
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title raSAT: SMT for Polynomial Inequality

Author(s) To, Van Khanh; Ogawa, Mizuhito

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2013-003: 1-23

Issue Date 2013-05-27

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/11349

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

raSAT: SMT for Polynomial Inequality

To Van Khanh and Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology, Japan

{khanhtv,mizuhito}@jaist.ac.jp

Abstract. This paper presents an iterative approximation refinement,
called raSAT loop, which solves polynomial inequality constraints on
real numbers. The approximation scheme consists of interval arithmetic
(over-approximation, aiming to decide unsatisfiability) and testing (under-
approximation, aiming to decide satisfiability). If both of them fail to
decide, input intervals are refined by decomposition. raSAT loop is im-
plemented as an SMT raSAT with miniSAT 2.2 as a backend SAT solver.
Experiments including simple benchmarks for estimating effects of input
measures (i.e., degrees, number of variables, and number of constraints)
and QF NRA benchmarks from SMT-LIB show that raSAT is compa-
rable to Z3 4.3, and sometimes outperforms, especially with high degree
of polynomials.

Keywords: interval arithmetic, affine arithmetic, SMT, polynomial con-
straints, testing.

1 Introduction

Polynomial constraint solving is to find an instance that satisfies given polyno-
mial inequality/equality. For instance, ∃xy.−y2+(x2−1)y−1 > 0∧−x2−y2+4 >
0 is such an example. This is an easy formula, but proving its satisfiability and
showing a satisfiable instance (e.g., x = 1.8, y = 0.9) are not so easy.

Many applications are encoded into polynomial constraints.

– Automated detection of roundoff and overflow error, which is our
motivating application [1, 2]. For instance, consider DSP decoder like mpeg4.
Usually, the decoder definition is given by a reference algorithm in C, which
uses floating point number. In an embedded system, it is tempting to replace
floating point into fixed point numbers. However, naive replacement would
cause recognizable noise and locating such roundoff error source is not easy.

– Automatic termination proving, which is reduced to finding a suitable
termination ordering [3]. There are lots of termination prover, e.g., TTT2

1,
Aprove 2.

1 http://cl-informatik.uibk.ac.at/software/ttt2/
2 http://aprove.informatik.rwth-aachen.de

2 Khanh and Ogawa

– Automatic loop invariant detection. The use of Farkas’s lemma is a
popular approach in linear loop invariant generation [4]. Farkas’s lemma
uses products of matrices, and it requires solving polynomial constraints of
degree 2. Non-linear loop invariant generation [5] and hybrid systems [6]
require more complex polynomials.

– Mechanical control design. PID control is simple but widely used. Fujitsu
used polynomial constraints solving to design PID control of HDD head
movement [7].

Solving polynomial constraints on real numbers is decidable [8], though that
on integers is undecidable (Hilbert’s 10th problem). Quantifier elimination by
cylindrical algebraic decomposition (QE-CAD) [9] is a well known technique, and
implemented in Mathematica, Maple/SynRac, Reduce/Redlog, QEPCAD, and
recently nlSAT [10]. It is DEXPTIME w.r.t. the number of variables. In practice,
it works fine up to 5-6 variables with lower degrees, but solving 8 variables and
degree 10 may be the current limit. There is an example to require over 20
hours on a supercomputer. Virtual substitution (VS) for polynomial constraints
with degree smaller than or equal to 4 has better performance, but it is still
EXPTIME.

SMT (SAT modulo theories) separates the case analysis and the core com-
putation in a background theory, and many implementations are available, e.g.,
Z3, CVC3, yices. Presburger arithmetic (linear constraints) is one of the most
popular background theory, and polynomial constraints (non-linear constraints)
become recently evolving, which are mostly based on approximations. Their ap-
proaches can be classified as:

– Interval Constraint Propagation (ICP) Given bounded quantification,
ranges of polynomials on real numbers are (over-) estimated by (classical)
interval arithmetic. RSOLVER [11] and iSAT [12] are such examples.

– Bit-Blasting After setting bounds on values of variables, arithmetic oper-
ations on integers are encoded into a CNF over the fixed number of boolean
variables. Bit-blasting is a main stream in QF-NIA (non-linear integer arith-
metic) in SMT-COMP. MiniSmt [13] applies bit-blasting for rational num-
bers in QF NRA (Non-linear Real Arithmetic), and by combining with sym-
bolic manipulations, it can treat pre-fixed algebraic numbers. Drawback is,
due to the bounds of bits, it cannot detect UNSAT.

– Linearization For QF-NIA, polynomial constraints are linearized by instan-
tiating one of arguments in each multiplication with integers within given
bounds. Barcelogic [14] is such an example. CORD uses another lineariza-
tion, called CORDIC (COrdinate Rotation DIgital Computer) [15]. Both
Barcelogic and CORD apply Yices for solving linear constraints.

Note that the second and third categories are affected a lot by the increase
of degrees of polynomials. Our approach is based on the first category. We also
focus on polynomial inequality constraints. This simplifies problems a lot still
keeping applications above in the scope.

raSAT: SMT for Polynomial Inequality 3

– In constructive analysis, inequality a < b on real numbers is computable
whereas equality a = b is not. (a = b can be decided for algebraic numbers
by ideal computation.)

– Inequality can be decided by enough fine approximation.
– Since rational numbers are dense in real numbers, inequality on real numbers

can be reduced to that on rational numbers. Thus, in implementation, we
can easily fit exact computation on rational numbers (by representing as
pairs of integers, such as num library of Ocaml), instead of floating point
numbers.

This paper presents an iterative approximation refinement, called raSAT
loop, which solves polynomial inequality constraints on real numbers. The ap-
proximation scheme consists of interval arithmetic (over-approximation, aiming
to decide unsatisfiability) and testing (under-approximation, aiming to decide
satisfiability). If both of them fail to decide, input intervals are refined by de-
composition. raSAT loop is implemented as an SMT raSAT with miniSAT 2.2
as a backend SAT solver.

First, Section 2 starts with general framework of bounded quantification on
over and under approximation theories. raSAT loop is presented to formalize
refinement steps as case splitting. Soundness and (restricted) completeness of
raSAT loop are also given in this section.

Next, Section 3 instantiates Interval Arithmetic (IA) and testing as over and
under approximation theory, respectively. The former intends to detect UNSAT
and the latter intends to detect SAT. Adding to Affine intervals [16], we apply
another variant Chebyshev Affine interval [17]. A refinement step is an interval
decomposition, and a termination heuristics isHalt (which leads unknown) halts
raSAT loop when all open boxes become smaller than a given bound.

There are immediate measures on inputs, degrees of polynomials, the number
of variables, and the number of atomic polynomial constraints. Since raSAT loop
depends on IA and testing, higher degrees of polynomials do not affect much on
efficiency. However, refinement steps (interval decompositions) easily introduce
exponential blowup of the number of boxes, and the number of variables will be
a dominant factor.

In Section 4, we prepare strategies.

– UNSAT core detection for IA.
– Dynamic sorting by dependency to select an atomic polynomial inequality.

Test data generation and interval decompositions are applied on variables
appearing in it.

