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Abstract

This paper proves that, for a membership conditional term rewriting system (MC-
TRS), (1) a reducible term has a needed redex if the MCTRS is nonoverlapping,
and (2) whether a redex is nv-needed is decidable.

1 Introduction

A membership conditional term rewriting system (MCTRS) is a term rewrit-
ing system (TRS) in which substitutions are taken from some specific sets,
typically, the set of normal forms. A normal MCTRS, which requires substi-
tutions to be in normal form for each nonlinear variable, is a useful example;
this system can specify the positive part of the equality class of functional
programming (e.g., Haskell, ML) without type information. (The negative
part of the equality class cannot be deduced without algebraic information
about the construction of the type.)

A nonoverlapping normal MCTRS is the natural extension of an orthogo-
nal TRS to nonlinearity, and it retains many nice properties, such as Parallel
Move Lemma and confluence [14]. In addition to these properties, this pa-
per investigates call-by-need reduction for a normal MCTRS. In general, a
nonlinear TRS does not have needed redexes even if it is nonoverlapping; for
instance,

{d(x, x) → a, f(y, z) → b, c → d}
is a nonoverlapping (and also strongly normalizing, right-ground) nonlinear
TRS and d(f(c, z), f(d, z)) does not have needed redexes. Thus, the mem-
bership restriction is essential; there seems to be no other choice when one
explores the existence of needed redexes in nonlinear TRSs. In fact, the mem-
bership condition precisely corresponds to the proof techniques in [10].

The main results are:
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(i) A reducible term has a needed redex for a nonoverlapping normal MC-
TRS.

(ii) Reachability and normalizability for a right-ground normal MCTRS are
decidable.

(iii) Whether a redex is nv-needed is decidable for a normal MCTRS.

where nv-neededness approximates neededness by relaxing the rewrite relation
such that variables in the right-hand-side of a rule may be instantiated by any
terms.

It is worth remarking that, unlike left-linear TRSs, modern tree automata
techniques [2,5,11] fail to produce decidability results of normal MCTRSs.
This is because the set of normal forms is not regular; i.e., the set of normal
forms of a normal MCTRS is same to that of the underlying TRS, and the set
of normal forms of a nonlinear TRS is known to be not regular [8].

Section 2 presents basic notations and Section 3 introduces previous results
on confluence of a normal MCTRS. Section 4 shows that a reducible term
has a needed redex if a normal MCTRS is nonoverlapping, Section 5 shows
that the reachability and normalizability of a right-ground normal MCTRS is
decidable, and Section 6 shows that whether a redex is nv-needed is decidable
for a normal MCTRS. Section 7 concludes the paper and discusses topics for
future research.

2 Preliminaries

I assume that readers are familiar with rewriting terminology; for details, refer
to [7]. This section explains our notations. Throughout the paper, we will
consider only finite term rewriting systems (TRSs).

We will denote the set of function symbols by F , the set of n-ary function
symbols by Fn, the set of variables by V, and the set of terms over F and V
by T (F ,V). A term without variables is a ground term, and the set of ground
terms is denoted by T (F). A term t is linear if each variable x appears in
t at most once, and a variable x in a term t is linear if x appears once in t.
The set of variables that appear in a term t is denoted by Var(t), and the
set of nonlinear variables that appear in a term t is denoted by Varnl(t). For
a (possible nonlinear) term t, t̄ is a linearization of t, i.e., t̄ is obtained by
replacing all occurrences of nonlinear variables in t by distinct fresh variables
(thus, t̄ is linear).

We denote the set of all positions in a term t by Pos(t), the subterm
occurring at p in t by t|p, and the head symbol of t by head(t)(∈ F ∪ V).

