(1)

bbbt odun

gouoggo

oo o oot obod

Data mining, which is a technology for obtain-
ing useful knowledge from large database, has been
gradually recognized as an important subject. Al-
gorithms for data mining have to be efficient since
target database is often huge, and various kinds of
efficient algorithms for data mining are individually
investigated. This paper shows that an efficient lin-
ear time algorithm for mining optimized gain asso-
ciation rules can be systematically derived from a
simple specification by reducing it to an instance
of the mazimum marking problem. Our approach
not only automatically guarantees the correctness

of the derived algorithm, but also is easy to derive

Derivation of A Linear Algorithm for Mining Opti-
mized Gain Association Rules

Isao Sasano, D0 O0O0O00OO0OOD0OOOOOOOOOOO,
Department of Information Engineering, University
of Tokyo, 00000000 ODOOO, JSPS Research
Fellow.

Zhenjiang Hu, 000000000000 D0O0OOOOOO
0000, Department of Mathematical Informatics,
Graduate School of Information Science and Tech-
nology, University of Tokyo, 000000000 OO0
000 21, PRESTO, Japan Science and Technology
Corporation.

Masato Takeichi, 00 000000000000000OOO
0000, Department of Mathematical Informatics,
Graduate School of Information Science and Tech-
nology, University of Tokyo.

Mizuhito Ogawa, 0 000 O0OO0ODO0OD0 0O0DOO0OOO
0 21, PRESTO, Japan Science and Technology
Corporation.

0000ooooooog, Vol.19, No.x (2002), pp.xx—yy.

[DOO0] 200108010000,

oo o

new algorithms for modification of the problem.

1 Introduction

Data mining, which is a technology for obtain-
ing useful knowledge from large database, has been
gradually recognized as an important subject. Al-
gorithms for data mining have to be efficient since
target database is often huge. There have been de-
veloped many efficient algorithms for various kinds
of data mining problems, among which we focus on
the problem of mining optimized association rules
2)[4].

To explain concretely the problem of mining op-
timized association rules, we consider the following
example. Suppose there is a database recording
customers’ transactions in a shop and we are inter-
ested in the association rules:

(age € [a..b]) = BuyRibbon
whose confidence exceeds a given threshold 6.
There are many rules with the above form by
changing a and b. Among them, we would like to
find the range of age that maximizes the gain:
v—0Xu

where v denotes the number of customers who
bought ribbon and whose age is between a and b,
and u denotes the number of customers whose age
is between a and b. Suppose that the shop makes a
profit if 1000% of customers buy ribbon. Then, the

optimized gain range [a..b] denotes the age range of

2 gooodoodoooood

customers that maximizes the shop’s profit.

This is an example of the problem of mining op-
timized gain association rules. The essence of the
problem is transformed to the problem called maz-
tmum segment sum problem (MSS for short) [4], for
which a linear time algorithm is known [1].

Sometimes we may hope to extend it, say, find
up to k ranges of age for the rule

(szl age € [a;i..b;]) = BuyRibbon

that maximizes the gain. This problem is trans-
formed to a k-MSS problem (Section 2), which is
general and difficult to be solved efficiently. A
smart O(kn) algorithm has been proposed in [2],
but its correctness is not easy to verify. Further-
more, it is difficult to adapt the algorithm even for
a simple modification of the problem, such as find-
ing up to k ranges each of which has length between
5 and 10.

In this paper, we show that an efficient linear
time algorithm for k-MSS is systematically derived
from a simple specification by reducing it to an in-
stance of the mazimum marking problem [6]. By
our approach an efficient linear time algorithm is
derived from specification, so the correctness of the
derived algorithm is guaranteed. Moreover, we can
obtain new algorithms for modification of the prob-
lem by only changing the specification and perform-
ing similar derivation.

Throughout this paper, we use the functional
programming language Haskell [5] to describe our

algorithm.