– Interval decomposition with certain bias.

Section 5 shows experimental results including QF NRA benchmarks from
SMT-LIB. They show that raSAT is comparable to Z3 4.3, and sometimes out-
performs, especially with high degree of polynomials. For instance, polynomial
inequality with a long monomial (e.g., 60), degree 6, and many variables (e.g.,
14) in Zankl family are such examples.

Section 6 overviews related works, and Section 7 concludes the paper with
observations and future works.

4 Khanh and Ogawa

2 Over and Under Approximation Theories and Their
Refinement

2.1 Approximation Theory

We start with a general framework, and assume that a target constraint is an
existential bounded quantification

F = ∃x1 ∈ I1 · · ·xn ∈ In.ψ(x1, · · · , xn)

where ψ(x1, · · · , xn) is a CNF of literals.
When regarding as an SMT (SAT modulo theory) problem, boolean variables

are assigned to each of xi ∈ Ii and each literal in ψ(x1, · · · , xn), and truth
assignments is produced by a SAT solver, which are proved or disproved by a
background theory T . As notational convention, m (the lower case) denotes an
instance (m is aimed at variable assignments) of xi ∈ Ii’s, and M (the upper
case) denotes a (full) truth assignment on xi ∈ Ii’s. Later, we will instantiate
intervals and a polynomial constraint to Ii’s and ψ, respectively (Section 3), and
we will restrict ψ(x1, · · · , xn) to a conjunction.

As an SMT problem, we can switch a backend theory T . In very lazy theory
learning [18], T is applied only for a full truth assignment M . We regard M as
a conjunction of literals (in a background theory T).

– If an instance m of variables appearing in F satisfies F , we denote m |=T F .
– For a truth assignment M , if an instance m satisfies M , we denote m ∈M .

If m satisfies F for each instance m ∈M , we denote M |=T F .

Definition 1. Let F = ∃x1 ∈ I1 · · ·xn ∈ In.ψ(x1, · · · , xn). For a truth assign-
ment on M , F is

– T -valid if M |=T F ,
– T -satisfiable (T -SAT) if m |=T F for some m ∈M , and
– T -unsatisfiable (T -UNSAT) if M |=T ¬F .

If T is clear from the context, we simply say valid, satisfiable, and unsatisfiable.

Note that F is T -valid if and only if ∀x1 ∈ I1 · · ·xn ∈ In.ψ(x1, · · · , xn) is
true under theory T . Fig. 1 illustrates Definition 1, when each Ii is an interval
and ψ is a polynomial inequality.

Definition 2. Let T,O.T, U.T be theories.

– O.T is an over-approximation theory (of T) if O.T -UNSAT implies T -
UNSAT, and

– U.T is an under-approximation theory (of T) if U.T -SAT implies T -SAT.

We further assume that O.T -valid implies T -valid.

Later in Section 3, we will instantiate O.T and U.T with interval arithmetic
and testing, respectively.

raSAT: SMT for Polynomial Inequality 5

f(x1, x2, …, xn) > k

Bounds of a polynomial function

f(x1, x2, …, xn) > k

k

T-UNSAT

k

T-valid

kk

T-SAT

Fig. 1. Results of a target constraint F in a theory T

SAT solver

Initial input constraint

F = I Λ P

UNSAT ResultTermination
SAT solver

learnt
clauses

UNSAT Result

(UNSAT/unknown)

A SAT
solution M

Termination

Heuristics learnt clauses

isHalt

Over-approximation

theory
Refinement

Theory

Propagation

O.T-UNSAT

solution M

theory

O.T-SAT
O.T-VALID

Propagation

U.T-UNSAT

Under-approximation

theory

U.T-SAT Result

(SAT)

Fig. 2. Framework of raSAT loop

6 Khanh and Ogawa

2.2 Refinement and Termination Heuristics: raSAT loop

By using over and under approximation theories, we apply raSAT loop (SAT
by refinement of approximations) in Fig. 2 to decide SAT modulo theory T . It
works repeatedly as

1. When an over-approximation theory O.T detects O.T -UNSAT (resp. O.T -
valid), answer UNSAT (resp. SAT).

2. When an under-approximation theory U.T detects U.T -SAT, answer SAT.
3. If neither holds, a refinement is applied.

The refinement step is a case splitting on bounded quantification. That is,
choose xi ∈ Ii and replace it with xi ∈ Ii1 ∨ · · · ∨ xk ∈ Iik , where Ii1 , · · · , Iik
satisfy that Iij ’s are mutually disjoint and Ii = Ii1 ∪ · · · ∪ Iik .

A termination heuristic is used to halt an raSAT loop when each Iij becomes
too small, which is specified by the isHalt rule. In case of I to be an interval,
isHalt is given by the size of each box becomes than a given threshold.

As an SMT, raSAT loop applies very lazy theory learning [18], that is, back-
end theory is applied only for a full truth assignment M .

2.3 Soundness and Completeness of raSAT loop for Polynomial
Inequality

We focus on polynomial inequality constraints with input ranges as open boxes
which is described in Definition 3.

Definition 3. A polynomial inequality constraint is a bounded quantification
∃x1 ∈ I1 · · ·xn ∈ In.ψ(x1, · · · , xn) such that

– each Ii is an open interval xi ∈ (ai, bi), and
– ψ(x1, · · · , xn) is a conjunction of fj > 0 where fj is a polynomial over
{x1, · · · , xn}.

fi > 0 is called an atomic polynomial inequality (API). We denote S(F) = {x ∈
Rn | F holds}.

Example 1. ∃x ∈ (−1, 3)y ∈ (2, 4).(x3y − y4 > 0) ∧ (y3 − xy > 0) is an example
of a polynomial inequality constraint with 2 variables and 2 APIs.

Definition 4. An open box of dimension n is a set (a1, b1) × · · · × (an, bn)
where ai, bi ∈ R, ai ≤ bi. For a = (a1, · · · , an) and b = (b1, · · · , bn), we denote
(a1, b1)× · · · × (an, bn) by (a, b).

The set of all open boxes is a basis of Euclidean topology on Rn. In Euclidean
space, a set U is compact if, and only if, U is a bounded closed set. Since a

polynomial is a continuous function, S(
m∧
i=1

fi > 0) is an open set. Since Q is

dense in R, next two lemmas are immediate.

raSAT: SMT for Polynomial Inequality 7

Lemma 1. For a polynomial inequality F = ∃x1 ∈ I1 · · ·xn ∈ In.
m∧
j=1

fj > 0, If

there exists an SAT instance of F in Rn, there exists also in Qn.

Lemma 2. Suppose that aj < bj for 1 ≤ j ≤ n and fi are polynomials. Assume

ak < c < bk for 1 ≤ k ≤ n. Then, ∃x1 ∈ (a1, b1) · · ·xn ∈ (an, bn).
m∧
i=1

fi > 0

is SAT (resp. UNSAT) if, and only if, ∃x1 ∈ (a1, b1) · · ·xk ∈ (ak, c) · · ·xn ∈
(an, bn).

m∧
i=1

fi > 0 ∨ ∃x1 ∈ (a1, b1) · · ·xk ∈ (c, bk) · · ·xn ∈ (an, bn)).
m∧
i=1

fi > 0 is

SAT (resp. UNSAT).