For terms t, s and position p ∈ Pos(t), t[s]p is the term obtained from t by
replacing the subterm at p with s. For positions p, q and a set U of positions,
we denote p < q if p is a proper prefix of q, and p ⊥ q if neither p < q, p = q,
nor p > q, U < q if ∃p ∈ U p < q, and U ≤ q if ∃p ∈ U p ≤ q. For a term
t and a variable x, we denote the set of positions in t by Pos(t), the set of
positions of function symbols in t by PosF(t), the set of positions of variables



in t by PosV(t), the set of positions where x occurs in t by Pos(t, x), and the
number of positions in Pos(t) (i.e., size of t) by |t|. If s is a (proper) subterm
of t, we denote s � t (s � t).

We denote
p→R if a rewrite →R occurs at the position p;

>p→R if a rewrite

→R occurs at the position larger than p; and
≥p→R if a rewrite →R occurs at

the position larger than or equal to p. For a set P of positions, we denote
≥P→R

if a rewrite →R occurs at the position larger than or equal to some p ∈ P .

A term without redexes (of →R) is a normal form (more specifically, R-
normal form), and the set of R-normal forms is denoted by NFR. We will
often omit the index R in NFR and →R if they are apparent from the context.

3 Confluence of membership conditional TRS

A pair of rules (l → r, l′ → r′) is overlapping if there exists a position p such
that

• p ∈ PosF(l),

• there exist substitutions σ, σ′ such that l|p σ = l′σ′, and

• either p �= ε, or l → r and l′ → r′ are different rules.

A TRS is nonoverlapping if no pairs of rules in R are overlapping.

Theorem 3.1 ([6]) A left-linear nonoverlapping TRS is confluent.

Without left-linearity, confluence may fail even for nonoverlapping TRSs.
For instance, R1 below is nonoverlapping, but not confluent.

R1 =




d(x, x) → 0

d(x, f(x)) → 1

2 → f(2)




When a TRS is nonlinear, some restriction is required to recover confluence.
A membership conditional TRS is such an example [14].

Definition 3.2 A membership conditional TRS (MCTRS) R is a finite set of
conditional rewrite rules

l → r ⇐ C

where the condition C is ∧x∈V x ∈ Tx(⊆ T (F ,V)) for V ⊆ Var(l).

An MCTRS R is normal if C is ∧x∈V x ∈ NFR and and Varnl(l) ⊆ V ⊆
Var(l).

Remark 3.3 Since the membership condition is non-monotonic wrt the in-
clusion of rewrite relations, it looks contradictory. But, this is not true; by
induction on the size of a term, the rewrite relation is well-defined (refer to
Lemma 4.1 in [14]).

Theorem 3.4 [14] A nonoverlapping normal MCTRS is confluent.



Example 3.5 The normal MCTRS, R1 plus additional membership condi-
tions, 



d(x, x) → 0 x ∈ NF

d(x, f(x)) → 1 x ∈ NF

2 → f(2)




is confluent.

4 Needed redex of nonoverlapping normal MCTRS

A term may have several redexes. A reduction strategy is the choice of a redex
to rewrite (i.e., a function from a term to a redex in a term). Two especially
important issues are, the normalizing strategy, which guarantees reaching a
normal form (if one exists), and the optimal strategy, which selects a needed
redex.

A redex is needed if either itself or its descendant is contracted in every
rewrite sequence to a normal form.

In general, needed redexes may not exist. However, a left-linear nonover-
lapping TRS has a needed redex in a term that is not in normal form (although
it may be not computable). The idea in [10] is; instead of a needed redex, a
root-needed redex is considered. A redex is root-needed if either itself or some
of its descendants are contracted in every rewrite sequence to a root-stable
form (i.e., a term that cannot be reduced to a redex). Since a normal form
is root-stable, a root-needed redex is a needed redex. In this section, similar
to [10], we show that a reducible term has a needed redex if a normal MCTRS
is nonoverlapping.

For a rewrite sequence A : t0 → · · · → tn and 0 ≤ i ≤ j ≤ n, B : ti →
· · · → tj is a subsequence, C : t0 → · · · → ti is a prefix sequence, and
D : ti → · · · → tn is a suffix sequence. For rewrite sequences A : s →∗ t and
B : t →∗ u, the concatenation is denoted by A; B : s →∗ u.

