
Nested Timed Automata with Frozen Clocks

Guoqiang Li1, Mizuhito Ogawa2, and Shoji Yuen3

1 BASICS, School of Software, Shanghai Jiao Tong University, China
li.g@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology, Japan
mizuhito@jaist.ac.jp

3 Graduate School of Information Science, Nagoya University, Japan
yuen@is.nagoya-u.ac.jp

Abstract. A nested timed automaton (NeTA) is a pushdown system
whose control locations and stack alphabet are timed automata (TAs).
A control location describes a working TA, and the stack presents a pile of
interrupted TAs. In NeTAs, all local clocks of TAs proceed uniformly also
in the stack. This paper extends NeTAs with frozen local clocks (NeTA-
Fs). All clocks of a TA in the stack can be either frozen or proceeding
when it is pushed. A NeTA-F also allows global clocks adding to local
clocks in the working TA, which can be referred and/or updated from
the working TA. We investigate the reachability of NeTA-Fs showing
that (1) the reachability with a single global clock is decidable, and (2)
the reachability with multiple global clocks is undecidable.

1 Introduction

Recently, modeling and analyzing complex real-time systems with recursive
context switches have attracted attention. Difficulty on decidability of crucial
properties, e.g. safety, comes from two dimensions of infinity, an unboundedly
large stack and various types of clocks that record dense time.

Timed automata (TAs) [1] are finite automata with a finite set of clocks, of
which the constant slope is always 1. A special type of a clock is a stopwatch,
which has either 1 or 0 as the constant slope. A stopwatch automaton is a TA
with stopwatches, and surprisingly its reachability becomes undecidable [5].

For a component-based recursive timed system, clocks are naturally classified
into global clocks, which can be updated and observed by all contexts, and local
clocks, which belong to the context of a component and will be stored in the
stack when the component is interrupted. Similar to stopwatches, we introduce
a special type of local clocks, named frozen clocks, whose values are not updated
while their context is preempted and restart update when resumed. Other local
clocks are proceeding. The reachability of a recursive timed systems are inves-
tigated in various models, such as recursive timed automata (RTAs) [2], timed
recursive state machines (TRSMs) [3], and nested timed automata (NeTAs) [4].
Recently, RTAs are extended to recursive hybrid automata (RHA) [7].

Both RTAs [2] and TRSMs [3] adopt timed state machines as a formalization,
which is regarded as a TA with explicit entry and exit states. In both models,

2 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

each timed state machine (TSM) shares the same set of clocks. To guarantee
the decidability of the reachability, RTAs restrict all clocks to be either call-by-
value or call-by-reference, in our terminology frozen or global clocks respectively.
TRSMs are restricted to be either local or initialized. Local TRSMs restore the
values of all clocks when a pop occurs. Initialized TRSMs reset all clocks to zero
when a push occurs. The clocks in local-TRSMs are regarded as frozen clocks,
while those in initialized-TRSMs are special cases of global clocks.

Similar to stopwatches, frozen clocks significantly affect the decidability of
the reachability, observed by encoding counters with the N-wrapping technique
(Fig. 1 in Section 4.2). The recursive timed systems above either prohibit to
pass values between clocks and stopwatches, or have no stopwatches. Thus, they
avoid the wrapping technique and the reachability remains decidable. Note that
the wrapping technique is avoided if a TA has a single stopwatch (without other
clocks). Interrupt timed automata [6] push such a stopwatch automaton into the
stack, and the single stopwatch restriction preserves the decidable reachability.

This paper investigates the decidability of the reachability of NeTAs with
frozen clocks (NeTA-Fs), which have all three types of clocks. All local clocks
of a TA in a NeTA-F are either frozen or proceeding when the TA is pushed
to the stack. Moreover, global clocks may exchange values with local clocks in
the working TA. We show that (1) the reachability with a single global clock is
decidable, and (2) the reachability with multiple global clocks is undecidable.

NeTA-Fs naturally express interrupt behavior with time as follows. At the
moment of interrupt, the current working component is pushed to the stack (its
local clocks are either proceeding or frozen), and a handler component starts
with the initial setting. When the handler component is finished, the suspended
component is popped from the stack to be resumed. Global clocks together
with local clocks in the working TA work as proceeding clocks to specify time
constraints as well as channels by value passing among components.

The decidability for a NeTA-F with a single global clock is shown by two steps
encoding: (1) to an extension of a dense timed pushdown automaton (DTPDA) [8,
9] with frozen ages (DTPDA-F), and (2) its digitization a snapshot pushdown
systems (snapshot PDS), which is a well-structured pushdown system [10, 11]
with a well-formed constraint [9]. Both encoding steps preserve the reachability.
The undecidability of the reachability follows from simulating a Minsky machine
by a NeTA-F with two global clocks, applying the N-wrapping technique [17].

The rest of the paper is organized as follows. Section 2 recalls TAs and
DTPDAs, and then introduces DTPDA-Fs. Section 3 proves the decidability
of the reachability of DTPDA-F with a single global clock. Section 4 presents
NeTA-F, and proves its decidability and undecidability results depending on the
number of global clocks. Section 5 concludes the paper.

2 Dense Timed Pushdown Automata with Frozen Ages

For finite words w = aw′, we denote a = head(w) and w′ = tail(w). The
concatenation of two words w, v is denoted by w.v, and ε is the empty word.

Nested Timed Automata with Frozen Clocks 3

Let R≥0 and N be the sets of non-negative real and natural numbers, respec-
tively. Let Nω := N ∪ {ω}, where ω is the least limit ordinal. I denotes the set
of intervals, which are (a, b), [a, b], [a, b) or (a, b] for a ∈ N and b ∈ Nω.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R≥0,
assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to 0.
Given a clock valuation ν and a time t ∈ R≥0, (ν + t)(x) = ν(x) + t, for x ∈ X.
A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if x = y, and
ν(x) otherwise. Val(X) is used to denote the set of clock valuation of X.

2.1 Dense timed pushdown automata

Dense timed pushdown automata [8] extend timed pushdown automata with
time update in the stack. Each symbol in the stack is equipped with a local
clock named an age, and all ages in the stack proceed uniformly. An age in each
context is assigned to the value of a clock when a push action occurs. A pop
action pops the top symbol to assign the value of its age to a specified clock.

Note that, by deleting push and pop actions (as well as Γ) from a DTPDA,
we obtain a timed automaton (TA) [1, 12].

Definition 1 (Dense Timed Pushdown Automata). A dense timed push-
down automaton is a tuple A = 〈Q, q0, Γ,X,∆〉 ∈ A , where

– Q is a finite set of control states with the initial state q0 ∈ Q,
– Γ is finite stack alphabet,
– X is a finite set of clocks, and
– ∆ ⊆ Q×Actions×Q is a finite set of actions.

