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Abstract

A uniquely converging (UC) property for a possibly non-
linear term rewriting system (TRS) is investigated. UC,
which i1s an intermediate property between conventional
Church-Rosser (CR) and uniquely normalizing (UN), is
newly proposed in connection with the consistency of con-
tinuous semantics. Continuous semantics is defined by
constructing free-continuous algebra which is required in
In fact, free-

continuous algebra can specify a lazy space, whereas nei-

algebraic specification on a lazy space.

ther tnitial algebra nor final algebra can.

This paper also clarifies a sufficient condition for UC.
The statement is, an w-nonoverlapping TRS is UC (irre-
spective of linearlity). This makes the contrast with the
well-known facts that a nonoverlapping TRS 1s possibly
non-UN when nonlinear, although CR when left linear.
The difference between w-nonoverlapping and usual non-
overlapping is that unification with infinite terms is ap-
plied instead of usual unification with occur-check.

1 Introduction

A Term Rewriting System (TRS), intuitively which is a
set of directed equations (reduction rules), have been ap-
plied as a model for representing computational processes
of equational logic and algebraic specification [9]. As theo-
retical foundation, its declarative semantics have been in-
vestigated in several literatures [1, 6, 11, 14]. The method
mainly depends on algebraic semantics, that is, to con-
struct an algebra corresponding to a given TRS. In other
words, which and which should be specified equal.

The algebraic semantics is quite clear under the assump-
tion of termination. For instance, let us count an initial
algebra and a final algebra, which give the pair of the
most detailed and the most abstract semantics. Intuitively
speaking, equality in the initial algebra is defined to be
MustEqual(x,y) et { & = y is deduced from E in finite

steps } (else # and y are naturally assumed to be unequal),
where reduction rules in R are interpreted as equational
deduction rules. In contrast, inequality in the final algebra
is defined to be Cannot Equal(z,y) def { z # yis deduced
from F'U {true # false} in finite steps } (else  and y are
naturally assumed to be equal). These two equalities will
coincide on terminating computations (if Cannot Fqual is
well-defined) [9].

neous computations, such as nontermination.

Differences may be found among erro-

In turn, once we take account into lazy-evaluation, a
nonterminating computation becomes the center of inter-
est. However, neither initial algebra specification nor fi-
For
instance, let us examine example 1 [16]. The example

nal algebra specification can specify lazy space [3].

shows that nontermination on a lazy space 1s classified
into two cases : diverging as an error (e.g.h(z)), and gen-
erating an infinite data structure (e.g.intseq(z),intseq’(x)
which generate an infinite increasing sequence starting
from given ). Initial algebra distinguishes each cases and

final algebra identifies all cases, but should be intseq(z) =
intseq'(x) # h(z).

Example 1

intseq(x) — cons(x,intseq(s(x)))
/ /

def
R =

intseq’(x) — cons(z,intseq’(s(z)))

h(x) —  h(h(z))

Therefore, the semantics of an infinite object, which is
defined as the limit point of a sequence of finite approxima-
tions, requires some kind of the least fix point operation
(as in denotational semantics of a functional language).
Then, as a natural way, definedness-ordering is induced
from a TRS. That is, the more a reduction proceeds, the
more a term becomes informative (still omitting diverged
computations). This method, called continuous seman-
tics, 18 based on the construction of free-continuous alge-
bra [1, 6, 11, 14]. This semantics have been investigated
dependent on Church-Rosser (CR) property of a nonover-



Figure 1: A nonoverlapping, but not UN™ example R,.

lapping TRS. From this limitation, the objective TRSs are
restricted on a left linear TRS, though a nonlinear TRS is
the first important step to describe equality among infinite
objects. For instance, Example 2 shows that a nonover-
lapping and nonlinear TRS is not uniquely normalizing
(UNT) in general (See Figure 1), though a nonoverlapp-
ing and left linear TRS is known to be Church-Rosser [8].