Definition 4.1 A term s(� t) is root-stable if for any s′ with s →∗ s′, s′ is
not a redex.

Lemma 4.2 (Lemma 2.1 [10]) If → is confluent,
>ε→ is also confluent.

Lemma 4.3 (Lemma 3.2 [10]) If a term s is root-stable, each term t with
s →∗ t is also root-stable.

Lemma 4.2 and 4.3 hold for any TRSs. The proof of Lemma 3.3 and 4.2
in [10] require the left-linear and nonoverlapping properties 2 to guarantee

• confluence, and

• if s is a redex, t with s
>ε→∗

t is also a redex.

2 More precisely, the requirement of Lemma 3.3 in [10] can be relaxed to almost nonover-
lapping.



A nonoverlapping normal MCTRS also satisfies these requirements, and the
same proofs in [10] give the following Lemmas 4.4 and 4.5.

Lemma 4.4 For a nonoverlapping normal MCTRS R, if a term t is root-

stable, each term s with s
>ε→∗

t is also root-stable.

Lemma 4.5 For a nonoverlapping normal MCTRS R and a term t, if there

exist a rule l → r ∈ R and a substitution σ such that t
>ε→∗

lσ then l is uniquely
determined regardless of reduction sequences.

Similar to Theorem 4.3 in [10], which states that for a left-linear nonover-
lapping TRS a term not root-stable has a root-needed redex, the next theorem
holds.

Theorem 4.6 For a nonoverlapping normal MCTRS, a term that is not root-
stable has a root-needed redex.

Proof. By induction on the size of a term. Without loss of generality, we can
assume that t is neither a root-stable term nor a redex. Assume t →+ t′ for
some root-stable form t′. From lemma 4.4, a reduction sequence A : t →∗ t′

contains a reduction A : t
>ε→+

∆A
ε→ t′′ →∗ t′ at the position ε. From

lemma 4.5, a rule used in ∆A is uniquely determined. We denote it by l →
r ⇐ C where C = ∧x∈V x ∈ NF with Varnl(l) ⊆ V ⊆ Var(l).

Let P be the set of positions of proper non-root-stable subterms in t. There
are two cases; (1) P ∩ PosF (l) �= φ, and (2) P ∩ PosF (l) = φ. For (1)
3 , let p be a minimal position in P ∩ PosF(l). Since t|p ⊂ t, from induction
hypothesis, there exists a root-needed redex ∆ in t|p. We claim that ∆ is

contracted in the subsequence B : t
>ε→+

∆A. From minimality of p, t|p must
be rewritten to ∆A|p, which is root-stable (because R is nonoverlapping).
Thus, ∆ is root-needed in t.

For (2), if each p ∈ P is p ∈ Pos(l, x) for some x ∈ Var(l) \ V , t is a
redex; thus, root-needed because R is nonoverlapping. Assume there exists
p ∈ Pos(l, x) for x ∈ V . Let B be a subsequence of A such that B : t|p →+

∆A|p. Since C = ∧x∈V x ∈ NF , ∆A|p is a normal form. From induction
hypothesis, t|p has a root-needed redex, and this is also root-needed in t. �

Corollary 4.7 For a nonoverlapping normal MCTRS, a reducible term has
a needed redex.

Remark 4.8 Since a nonoverlapping normal MCTRS satisfies the Parallel
Move Lemma, the same proofs in Section 5 in [10] work for a nonoverlapping
normal MCTRS. Thus, the repeated reduction of root-needed redexes is a
root-normalizing reduction strategy.

Further, since a nonoverlapping normal MCTRS is confluent, a context-
free root-normalizing reduction strategy is a normalizing reduction strategy
(refer to Theorem 6.5 in [10]), where a reduction strategy is context-free if the

3 For (1), the proof is same as in theorem 4.3 in [10].



choice of a redex in a root-stable term is reduced to the choice of a redex in
each direct subterm.