A (discrete) transition δ ∈ ∆ is a sequence of actions (q1, ϕ1, q2), · · · , (qi, ϕi, qi+1)

written as q1
ϕ1;··· ;ϕi−−−−−→ qi+1, in which ϕj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X is a clock and I ∈ I is an interval,
– Assign x← I where x ∈ X and I ∈ I,
– Value passing x← x′ where x, x′ ∈ X.
– Push push(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X, and
– Pop pop(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X.

A transition as a sequence of actions q1
ϕ1;··· ;ϕi−−−−−→ qi+1 prohibits interleaving

time progress. This can be encoded with an extra clock by resetting it to 0 and
checking it still 0 after transitions, and introducing fresh control states.

Given a DTPDA A ∈ A , we use Q(A), q0(A), X(A) and ∆(A) to repre-
sent the set of control states, the initial state, the set of clocks and the set of
transitions, respectively. We will use similar notations throughout the paper.

Definition 2 (Semantics of DTPDA). For a dense timed pushdown au-
tomaton 〈Q, q0, Γ,X,∆〉, a configuration is a triplet (q, w, ν) with q ∈ Q, w ∈
(Γ × R≥0)∗, and a clock valuation ν on X. Time passage of the stack w + t =
(γ1, t1 + t). · · · .(γn, tn + t) for w = (γ1, t1). · · · .(γn, tn).

The transition relation of a DTPDA consists of time progress and a discrete
transition which is defined by that of actions below.

4 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

– Time progress: (q, w, ν)
t−→A (q, w + t, ν + t), where t ∈ R≥0.

– Discrete transition: (q1, w1, ν1)
ϕ−→A (q2, w2, ν2), if q1

ϕ−→ q2, and one of the
following holds,
• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2 and ν1(x) ∈ I holds.
• Assign ϕ = x← I, then w1 = w2, ν2 = ν1[x← r] where r ∈ I.
• Value passing ϕ = x← x′, then w1 = w2, ν2 = ν1[x← ν1(x′)].
• Push ϕ = push(γ, x), then ν1 = ν2, w2 = (γ, ν1(x)).w1.
• Pop ϕ = pop(γ, x), then ν2 = ν1[x← t], w1 = (γ, t).w2.

The initial configuration %0 = (q0, ε, ν0).

Remark 1. For simplicity of the later proofs, the definition of DTPDAs is slightly
modified from the original [8]. Value-passing is introduced; instead push(γ, I)
and pop(γ, I) are dropped, since they are described by (x ← I; push(γ, x)) and
(pop(γ, x);x ∈ I?), respectively.

2.2 DTPDAs with Frozen Ages

A DTPDA with frozen ages (DTPDA-F) is different from Definition 1 at:

– clocks are partitioned into the set X of local clocks (of the fixed number k)
and the set C of global clocks,

– a tuple of ages (for simplicity, we fix the length of a tuple to be k) is pushed
on the stack and/or popped from the stack, and

– each tuple of ages is either proceeding (as in Definition 1) or frozen. After
pushing the tuple, all local clocks are reset to zero.

Definition 3 (DTPDAs with Frozen Ages). A DTPDA with frozen ages
(DTPDA-F) is a tuple D = 〈S, s0, Γ,X,C,∆〉 ∈ D , where

– S is a finite set of states with the initial state s0 ∈ S,
– Γ is finite stack alphabet,
– X is a finite set of local clocks (with |X| = k),
– C is a finite set of global clocks, and
– ∆ ⊆ S ×ActionF × S is a finite set of actions.

A (discrete) transition δ ∈ ∆ is a sequence of actions (s1, ϕ1, s2), · · · , (si, ϕi, si+1)

written as s1
ϕ1;··· ;ϕi−−−−−→ si+1, in which ϕj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X ∪ C is a clock and I ∈ I is an interval,
– Assign x← I where x ∈ X ∪ C and I ∈ I,
– Value passing x← x′ where x, x′ ∈ X ∪ C.
– Push push(γ), where γ ∈ Γ ,
– Freeze-Push (F-Push) fpush(γ), where γ ∈ Γ , and
– Pop pop(γ), where γ ∈ Γ .

Nested Timed Automata with Frozen Clocks 5

Definition 4 (Semantics of DTPDA-F). For a DTPDA-F 〈S, s0, Γ,X,C,∆〉,
a configuration is a triplet (s, w, ν) with s ∈ S, w ∈ (Γ × (R≥0)k × {0, 1})∗, and
a clock valuation ν on X ∪C. For w = (γ1, t̄1, f lag1). · · · .(γn, t̄n, f lagn), t-time
passage on the stack, written as w + t, is (γ1, progress(t̄1, t, f lag1), f lag1). · · ·
.(γn, progress(t̄n, t, f lagn), f lagn) where

progress(t̄, t, f lag) =

{
(t1 + t, · · · , tk + t) if flag = 1 and t̄ = (t1, · · · , tk)
t̄ if flag = 0

The transition relation consists of time progress and a discrete transition.

– Time progress: (s, w, ν)
t−→D (s, w + t, ν + t), where t ∈ R≥0.

– Discrete transition: (s1, w1, ν1)
ϕ−→D (s2, w2, ν2), if s1

ϕ−→ s2, and one of the
following holds,
• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2, and ν1(x) ∈ I holds.
• Assign ϕ = x← I, then w1 = w2, ν2 = ν1[x← r] where r ∈ I.
• Value passing ϕ = x← x′, then w1 = w2, ν2 = ν1[x← ν1(x′)].
• Push ϕ = push(γ), then ν2 = ν0, w2 = (γ, (ν1(x1), · · · , νk(xk)), 1).w1

for X = {x1, · · · , xk}.
• F-Push ϕ = fpush(γ), then ν2 = ν0, w2 = (γ, (ν1(x1), · · · ,
νk(xk)), 0).w1 for X = {x1, · · · , xk}.

• Pop ϕ = pop(γ), then ν2 = ν1[x̄ ← (t1, · · · , tk)], w1 = (γ, (t1, · · · , tk),
f lag).w2.

The initial configuration %0 = (s0, ε, ν0). We use ↪→ to range over these transi-
tions, and ↪→∗ is the reflexive and transitive closure of ↪→.

Example 1. The figure shows transitions %1 ↪→ %2 ↪→ %3 ↪→ %4 of a DTPDA-F
with S = {•} (omitted in the figure), X = {x1, x2}, C = {c1}, and Γ = {a, b, d}.
At %1 ↪→ %2, the values of x1 and x2 (0.5 and 3.9) are pushed with d, and frozen.
After pushing, value of x1 and x2 will be reset to zero, Then, x2 is set a value
in (1, 2], say 1.7. At %2 ↪→ %3, time elapses 2.6, but frozen ages in the top and
third stack frames do not change. The rest (in bold) proceed. At %3 ↪→ %4, test
whether the value of x2 is in (4, 6). Yes, then pop the stack and x1, x2 are set to
the popped ages. Last, the value of x1 is set to c1.

