our analysis does not support such facility to pull back the result of
an analysis on Jimple to that on Java. By substituting Jimple compiler from
SOOT to JCCC, this will be covered.

jMoped [15] is a translator from Java bytecode to pushdown systems that
are the input of Moped. Compared with Java bytecode, Jimple would be more
suitable for designing abstraction by its features, such as explicit statements
and control flow structures.

Weighted pushdown systems are further extended to extended weighted
pushdown systems(EWPDS) [9]. EWPDS excludes the call to return edge in
the supergraph abstraction. Instead, a merge function is proposed to restore
the local variables of caller procedures when callee procedures return.

7 Conclusions and Future Work

This paper investigated interprocedural program analyses for mono-thread
Java based on weighted pushdown model checking. Our prototype implemen-
tation using existing tools enables us a rapid prototyping of an interprocedural
analysis design. The running example is an interprocedural dead code detec-
tion under PER based abstraction [8].

Future work will be:

• More case studies of interprocedual program analyses; the first target will
be call graph generation. Current our prototyp borrows the call graph gen-
eration from SOOT for more precise abstraction. However, this call graph
generation is somewhat ad-hoc with the aid of pointer-to analysis in SOOT,
and is a time-consuming task. We expect that this can be efficiently com-
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puted by weighted pushdown model checking.

• Based on case studies, clarify suitable (hopefully automatic) supports for
designing and implementing abstraction design. For instance, Bandera [14]
has a facility for automatic generation of an intraprocedural analysis from
user-specified abstraction.

• Applying similar methodology to other languages, such as ML. We are plan-
ning to cooperate with Interoperable ML project. 6 .

• More theoretical study on systematic derivation of a bounded idempotent
semiring from an abstraction. That is, what kind of abstractions can be
encoded into weighted pushdown systems by keeping sound property need
to be further examined.
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