5 Decidable results for right-ground normal MCTRS

In [12], Oyamaguchi proved that reachability and joinability are decidable
for a (possibly non-left-linear) right-ground TRS. Similarly, in this section,
we show that reachability and normal joinability are decidable for a right-
ground normal MCTRS. The main difference is that we use normal joinability
{t1, · · · , tn}N instead of joinability {t1, · · · , tn}J , as used in [12]. Otherwise,
the translation of the proof in [12] is quite straight forward.

We say:

• For terms s, t, s is reachable to t if s →∗ t, and denoted by (s, t)R.

• Terms t1, · · · , tn are joinable in normal form if there exists t ∈ NFR with
ti →∗ t for each i, and denoted by {t1, · · · , tn}N .

We call s →∗ t a witness of (s, t)R, and the existence of t ∈ NFR with ti →∗ t
for each i, a witness of {t1, · · · , tn}N . Note that normalizability of a term t is
expressed as {t}N .

We say that a rewrite sequence s →∗ t is top-invariant if s
>ε→∗

t. For a
right-ground normal MCTRS R = {li → ri ⇐ Ci}, we denote the set {li}
(resp.{ri}) of the left-hand-sides (resp. right-hand-sides) of rules in R by Rl

(resp. Rr). From now on, throughout this section, R is a right-ground normal
MCTRS.

Definition 5.1 For a term t, δR(t) = {t′ | t′ � t ∨ t′ � r ∈ Rr}. A
substitution θ is a δR(t)-substitution, if for each variable x, xθ ∈ δR(t).

We start with an explicit construction of the search space, i.e., possible
reduction of (s, t)R and {t1, · · · , tn}N to “smaller” problems. During the con-
struction, next Lemma 5.2 is the key.

Lemma 5.2 If a rewrite sequence A : s →∗ t is not top-invariant, there exist
l → r ⇐ C ∈ R, a substitution σ, and a δR(s)-substitution θ such that

B : s
>ε→∗

l̄θ
≥PosV(l)→

∗
lσ

ε→ r →∗ t

with the same rewrite steps. (Recall the l̄ is a linearization of l.)

Proof. Since A is not top-invariant, there exists a rewrite at the root ε. Let
lσ

ε→ r be the first such rewrite. Let A′ be the prefix sequence of A from s to

lσ, and let A′′ be the suffix sequence of from lσ to t. Then, A′ : s
>ε→∗

lσ. Let
{p1, · · · , pn} = PosV(l) and let Ai be the maximum suffix sequence in A′ such
that all rewrites are below or equal to pi. Then, by interchanging the order of
parallel rewrites, we can decompose A′ as C; A1; · · · ; An. By construction of
A1, · · · , An, there exists a substitution θ such that C : s →∗ l̄θ and, for each
pi,



(i) either all rewrite steps in C are parallel to pi, or

(ii) the last rewrite step in C that is not parallel to pi occurs above pi.

Let xi ∈ Var(l̄) with {pi} = Pos(l̄, xi). For (i), xiθ = s|pi
, and for (ii), xiθ is

a subterm of r′ for some r′ ∈ Rr (Recall that R is right-ground). Thus, θ is
a δR(s)-substitution. �

Definition 5.3 Let s, t, t1, · · · , tn be terms and let θ be a δR(s)-substitution.
Define ΦR((s, t)R) = ΦR,1((s, t)R) ∪ ΦR,2((s, t)R) and ΦN({t1, · · · , tn}N) =
ΦN,1({t1, · · · , tn}N) ∪ ΦN,2({t1, · · · , tn}N) where:

ΦR,1((s, t)R) = { {(si, ti)R | s = f(s1, · · · , sn), t = f(t1, · · · , tn)} }
if head(s) = head(t)

ΦR,2((s, t)R)

=




{(s, l̄θ)R, (r, t)R} ∪ l → r ⇐ C ∈ R
(∪x∈Varnl(l), pi∈Pos(l,x){{l̄|p1 θ, · · · , l̄|pm θ}N}) ∀x.xθ ∈ δR(s)