(a, (1.9, 4.5), 1)
(b, (6.7, 2.9), 0)
(a, (3.1, 5.2), 1)
(d, (4.2, 3.3), 1)

x1 ← 0.5
x2 ← 3.9
c1 ← 2.3

(d, (0.5, 3.9), 0)
(a, (1.9, 4.5), 1)
(b, (6.7, 2.9), 0)
(a, (3.1, 5.2), 1)
(d, (4.2, 3.3), 1)

x1 ← 0
x2 ← 1.7
c1 ← 2.3

(d, (0.5, 3.9), 0)
(a, (4.5,7.1), 1)
(b, (6.7, 2.9), 0)
(a, (5.7,7.8), 1)
(d, (6.8,5.9), 1)

x1 ← 2.6
x2 ← 4.3
c1 ← 4.9

(a, (4.5, 7.1), 1)
(b, (6.7, 2.9), 0)
(a, (5.7, 7.8), 1)
(d, (6.8, 5.9), 1)

x1 ← 4.9
x2 ← 3.9
c1 ← 4.9

%1
fpush(d);x2←(1,2]−−−−−−−−−−−−→D %2

2.6−−−−−−−−−−→D %3
x2∈(4,6)?;pop(d);x1←c1−−−−−−−−−−−−−−−→D %4

6 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

3 Reachability of DTPDAs with Frozen Ages

In this section, we assume |C| = 1, i.e., a DTPDA-F has a single global
clock. We denote the set of finite multisets over D by MP(D), and the union
of two multisets M,M ′ by M]M ′. We regard a finite set as a multiset with
the multiplicity 1, and a finite word as a multiset by ignoring the ordering. We
denote the top symbol and its suffix of a word w by hd(w) and tl(w), respectively.

3.1 Digiword and its Operations

Let 〈S, s0, Γ,X,C,∆〉 be a DTPDA-F, and let n be the largest integer (except
for ω) appearing in ∆. For v ∈ R≥0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}

The idea of the next digitization is inspired by [13–15].

Definition 5. Let frac(x, t) = t − floor(t) for (x, t) ∈ (C ∪X ∪ Γ) × R≥0. A
digitization digi : MP((C ∪ X ∪ Γ) × R≥0 × {0, 1}) → MP((C ∪ X ∪ Γ) ×
Intv(n)× {0, 1})∗ is defined as follows.

For Ȳ ∈ MP((C ∪ X ∪ Γ) × R≥0 × {0, 1}), let Y0, Y1, · · · , Ym be multi-
sets that collect (x, proj(t), f lag)’s having the same frac(x, t) for (x, t, f lag) ∈
Ȳ. Among them, Y0 (which is possibly empty) is reserved for the collection of
(x, proj(t), f lag) with frac(t) = 0 and t ≤ n (i.e., proj(t) = r2i for 0 ≤ i ≤ n).
We assume that Yi’s except for Y0 is non-empty (i.e., Yi = ∅ with i > 0 is omit-
ted), and Yi’s are sorted by the increasing order of frac(x, t) (i.e., frac(x, t) <
frac(x′, t′) for (x, proj(t), f lag) ∈ Yi and (x′, proj(t′), f lag′) ∈ Yi+1).

Note that flag in (x, proj(t), f lag) is always 1 for x ∈ C ∪ X. For Y ∈
MP((C ∪ X ∪ Γ) × Intv(n) × {0, 1}), we define the projections by prc(Y) =
{(x, proj(t), 1) ∈ Y } and frz(Y) = {(x, proj(t), 0) ∈ Y }. We overload the pro-
jections on Ȳ = Y0Y1 · · ·Ym ∈ (MP((C ∪X ∪Γ)× Intv(n)×{0, 1}))∗ such that
frz(Ȳ) = frz(Y0)frz(Y1) · · · frz(Ym) and prc(Ȳ) = prc(Y0)prc(Y1) · · · prc(Ym).

For a stack frame v = (γ, (t1, · · · , tk), f lag) of a DTPDA-F, we denote a word
(γ, t1, f lag) · · · (γ, tk, f lag) by dist(v). Given a clock valuation ν, we denote a
clock word (x1, ν(x1), f lag) . . . (xn, ν(xn), f lag) where x1 . . . xn ∈ X ∪ C.

Example 2. In Example 1, n = 6 and we have 13 intervals illustrated below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

For the configuration %1 = (•, v4 · · · v1, ν) in Example 1, let Ȳ = dist(v4)] . . .]
dist(v1)] time(ν) be a word, and Ȳ = digi(Ȳ), i.e.,

Ȳ = {(a, 1.9, 1), (a, 4.5, 1), (b, 6.7, 0), (b, 2.9, 0), (a, 3.1, 1), (a, 5.2, 1), (d, 4.2, 1),
(d, 3.3, 1), (x1, 0.5, 1), (x2, 3.9, 1), (c1, 2.3, 1)}

Ȳ = {(a, r7, 1)}{(a, r11, 1), (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)}
{(b, r13, 0)}{(x2, r7, 1), (a, r3, 1), (b, r5, 0)}

prc(Ȳ) = {(a, r7, 1)}{(a, r11, 1), (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)}
{(x2, r7, 1), (a, r3, 1)}

frz(Ȳ) = {(b, r13, 0)}{(b, r5, 0)}

Nested Timed Automata with Frozen Clocks 7

A word in (MP((C ∪X ∪ Γ)× Intv(n)× {0, 1}))∗ is called a digiword. We
denote Ȳ |Λ for Λ ⊆ Γ ∪C∪X, by removing (x, ri, f lag) with x 6∈ Λ. A k-pointer
ρ̄ of Ȳ is a tuple of k pointers to mutually different k elements in Ȳ |Γ . We refer
the element pointed by the i-th pointer by ρ̄[i]. From now on, we assume that

– the occurrence of (x, ri, 1) with x ∈ C ∪X in Ȳ is exactly once, and
– a digiword has two pairs of k-pointers (ρ̄1, ρ̄2) and (τ̄1, τ̄2) that point to

only proceeding and frozen ages, respectively. We call (ρ̄1, ρ̄2) proceeding k-
pointers and (τ̄1, τ̄2) frozen k-pointers. We assume that they do not overlap
each other, i.e., there are no i, j, such that ρ̄1[i] = ρ̄2[j] or τ̄1[i] = τ̄2[j].

ρ̄1 and ρ̄2 intend the store of values of the local clocks at the last and one
before the last Push, respectively. τ̄1 and τ̄2 intend similar for F-Push.

Example 3. Ȳ in Example 2 have proceeding 2-pointers (ρ̄1, ρ̄2) (marked with the
numbered overlines and underlines) frozen 2-pointers 2-pointers (τ̄1, τ̄2) (marked
with the numbered double overlines and double underlines).