Lemma 1 says that proving SAT of F in R is reduced to that in Q. Lemma 2
says that, at the refinement step, we can apply an interval decomposition xk ∈
(ak, bk) to xk ∈ (ak, c)∨xk ∈ (c, bk), instead of xk ∈ (ak, bk) to xk ∈ (ak, c]∨xk ∈
(c, bk) (i.e., missing c is allowed).

Note that although an initial polynomial inequality is SAT encoded to con-
junctions only, by refinements, it becomes a CNF. For instance, recall Exam-
ple 1. x ∈ (−1, 3) and y ∈ (2, 4) are refined to smaller intervals such that
∃x ∈ (−1, 1)y ∈ (2, 4).(x3y − y4 > 0) ∧ (y3 − xy > 0) ∨ ∃x ∈ (1, 3)y ∈
(2, 4).(x3y − y4 > 0) ∧ (y3 − xy > 0), which is SAT-encoded to a CNF (x ∈
(−1, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (2, 4)) ∧ (x3y − y4 > 0) ∧ (y3 − xy > 0).

For a polynomial inequality, termination condition isHalt is that lengths of
intervals become less than a given threshold.

Definition 5. For x1 ∈ (l1, h1), · · · , xn ∈ (ln, hn) and δ > 0, isHalt(M) =
(h1 − l1 < δ) ∧ · · · ∧ (hn − ln < δ).

If we set the threshold γ in isHalt enough small, soundness and (restricted)
completeness of raSAT loop are shown. Note that such threshold is difficult
to efficiently predict in advance. In our raSAT implementation, it is left as a
heuristics.

Definition 6. Let F = ∃x1 ∈ I1 · · ·xn ∈ In.
m∧
j=1

fj > 0 be a polynomial inequal-

ity constraint such that each Ii is bounded. An over-approximation theory O.T is
converging (w.r.t. F) if, for each δ > 0 and c = (c1, · · · , cn) satisfying I, there

exists γ > 0 such that
n∧
j=1

xj ∈ (cj − γ, cj + γ) |=O.T

m∧
i=1

(fi(c) − δ < fi(x) <

fi(c) + δ).

Definition 7. Let F = ∃x1 ∈ I1 · · ·xn ∈ In.
m∧
j=1

fj > 0 for Ii = (ai, bi). An

interval decomposition strategy is fair, if, for each cj ∈ (aj , bj) and γ > 0, an
interval decomposition for xi for each i eventually occurs in (cj − γ, cj + γ) (as
long as an open box is not detected either SAT or UNSAT).

8 Khanh and Ogawa

Theorem 1. Let F = ∃x1 ∈ I1 · · ·xn ∈ In.
m∧
j=1

fj > 0 for Ii = (ai, bi). Assume

that an over-approximation theory O.T is converging (w.r.t. F). If the threshold
for isHalt is enough small and an interval decomposition strategy is fair, the
followings hold.

– Soundness: If raSAT loop reports SAT (resp. UNSAT), F is really SAT
(resp. UNSAT).

– Completeness:
• If F is SAT, raSAT loop eventually finds an SAT instance.
• If ∩closure(S(fj)) = ∅ and each closure(Ii) is compact, raSAT loop

eventually detects UNSAT.

Proof. Soundness: From the definitions of O.T and U.T.
Completeness: If F is SAT (i.e., ∩S(fj) 6= ∅), there is an open box in it with the
size δ > 0.

Assume that F is UNSAT (i.e., ∩closure(S(fj)) = ∅) and each closure(Ii)
is compact. Let δ(fj)(x̄) = max{|fj(x̄) − f1(x̄)|, · · · , |fj(x̄) − fm(x̄)| | x̄ ∈ I1 ×
· · · × In}. From ∩closure(S(fj)) = ∅, δ(fj)(x̄) > 0 for each j. Since δ(fj) is
continuous and closure(Ii) is compact, δ(fj)(x) has the minimal value for x̄ ∈
closure(I1 × · · · × In). Let δj = min{δ(fi)(x) | x ∈ I} and δ =

min{δj}
2 . Then

δ > 0.
In either case, since O.T is complete, there exists γ > 0 for δ > 0 satis-

fying Definition 6. We set γ to be the threshold of isHalt. Since an interval
decomposition strategy is fair, decomposed boxes detect either SAT or UNSAT,
respectively.

Limitations for detecting UNSAT occur on kissing and convergence cases.
The left of Fig. 3 shows an example of kissing case for the constraint x2 + y2 <
22∧(x−4)2+(y−3)2 < 32. In this example, closure(x2+y2 < 22)∩closure((x−
4)2 + (y− 3)2 < 32) = (x = 1.6, y = 1.2), and there are no coverings to separate
x2 + y2 < 22 and (x− 4)2 + (y − 3)2 < 32.

The right of Fig. 3 is an example of convergence for the constraint y >
x + 1

x ∧ y < x ∧ x > 0. The open box is (0,∞) × (0,∞) and there are no finite
coverings to separate y > x+ 1

x and y < x ∧ x > 0.
Note that Theorem requires only O.T to be complete, since O.T -valid works

as U.T -SAT. Later in Section 3, we apply an interval arithmetic as O.T and
testing as U.T . It is not difficult to see that an interval arithmetic is converging,
and the aims of U.T are,

– to obtain practical efficiency, and
– to guide interval decomposition strategy (like “First Test-UNSAT” in Sec-

tion 4.2).

3 Over and Under-Approximations for Intervals

We present Interval Arithmetic and Testing as an over-approximation theory
|=O.T and an under-approximation theory, |=U.T , respectively. For interval arith-
metic, we apply Affine intervals (AI) [16] and Chebyshev Affine interval (CAI) [17].

raSAT: SMT for Polynomial Inequality 9

a. Kissing case b. Convergent case

Fig. 3. Limitations for proving UNSAT

3.1 Interval Arithmetic

A typical example of IA is Classical Interval (CI) [19], which keeps a lower bound
and an upper bound. The weakness of CI is loss of dependency among values.
For instance, if x ∈ (2, 4) then, x− x is evaluated to (−2, 2).

Affine Interval [20, 21] introduces noise symbols ε, which are interpreted as
values in (−1, 1). For instance, x = 3 + ε describes x ∈ (2, 4), and x − x =
(3 + ε) − (3 + ε) is evaluated to 0. The drawback is that the multiplication
without dependency may be less precise than CI. Forms of affine intervals vary
by choices how to estimate multiplications. They are,

(i) εε′ is replaced with a fresh noise symbol (AF) [16, 21],
(ii) εε′ is pushed into the fixed error noise symbol ε± (AF1 and AF2) [20],

(iii) εε′ is replaced with (−1, 1)ε (or (−1, 1)ε′) (EAI) [1],
(iv) εε is replaced by fixed noise symbols ε+ or ε− (AF2) [20],
(v) keeping products of noise symbols up to degree 2 (εiεj),
(vi) Chebyshev approximation of x2 [17] (Fig. 4), which introduces noise sym-

bols for absolute values |ε|, εε = |ε||ε| = |ε|+(− 1
4 , 0) and ε|ε| = ε+(− 1

4 ,
1
4).