ΦN,1({t1, · · · , tn}N) = { {{t1|j, · · · , tn|j}N | 1 ≤ j ≤ arity(head(t1))} }
if head(t1) = · · · = head(tn)

ΦN,2({t1, · · · , tn}N) = { {(ti, r)R, {t1, · · · , ti−1, r, ti+1, · · · , tn}N} | r ∈ Rr}

The intuition for ΦR((s, t)R) and ΦN ({t1, · · · , tn}N ) is the set of candidates
of the reduction of the problem. For instance, ΦR,1((s, t)R) corresponds to the
case that the witness s →∗ t of (s, t)R is top-invariant, and ΦR,2((s, t)R) cor-
responds to the case that it is not top-invariant. They enumerate all possible
reductions, based on Lemma 5.2. Similarly, ΦN,1({t1, · · · , tn}N) corresponds
to the case that the witness, for some t ∈ NFR, ti →∗ t for each i, is top-
invariant for each i. ΦN,2({t1, · · · , tn}N) corresponds to the case that some
ti →∗ t is not top-invariant. We assume that redundancy in ΦR and ΦN is
removed as

• to eliminate (s, s)R, and

• to reduce {· · · , t, t, · · ·}N to {· · · , t, · · ·}N .

Let either ρ = (s, t)R or ρ = {t1, · · · , tn}N . Next, we define the search path
Ψα(ρ) for the sequence α of pairs of integers.

Definition 5.4 Let

Φ(ρ) =




ΦR(ρ) if ρ = (s, t)R,

ΦN (ρ) if ρ = {t1, · · · , tn}N .

and let α be a sequence of pairs of integers. Then, a search path Ψα(ρ) is



inductively defined as:

Ψε(ρ) = {ρ}
Ψα.(i,j)(ρ) = {τ1, · · · , τi−1, τi+1, · · · , τm} ∪ τ̄j

where {τ1, · · · , τm} = Ψα(ρ) and {τ̄1, · · · , τ̄k} = Φ(τi)

We will show that to decide ρ, it is enough to check on finitely many Ψα(ρ).

Definition 5.5 Let s, t, t1, · · · , tn be terms. Assume that (s, t)R and {t1, · · · , tn}N

have witness. We denote the minimal (sum of) rewrite steps of the witness of
(s, t)R and {t1, · · · , tn}N by step((s, t)R) and step({t1, · · · , tn}N), respectively.
Define weight ω by

ω((s, t)R) = (step((s, t)R), |s|)
ω({t1, · · · , tn}N) = (step({t1, · · · , tn}N), |t1| + · · · + |tn|)

and the lexicographical order over weight is

(i, j) > (i′, j′) ⇔ i > i′ ∨ (i = i′ ∧ j > j′).

The next lemma is immediate.

Lemma 5.6 Let either ρ = (s, t)R or ρ = {t1, · · · , tn}N , and let τ̄ ∈ Φ(ρ). If
each τ ∈ τ̄ has a witness and they give ρ a witness, then ω(τ) < ω(ρ).

We denote the maximum multiplicity of (nonlinear) variables in l in Rl by
aR, and {l̄θ | l ∈ Rl, θ is a δR(s)-substitution} by ∆R(s).

Definition 5.7 Let s, t, t1, · · · , tn be terms.

SR((s, t)R) = {(s′, t′)R | s′ � s ∨ s′ � r ∈ Rr and

t′ � u ∈ ∆R(s) ∨ t′ � t ∨ t′ � r ∈ Rr}
SN((s, t)R) = {{t1, · · · , tk}N | 1 ≤ k ≤ aR and ti � s ∨ ti � r ∈ Rr}

SR({t1, · · · , tn}N) = {(s′, t′)R | s′ � ti ∨ s′ � r ∈ Rr and

t′ � u ∈ ∪1≤i≤n∆R(ti) ∨ t′ � r ∈ Rr}
SN({t1, · · · , tn}N) = {{t′1, · · · , t′k}N | 1 ≤ k ≤ max(n, aR) and

(∨1≤i≤n t′j � ti) ∨ t′j � r ∈ Rr}
Lemma 5.8 Let either ρ = (s, t)R or ρ = {t1, · · · , tn}N . Then, for each α,
Ψα(ρ) ⊆ SR(ρ) ∪ SN (ρ).