Ȳ = {(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)

2
}

{(b, r13, 0)
1

}{(x2, r7, 1), (a, r3, 1)
1
, (b, r5, 0)

2

}
Ȳ |Γ = {(a, r7, 1)

1
}{(a, r11, 1)

2
, (d, r9, 1)}{(d, r7, 1)}{(a, r9, 1)

2
}

{(b, r13, 0)
1

}{(a, r3, 1)
1
, (b, r5, 0)

2

}

Definition 6. For digiwords Ȳ = Y1 · · ·Ym and Z̄ = Z1 · · ·Zm′ with pairs of
k-pointers (ρ̄1, ρ̄2), (τ̄1, τ̄2), and (ρ̄′1, ρ̄

′
2), (τ̄ ′1, τ̄

′
2), respectively. We define an em-

bedding Ȳ v Z̄, if there exists a monotonic injection f : [1..m] → [1..m′] such
that Yi ⊆ Zf(i) for each i ∈ [1..m], f ◦ ρ̄i = ρ̄′i and f ◦ τ̄i = τ̄ ′i for i = 1, 2.

Definition 7. Let Ȳ = Y0 · · ·Ym, Ȳ ′ = Y ′0 · · ·Y ′m′ ∈ (MP((Γ ∪ C ∪ X) ×
Intv(n)×{0, 1}))∗ such that Ȳ (resp. Ȳ ′) has two pairs of proceeding and frozen
k-pointers (ρ̄1, ρ̄2) and (τ̄1, τ̄2) (resp. (ρ̄′1, ρ̄

′
2) and (τ̄ ′1, τ̄

′
2)). We define digiword

operations as follows. Note that except for Mapflag→ , Mapflag← , and Permuta-
tion, k-pointers do not change.

– Decomposition Let Z ∈MP((C ∪X ∪ Γ)× Intv(n)× {0, 1}). If Z ⊆ Yj,
decomp(Ȳ , Z) = (Y0 · · ·Yj−1, Yj , Yj+1 · · ·Ym).

– InsertI Let Z ∈MP((Γ ∪C ∪X)× Intv(n)×{0, 1}) with (x, ri, f lag) ∈ Z
for x ∈ C ∪X ∪ Γ . insertI(Ȳ , Z) inserts Z to Ȳ such that either take the union of Z and Yj for j > 0, or put Z at any place after Y0

if i is odd
take the union of Z and Y0 if i is even

– Insertx insertx(Ȳ , x, y) adds (x, ri, 1) to Xj for (y, ri, 1) ∈ Xj, x, y ∈ C∪X.
– Init For Ȳ = Y0 · · ·Ym, init(Ȳ) is obtained by removing all elements (x, ri)

for x ∈ X and updating Y0 with Y0] {(xi, r0) | xi ∈ X}.
– Delete delete(Ȳ , x) for x ∈ C∪X is obtained from Ȳ by deleting the element

(x, r) indexed by x.

8 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

– Permutation. Let V̄ = prc(Ȳ) = V0V1 · · ·Vk and Ū = frz(Ȳ) = U0U1 · · ·Uk′ .
A one-step permutation Ȳ ⇒ Ȳ ′ is given by⇒ = ⇒s ∪ ⇒c, defined below.
We denote inc(Vj) for Vj in which each ri is updated to ri+1 for i < 2k+ 1.

(⇒s) Let{
decomp(U0 inc(V0) . tl(Ȳ), Vk) = (Ȳ ka , Ŷ

k, Ȳ k`)

decomp(insertI((Ŷ
k \ Vk) . Ȳ k` , Vk), Vk) = (Z̄ka, Ẑ

k, Z̄k`).

For j with 0 ≤ j < k, we repeat to set{
decomp(Ȳ j+1

a . Z̄j+1
a , Vj) = (Ȳ ja , Ŷ

j , Ȳ j`)

decomp(insertI((Ŷ
j \ Vj) . Ȳ j` , Vj), Vj) = (Z̄ja, Ẑ

j , Z̄j`).

Then, Ȳ ⇒s Ȳ
′ = Ȳ 0

a Z̄0
a Ẑ

0 Z̄1
a Ẑ

1 · · · Z̄ka Ẑk Z̄k`.
(⇒c) Let Ȳ ka = U0 ∪ inc(Vk) and Z̄ka = inc(V0) Y1 · · · (Yi′ \ Vk) · · ·Ym.

For j with 0 ≤ j < k, we repeat to set{
decomp(Ȳ j+1

a .Z̄j+1
a , Vj) = (Ȳ ja , Ŷ

j , Ȳ j`)

decomp(insertI((Ŷ
j \ Vj).Ȳ j` , Vj), Vj) = (Z̄ja, Ẑ

j , Z̄j`).

Then, Ȳ ⇒c Ȳ
′ = Ȳ 0

a Z̄0
a Ẑ

0 Z̄1
a Ẑ

1 · · · Z̄k−1
a Ẑk−1 Z̄k−1

` .

(ρ̄1, ρ̄2) is updated to correspond to the permutation accordingly, and (τ̄1, τ̄2)
is kept unchanged.

– Rotate For proceeding k-pointers (ρ̄1, ρ̄2) of Ȳ and ρ̄′ of Z̄, let Ȳ |Γ ⇒∗ Z̄|Γ
such that the permutation makes ρ̄1 match with ρ̄. Then, rotateρ̄1 7→ρ̄(ρ̄2) is
the corresponding k-pointer of Z̄ to ρ̄2.

– Mapflag→ mapfl→(Ȳ , γ) for γ ∈ Γ is obtained from Ȳ by, for each xi ∈ X,
replacing (xi, rj , 1) with (γ, rj , f l). Accordingly, if fl = 1, ρ̄1[i] is updated to
point to (γ, rj , 1), and ρ̄2 is set to the original ρ̄1. If fl = 0, τ̄1[i] is updated
to point to (γ, rj , 0), and τ̄2 is set to the original τ̄1.

– Mapflag← mapfl←(Ȳ , Ȳ ′, γ,) for γ ∈ Γ is obtained,

(if fl = 1) by replacing each ρ̄1[i] = (γ, rj , 1) in Ȳ |C∪Γ with (xi, rj , 1) for
xi ∈ X. Accordingly, new ρ̄1 is set to the original ρ̄2, and new ρ̄2 is set
to rotateρ̄′1 7→ρ̄2(ρ̄′2). τ̄1 and τ̄2 are kept unchanged.

(if fl = 0) by replacing each τ̄1[i] = (γ, rj , 0) in Ȳ |C∪Γ with (xi, rj , 1) for
xi ∈ X. Accordingly, new τ̄1 is set to the original τ̄2, and new ρ̄2 is set
to ρ̄′2. ρ̄1 and ρ̄2 are kept unchanged.

Remark 2. Permutation intends to describe (nondeterministic) time progress.
The figure shows that, after where Vj+1 shifts is decided, Ȳ j+1

a .Z̄j+1
a describes

the prefix of the destination of Vj+1. Then, the possible destination of Vj is in

Ȳ j+1
a .Z̄j+1

a after the current occurrence of Vj . This range is denoted by Z̄j`. Note
that Ui’s do not change their positions.

Time Progress−−−−−−−−−→
Vj Vj+1 Vj+1︸ ︷︷ ︸

Ȳ j+1
a

︸ ︷︷ ︸
Z̄j+1

a︸ ︷︷ ︸
Z̄j

`

Nested Timed Automata with Frozen Clocks 9

Example 4. We begin with the digiword Ȳ in Example 3, to simulate transitions
%1 ↪→∗ %3 in Example 1.