Example 2
d(z, x) — 0
Ry ¥ { d(x, f(z)) — 1
2 — f(2)

In this paper, a uniquely converging (UC) property for
a possibly nonlinear TRS is investigated. UC, which is an
intermediate property between conventional CR and UN,
is newly proposed in connection with the consistency of
continuous semantics. Further, a sufficient condition for
UC is clarified. The statement is, an w-nonoverlapping
TRS 1s UC. The difference between w-nonoverlapping and
usual nonoverlapping conditions is that wunification with
infinite terms is applied instead of usual unification with
occur-check.

In section 2, UC property is formally defined in terms
of an abstract reduction system. The relation among these
CR-related properties is also investigated. In section 3,
the relation between continuous semantics and UC prop-
erty is discussed. A sufficient but undecidable condition
for UC property is also proposed. The statement is, an
E-nonoverlapping TRS 1s UC, where E-nonoverapping

is intuitively the nonoverlapping condition under mod-
ulo an associated equational logic E. In section 4, a de-
cidable condition for E-nonoverlapping property is pro-
posed. The statement is, an w-nonoverlapping TRS 1s
E-nonoverlapping. Thus, an w-nonoverlapping TRS 1s
proved to be UC. This result is also compared with clas-

sical results found in [4, 10].

2 Reduction systems

2.1 Abstract reduction systems

A reduction system is a structure R = (A, —) consisting of
an object set A and any binary relation — on A (i.e. —C
A x A), called a reduction relation. A reduction (starting
with zg) in R is a finite or an infinite sequence #y — 21 —
xo9 — ---. The transitive closure of — is noted as A
sequence ¥ = rg — x1 — Ty — -+ — T, = ¥ 18 said to be

a reduction-path ® . .
r—y

An equational system associated to a reduction system
R = (A,—) is a structure £ = (A, =pg) (or simply F =
(A, =)) consisting of A and the symmetric binary relation
=pg (or simply =) which is defined tobe # =g y <= (¢ —
y V y — ). An equality =g (or simply =) in F is the
transitive reflexive closure of the binary relation =g. A
sequence ¥ = xg = r1 = &9 = --- = ¥, = y 1s said to be
an equality-path S,—,.

A combination of equality-pathes Sy—, and Sy, is de-
noted as Sp=y - Sy=,. A step of an equality-path .-,
is denoted as #3,=,. For a reduction path %x:y, the
combination and the step are similarly defined by treating
%x:»y as an equality-path.

Definition

NF(R)E {z € A|-Tyst. 2 —y}

A set of normal forms of R is defined as

Definition TLet R = (A, —) be a reduction system.
Assume D be a base domain such that A C D. Then,
¥ D — D is said to be a normal retraction iff

e Yoiy(x)=1y(x) for Ve € D.

e Y(z) =z for Yo € NF(R).

e (¢¥(D),C) is an algebraic cpol

R is said to be monotonic (with respect to ) iff

e (z—y = Y(x)C¢(y) ) forVe,ye A
e r e NF(R) = (y(x) ZyY(y) forVye D)

If ¥ i1s a normal retraction and R is monotonic with
respect to 1, then v is said to be a regular retraction.

1 Short for, algebraic complete partial order (See ch.1 in [2])



2.2 Hierarchy of Church-Rosser related
properties

Church-Rosser related properties guarantee the validity
of reduction-based computations in various levels. Intu-
itively speaking, Church-Rosser means that equality of
terms may be examined without back-track. Uniquely
converging means that the result of the computation
is uniquely specified even for infinite computations.
Uniquely normalizing means that the result of the com-

putation is uniquely determined if terminates.

Definition [8] R = (A, —) is said to be Church-Rosser
(CR) iff Ve,y e Ast. 2 =y = 2 | y (i.e. Iz € A s.t.
> zand y = z).

def

Oy(z) = {¥(y) | z =y} (O(x), for short.)

Notation

Definition Let R = (4, —) be a reduction system, and
¥ : D — D be a regular retraction where A C D. R
is said to be uniquely converging (for ) with respect to
equality (UCy,) iff ©y(x) is a directed set? for Vo € A.