2 Constructing k-MSS Algorithm Man-lli

ually

Here we give the definition of the k-MSS problem:
Definition 1 (k-MSS problem) Given a list zs
of numbers, the k-MSS problem is to find up to k&
segments of xs whose elements give the maximum

sum among all the up to k segments of xs. O

(2)
The algorithm for k-MSS developed in [2] is a k-
pass algorithm, at the i-th pass of which a solution
of -MSS is obtained.
e i =1: At the first pass, solve 1-MSS as in [1].
e 7 > 1: Let the solution of the (¢ — 1)-MSS
.,8; and the remaining segments

Solve 1-MSS for ti1,to,...,1t;

be s1,s2,..

be ti,ta, ..., t;.

and let one that has the maximum solution be

tmaz. Solve 1-minimum segment sum problem

for s1,s2,...,s; and let one that has the min-

imum solution be $,in. If the segment sum
of tymaz plus the segment sum of smin is less
than 0, then split s,,;, into three subintervals
with the solution of s,,;» as the middle interval
and delete S, from the solution of (z — 1)-
MSS and add the first and third intervals to it,
which gives the solution of -MSS. Otherwise,
split t;maz into three subintervals with the solu-
tion of t,ner as the middle interval and add the
solution of tmas to the solution of (i —1)-MSS,
which gives the solution of i-MSS.

This algorithm iterates k times the process of
finding the most effective segment and splitting it,
and its complexity is O(kn) [2].

For example, consider 2-MSS problem for input
list [5, —10, 20, —15, 30, —5]. At the first pass, solve
1-MSS. As a result, the segment [20, —15, 30] is ob-
tained. At the second pass, let s; = [20, —15,30],
t1 = [5,—10], and ¢ = [—5]. In this case, we split
s1 to [20], [—15], [30] and get the result of [20], [30].

This algorithm is smart, but its correctness is
not so obvious. In fact, verifying this algorithm
needs careful consideration and takes about four
pages [2]. On the contrary, we can derive another
O(kn) algorithm from simple specification, and the

correctness follows from correctness of derivation

steps.

(3)

3 Deriving k-MSS Algorithm Auto-

matically

In this section, we derive an O(kn) algorithm for
the k-MSS problem by specifying it as a maximum
marking problem and applying the theorem pro-
posed in [6].

3.1 Specification

We specify k-MSS problem as a maximum mark-
ing problem: marking up the elements of a data
structure with finite kinds of marks ms such that
the marked elements meet certain property p and
has the maximum value with respect to certain
weight function wf. The specification can be writ-
ten as follows:

mmp wf p ms = wa/ o filter p o gen ms.
We use gen ms to generate all the possible (finitely
many) markings of input data using a set of marks
ms (there are |ms|™ possible markings where n is
the number of elements in the input data), and from
those which satisfy the property p we use wa/ to
select one that has the maximum value with respect
to the weight function wf. To specify k-MSS prob-
lem as a maximum marking problem, we have only
to describe ms, wf, and p.

We will use the marks True and False:

ms = [True, False].

We attach the mark True to the elements that are
selected as part of segments and the mark False to
the others.

Property p checks whether the number of marked
segments does not exceed the given k. The property
p, which searches the elements in turn counting the

number of segments, is defined using accumulating

Vol. 19 No. 0

2002 3
parameter (m,e) as follows:
p xs =p' xs (False k)
P[] (m,e) = True
p' (z:2s) (m,e) =
case m of
True — case markKind x of
True — p' xs (True,e)
False — p' zs (False,e)
False — case markKind x of
True — if e > 0 then
p' zs (True,e — 1)
else False

False — p' xs (False,e).
The first accumulating parameter m holds the kind

of mark of the previous element, starting with the
value of False. The second accumulating parameter
e holds the number of segments remaining, start-
ing from k. The function markKind takes a marked
element x as its argument and returns the kind of
the mark attached to the element x.

The weight function wf can be written as follows:

wf s = sum (map [xs)

where
f © = case markKind x of
True — w x

False — 0.
The function w returns the weight of the element

T.
Now we can describe the problem as a maximum
marking problem as follows:

kmss = mmp wf p [True, False].