– fpush(d) is simulated by Ȳ1 = init(map1
→(Ȳ , γ)).

Ȳ1 = {(x1, r0, 1), (x2, r0, 1)}{(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}

{(a, r9, 1)
2
, (d, r1, 0)

1

}{(b, r13, 0)
1
}{(a, r3, 1)

1
, (b, r5, 0)

2
, (d, r7, 0)

1

}

– x2 ← (1, 2] is simulated by Ȳ2 = insertI(delete(Ȳ1, x2), (x2, ri).
Ȳ2 = {(x1, r0, 1)}{(a, r7, 1)

1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}

{(a, r9, 1)
2
, (d, r1, 0)

1

}{(x2, r3, 1), (b, r13, 0)
1
}{(a, r3, 1)

1
, (b, r5, 0)

2
, (d, r7, 0)

1

}

– Time elapse of 2.6 time units is simulated by Ȳ2 ⇒∗ Ȳ3

Ȳ3 = {(a, r13, 1)
2
}{(x2, r9, 1)}{(a, r9, 1)

1
, (d, r1, 0)

1

}{(x1, r5, 1)}{(a, r11, 1)
1
,

(b, r13, 0)
1
}{(a, r13, 1)

2
, (d, r13, 1)}{(c1, r9, 1), (d, r11, 1), (b, r5, 0)

2
, (d, r7, 0)

1

}

3.2 Snapshot Pushdown System

A snapshot pushdown system (snapshot PDS) keeps the digitization of all
values of (global and local) clocks and ages in the top stack frame, as a digiword.
It is associated with a flag, which shows that the last push is either Push
(flag = 1) or F-Push (flag = 0). It contains both proceeding and frozen ages,
and only proceeding ages proceed synchronously to global and local clocks.

We show that a DTPDA-F with a single global clock is encoded into its
digitization, called a snapshot PDS. The keys of the encoding are, (1) when a pop
occurs, the time progress recorded at the top stack symbol is propagated to the
next stack symbol after finding a permutation by matching between proceeding
k-pointers ρ̄2 and ρ̄′1, and (2) the single global clock assumption allows us to
compare current local clock values with a past one (which is stored in the global
clock), but unable to compare past local clock values.

Definition 8. Let π : %0 = (q0, ε, ν0) ↪→∗ % = (s, w, ν) be a transition sequence
of a DTPDA-F from the initial configuration. If π is not empty, we refer the
last step as λ : %′ ↪→ %, and the preceding sequence by π′ : %0 ↪→∗ %′. Let
w = vm · · · v1. A snapshot is snap(π) = (Ȳ , f lag(vm)), where

Ȳ = digi(]idist(vi)] {(x, ν(x), 1) | x ∈ C ∪X})
Let a k-pointer ξ̄(π) be ξ̄(π)[i] = (γ, proj(ti), f lag(vm)) for (γ, ti) ∈ dist(vm).

A snapshot configuration Snap(π) is inductively defined from Snap(π′).

(q0, snap(ε)) if π = ε. (ρ̄1, ρ̄2) and (τ̄1, τ̄2) are undefined.
(s′, snap(π) tail(Snap(π′))) if λ is Time progress with Ȳ ′ ⇒∗ Ȳ .

Then, the permutation Ȳ ′ ⇒∗ Ȳ updates (ρ̄′1, ρ̄
′
2) to (ρ̄1, ρ̄2).

(s′, snap(π) tail(Snap(π′))) if λ is Local,Test,Assign,Value-passing.
(s, snap(π) Snap(π′)) if λ is Push. Then, (ρ̄1, ρ̄2) = (ξ̄(π), ρ̄′1).
(s, snap(π) Snap(π′)) if λ is F-Push. Then, (τ̄1, τ̄2) = (ξ̄(π), τ̄ ′1).
(s, snap(π) tail(tail(Snap(π′)))) if λ is Pop.

If flag = 1, (ρ̄1, ρ̄2) = (ρ̄′2, rotateρ̄′′1 7→ρ̄′2(ρ̄′′2)); otherwise, (τ̄1, τ̄2) = (τ̄ ′2, τ̄
′′
2).

10 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

We refer head(Snap(π′)) by (Ȳ ′, f lag′), head(tail(Snap(π′)) by (Ȳ ′′, f lag′′).
Pairs of proceeding k-pointers of Ȳ , Ȳ ′, and Ȳ ′′ are denoted by (ρ̄1, ρ̄2), (ρ̄′1, ρ̄

′
2),

and (ρ̄′′1 , ρ̄
′′
2), respectively. Similarly, pairs of frozen ones are denoted by (τ̄1, τ̄2),

(τ̄ ′1, τ̄
′
2), and (τ̄ ′′1 , τ̄

′′
2), respectively. If not mentioned, k-pointers are kept as is.

Example 5. In Example 1, %3 is described by Snap(π) below for an execution
path π = · · · ↪→ %1 ↪→ %2 ↪→ %3 from the initial configuration to %3.

({(a, r13, 1)
2
}{(x2, r9, 1)}{(a, r9, 1)

1
, (d, r1, 0)

1

}{(x1, r5, 1)}{(a, r11, 1)
1
, (b, r13, 0)

1
}

{(a, r13, 1)
2
, (d, r13, 1)}{(c1, r9, 1), (d, r11, 1), (b, r5, 0)

2
, (d, r7, 0)

2

}, f l = 0)

({(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)

2
}

{(b, r13, 0)
1

}{(x2, r7, 1), (a, r3, 1)
1
, (b, r5, 0)

2

}, f l = 1)

({(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}

{(b, r13, 0)
1

}{(x2, r7, 1), (b, r5, 0)
2

}, f l = 0)

({(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}{(x2, r7, 1)},

f l = 1)

({(d, r9, 1)
1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}{(x2, r7, 1)}, f l = 1)

Definition 9. For a DTPDA-F 〈S, s0, Γ,X,C,∆〉 with |C| = 1, a snapshot
PDS S is a PDS (ith possibly infinite stack alphabet)

〈S, s0, (MP((C ∪X ∪ Γ)× Intv(n)× {0, 1}))∗, ∆d〉.
with the initial configuration 〈sinit, {(x, r0) | x ∈ C ∪X}〉. Then ∆d consists of:

Time progress 〈s, (Ȳ , f lag)〉 ↪→S 〈s, (Ȳ ′, , f lag)〉 for Ȳ ⇒∗ Ȳ ′.
Local (s

ε−→ s′ ∈ ∆) 〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (Ȳ , f lag)〉.
Test (s

x∈I?−−−→ s′ ∈ ∆) If ri ⊆ I and (x, ri, 1) ∈ Ȳ ,
〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (Ȳ , f lag)〉.