Definition [13] R = (A, —) is said to be uniquely nor-
malizing with respect to equality (UN) iff Vo, y € NF(R)
st.x=py=—=2=y. (x =y iff # and y are syntactically
same.)

R = {A,—) is said to be uniquely normalizing with re-
spect to reduction (UNT) iff Vo € A Vy,z € NF(R) s.t.
xiy/\xinzzyzz.

Remark Let ¢ be a regular retraction. Then, the logi-
cal relation among them is,

CR =— UC;, — UN =— UN™

However, the converses are not satisfied in general (See
Figure 2). If R is weakly normalizing (ie. Ve € A Jy €
NF(R) s.t. = y), all these properties are equivalent.

Lemma Let R = (4, —) be a UC, reduction system,
and ¥ : D — D be a regular retraction where A C D. If
z € A satisfies O(z)NY(NF(R)) # ¢, then {lub(O(2))} =
O(x) N NF(R). (Thus, UN.)

2A set S is directed iff for every finite subset U C S, S contains
an upper bound for U [2].

Figure 2: Relation among CR-related properties.

3 Continuous semantics of a TRS

3.1 Term rewriting systems

Term rewriting systems are reduction systems which has
a term set T(F, V) as an object set A. A term set T(F,V)
is a set of terms where F' is a set of function symbols and
V is a set of variable symbols. 0-ary function symbols
are also called constants. T(F,V) may be abbreviated as
simply 7. The substitution ¢ is a map from V' to T'(F, V)
such that 6 is an identity map except on a finite number
of variables. The syntactical equivalence between terms

M and N i1s denoted as M = N.

The context C' is a term in T(F U {0}, V) where
O is a special constant named a hole.
C[Ny, -+, Np] is a syntax convention for the result of plac-
ing Ny, -+, N, in the holes of C[,---,] from left to right.
Then, N is said to be a subterm of M ifft M = C[N] for
some context C' having a precisely one hole. The context

C[,---,] is said to be trivial iff C[] = 0O.

The notation

Definition A finite set R = {(«, §;)} of ordered pairs
of two terms is said to be a Term Rewriting System (TRS)
iff each «; is not a variable and all variables in 3; appear
mn «;. A reduction is defined on a term M as M — N
iff there exists a context C[ ] and a substitution # s.t.
M = Cl0(e;)] and N = C[0(5;)]. A subterm M’ = ()

in M is said to be a redez (short for a reducible expression).

Definition

3, 1s said to be overlapping iff there exists a context C[], a

A pair of reduction rules a; — §; and a; —
nonvariable term M, and a substitution ¢ s.t. a; = C[M]
and 8(«;) = 0(M) (ie. o; and M are unifiable).

A TRS R is said to be nonoverlapping iff no pair of
two rules in R are overlapping except trivial cases (i.e.



i=j A Cl]=0).

Definition
linear iff any variable in «; appears precisely once in «;.
A TRS R is said to be left linear iff all reduction rules in
R are left linear. A TRS R is said to be nonlinear iff R is

not left linear.

A reduction rule a; — 5; 1s said to be left

Remark A left linear nonoverlapping TRS is known
to be confluent [8].

3.2 Continuous semantics and

UC-property

Intuitively speaking, continuous semantics of a TRS R
is an interpretation Valg T(F,X) — D such that
Valp(z) = lub({wr(y) | # = y}) where wg is an embed-
ding into an algebraic cpo (D,C). For this purpose, there
must be clarified following two points.

e How is wg defined 7 (i.e. How is an algebraic cpo

(D,C) constructed ?)
e Does lub exist 7 (i.e. Is an interpretation Valg well-

defined 7)

It may be natural to introduce the ordering C as = C
y <= x —pg y. That is, the more a reduction proceeds,
the more a term becomes informative. However, this idea
is little bit too naive; some reductions may be redundant
or fall into an idle loop, and some reductions may not
terminate but generate infinite terms. Thus, the former
requires a special constant 1 which means undefined, and
the latter requires an infinite term which means a limit
of an approximation-sequence (consists of finite/infinite
trees). For these purpose, a set of infinite trees T°°(FU{L
+, X)), which is the completion of T(F, X) for a lub (least
upper bound) operation, is applied as an algebraic cpo D.