Proof. Since s ∈ δR(t) implies δR(s) ⊆ δR(t), by induction on the length of
α, Φα(ρ) ⊆ SR(ρ) ∪ SN (ρ). �



Now, we show that it is enough to consider a search path Φα(ρ) with the
upper bound for the length of α.

Lemma 5.9 Let either ρ = (s, t)R or ρ = {t1, · · · , tn}N . There exists an
upper bound ML such that if Φα(ρ) �= φ with |α| > ML, then, for any β that
contains α as a prefix, Φβ(ρ) does not give a witness of ρ.

Proof. Since ∆R(s), ∆R(t1), · · ·, ∆R(tn) are finite, SR(ρ) and SN (ρ) are finite
by construction. Let ML = 2|SR(ρ)∪SN (ρ)|. Assume that Φβ(ρ) gives a witness
of ρ for some β that contains α as a prefix. Without loss of generality, we
assume β = α. Then, Φα(ρ) also gives Φα′(ρ) a witness for each prefix α′ of
α.

Let � be the multiset extension of <. Then, from Lemma 5.6, for each
prefix α′ and α′′ of α, if α′′ is a proper prefix of α′, then Ψα′(ρ) � Ψα′′(ρ).
Thus, Φα′(ρ) �= Φα′′(ρ). However, from Lemma 5.8, this is a contradiction to
|α| > ML. �

At last, we give an upper bound MW for branching of a search path.

Lemma 5.10 Let either ρ = (s, t)R or ρ = {t1, · · · , tn}N . There is an upper
bound MW such that, for each τ ∈ τ̄ ∈ Ψα(ρ), |Φ(τ)| ≤ MW .

Proof. Let vR = max {|Var(l)| | l ∈ Rl} and m = max {|δR(s)|, |δR(t1)|, · · · ,
|δR(tn)|}. Define MW = mvR · |R| + 1. Since s ∈ δR(t) implies δR(s) ⊆ δR(t),
if τ = (s, t)R), |ΦR((s, t)R)| ≤ mvR · |R| + 1, and if τ = {t1, · · · , tn}N ,
|ΦN({t1, · · · , tn}N)| ≤ |R| + 1. Thus, |Φ(τ)| ≤ MW . �

Theorem 5.11 For a right-ground normal MCTRS, reachability and normal
joinability are decidable.

Proof. Let either ρ = (s, t)R or ρ = {t1, · · · , tn}N . From Lemma 5.9, it is
enough to consider Φα(ρ) with |α| ≤ ML. The number of candidates for the
next Φα.(i,j)(ρ) is at most |SR(ρ) ∪ SN(ρ)| × MW , because the possible choice
of i is at most |SR(ρ) ∪ SN(ρ)| from Lemma 5.8, and that of i is at most MW

from Lemma 5.10. Thus, the set of search paths to check is finite, and the
theorem follows. �

Corollary 5.12 For a right-ground normal MCTRS, normalizability is de-
cidable.

Remark 5.13 Since a normal form may not be preserved when adding con-
text, even if Φα(ρ) has a witness, this does not mean ρ has a witness. We need
to check further that Φα(ρ) actually gives ρ a witness. For instance, the witness
of {t1,1, t2,1}N , {t1,2, t2,2}N that there exist t1, t2 ∈ NFR such that t1,1, t2,1 →∗

t1 and t1,2, t2,2 →∗ t2, does not mean that f(t1,1, t1,2), f(t2,1, t2,2) →∗ f(t1, t2)
is a witness of {f(t1,1, t1,2), f(t2,1, t2,2)}N , because it may be f(t1, t2) �∈ NFR.
However, this search path is produced for a top-invariant case, and {f(t1,1, t1,2), f(t2,1, t2,2)}N

will be analyzed in another search path for a not top-invariant case (note that
t1, t2 ∈ NFR implies f(t1, t2) is a redex). Thus, we simply judge this search
path fails.