For designing CAI [17], we apply (ii) and (vi). Compared with (iv), (vi) keeps
better precision for higher degrees greater than or equal to 2. Note that upper and
lower bounds estimated by IA are over-approximation bounds of polynomials.

Example 2. Let f = x3 − 2xy with x = (0, 2) (x = 1 + ε1) and y = (1, 3)
(y = 2 + ε2), we have,

– by AF2, f = −3− ε1 − 2ε2 + 3ε+ + 3ε± and the bound of f is estimated as
(−9, 6),

– by CAI, f = (−4,− 11
4) + (− 1

4 , 0)ε1 − 2ε2 + 3|ε1|+ (−2, 2)ε± and the bound
of f is estimated as (-8,4.5).

When IA has a noise symbol ε, we define sensitivity [1] of a variable as the
absolute value of the coefficient of corresponding ε. In CAI of Example 2, the
coefficient 3 of |ε1| has the largest sensitivity, which indicates x is the most
influence.

10 Khanh and Ogawa

y = x2

y

y = x2

1

x-1 1

-0.25

x-1 1

y y = x|x|

0.25

1

x
-0.25

0.25

1-1
-0.25

-1-1

Fig. 4. Chebyshev approximation of x2 and x |x|

3.2 Interval Arithmetic as Over Approximation

Interval arithmetic (IA) is applied for estimating bounds of polynomials under
a given input range (a box), and we use it as an over-approximation theory. We
instantiate IA to O.T in Section 2, and obtain the definition below.

Definition 8. Given a polynomial inequality constraint ∃x1 ∈ (a1, b1) · · ·xn ∈
(an, bn).

m∧
i=1

fi(x1, · · · , xn) > 0.

Let f li (x1, · · · , xn) and fui (x1, · · · , xn) be lower and upper bounds estimated
by IA for xi ∈ (ai, bi).

Let I = x1 ∈ (a1, b1) · · ·xn ∈ (an, bn) and P =
m∧
i=1

fi(x1, · · · , xn) > 0, we say

– P is IA-VALID under I, if IA evaluates ∀i ∈ [1,m]. f li (x1, · · · , xn) > 0,
– P is IA-UNSAT under I, ∃i ∈ [1,m]. fui (x1, · · · , xn) ≤ 0, and

– P is IA-SAT under I, if (∃j ∈ [1,m]. f lj(x1, · · · , xn) ≤ 0) ∧ (
m∧
i=1

fui (x1, · · · , xn) >

0).

IA-VALID and IA-UNSAT safely reason satisfiability (SAT) and unsatisfia-
bility (UNSAT), respectively. However, IA-SAT cannot conclude SAT.

3.3 Testing as Under Approximation

We instantiate testing to U.T in Section 2.

Definition 9. Given a polynomial inequality constraint ∃x1 ∈ (a1, b1) · · ·xn ∈
(an, bn).

m∧
i=1

fi(x1, · · · , xn) > 0, let I = x1 ∈ (a1, b1) · · ·xn ∈ (an, bn) and P =

m∧
i=1

fi(x1, · · · , xn) > 0. Let a choice function θ : (R × R)n → Rn with θ(I) ∈

(a1, b1)× · · · × (an, bn). For a finite set Θ of choice functions, we say

raSAT: SMT for Polynomial Inequality 11

– P is Test-SAT under I if P holds for some θ ∈ Θ, and
– P is Test-UNSAT under I if P never hold for each θ ∈ Θ.

The set Θ of choice functions in definition 9 is a set of test data. We apply
k-random ticks [17], which consists of periodical k-test instances with a random
offset, for generating test data of each variable. Note that Test-UNSAT does not
imply UNSAT though Test-SAT implies SAT.

4 Strategies

4.1 Strategy for Over and Under Approximations for Intervals

UNSAT Core in a Polynomial Inequality An UNSAT core is defined as a
minimal set M0 = {l1, · · · , ln} that disproves P (w.r.t. |=O.T) in the very lazy
theory learning rule (Section 2). To obtain a precise minimal M0 is not easy. As

a strategy to obtain smaller M0, we introduce an UNSAT core f̂ of a polynomial
f based on the IA-UNSAT judgment. Then, M0 is selected as literals in M
corresponding to variables in f̂ .

Definition 10. f̂ is an UNSAT core of a polynomial f if IA-UNSAT of f̂ > 0
implies IA-UNSAT of f > 0.

Example 3. Given a polynomial constraint f = x2 − xy − xz > 0 with x, y, z ∈
(0,∞), f̂1 = x2 − xy and f̂2 = x2 − xz are two UNSAT cores of f .

For instance, f̂1 > 0 is IA-UNSAT under x ∈ (1, 2) ∧ y ∈ (4, 5), then f > 0
is IA-UNSAT under a set of input boxes {x ∈ (1, 2) ∧ y ∈ (4, 5) ∧ z ∈ (0, 1), x ∈
(1, 2) ∧ y ∈ (4, 5) ∧ z ∈ (1, 2), · · · }, which is a set of all input boxes including
x ∈ (1, 2) ∧ y ∈ (4, 5). For removing unsatisfiable input boxes, ¬(x ∈ (1, 2)) ∨
¬(y ∈ (4, 5)) is added to interval constraints I as a learnt clause.

Incremental Test Data Generation Performing a large number of test data
generations affects efficiency. For instance, if we consider a polynomial constraint
with 30 variables and we generate 2 test data for each variable, we have 230 test
data as total, which is intractable. The ideas for incremental test data generation
are (i) an API-wise test data generation with dynamic sorting of IA-SAT APIs,
and (ii) thinning test data that does not satisfy an API. Note that, during test
data generation, an interval decomposition is fixed, and test data are generated
for IA-SAT APIs only. Let {fj > 0} be the set of IA-SAT APIs, and let V ar(fj)
be the set of variables appearing in an atomic polynomial inequality fj .

For an API-wise test data generation, an ordering of testing of IA-SAT APIs
affects the efficiency. Our ideas are,

– API with a smaller variable set,
– bottleneck API w.r.t. dependency (V ar(fi) ⊆ V ar(fj)), and
– API with a smaller additional test data generation

12 Khanh and Ogawa

have high priority. To formalize them, let DEPfi = {fj | fj ∈ P ∧ V ar(fi) ⊆
V ar(fj)} and depfi = |DEPfi |. Then, during an API-wise test data generation,
{fj} is dynamically sorted at the choice of next API to hold

(a) V ar(fi) ⊂ V ar(fj) implies i ≤ j,
(b) depf1 is the largest, and

(c) if, for some j < m, V ar(fm) ⊆
j⋃
i=1

V ar(fi) and ∀n. V ar(fn) *
j⋃
i=1

V ar(fi),

then m ≤ n,

An API-wise test data generation requires storing previous test results of
tested APIs. To reduce stored test results, test data refuting APIs are removed.
When they become empty, it returns Test-UNSAT, and shifts to the refinement.