3.2 Derivation
Our derivation of a linear time algorithm is based

on the following theorem [6].

Theorem 1 If p is a finite accumulative property
and wf is a homomorphic weight function, then

(mmp wf p ms) can be solved in linear time. O

Noticing that the property p and weight function
wf in the k-MSS problem written in the previous

4

gooodoodoooood

section have met the required condition in Theorem

1,

we can apply the theorem to obtain the following

result:

kmss = opt (f,+,0) accept ¢p1 ¢p2 6 [True, False]

where
accept (c,e) = c A e == (False, k)
f x = case markKind z of
True — w x
False — 0 ¢1 (m,e) = True
2 x (mye) r=
case m of
True — r
False — case markKind x of
True — if e > 0 then r
else False
False — r
5z (m,e) =
case m of
True — case markKind x of
True — (True,e)
False — (False, e)
False — case markKind x of
True — (True,e — 1)

False — (False,e).

The definition of the function opt is given in Fig-

ure 1. Though we will not explain the detail of the

algorithm, there are three points worth mentioning

here.

1. The complexity of derived algorithm is O(kn)
where n is the length of the list. Here we com-
pare the derived algorithm above with the al-
gorithm developed manually in [2] (See Section
2). The algorithm in Section 2 is a greedy al-
gorithm, which generates only one candidate
in each step. But in each step, O(n) opera-
tions are performed. So, the algorithm per-
forms O(n) operations k times. On the con-
trary, the derived algorithm is a dynamic pro-
gramming algorithm and recursive on the in-

put list. In each step it generates 2k candidate

(4)
solutions, where 2 corresponds to whether the
current head element is selected or not, and k
corresponds to the number of segments in the
current list. So, the derived algorithm performs
O(k) operations n times. Although the order
of complexity is same, these two algorithms are

essentially different.

. We can derive systematically a linear time

algorithm. Note that correctness of the de-
rived algorithm is automatically guaranteed.
We have implemented Theorem 1 using an au-
tomatic program transformation system MAG
[3]. The input to the MAG system is described
in Figure 2. By giving the input to the MAG
system, the result written using the function
opt is obtained in a fully automatic way. Cur-
rently, MAG system allows only if expressions
for conditional branches, thus case expressions
in the specification are converted to if expres-
sions. In Figure 2, mmpRule corresponds to
Theorem 1 and the fusion rule fusion for func-
tions with an accumulating parameter is used
for representing the property p in the required
form of foldrh.

. We can derive a linear time algorithm for

modification of the problem. Consider the
modified k-MSS problem with the condition
that the length of each segment must be be-
tween 5 and 10. It is not so easy to adapt the
algorithm in Section 2 to this modified prob-
lem. However, by our method, the only thing
we have to do is to change the property p as
follows:
prs=9p xs (2,k)Aqzs.

The property g checks whether all the segments
have length between 5 and 10. Similarly to Sec-
tion 3.2, we obtain an O(kn) algorithm for the
modified problem.

(5)

Vol. 19 No. 0 2002

opt (f,®,tq) accept ¢p1 P2 § ms xs =
let opts = foldr v 1 xs
in snd (Tfst / [(w,r*) | Just (w,r*) < [optsli|i < range bnds,
optsli # Nothing, accept i]])
where ¢ = array bnds [(i,g i) |i < range bnds]
Yo x cand = accumArray h Nothing bnds
(62 2 e e, ©), (f 2" Bw, 7= : 7))
| 2% < mark ms z,
e «— acclist,
(e, -), Just (w,r*)) —
[(4, candld) |i «— [(c',6 z* e)|c « classlist],
inRange bnds 1,
cand!i # Nothing] |
g (c,e) = if (c == ¢ €) then Just (1, []) else Nothing
h (Just (w1, 1)) (w2,z2) = if w1 > wy then Just (w1, z1)
else Just (w2, z2)
h Nothing (w,z) = Just (w, x)
bnds = ((head classlist, head acclist), (last classlist,last acclist))
acclist = list of all the values in Acc
classlist = list of all the values in Class

Fig.1 Optimization function opt.