6 NV-needed redex of normal MCTRS

In this section, we provide an alternative definition of a needed redex as in [5],
and show that whether a redex is nv-needed is decidable for a normal MCTRS.
The equivalence of two definitions for a nonoverlapping normal MCTRS is
obtained similar to Lemma 4.1 in [5].

Definition 6.1 Let • �∈ F , s ∈ T (F ,V). A redex s|p (in s) is needed if s[•]p
does not rewrite to a normal form without •.
Definition 6.2 Let Ω(�∈ F) be a fresh constant and let t be a term. tΩ is a
term obtained by replacing each variable in a term t with Ω.

For terms t, u ∈ T (F ∪{Ω},V), we denote t � u if t is obtained from u by
replacing the subterms in u by Ω’s.

Definition 6.3 Let R be a normal MCTRS, and s, t be terms. Let p ∈
Pos(s). If s|p is a redex of l → r ⇐ C ∈ R,

s →nv t ⇔ t = s[u]p where rΩ � u ∈ T (F)

Definition 6.4 A redex is nv-needed if it is needed under →nv.

From now on, we concentrate on rewrite sequences starting from ground
terms, and we assume F0 �= φ. This restriction does not lose generality,
because for a rewrite sequence starting from a non-ground term t, we can
regard the variables in t as additional constants.

Definition 6.5 Assume F0 �= φ. For a normal MCTRS R, we define right-
ground normal MCTRSs RΩ, R1

Ω, and R2
Ω as follows.

RΩ = R1
Ω ∪ R2

Ω

R1
Ω = {l → rΩ ⇐ C | l → r ⇐ C ∈ R}

R2
Ω = {Ω → f(Ω, · · · , Ω︸ ︷︷ ︸

n

) | f ∈ Fn, n ≥ 0}

We denote →RΩ
(resp. →R1

Ω
, →R2

Ω
) by →Ω (resp. →1

Ω, →2
Ω).

Lemma 6.6 Let s, t be ground terms. Assume F0 �= φ. If s →∗
Ω t and Ω �� s,

then, for each term t′ with t � t′ and Ω �� t′, s →∗
nv t′.

Proof. By induction on the number m of the occurrences of →1
Ω’s in s →∗

Ω t.
Since F0 �= φ, it is easy for m = 1.

Assume m > 1 and let s →∗
Ω u

p→1

Ω v (→2
Ω)∗ t. Without loss of generality,

we can assume that every rewrite in v (→2
Ω)∗ t occurs at a position larger-

than-or-equal-to p.

Since u|p is a redex of R1
Ω, for each u′ with u|p � u′ and Ω �� u′, u′ is a

redex of R1
Ω. (Note that Ω �∈ NFRΩ

; thus Ω does not appear below nonlinear



variable positions in the rewrite u|p → v|p.) Thus, we can modify the rewrite

sequence as s →∗
Ω u (→2

Ω)∗ u[u′]p
p→1

Ω v (→2
Ω)∗ t.

For each t′ with t′ with t � t′ and Ω �� t′, u[u′]p � t′[u′]p and Ω �� t′[u′]p.
Thus, from induction hypothesis, s →∗

nv t′[u′]p, and u′ →nv t′|p. This concludes
s →∗

nv t′. �

Lemma 6.7 Let s, t be ground terms with Ω �� s. If s →∗
nv t, then s →∗

Ω t.

Proof. By induction on the number m of rewrite steps of s →∗
nv t. For

m = 1, the proof is easy. (Note that s →nv t implicitly implies F0 �= φ.)
Assume m > 1. Let s →∗

nv u →nv t. Since the reduction of →nv does not
produce Ω, Ω �� u. Thus, induction hypothesis implies s →∗

Ω u →∗
Ω t. �

Lemma 6.8 For a term t with Ω �� t, t is normalizable wrt →nv, if, and only
if, t is normalizable wrt →Ω.