Example 4. Let P = (2x − y2 − 2 > 0) ∧ (x2 − 1 > 0) ∧ (xy − yz − zx >
0)∧ (u2−x2y > 0)∧ (2yv2−ux2−1 > 0) with x, y, z, u, v ∈ (0, 2) and let testing
be 2-random ticks.

APIs of P are dynamically sorted as Fig. 5 for generating test data.

– First, x2− 1 > 0 is chosen, since {x} is the smallest set of variables. Assume
that generated test data are {x = 1.2, x = 0.5}, and x2 − 1 > 0 holds for
{x = 1.2}.

– Next, 2x − y2 − 2 > 0 is chosen, since {y} is a smaller set of additional
variables. Assume that generated test data are {y = 1.4, y = 0.5}. {x =
1.2, y = 0.5} holds 2x− y2 − 2 > 0.

– xy − yz − zx > 0 is chosen (we can also chose u2 − x2y > 0). Assume that
generated test data are {z = 0.8, z = 0.3} and {x = 1.2, y = 0.5, z = 0.3}
holds it.

– For u2 − x2y > 0, assume that test data are {u = 1.05, u = 0.25}. {x =
1.2, y = 0.5, z = 0.3, u = 1.05} holds it.

– Finally, for 2yv2 − ux2 − 1 > 0, assume that generated test data are {v =
0.7, v = 1.3}. Neither satisfies it and Test-UNSAT is reported, and proceed
to interval decomposition. If generated test data are {v = 1.13, v = 1.77},
{x = 1.2, y = 0.5, z = 0.3, u = 1.05, v = 1.77} holds it and SAT is reported.

4.2 Strategies for Refinements

We need to consider the choice of intervals to decompose, and how to decompose
an interval. Similar to explosion of test data generation, interval decomposition
may cause exponential explosion of boxes. Certain strategies to choose variables
to apply interval decompositions, and how to decompose intervals are crucial in
practice.

raSAT: SMT for Polynomial Inequality 13

x

f2 =x2 -1 > 0

x, y

f1 =2x-y2 -2 > 0

x
x, y

f3=xy-yz-zx>0

x, y,

u

x, y,

z

f4 =u2-x2y >0

u
z

x, y,

f5 =2yv2-ux2-1 >0

x, y,

u,v

Fig. 5. Dynamically sorted APIs for test data generation

Selecting Intervals to Decompose The choice of intervals to decompose
consists of two steps.

(a) Choose an API such that its variables are candidates for refinements.

(b) Among variables, choose influential ones.

(a) follows incremental test data generation in Section 4.1. When an API
fj > 0 refutes all generated test data, it returns Test-UNSAT. Then, variables
appearing in fj are candidates for interval decompositions, since fj is a direct
cause of Test-UNSAT. In Example 4, Test-UNSAT of 2yv2 − ux2 − 1 > 0 is
reported with {v = 0.7, v = 1.3}, and x, y, u, v ∈ (0, 2) become candidates for
interval decompositions.

For (b), among variables in an API fj > 0, we further filter variables that
have sensitivity (Example 2) beyond a threshold, since they are expected to
be more influential. Sensitivity is detected by previous IA-SAT detection phase.
Among presented strategies, only this step is not implemented in current raSAT.

Interval Decomposition Balanced decomposition decomposes an interval
into two intervals exactly half.

Definition 11. For an interval x ∈ (a, b), a balanced decomposition is

Db(x ∈ (a, b)) = {x ∈ (a,
a+ b

2
), x ∈ (

a+ b

2
, b)}

Monotonic decomposition introduces bias δ to an interval decomposi-
tion, if a value of a corresponding variable monotonically affects on a value of a
polynomial.

14 Khanh and Ogawa

Definition 12. Let f(x1, · · · , xk) be a polynomial, a variable xi (1 ≤ i ≤ k)
is monotonically increasing in f if ∀x′i ≥ x′′i implies f(x1, · · · , x′i, · · · , xk) ≥
f(x1, · · · , x′′i , · · · , xk), and is monotonically decreasing in f if ∀x′i ≥ x′′i implies
f(x1, · · · , x′i, · · · , xk) ≤ f(x1, · · · , x′′i , · · · , xk). Posf and Negf denote the sets of
monotonically increasing and decreasing variables of a polynomial f , respectively.

Definition 13. Let x ∈ (a, b) and δ < b−a for a bound δ. A monotonic decom-
position on x ∈ (a, b) is,

Dm =

{x ∈ (a, b− δ), x ∈ (b− δ, b)} if x ∈ Posf
{x ∈ (a, a+ δ), x ∈ (a+ δ, b)} if x ∈ Negf
{x ∈ (a, a+b2), x ∈ (a+b2 , b)} otherwise

x Є (a,b) to x Є (a,c) ٧ x Є (c,b)

1. Balanced decomposition

a bc= 0.5*(a+b)

2. Monotonic decomposition2. Monotonic decomposition

a b
c= a+δ

or

by a fixed δ. b-a>δ>0

a b
c= b-δ

or

Fig. 6. Interval decomposition

We apply δ in Definition 13 (heuristic rule) as the bias δ, by regarding δ
as a unit of searching. For a balanced decomposition, SAT solver will choose an
arbitrary combination of input ranges. However, for a monotonic decomposition,
we would like to force SAT solver to choose a narrower sub interval (i.e., (b−δ, b)
for Posf , and (a, a+ δ) for Negf), which makes upper and lower bounds of the
polynomial f increase, and provide more chances to lead f satisfiable. MiniSAT
2.2 chooses literals by the “activity” measure, and we manually modify the
activity of literals corresponding to a narrower sub-interval.

5 raSAT Implementation and Experiments

We implement raSAT loop as an SMT raSAT, based on MiniSat 2.2 as a
backend SAT solver. We will compare raSAT with Z3 4.3 (the latest version),
since Table.1 in [10] shows the strength of nlSAT (equivalently, Z3 4.3). Note
that our comparison is only on polynomial inequality.

raSAT: SMT for Polynomial Inequality 15

We apply 2-random ticks for testing, Test-UNSAT of testing and monotonic
decomposition for refinements. In these experiments, we do not include UNSAT
core and sensitivity strategy, which are not implemented yet. All tests are run
on a system with Intel Core Duo L7500 1.6 GHz and 2 GB of RAM.

5.1 raSAT execution example

We explain how raSAT works by F = ∃x ∈ (−1, 3)y ∈ (−1, 3).x3−x2+y−1.99 >
0. raSAT initially evaluates with an open box x ∈ (−1, 3)∧y ∈ (−1, 3). IA results
IA-SAT and testing results Test-UNSAT. Then, a refinement step is applied to
decompose the intervals x ∈ (−1, 3) and y ∈ (−1, 3).