Assign (s
x←I−−−→ s′ ∈ ∆ with x ∈ X) For ri ⊆ I,

〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertI(delete(Ȳ , x), {(x, ri, 1)}), f lag)〉.
Assign (s

c←I−−−→ s′ ∈ ∆ with c ∈ C) For ri ⊆ I,
〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertI(delete(Ȳ , c), {(c, ri, 1)}), f lag)〉.

Value-passing (s
x←y−−−→ s′ ∈ ∆ with x ∈ X)

〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertx(delete(Ȳ , c), x, y), f lag)〉.
Value-passing (s

c←y−−−→ s′ ∈ ∆ with c ∈ C)
〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertx(delete(Ȳ , c), c, y), f lag)〉.

Push (s
push(γ)−−−−−→ s′ ∈ ∆; fl = 1) and F-Push (s

fpush(γ)−−−−−−→ s′ ∈ ∆; fl = 0)
〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (init(mapfl→(Ȳ , γ)), f l)(Ȳ , f lag)〉.

Pop (s
pop(γ)−−−−→ s′ ∈ ∆)

〈s, (Ȳ , f lag)(Ȳ ′, f lag′)〉 ↪→S 〈s′, (mapflag← (Ȳ , Ȳ ′, γ), f lag′)〉.

Example 6. Following to Example 5, %3 ↪→ %4 in Example 1 is described by
Snap(π) ↪→S Snap(π′) with Snap(π′) below for π′ = π ↪→ %4.

Nested Timed Automata with Frozen Clocks 11

({(a, r13, 1)
2
}{(x2, r9, 1)}{(a, r9, 1)

1
}{(a, r11, 1)

1
, (b, r13, 0)

1

}

{(a, r13, 1)
2
, (d, r13, 1)}{(x1, r11, 1), (c1, r9, 1), (d, r11, 1), (b, r5, 0)

2

}, f l = 1)

({(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}

({(b, r13, 0)
1

}{(x2, r7, 1), (b, r5, 0)
2

}, f l = 0)

({(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}{(x2, r7, 1)},

f l = 1)

({(d, r9, 1)
1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}{(x2, r7, 1)}, f l = 1)

By induction on the number of steps of transitions, the encoding relation
between a DTPDA-F with a single global clock and a snapshot PDS is observed.
Note that the initial clock valuation of the DTPDA-F to be set ν0 is essential.

Lemma 1. Let us denote %0 and % (resp. 〈q0, w̃0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a DTPDA-F (resp. its snapshot PDS S).

(Preservation) If π : %0 ↪→∗ %, there exists 〈s, w̃〉 such that 〈q0, w̃0〉 ↪→∗S 〈s, w̃〉
and Snap(π) = 〈s, w̃〉.

(Reflection) If 〈q0, w̃0〉 ↪→∗S 〈s, w̃〉, there exists π : %0 ↪→∗ % with Snap(π) =
〈s, w̃〉.

3.3 Well-Formed Constraint

A snapshot PDS is a growing WSPDS (Definition 6 in [9]) and ⇓Υ gives a
well-formed constraint (Definition 8 in [9]). Let us recall the definitions.

Let P be a set of control locations and let Γ be a stack alphabet. Different
from an ordinary definition of PDSs, we do not assume that P and Γ are finite,
but associated with well-quasi-orderings (WQOs) � and ≤, respectively. Note
that the embedding v over digiwords is a WQO by Higman’s lemma.

For w = α1α2 · · ·αn, v = β1β2 · · ·βm ∈ Γ ∗, let w � v if m = n and ∀i ∈
[1..n].αi ≤ βi. We extend � on configurations such that (p, w)� (q, v) if p � q
and w � v for p, q ∈ P and w, v ∈ Γ ∗. A partial function ψ ∈ PFun(X,Y) is
monotonic if γ ≤ γ′ with γ ∈ dom(ψ) implies ψ(γ)� ψ(γ′) and γ′ ∈ dom(ψ).

A a well-structured PDS (WSPDS) is a triplet 〈(P,�), (Γ,≤), ∆〉 of a set
(P,�) of WQO states, a WQO stack alphabet (Γ,≤), and a finite set ∆ ⊆
PFun(P ×Γ, P ×Γ≤2) of monotonic partial functions. A WSPDS is growing if,
for each ψ(p, γ) = (q, w) with ψ ∈ ∆ and (q′, w′) � (q, w), there exists (p′, γ′)
with (p′, γ′)� (p, γ) such that ψ(p′, γ′)� (q′, w′).

Definition 10. For a WSPDS 〈(P,�), (Γ,≤), ∆〉, a pair (Υ,⇓Υ) of a set Υ ⊆
P ×Γ ∗ and a projection function ⇓Υ : P ×Γ ∗ → (P ×Γ ∗)∪{#} is a well-formed
constraint if, for configurations c, c′,

– c ↪→ c′ implies that c ∈ Υ if, and only if c′ ∈ Υ ,
– c ↪→ c′ implies ⇓Υ (c) ↪→⇓Υ (c′),
– ⇓Υ (c)� c, and
– c� c′ implies either ⇓Υ (c) =⇓Υ (c′) or ⇓Υ (c) = #,

12 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

where # is added to P ×Γ ∗ as the least element (wrt �) and Υ = {c ∈ P ×Γ ∗ |
c =⇓Υ (c)}. (# represents failures of ⇓Υ .)

A well-formed constraint describes a syntactical feature that is preserved
under transitions. Theorem 3 in [9] ensures a P-automaton construction for the
quasi-coverability of a growing WSPDS with directed WQOs4, Theorem 4 in [9]
ensures the finite convergence of a P-automaton, and Theorem 5 in [9] lifts it to
the reachability when it has a well-formed constraint.

Definition 11. Let a configuration (s, w̃) of a snapshot PDS S. An element in a
stack frame of w̃ has a parent if it has a corresponding element in the next stack
frame. The transitive closure of the parent relation is an ancestor. An element
in w̃ is marked, if its ancestor is pointed by a k-pointer in some stack frame.
We define a projection ⇓Υ (w̃) by removing unmarked elements in w̃. We say
that w̃ is well-formed if ⇓Υ (w̃) = w̃.

The idea of ⇓Υ is, to remove unnecessary elements (i.e., elements not related
to previous actions) from the stack content. Note that a configuration reachable
from the initial configuration by ↪→∗S is always well-formed. Since a snapshot PDS
is a growing WSPDS with ⇓Υ , we conclude our first theorem from Lemma 1.

Theorem 1. The reachability of a DTPDA-F 〈S, s0, Γ,X,C,∆〉 is decidable, if
|C| = 1.

4 Nested Timed Automata with Frozen Clocks

4.1 Nested Timed Automata with Frozen Clocks

Definition 12 extends Definition 5 in [4] with the choice that all clocks of an
interrupted TA are either proceeding or frozen. In [4], only the former is allowed.
For simplicity, we assume that each Ai in T shares the same set of local clocks.