Definition Definedness ordering T is defined to be

TCT <= T isobtained from 7" by replacing

subtrees of 7" with L .
for VI, 7" € T°(F U {1}, X).

Let U C T (FU{L}, X). A pair of trees T, T are
said to be cooperative in U iff there exists T € U s.t.
Ty, T T T. A pair of trees T7, T3 are said to be individual
i U iff T and Ty are not cooperative in U.

Note that T (FU{L}, X) is an algebraic cpo under the
definedness ordering C [14]. Before defining a retraction
wrp: T(FU{L}LX) — T<F U{L},X) (which is
also an embedding wg : T(F,X) — T(FU{l}, X)),
several tree-related notations are introduced.

Definition

N in a term M 1s defined inductively as

An occurrence occur(M, N) of a subterm

oceur(M, N') =
€ if N=M

if u=occur(N;, N)
M = f(Ny,--+, Np)

1-u and

The subterm N of M at occurrence u is denoted as
M/u. (That is, u = occur(M,N).) Node(M) is a set
of all occurrences in M (including a root occurrence ).
Node* (M) is a set of all non-variable occurrences in M
(i.e. {u € Node(M) | M/u is not a variable}).

Definition
is the replacement T'/u with T where w is an occurrence u
inT. A substitution is noted as Ty_ps = Tlu—TVue
oceur (T, z)] for a variable z.

A replacement is noted as T[u « T"] which

Then, a set of candidates of redexes C'andg is defined
inductively as

o If T' € Redg, then T' € Candpg.
o If T\ 7" € Candg, then T[u — T'] € Candp for some
occurrence u in 7.

where Redpg is a set of all redexes of R.

Let Candy be a closure of Candgr under Scott topology
[2] on the algebraic cpo (T*°(F U {Ll}, X),C). A set of
occurrences of C'andy which appears in a term M 1s noted
as

Candoccr(M) ! {u € Node(M) | M/u € Candg}.

Definition  The order on occurrences u, v is defined as
u=v <= Jwst.v=u-w. fu<v A u#vthenitis
noted as u < v. The occurrences u, v is said to be disjoint
and noted u|v iff w A v and v £ w.

Let U be any set of occurrences. A set of minimum
occurrences in U is noted as

Min(U)déf{ueU | v A ufor Vo e U},

Definition  The retraction wg : T(FU{Ll}, X) —
T(F U{L},X) and the interpretation Valg, Valg
T(F,X) — T(FU{L}, X) are defined to be

wr(M) = M[u—1|VYuée€ Min(Candoccr(M)) ]
Valz (M) % tub({wr(N) | M = N}
Valg(M) < lub({wr(N) | M =g N})

Note that the retraction wg is regular [14].

Definition

A TRS R is said to be UC it UC, ..



The value of aterm M in continuous semantics of a TRS
is given as Valg(M). Thus, the well-definedness of Valg
is equivalent to UC property. Adding to it, UC property
implies the continuity of Valg. For detailed discussions
on the continuous semantics, refer [14].

Remark Note that Valy (M) is not well-defined even
if R is UC. Further, they are generally unequal (i.e.
Valg (M) E Valg(M)), though they are well-defined and
coincide if R is CR.

Example 3
1 — f(1)
h(zﬁ) | — h(h(f)) |
def di(z,z —  cons(z,x
Rs = di(z, f(z)) — da(z, )
do(x, x) —  cons(x, h(x))
do(z, f(z)) — cons(h(x), )

In fact, Rs is UC, but Valy(d2(1,1)) is not well-
defined. If the last rule da(z, f(2)) — cons(h(x),x) was
removed, Valyg becomes well-defined, but still cons(1, L

)= Valg (d2(1,1)) C Valg(da(1,1)) = cons(1, 1).