– Balanced decomposition: Balanced decomposition decomposed into a
CNF (x ∈ (−1, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (−1, 1) ∨ y ∈ (1, 3)). Assume that
the SAT solver chooses the interval combination x ∈ (−1, 1) ∧ y ∈ (−1, 1).
Then, IA results IA-SAT and testing results Test-UNSAT again. Balanced
decomposition is applied again, and the initial box is decomposed into boxes
shown in the left of Fig. 7. IA concludes IA-UNSAT on red boxes, and they
will be removed from the boxes of further searching. When the SAT solver
chooses x ∈ (1, 2) ∧ y ∈ (1, 2), IA results IA-SAT, and testing finally finds
a satisfiable test instance x = 1.49217901342 and y = 1.3984060087 (Test-
SAT).

– Monotonic decomposition: Monotonic decomposition is described in the
right of Fig. 7 (where δ = 0.25). When a monotonic decomposition is applied,
the initial interval constraint is decomposed into a CNF (x ∈ (−1, 1) ∨ x ∈
(1, 3)) ∧ (y ∈ (−1, 2.75) ∨ y ∈ (2.75, 3)), since y ∈ Posf . The SAT solver
chooses x ∈ (−1, 1) ∧ y ∈ (2.75, 3) for IA and testing, which result IA-SAT
and Test-UNSAT.
The second monotonic decomposition is applied and (x ∈ (−1, 0) ∨ x ∈
(0, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (−1, 2.75) ∨ y ∈ (2.75, 3)) is obtained. Note that
(2.75, 3) has already reached to isHalt with δ = 0.25, and is not decomposed
further. The SAT solver chooses x ∈ (0, 1)∧ y ∈ (2.75, 3) and testing finds a
satisfiable test instance x = 0.991800094431 and y = 2.75151227326 (Test-
SAT). With monotonic decomposition, raSAT finds a satisfiable instance
with fewer decompositions.

5.2 Preliminary Evaluation

There are three immediate measures on the size of polynomial constraints. They
are the highest degree of polynomials, the number of variables, and the number
of APIs. We prepare simple benchmarks focusing on these measures.

For the first and the second measures, we apply

ψ =

k∑
i=1

xni < 1 ∧
k∑
i=1

(xi − r)n < 1 (1)

16 Khanh and Ogawa

(y)

3

Sat solution

x=1.49217901342 y=1.3984060087

2

1

0

-1

-1 (x)0 1 2 3

-1

(a) Balanced decomposition

(y)

3

Sat solution

x=0.991800094431 y=2.75151227326

2.75

-1

-1 (x)0 1 2 3

-1

(b) Monotonic decomposition with δ=0.25

Fig. 7. Interval decompositions by raSAT

For experiments on these problems, To make SAT and UNSAT problems, we

adjust values of r around the threshold n

√
1
k (for fixed k and n), which separates

SAT and UNSAT. In our experiments we choose values of r with |r− n

√
1
k | < 0.01.

For termination heuristics isHalt, δ is set to 0.005, and the initial interval
constraints are

∧
i

xi ∈ (−1, 1).

The degree of polynomials
Table 1 shows results of raSAT and Z3 4.3 for the problems ψ = xn1 +

xn2 < 1 ∧ (x1 − r)n + (x2 − r)n < 1 with k = 2, n = 8, 10, 12, ..., 22. The first
column indicates whether SAT or UNSAT, followed by the columns of k, n and
r. Running time (in seconds) of Z3 4.3 and raSAT are in the last two columns.
For the degree 22, the results of Z3 4.3 are ′′? > 3600′′, which means that Z3
4.3 cannot finish in 3600 seconds. raSAT outperforms Z3 4.3, and this is not
surprising since IA and testing are not affected much by the increase of degrees.

The number of variables
We set simple benchmarks by instantiating k = 3, 4, 5, 6 and n = 4, 6, 8 to the

formula 1. raSAT loop decomposes boxes, and the number of boxes can easily
grow exponentially. To hold down it in practice, we introduce a strategy to select
an API in which each variable is applied an interval decomposition (Section 4.2).
Here, the timeout is set to 600 seconds for each problem, and the results is shown
in Table 2, which show that the selection strategy seems working well.

The number of APIs
Simple benchmarks to measure the effect of the number of APIs are prepared

as the formula ψ = ψ1 ∧ ψ2 where,

– ψ1 = xn0 + xn1 < 1 ∧ xn1 + xn2 < 1 ∧ · · · ∧ xnk + xn0 < 1
– ψ2 = (x0− r)n + (x1− r)n < 1∧ (x1− r)n + (x2− r)n < 1∧ · · · ∧ (xk− r)n +

(x0 − r)n < 1

raSAT: SMT for Polynomial Inequality 17

SAT/UNSAT k n r
Time(s)

Z3 4.3 raSAT

SAT 2 8 1.83 1.330 0.265

UNSAT 2 8 1.84 0.580 0.328

SAT 2 10 1.86 4.530 0.140

UNSAT 2 10 1.87 125.000 0.796

SAT 2 12 1.88 0.360 0.140

UNSAT 2 12 1.89 40.280 1.390

SAT 2 14 1.90 0.480 0.296

UNSAT 2 14 1.91 78.730 0.531

SAT 2 16 1.91 2.250 0.109

UNSAT 2 16 1.92 174.000 0.484

SAT 2 18 1.92 289.110 0.562

UNSAT 2 18 1.93 391.670 0.765

SAT 2 20 1.93 1259.560 1.468

UNSAT 2 20 1.94 1650.860 0.921

SAT 2 22 1.93 ? > 3600 0.437

UNSAT 2 22 1.94 ? > 3600 3.203

Table 1. Experimental results for ψ = xn1 + xn2 < 1 ∧ (x1 − r)n + (x2 − r)n < 1

We fixed n = 6 and k is from 3 to 15. The timeout is set by 600 seconds and

|r − n

√
1
2 | < 0.01. The results are shown in Table 3. Generally, raSAT shows

better results than Z3 4.3.

5.3 Benchmarks from SMT-LIB

In SMT-LIB [22], benchmark programs on non-linear real number arithmetic
(QF NRA) are categorized into Meti-Tarski, Keymaera, Kissing, Hong, and
Zankl families. Until SMT-COMP 2011, benchmarks are only Zankl family. In
SMT-COMP 2012, other families have been added, and currently growing. Gen-
eral comparison among various existing tools on these benchmarks is summarized
in Table.1 in [10], which shows Z3 4.3 is one of the strongest.

From them, we take problems of polynomial inequality only The brief statis-
tics and explanation are as follows.

– Meti-Tarski contains 5364 inequalities among 8377, taken from elementary
physics. Typically, they are small problems which have lower degrees and few
variables, i.e., 3 or 4 variables in each problem. Frequently, linear constraints
are mixed in these problems.

– Keymaera contains 161 inequalities among 4442.
– Kissing has 45 problems, all of which contains equality (mostly single equal-

ity).
– Hong has 20 inequalities among 20, tuned for QE-CAD and quite artificial.