Definition 12 (Nested Timed Automata with Frozen Clocks). A NeTA-
F is a quadruplet N = (T,A0, X,C,∆), where

– T is a finite set {A0,A1, · · · ,Ak} of TAs, with the initial TA A0 ∈ T . We
assume the sets of states of Ai, denoted by S(Ai), are mutually disjoint, i.e.,
S(Ai) ∩ S(Aj) = ∅ for i 6= j. We denote the initial state of Ai by q0(Ai).

– C is a finite set of global clocks, and X is the finite set of k local clocks.
– ∆ ⊆ Q × (Q ∪ {ε}) × Actions+ × Q × (Q ∪ {ε}) describes transition rules

below, where Q = ∪Ai∈TS(Ai).

A transition rule is described by a sequence of Actions = {internal, push,
fpush, pop, c ∈ I, c ← I, x ← c, c ← x} where c ∈ C, x ∈ X, and I ∈ I. The
internal actions are Local, Test, Assign, and Value-passing in Definition 1.

4 The key Lemma 1 for Theorem 3 in [9] requires that a WQO is directed (i.e., for
each x, y, there exists z with z ≥ x, y), which was missing in [9].

Nested Timed Automata with Frozen Clocks 13

Internal (q, ε, internal, q′, ε), which describes an internal transition in the
working TA (placed at a control location) with q, q′ ∈ Ai.

Push (q, ε, push, q0(Ai′), q), which interrupts the currently working TA Ai at
q ∈ S(Ai). Then, a TA Ai′ newly starts. Note that all local clocks of Ai
pushed onto the stack simultaneously proceed to global clocks.

F-Push (q, ε, fpush, q0(Ai′), q), which is the same as Push except that all local
clocks of Ai are frozen.

Pop (q, q′, pop, q′, ε), which restarts Ai′ in the stack from q′ ∈ S(Ai′) after Ai
has finished at q ∈ S(Ai).

Global-test (q, ε, c ∈ I?, q, ε), which tests whether the value of a global clock c
is in I.

Global-assign (q, ε, c ← I, q, ε), which assigns a value in r ∈ I to a global
clock c.

Global-load (q, ε, x ← c, q, ε), which assign the value of a global clock c to a
local clock x ∈ X in the working TA.

Global-store (q, ε, c ← x, q, ε), which assign the value of a local clock x ∈ X
of the working TA to a global clock c.

Definition 13 (Semantics of NeTA-F). Given a NeTA-F (T,A0, X,C,∆),
the current control state is referred by q. Let ValX = {ν : X → R≥0} and
ValC = {µ : C → R≥0}. A configuration of a NeTA-F is an element in (Q ×
ValX × ValC , (Q× {0, 1} × ValX)∗).

– Time progress transitions: (〈q, ν, µ〉, v)
t−→ (〈q, ν+ t, µ+ t〉, v+ t) for t ∈ R≥0,

where v + t set ν′ := progress(ν′, t, f lag) of each 〈q′, f lag, ν′〉 in the stack.

– Discrete transitions: κ
ϕ−→ κ′ is defined as follows.

• Internal (〈q, ν, µ〉, v)
ϕ−→ (〈q′, ν′, µ〉, v), if 〈q, ν〉 ϕ−→ 〈q′, ν′〉 is in Defini-

tion 2, except for push or pop.

• Push (〈q, ν′, µ〉, v)
push−−−→ (〈q0(Ai′), ν0, µ〉, 〈q, 1, ν〉.v).

• F-Push (〈q, ν′, µ〉, v)
f-push−−−−→ (〈q0(Ai′), ν0, µ〉, 〈q, 0, ν〉.v).

• Pop (〈q, ν, µ〉, 〈q′, f lag, ν′〉.w)
pop−−→ (〈q′, ν′, µ〉, w).

• Global-test (〈q, ν, µ〉, v)
c∈I?−−−→ (〈q, ν, µ〉, v), if µ(c) ∈ I.

• Global-assign (〈q, ν, µ〉, v)
c←I−−−→ (〈q, ν, µ[c← r]〉, v) for r ∈ I.

• Global-load (〈q, ν, µ〉, v)
x←c−−−→ (〈q, ν[x← µ(c)], µ〉, v).

• Global-store (〈q, ν, µ〉, v)
c←x−−−→ (〈q, ν, µ[c← ν(x)]〉, v).

The initial configuration of NeTA-F is (〈q0(A0), ν0, µ0〉, ε), where ν0(x) = 0 for
x ∈ X and µ0(c) = 0 for c ∈ C. We use −→ to range over these transitions.

4.2 Reachability of NeTA-Fs with Multiple Global Clocks

For showing the undecidability, we encode the halting problem of Minsky
machines [16] in a NeTA-F. A Minsky machine M is a tuple (L,C,D) where:

– L is a finite set of states, and lf ∈ L is the terminal state,

14 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

– C = {ct1, ct2} is the set of two counters, and
– D is the finite set of transition rules of the following types,
• increment counter di : ct := ct+ 1, goto lk,
• test-and-decrement counter di : if (ct > 0) then (ct := ct − 1, goto
lk) else goto lm,

where ct ∈ C, di ∈ D and lk, lm ∈ L.

Example 7. By the N-wrapping technique [17], a Minsky machine can be encoded
into a NeTA-F N = (T,A0, C,∆), with T = {A0,A1,A2} where

– S(A0) = {q0}, X(A0) = {xf , xp}, S(A1) = {q1}, X(A1) = {x1, dum1},
S(A2) = {q2}, andX(A2) = {dum2, dum3}, where the dummy clocks dumi’s
are prepared for fulfilling k = 2.

– C = {csys, cv} where csys is a system clock that will be reset to zero when its
value becomes N ; cv encodes values of two counters as µ(cv) = 2−ct1 · 3−ct2 .

Decrementing and incrementing the counter ct1 are simulated by doubling and
halving of the value of the clock cv, respectively, while those for ct2 are simulated
by tripling and thirding the value of clock cv. Zero-test of ct1 is simulated by (1)
multiplying the value of cv by a power of 3, and (2) comparing it with 3. Similar
for ct2. These operations are illustrated in Fig. 1, and formally described below.