In the following sections, sufficient conditions for UC-
property will be investigated.

3.3 UC-property of an E-nonoverlapping
TRS

In this section, the sufficient condition for UC property
in terms of nonoverlapping property is introduced. Intu-
itively speaking, a TRS R is said to be E-nonoverlapping
iff R 1s nonoverlapping modulo an associated equational
logic E.

Definition  An occurrence u is said to be invariant in
the equality-path Spy=n iff v £ u for any occurrence v
A set of all
invariant occurrences in the equality-path $py— v 1s noted

as Oinv (%M:N)

at which some reduction iIn =N occurs.

Definition Let R be a TRS. A pair of reduction rules
a; — B and o; — B; is said to be E-overlapping iff
there exist a context C[ ], a nonvariable term M, and a
substitution 8 s.t. «; = C[M], and (f(;) =r 6(M)) A
(€ € Oinu(Sg(ay=om)))-

A TRS R 1s said to be F-nonoverlapping iff no pair of
two rules in R are E-overlapping except trivial cases (i.e.
i=j A C[]=0D).

Theorem 1  An E-nonoverlapping TRS R 1s UC.

The proof consists of three steps. The first step, a key
lemma normalization lemma is introduced. The next,
an E-nonoverlapping TRS is proved to be UN. Finally,
an F-nonoverlapping TRS is proved to be UC. (See Ap-
pendix A.)

4 A sufficient condition for E-
nonoverlapping property

4.1 Unification with infinite terms

Unifications are classified into following three classes.
They are,

e Unification without occur check.

e Unification with occur check.

e Unification with infinite terms (called infinite unifi-

cation ).

Unification without occur check does not care on name
conflicts. Thus, even for finite terms, this is not correct for
nonlinear terms. For instance, f(z,2) and f(g(y),h(y))
are unified as {x = ¢(y), * = h(y)}. In other words,
consistency of binding environments is not preserved.

In contrast, unification with occur check treats name
This is correct on fi-
For
instance, unification between f(z,x) and f(y,¢(y)) is
failed, though it can be unified with the infinite term

Flalg(g(--))), a(g(g(-)))).

There have been proposed several algorithms for unifi-
cation with infinite terms [5, 7, 12]. The substantial dif-
ference is that expressions defining a binding environment

conflicts as unification failed.
nite terms, but not correct on infinite terms.

can refer the environment itself recursively. Therefore,

a looped infinite term such as ¢(g(¢(---))) (the solution

for # = g(x)) is permitted as a unifier. TFor instance,
g(z, f(y, h(x)),2) and g(f(h(u),v),u, u) are unified to
g (h(f =), h(F ) S (RS =), h(S - +2))).

(i.e. The environment is ¢ = v = f(y,y), y = v = h(x).)

A looped infinite term can be represented by a cyclic

finite graph as an internal form. Thus, the algorithm of
infinite unification terminates as well as usual unification
algorithms do. For details, refer [12].
Remark If two terms are unifiable under wnification
with occur-check, unifiable under unification with infinite
terms. If two terms are unifiable under unification with
infinite terms, unifiable under wunification without occur-
check. However, the converse will not be satisfied.



4.2 FE-nonoverlapping property of a non-
linear TRS

In this the decidable E-

nonoverlapping property is introduced. For the prepa-

section, condition for

ration, we introduce variations of overlapping conditions
Let us first
recall the definition of the overlapping condition.

corresponding to variations of unifications.

Definition (again) A pair of reduction rules o; — f;
and o; — ; is said to be overlapping iff there exists a
context C[], a nonvariable term M, and a substitution ¢
st. o = C[M] and 0(a;) = (M) (i.e. «; and M are
unifiable).

In this definition, usual unification with occur-check is
applied. Similarly, a pair of reduction rules is said to be
w-overlapping (resp. strongly overlapping) iff unification
with infinite terms (resp. unification without occur-check)
is applied instead of a usual unification with occur-check
in the definition above.