Proof. A term without Ω is a normal form wrt →nv if, and only if, a normal
form wrt →Ω. Thus, from Lemma 6.6 and 6.7. �

Since RΩ ∪{• → •} is a right-ground normal MCTRS, Theorem 6.9 follows
immediately from Corollary 5.12 and Lemma 6.8.

Theorem 6.9 For a normal MCTRS, whether a redex is nv-needed is decid-
able.

Remark 6.10 →nv approximates → (i.e., NF→ = NF→nv and → ⊆ →nv),
thus Lemma 4.5 in [5] shows that nv-needed redexes are really needed. Thus,
from the remark at the end of Section 4, the repeated reduction of nv-needed
redexes is a normalizing strategy (if nv-need redexes exist in each reducible
term).

Remark 6.11 As pointed out in Example 5.1 [9], the repeated reduction of
nv-needed redexes is not root-normalizing.

7 Conclusion

This paper investigated call-by-need reductions for a normal membership con-
ditional term rewriting system (MCTRS). Its main results are:

(i) A reducible term has a needed redex for a nonoverlapping normal MC-
TRS.

(ii) Reachability and normalizability for a right-ground normal MCTRS are
decidable.

(iii) Whether a redex is nv-needed is decidable for a normal MCTRS.

For the first result, there seems to be no other choice when one explores
the existence of needed redexes in nonlinear TRSs; in fact, the membership
condition precisely corresponds to the proof techniques in [10].



For the second and the third result, I expect that reachability and normal-
izability of a shallow [2,3] and right-linear normal MCTRS would be decidable,
and that nv-neededness could be extended to shallow-neededness.

Note that, unlike left-linear TRSs, growing neededness is undecidable for
normal MCTRSs, because Post’s Correspondence Problem (PCP) is described
as a reachability (or normalizability) problem of a growing and right-linear nor-
mal MCTRS (either with or without membership conditions). Let {(αi, βi) | 1 ≤
i ≤ n} be the set of n-pairs of finite sequences. Then, PCP is equivalent to
whether A is reachable to B where




a → d(α1(c), β1(c)), d(x, y) → d(α1(x), β1(y)),

· · · · · ·
a → d(αn(c), βn(c)), d(x, y) → d(αn(x), βn(y)),

d(x, x) → b ⇐ x ∈ NF.




Here, we assume that the symbols a, b, c, d do not appear in αi and βi, and we
regard a finite sequence α as applications of monadic function symbols (such
as α(x) = f(g(h(x))) for α = fgh).

This demonstrates the difficulty of proving decidability results for nor-
mal MCTRSs. Another difficulty arises because modern tree automata tech-
niques [2,5,11] fail for normal MCTRSs. This is because the set of normal
forms of a normal MCTRS is not regular; i.e., the set of normal forms of a
nonlinear TRS is not regular [8], and the reducibility of a normal MCTRS
is equivalent to that of the underlying TRS (assume a term matches to the
left-hand-side of some rule at some position. If all nonlinear variables are in-
stantiated with normal forms, then it is reducible; otherwise, there is a redex
below some nonlinear variable position).

There remains another decidability problem: in a normal MCTRS, whether
every reducible term has a nv-needed redex is decidable. A similar result is
found in [13] in the context of sequentiality by a classical method. However,
the proof of Assertion 1 in Theorem 6.6 in [13] does not work (at least directly),
and the gap has not yet been fulfilled.

If a normal MCTRS has only shallow nonlinear variables (i.e., each occur-
rence of a nonlinear variable in the left-hand-side of a rule in a normal TRS is
at depth 1), tree automata with brotherhood equality [1] would work similar
to [5], which is in principle the same as a classical tree automata. I expect
reduction automata [4] would further help for this direction.
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