Doubling: Initially ν(csys) = 0 and ν(cv) = d with 0 < d < 1. Then the
doubling the value of cv is obtained at the end, as ν(csys) = 0 and ν(cv) = 2d.

q0
cv∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→ q0

csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ xf←cv−−−−→ f-push−−−−→
q1 q0

cv∈[N,N]?−−−−−−−→ pop−−→ cv←xf−−−−→ q0
csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Halving: During the halving the value of cv, it will be nondeterministically
stored to xf in a frozen TA. When csys is reset to zero, xf will be popped
to restart. Only if the values of xf and cv coincide (i.e., they reach to N
together), the value of cv becomes d/2 when csys is wrapped twice.

q0
cv∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→ q0

xf←cv−−−−→ cv←[0,0]−−−−−→ f-push−−−−→
q1 q0

csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ pop−−→ q0
cv∈[N,N]?−−−−−−−→ xf∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→

q0
csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Tripling: Tripling requires an extra local clock xp in A0.

q0
cv∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→ q0

csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ xf←cv−−−−→ f-push−−−−→
q1 q0

cv∈[N,N]?−−−−−−−→ pop−−→ cv←xf−−−−→ xp←[0,0]−−−−−−→ q0
csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ xf←cv−−−−→

cv←xp−−−−→ f-push−−−−→ q1 q0
cv∈[N,N]?−−−−−−−→ pop−−→ cv←xf−−−−→ q0

csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Thirding: Thirding requires an extra TA A2 with a local clock x1 .

q0
cv∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→ q0

xf←cv−−−−→ cv←[0,0]−−−−−→ f-push−−−−→
q1 q0

x1←cv−−−−→ cv←[0,0]−−−−−→ f-push−−−−→ q2 q1 q0
csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ pop−−→

q1 q0
cv∈[N,N]?−−−−−−−→ x1∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→ q1 q0

csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ pop−−→
q0

cv∈[N,N]?−−−−−−−→ xf∈[N,N]?−−−−−−−→ cv←[0,0]−−−−−→ q0
csys∈[N,N]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Theorem 2. The reachability of a NeTA-F (T,A0, C,∆) is undecidable, if |C| > 1.

Nested Timed Automata with Frozen Clocks 15

N

csys

cv
d

2d

(a) Doubling d to 2d

N

csys

cv
d

d/2

(b) Halving d to d/2

N

csys
cv d

xp

3d

(c) Tripling d to 3d

N

csys

cv d

d/3

(d) Thirding d to d/3

Fig. 1. Doubling, Halving, Tripling and Thirding the Value of cv

4.3 Reachability of NeTA-F with a Single Global Clock

Let N = (T,A0, X,C,∆) be a NeTA-F. We define a corresponding DTPDA-
F E(N) = 〈S, s0, Γ,X,C,∇〉, such that

– S = Γ =
⋃
Ai∈T S(Ai) is the set of all locations of TAs in T , with

– s0 = q0(A0) is the initial location of the initial TA A0 of N .
– X = {x1, . . . , xk} is the set of k local clocks, and C is the singleton set {c}.
– ∇ is the union

⋃
Ai∈T ∆(Ai)

⋃
G(N)

⋃
H(N) where∆(Ai) = {Local,Test,Assign,Value-passing},

G(N) = {Global-test,Global-assign,Global-load,Global-store},
H(N) consists of rules below.

Push q
push(q)−−−−−→ q0(Ai′) if (q, ε, push, q0(Ai′), q) ∈ ∆(N)

F-Push q
fpush(q)−−−−−−→ q0(Ai′) if (q, ε, f -push, q0(Ai′), q) ∈ ∆(N)

Pop q
pop(q′)−−−−→ q′ if (q, q′, pop, q′, ε)) ∈ ∆(N)

Definition 14. Let N be a NeTA-F (T,A0, C,∆) and let E(N) be a DTPDA-
F 〈S, s0, Γ,X,C,∇〉. For a configuration κ = (q, ν, µ〉, v) of N such that v =
(q1, f lag1, ν1) . . . (qn, f lagn, νn), JκK denotes a configuration (q, w(κ), ν ∪ µ) of
E(N) whereqi ∈ S(Ai) and w(κ) = w1 · · ·wn with wi = (qi, νi, f lagi).

Lemma 2. For a NeTA-F N , a DTPDA-F E(N), and configurations κ, κ′ of N ,

(Preservation) if κ −→N κ′, then JκK ↪→∗E(N) Jκ′K, and

(Reflection) if JκK ↪→∗N %, there exists κ′ with % ↪→∗E(N) Jκ′K and κ −→∗N κ′.

By this encoding, we have our main result from Theorem 1.

Theorem 3. The reachability of a NeTA-F (T,A0, C,∆) is decidable, if |C| = 1.

16 Guoqiang Li, Mizuhito Ogawa, Shoji Yuen

5 Conclusion

This paper extends nested timed automata (NeTAs) to NeTA-Fs with frozen
local clocks. A NeTA(-F) has a stack whose alphabet consists of timed automata.
By the frozen clocks combined with value passing between clocks, past local clock
values are recorded. The reachability of NeTA-F with 2 global clocks was shown
to be undecidable by simulating the Minsky machine. However, with a single
global clock, the reachability was shown to be decidable, by encoding NeTA-F
to a snapshot PDS, which is a WSPDS with a well-formed constraint [9].

Acknowledgements This work is supported by the NSFC-JSPS bilateral joint
research project (61511140100), NSFC(61472240, 91318301, 61261130589), and
JSPS KAKENHI Grant-in-Aid for Scientific Research(B) (15H02684, 25280023)
and Challenging Exploratory Research (26540026).

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126 (1994) 183–235

2. Trivedi, A., Wojtczak, D.: Recursive Timed Automata. ATVA’10. LNCS 6252,
Springer-Verlag (2010) 306–324

3. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of Timed Recursive State Ma-
chines. TIME’10, IEEE (2010) 61–68

4. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested Timed Automata. FORMATS’13.
LNCS 8053, Springer-Verlag (2013) 168–182

5. Cassez, F., Larsen, K.: The Impressive Power of Stopwatches. CONCUR’00. LNCS
1877, Springer-Verlag (2000) 138–152

6. Berard, B., Haddad, S., Sassolas, M.: Real Time Properties for Interrupt Timed
Automata. TIME’10, IEEE (2010) 69–76

7. Krishna, S. N., Manasa L., Trivedi, A.: What’s Decidable about Recursive Hybrid
Automata? HSCC’15, ACM (2015) 31–40

8. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-Timed Pushdown Automata.
LICS’12, IEEE (2012) 35–44

9. Cai, X., Ogawa, M.: Well-Structured Pushdown Systems: Case of Dense Timed
Pushdown Automata. FLOPS’14. LNCS 8475, Springer-Verlag (2014) 336–352

10. Cai, X., Ogawa, M.: Well-Structured Pushdown Systems. In: Proceedings of
CONCUR’13. LNCS 8052, Springer-Verlag (2013)

11. Leroux, J., Praveen, M., Sutre, G.: Hyper-Ackermannian Bounds for Pushdown
Vector Addition Systems. CSL-LICS’14. IEEE (2014) 63:1–63:10

12. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time Systems. Information and Computation 111 (1994) 193–244

13. Ouaknine, J., Worrell, J.: On the Language Inclusion Problem for Timed Au-
tomata: Closing a Decidability Gap. LICS’04. IEEE (2004) 54–63

14. Abdulla, P., Jonsson, B.: Verifying Networks of Timed Processes. TACAS’98.
LNCS 1384, Springer-Verlag (1998) 298–312

15. Abdulla, P., Jonsson, B.: Model Checking of Systems with Many Identical Time
Processes. Theoretical Computer Science 290 (2003) 241–264

16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
17. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s Decidable about Hybrid

Automata? Journal of Computer and System Sciences 57 (1998) 94–124