Same as the definition of nonoverlapping, a TRS R
is said to be w-nonoverlapping (resp. strongly nonover-
lapping) iff no pair of two rules in R are w-overlapping
(resp. strongly nonoverlapping) except trivial cases (i.e.
i=j A C[]=0D).

Theorem 2 If a TRS R is w-nonoverlapping, then FE-
nonoverlapping.

The proof is found in Appendix B. The relation among
these variations of nonoverlapping conditions is clarified as
shown below.

Remark strongly nonoverlapping
== w-nonoverlapping
— FE-nonoverlapping
— nonoverlapping (See Figure 3)

Note that if R is left linear, all these nonoverlapping prop-
erties are equivalent.

The following two corollaries are direct consequences of
the theorem.

Corollary 1 An w-nonoverlapping TRS R 1s UC.

The assumption w-nonoverlapping is weaker than
strongly nonoverlapping, and the result UC is stronger
than UNT". Thus, corollary 1 is a simple but more pow-
erful result than the following classical theorem.

Figure 3: Relation among nonoverlapping properties.

Theorem [4]
tlons are met :

A TRS R is UN7 if the following condi-

e R is strongly nonoverlapping.
e % is compatible.

In fact, the theorem above shows that Example 4 is
UNT. Further, theorem 2 shows that the example is
UC, though it is not CR (See Figure 4).

Example 4
dlz,z) — 0

Ry €% f@) = d(x f(x)
1 — f(l)

The next corollary makes contrast with another classical
result : If a nonoverlapping TRS R is strongly normalizing
(ie. Voo — 21 — 02 — -+ — @ — --- dn st x, €

NF(R)), then CR [10].
Corollary 2 If an w-nonoverlapping TRS R is weakly
normalizing, then CR..

The other approach to CR-related properties of a non-
linear TRS is found in [16].
and nonlinear TRS is guaranteed to be CR by restricting

In [16], a nonoverlapping

its reductions in call-by-value strategy when critical. The
main theorem is,

Theorem [16] If a membership conditional TRS R is
nonoverlapping and restricted-nonlinear, then CR.



Figure 4: A UC, but not CR example R4.

where a restricted-nonlinear membership conditional TRS
reduces (o) to 8(5;) only when a substitution ¢ satisfies
0(z) € NF(R) for all nonlinear variables in a rule o; —

B; € R.

5 Conclusion and future works

In this paper, a newly proposed uniquely converging (UC)
property was investigated. UC, which is an intermediate
property between CR, and UN, was proposed in connec-
tion with the consistency of continuous semantics. Adding
to it, a sufficient condition for UC was clarified. The state-
ment is, an w-nonoverlapping TRS is UC (irrespective of
linearlity). The difference between w-nonoverlapping and
usual nonoverlapping is that unification with infinite terms
was applied instead of usual unification with occur-check.

Equality among infinite objects (as shown in this paper)
will be developed through following three stages:

e The definition of the equality
(declarative semantics)

e The logical inference rules of the equality
(underlying logic)

e The strategy to manipulate the equality
(theorem prover)

This paper investigated only the first stage. The next
may have two approaches. One approach is to give an
adequate conservative extension based on final algebra,
that is, add an adequate finite observation function. For
instance in Example 1, intseq(x) and h(z) are distin-
guished with car(cons(z,y)) — =, though still identifying

intseq(x) and intseq’'(x). In fact, it is proved that there

exists a such conservative extension [15].

The other is to introduce induction rules to initial alge-
bra, such as fized point induction (in LCF) or lazy induc-
tion [3].

In either cases, further investigation is required in this

area.
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Appendix

A  Proof of theorem 1

In appendix A, we assume that R is an E-nonoverlapping
TRS. Main proof techniques are various inductions based
on various induction bases, such as a step #Sy=n, a par-
allel step #,3a=n, and a length A(M) of a term M.

Definition

allel equality-path iff any occurrences u, v (u # v) where a

An equality-path Spyr—n 1s said to be a par-

reduction occurs in Syr=n are digjoint (i.e. ulv).