4 Concluding Remarks

In this paper, we show that a linear time algo-
rithm for solving k-MSS problem is derived from
simple specification by reducing it to a mazimum
marking problem. k-MSS problem is the essence of
mining optimized gain association rules. A smart
O(kn) algorithm is presented in [2], but its cor-
rectness is not easy to verify. Actually it takes
about four pages to verify the correctness of the
algorithm. Moreover, the algorithm is fragile to
modifications of problems. On the contrary, by our
method, we can systematically derive an O(kn) al-
gorithm not only for the original problem but also
for the modified problem, where the correctness of
derived algorithms automatically follows from cor-

rectness of derivation steps.

Acknowledgments

We thank Shinichi Morishita for introducing us
the problems of data mining and CACA seminar

members for fruitful discussion.

References

[1] Bentley, J. L.: Programming Pearls: Algorithm
Design Techniques, Communications of the ACM,
Vol. 27,No. 9(1984), pp. 865-871.

[2] Brin, S., Rastogi, R., and Shim, K.: Mining Opti-
mized Gain Rules for Numeric Attributes, Proceed-
ings of the fifth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining
(KDD’99), San Diego, CA USA, ACM Press, Au-
gust 1999, pp. 135-144.

[3] de Moor, O. and Sittampalam, G.: Generic Pro-
gram Transformation, Proceedings of the 3rd Inter-
national Summer School on Advanced Functional
Programming (AFP’98), LNCS 1608, Braga, Portu-
gal, Springer-Verlag, September 1998, pp. 116-149.

[4] Fukuda, T., Morimoto, Y., Morishita, S.,
and Tokuyama, T.: Data Mining Using Two-
Dimensional Optimized Association Rules: Scheme,
Algorithms, and Visualization, Proceedings of the
1996 ACM SIGMOD International Conference on
Management of Data (SIGMOD’96), Montreal,
Canada, ACM Press, June 1996, pp. 13-23.

[5] Peyton Jones, S. and Hughes, J.(eds.): The
Haskell 98 Report, February 1999. Available from
http://www.haskell.org/definition/.

[6] Sasano, I., Hu, Z., and Takeichi, M.: Gen-
eration of Efficient Programs for Solving Maxi-
mum Multi-Marking Problems, Semantics, Applica-
tions, and Implementation of Program Generation
(SAIG’01)(Taha, W.(ed.)), Lecture Notes in Com-
puter Science, Vol. 2196, Firenze, Italy, Springer-
Verlag, September 2001, pp. 72-91.

gooodoodoooood

(6)

kmss: kmss = mmp wf p [True,Falsel;

wi: wf xs = (foldr (+) O (map w xs));
w: w x = if markKind x == True then weight x

else O;

p: p xs = p’ (foldr (:) [] xs) (False,k);

p’l: p’ [acc = True;

p’2: p’ (x:xs) acc = phi x acc (p’ xs (delta x acc));

phi: phi x (m,e) r = if m == True then r
else if markKind x == True then
if e > 0 then r else False

else r;

delta: delta x (m,e) = if m == True then
if markKind x == True then (True,e)
else (False,e)
else
if markKind x == True then (True,e-1)

else (False,e);

mmpRule: mmp wfun p ms
= opt (fun,oplus,e) (\(c,e) -> c && e==e0) phil phi2 delta ms,
if {wfun = \xs -> foldr oplus e (map fun xs);
p = \xs -> foldrh (phil, phi2) delta xs eO};

fusion: f (foldr step e xs) = foldrh (phil’, phi2’) delta xs,

if {
f e = phil’;
\ y ys acc => £ (step y ys) acc =
\ y ys acc -> phi2’ y acc (f ys (delta y acc))
}

Fig.2 Input for the MAG system