18 Khanh and Ogawa

SAT/UNSAT k n r
Time(s)

Z3 4.3 raSAT

SAT 3 4 1.51 0.030 0.027

UNSAT 3 4 1.52 10.560 timeout

SAT 4 4 1.41 timeout 0.390

UNSAT 4 4 1.42 timeout timeout

SAT 5 4 1.33 timeout 51.578

UNSAT 5 4 1.34 timeout timeout

SAT 6 4 1.27 timeout 111.031

UNSAT 6 4 1.28 timeout timeout

SAT 3 6 1.66 timeout 0.890

UNSAT 3 6 1.67 timeout 62.765

SAT 4 6 1.58 timeout 1.156

UNSAT 4 6 1.59 timeout timeout

SAT 5 6 1.52 timeout 73.937

UNSAT 5 6 1.53 timeout timeout

SAT 6 6 1.48 timeout 239.968

UNSAT 6 6 1.49 timeout timeout

SAT 3 8 1.74 timeout 3.125

UNSAT 3 8 1.75 timeout 37.156

SAT 4 8 1.68 timeout 69.843

UNSAT 4 8 1.69 timeout timeout

Table 2. Experimental results for ψ =

k∑
i=1

xni < 1 ∧
k∑

i=1

(xi − r)n < 1

SAT/UNSAT k n r
Time(s)

Z3 4.3 raSAT

SAT 3 6 1.78 timeout 0.171

UNSAT 3 6 1.79 0.280 0.796

SAT 5 6 1.78 timeout 0.375

UNSAT 5 6 1.79 0.280 0.640

SAT 7 6 1.78 timeout 0.765

UNSAT 7 6 1.79 0.250 0.734

SAT 9 6 1.78 timeout 2.671

UNSAT 9 6 1.79 0.300 1.921

SAT 11 6 1.78 timeout 3.328

UNSAT 11 6 1.79 0.220 1.343

SAT 13 6 1.78 timeout 4.460

UNSAT 13 6 1.79 0.300 1.875

SAT 15 6 1.78 timeout 6.640

UNSAT 15 6 1.79 0.300 2.265

Table 3. Experimental results for ψ = ψ1 ∧ ψ2

raSAT: SMT for Polynomial Inequality 19

Solver
Hong (20) Zankl (151) Meti-Tarski (832)

SAT UNSAT time(s) SAT UNSAT time(s) SAT UNSAT time(s)

Z3 4.3 0 8 5.620 50 24 1144.320 502 330 33.350

raSAT 0 20 381.531 42 9 2417.931 501 156 21.989

Table 4. Experimental results for Hong, Zankl, and Meti-Tarski families

– Zankl has 151 inequalities among 166, taken from termination provers. Prob-
lems may contain many (> 100) variables, in which some APIs have > 15
variables

We perform experiments only on Hong, Zankl, and Meti-Tarski families. Ta-
ble 4 shows the number of solved problems and their total running time (in
seconds).

Among 20 problems of Hong family, their degrees distribute from 1 to 20.
raSAT solved all of them (all are UNSAT). Z3 4.3 solved 8 problems, whose
degrees are up to 8. Note that iSAT can also solve all of problems in Hong family.

For Zankl family, Z3 4.3 shows better performance than raSAT. Z3 4.3
runs very fast for problems that contain linear constraints combined with non-
linear constraints of lower degrees (e.g., degree 4). We observe that raSAT
outperforms Z3 4.3 when problems have a long monomial (e.g., 60), higher
degrees (e.g., 6), and APIs with more variables (e.g., > 14). For instance, only
raSAT can solve matrix-2-all-5,8,11,12, and is quicker to show SAT (by testing)
in matrix-2-all-9,10.

Among large number of problems in Meti-Tarski, we extract 832 problems for
the experiment. Z3 4.3 solved all problems, and raSAT solved 657 (SAT/UNSAT)
problems among 832. Actually, raSAT solved almost all SAT problems, but
UNSAT problems are less. One reason is that kissing cases occur frequently in
UNSAT problems of Meti-Tarski, which raSAT cannot handle. Note that, in
Table.1 in [10], only QE-CAD based tools work fine (Z3 3.1 does not apply
QE-CAD, whereas Z3 4.3 = nlSAT includes QE-CAD). Although raSAT has
certain limitations on UNSAT problems, it shows enough comparable results in
Meti-Tarski benchmarks and seems faster than most of QE-CAD based tools
(except for Z3 4.3).

6 Related Work

Current decision procedures for solving polynomial constraints can be classified
into one of five categories, or combinations among them.

1. QE-CAD. RAHD [23] is based on the core computation of QE-CAD pro-
posed by Tarski. It applies different versions of QE-CAD implementations
such as QEPCAD-B, Reduce/Redlog (and we expect Mathematica). Since

20 Khanh and Ogawa

QE-CAD is DEXPTIME w.r.t. the number of variables, scalability is still
challenging.

2. Virtual substitution (VS). Virtual substitution is an EXPTIME algo-
rithm applicable when the degree of each variable does not exceed 4. SMT-
RAT toolbox [24][25] combines VS [26] and incremental DPLL with less
lazy and eager theory propagation. Z3 (version 3.1) [27], the winner in the
category QF NRA of SMT competition in 2011, combines VS, ICP, and
linearization.

3. Interval constraint propagation (ICP). ICP applies interval arithmetic
as an over-approximation for checking consistency in background theories.
RSOLVER [11] and iSAT [12] are such examples. To remove unsatisfiable
elements, while RSOLVER develops a pruning algorithm, iSAT apply a tight
interaction of SAT solver and eager theory propagation. These approaches
overlap with ours. Differences are, we apply Affine interval arithmetic (e.g.,
AF1, AF2, CAI), instead of classical interval in RSOLVER and iSAT. In
addition to over-approximation (interval arithmetic), we also apply under-
approximation (testing), which may find SAT instances and also it will guide
next refinement steps and focus of an API.

4. Bit-blasting. MiniSmt [13] applies bounded bit encoding for rational num-
bers and extends symbolic representations for some fragments of real num-
bers. MiniSmt can show SAT quickly, but due to the bounded bit encoding,
it cannot conclude UNSAT. UCLID [28] represents an input formula by a
bit-vector formula on a given finite bit width. UCLID also applies both over-
and under-approximation to refine each other. Reducing number of bits to
represent an input formula is an under-approximation, and removing some
clauses is an over-approximation. UCLID aims to finite-precision non-linear
integer arithmetic, not for real numbers. Bit-blasting also suffers a lot when
the degree of polynomials increases.

5. Linearization. Barcelogic [14] linearizes polynomial constraints on integers
by exhaustive case analyses, which instantiate one of arguments in multipli-
cation with all possible integers in a given-bound. CORD [15] uses another
linearization, called CORDIC (COrdinate Rotation DIgital Computer). Both
Barcelogic and CORD apply Yices for solving linear constraints. Lineariza-
tion also suffers a lot when the degree of polynomials increases.

7 Conclusion

This paper presented an iterative approximation refinement, called raSAT loop,
which is used for solving polynomial inequality constraints on real numbers. Ex-
periments on simple benchmarks to estimate effects of input measures (the degree
of polynomials, the number of variables, and the number of atomic polynomial
constraints), and on benchmarks of the QF NRA category in SMT-LIB showed
that raSAT is comparable and sometimes outperforms Z3 4.3, which is believed
one of the strongest SMT on the QF NRA category.

raSAT: SMT for Polynomial Inequality 21

7.1 Observation and Discussion

From experimental results in Section 5.2 and 5.3, we observe the followings.