A parallel step #,Im=n of an equality-path Spy=n
is a minimum number of a decomposition into parallel
equality-pathes. That is, #,3y=n is formally defined
as

Vi(<n) AM; s.t. M = My, M, = N,

and Spr=n = Swme=M, - SM,_1=M,

e " for some parallel equality-pathes
SMi=M, 4
Definition A length A(M) of the term M [8] is induc-

tively defined as

A(x) |
A(f(My,---,My)) = 1437, A(M;) otherwise

for any variable x

A.1 Step 1 : normalization lemma

Notation Substitutions 6,6’ are noted to be § =g ¢’
(resp. 0 R 0") iff 0(x) =g ¢'(x) (vesp. O(x) R ¢'(x)) for

any variable x.

Notation Let M, N be terms s.t. M = N, and Sy=n

be an equality-path. Boundary 03—y is defined as

Elimination lemma TLet oy — §; € R. If 0(e;) =R
#'(c;) for some substitutions 6,6, then § =g #'. Fur-
ther, 6§ =g ¢ naturally induces 6(8;)) =r 0'(5;) s.t.
#pSa0)=01(8) < #HpS0(ai)=6' (o)

A reduction at an occur-

83M:N d:ef Min ({u

rence u appears in Syr—n

Proof
part because any variables in [(; appears in «;.

The latter part i1s obvious from the frontier
The
proof of the frontier part is due to the induction on a
parallel step #,34(a,)=6/(«,)- The initial induction step
#pS9(a;)=6'(a;) = 0 1s obvious.

If 0S(ay)=07(a)NNode™ (a;) = ¢, the lemma is obvious.
Otherwise, from FE-nonoverlapping property, there exist



an occurrence u € J3g(a,)=g/(a,), & TUle a5 — B; € R,
and substitutions o, 0" s.t. Sg(a,)/u=6/(a;)/u cONtains I’ =
So(p)—otay) Sola)=o’(ay) " Sot(ay)—o'(p) - Since #,3" <
H#HpS0(a)fu=6'(a:)/u>s $’ is shortened from the induction
hypothesis. Thus, Sg(a,)=6/(a,) 1s shortened, and again
from the induction hypothesis, lemma is proved. |

Definition

path %M:N) is said to be normalized iff the reduction at

An equality-path Spr=n (resp. reduction-

the occurrence u appears in Spr=n (resp. R exactly

MLN)
once for Yu € 0 p=n (resp. OR_ « ).

M—N
FE-nonoverlapping property and repeated applications
of elimination lemma induce following normalization
lemma.
Normalization lemma If M = N, there exists a nor-
malized equation-path Spr—n.

A.2 Step 2 : proof for UN

UN-lemma An E-nonoverlapping TRS R is UN.

Proof Let M, N € NF(R)s.t. M = N and the step of
the equality-path #3 -y = n. We will prove M = N by
induction on n.

The initial induction step, M = N for n = 0, is obvious.

Assume M = N holds for #S3y-n < n as induction
hypothesis. Let IM, N € NF(R) s.t. #Spy=n = n and
M # N. From normalization lemma, there exists a
normalized equation-path . Without loss of gen-
erality, we can assume 9=y = {e}. Then, there ex-
ist M/,N/ s.t. %M:N = %M:M’ . (M/ — N/) . %N’:N,
€ ¢ Oiny(Sy=m), and € € Oipno (Sni=n).

Let M’ — N’ at ¢ by therule a; — 3;. If o; — 3; 1s a
left linear reduction rule, E-nonoverlapping property and
€ € Oine(Sy=pr) implies M = 0(oy) for some substitu-
tion #. This contradicts to the assumption M € NF(R).
From FE-
nonoverlapping property and M € NF(R), there exist

Then, «; — 5; must be a nonlinear rule.

u,v € occur(a;,x) for some nonlinear variable z s.t. u #
v, M/u=M"/Ju, M/v=M"[/v, and M’ /u= M’'/v.