– The degree of polynomials will not affect much.
– The number of variables are matters, but also for Z3 4.3. The experimental

results do not show exponential growth, and we expect the strategy of se-
lection of an API in which related intervals are decomposed seems effective
in practice. By observing Zankl examples, we think the maximum number
of variables of each API seems a dominant factor.

– Effects of the number of APIs are not clear at the moment. In simple bench-
marks, raSAT is faster than Z3 4.3, however we admit that we have set
small degree n = 6 for each API.

For instance, matrix-2-all-5,8,11,12 in Zankl contain a long monomial (e.g.,
60) with the max degree 6, and relatively many variables (e.g., 14), which cannot
be solved by Z3 4.3, but raSAT does. As a general feeling, if an API contains
more than 30 ∼ 40 variables, raSAT seems saturating. We expect that, adding
to a strategy to select an API (Section 4.2), we need a strategy to select variables
in the focus. We expect this can be designed with sensitivity (Example 2) and
would work in practice. Note that sensitivity can be used only with noise symbols
in Affine intervals. Thus, iSAT and RSOLVER cannot use this strategy, though
they are based on IA, too.

7.2 Future Work

We are just in the beginning, and have lots of future work in both development
of raSAT and its applications.

Extension of raSAT loop

– Equality handling: currently, raSAT loop can handle only inequalities.
Before applying ideal based technique, such as Gröbner basis, we are planning
to implement a non-constructive detection of equality by intermediate value
theorem.

– Solving polynomial constraints on integers: In integer domain, the
number of test data is finite if interval constraints are bounded. Then, Test-
UNSAT implies UNSAT if all possible test data are generated. A tight in-
teraction between testing and interval decomposition could be investigated.
Mixed integers are also challenging.

raSAT Development

– Avoiding local optimal: we borrow an idea of restart in MiniSAT for
escaping from hopeless local search (i.e., solution set is not dense or empty).
Heuristics would be, after a deep interval decomposition of a box and Test-
UNSAT are reported, backtrack occurs to choose a randomly selected box.

22 Khanh and Ogawa

– Separation of linear constraints: Many benchmarks contain linear con-
straints. Current implementation does not have any tuning, but raSAT loop
only. Practically, separating linear and non-linear constraints and solving
them in a coordinated way between Presbuger arithmetic and raSAT would
improve. During this separation, variables of intersecting linear constraints
would be candidates for interval decompositions.

– Incremental DPLL: For interactions with the SAT solver, we currently
apply the very lazy theory learning. Combination with eager theory propa-
gation would improve, in which we can propagate a conflict from a partial
truth assignment instead of waiting for a full truth assignment obtained by
SAT solver.

References

[1] Ngoc, D.T.B., Ogawa, M.: Overflow and roundoff error analysis via model check-
ing. In: Proceedings of the 2009 Seventh IEEE International Conference on Soft-
ware Engineering and Formal Methods. SEFM ’09, IEEE Computer Society (2009)
105–114

[2] Ngoc, D.T.B., Ogawa, M.: Checking roundoff errors using counterexample-guided
narrowing. In: Proceedings of the IEEE/ACM international conference on Auto-
mated software engineering. ASE ’10, ACM (2010) 301–304

[3] Lucas, S., Navarro-Marset, R.: Comparing csp and sat solvers for polynomial
constraints in termination provers. Electron. Notes Theor. Comput. Sci. 206
(April 2008) 75–90

[4] Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: CAV. Volume 2725 of Lecture Notes in Computer
Science., Springer (2003) 420–432

[5] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant gener-
ation using gröbner bases. In: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. POPL ’04, New York, NY,
USA, ACM (2004) 318–329

[6] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. Form. Methods Syst. Des. 32(1) (2008) 25–55

[7] Anai, H.: Algebraic methods for solving real polynomial constraints and their
applications in biology. In: Algebraic Biology Computer Algebra in Biology.
(2005) 139–147

[8] Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of
the American Mathematical Society 59 (1951)

[9] Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition –
twenty years of progress. In Caviness, B.F., Johnson, J.R., eds.: Quantifier Elim-
ination and Cylindrical Algebraic Decomposition, Springer-Verlag (1998) 8–23

[10] Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Proceedings of the
6th international joint conference on Automated Reasoning. IJCAR’12, Springer-
Verlag (2012) 339–354

[11] Ratschan, S.: Efficient solving of quantified inequality constraints over the real
numbers. ACM Trans. Comput. Logic 7(4) (October 2006) 723–748

[12] Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 209–236

raSAT: SMT for Polynomial Inequality 23

[13] Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic.
In: Proceedings of the 16th international conference on Logic for programming,
artificial intelligence, and reasoning. LPAR’10, Springer-Verlag (2010) 481–500

[14] Borralleras, C., Lucas, S., Navarro-Marset, R., Rodŕıguez-Carbonell, E., Rubio,
A.: Solving non-linear polynomial arithmetic via sat modulo linear arithmetic.
In: Proceedings of the 22nd International Conference on Automated Deduction.
CADE-22, Springer-Verlag (2009) 294–305

[15] Ganai, M., Ivancic, F.: Efficient decision procedure for non-linear arithmetic
constraints using cordic. In: Formal Methods in Computer-Aided Design, 2009.
FMCAD 2009. (2009) 61 –68

[16] Stolfi, J.: Self-Validated Numerical Methods and Applications. PhD thesis, PhD.
Dissertation, Computer Science Department, Stanford University (1997)

[17] Khanh, T.V., Ogawa, M.: SMT for polynomial constraints on real numbers. Electr.
Notes Theor. Comput. Sci. 289 (2012) 27–40

[18] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In Baader, F., Voronkov, A., eds.: Logic for Programming,
Artificial Intelligence, and Reasoning. Volume 3452 of Lecture Notes in Computer
Science. Springer-Verlag (2005) 36–50

[19] Moore, R.E.: Interval Analysis. Prentice-Hall (1966)
[20] Messine, F.: Extensions of affine arithmetic: Application to unconstrained global

optimization. Journal of Universal Computer Science 8(2) (2002)
[21] Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer

graphics. In: Proceedings of VI SIBGRAPI. (1993) 9–18
[22] Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library

(SMT-LIB). (2010)
[23] Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential

theory of the reals. In: Proceedings of the 16th Symposium, 8th International
Conference. Held as Part of CICM ’09 on Intelligent Computer Mathematics.
Calculemus ’09/MKM ’09, Springer-Verlag (2009) 122–137

[24] Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: an SMT-compliant
nonlinear real arithmetic toolbox. In: Proceedings of the 15th international confer-
ence on Theory and Applications of Satisfiability Testing. SAT’12, Springer-Verlag
(2012) 442–448

[25] Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Proceed-
ings of the 18th international conference on Fundamentals of computation theory.
FCT’11, Springer-Verlag (2011) 360–371

[26] Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8
(1997) 85–101

[27] Microsoft: Z3
[28] Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady,

B.: Deciding bit-vector arithmetic with abstraction. In: Proceedings of the 13th
international conference on Tools and algorithms for the construction and analysis
of systems. TACAS’07, Springer-Verlag (2007) 358–372