Note that both Sarju=arju and Sarju=prr/, are subse-
quences of Spr_pp (ie. subsequences of Jpr—pn). Then,
#(SMmu=m'fu - SM fv=p/v) < #Su=n = n. From the
facts M/u # M/v and M/u,M/v € NF(R), this contra-
dicts to the induction hypothesis. |

A.3 Step 3: proof for UC

The proof of theorem 1 is due to the induction on the
sum of the lengths of objective terms. Let us denote a root

function symbol of a term M as root(M).

Proof of theorem 1 The proof is due to the induc-

tion on A(wr(P)) + A(wgr(Q)) where P,Q € O, (M) def
{wr(N) | M =g N} for any term M?3.

The initial induction step A(wr(P)), A(wr(Q)) = 1is
the case that P.@Q € V U{L}. Since any left side of
a rule «; is not a variable from the definition of TRS,
V C NF(R). Thus, UN lemma implies that P,Q are
cooperative.

Assume the theorem holds for A(wg(P)) + A(wr(®))
< n as induction hypothesis. Let P,Q € O,,(M) s.t.
A(wr(P)) + Alwgr(Q)) = n and wr(P),wr(Q) are indi-
vidual in ©,,, (M). Without loss of generality, we assume
0Sp=g = {e¢} for some normalized equation-path Sp—q
between P and Q. A pair P, is classified into following
three cases.

[1] P,QeNF(R)
[2] PeNF(R), Q¢ NF(R)

(or PZNF(R), Q € NF(R))
3 P.QENF(R)

Case [1] leads the contradiction directly from UN-
lemma and the fact M = wr(M) for VM € NF(R).

In case [2], there exists terms P’ @) s.t. the sequence
~(P/ = Q/) . %Q/:Q s.t. € ¢
Sp=p/, € € Sg'=q, and the reduction between P’ and @’
occurs at the root. If P’ = Q' is realized as P’ — Q' by the
reduction rule oy — G;, then E-nonoverlapping property

Sp=q is divided to Sp=p

implies that P and P’ have a same shape with «; from
the root*. Since P € N F(R), there must exist the distinct
occurrences u, v € occur(ey, ¢) for some nonlinear variable
zst. P/lu# P/v, P/u= P/v, and P/u,P/v € NF(R).
This contradicts to UN-lemma.

If P! = @’ is realized as ' — P’ by the reduction rule
a; — [3;, then E-nonovelapping property implies that @
and @’ have a same shape with o; from the root. If o; —
B; 1s a left linear rule, there must exists a substitution &
st. @ = 0(«;) from E-nonoverlapping property. Then,
wr(Q) =L. This contradicts to the assumption.

Thus, a; — §; must be a nonlinear rule. There are again
two cases; [2a] There exists a nonlinear variable  in «; s.t.
wr(Q/u) and wr(Q/v) for u,v € occur(wa;, ) are individ-
ual in T (F U {L}, X). (Thus, individual in ©,,(M).)
Since Q/u =r Q'/u = Q'/v =g Q/v and A(wr(Q/u)) +
A(wr(Q/v)) < A(wr(@Q)), this case contradicts to the in-
duction hypothesis; [2b] For any nonlinear variable 2 in «;,
wr(Q/u) and wr(Q/v) are cooperativein T (FU{L}, X).

3Note that A(wr(P)), A(wr(Q)) < co. because P, Q are deduced
from a finite tree M in finite steps.
tie. root(P/u) = root(P'/u) = root(a/u) for Vu € Node* (o)



(Thus, cooperative in T'(F, X).) Let N, € T(F,X) s.t.
wr(Q/u),wr(Q/v) C N,. Since Q = Q[u «— N, | Yu €
oceur(ay, x) for any nonlinear variable z in o;] is a redex,
and @ is obtained from Q by replacing subtrees with el-
ements in Candy (which correspond to 1). Thus @ €
Candp, and this leads wgr(Q)) =L. This contradicts to
the assumption.

In case [3], the proof is similar to the case [2a], [2b]. W

B Proof of theorem 2

The proof is boot-strapped from simply nonoverlapping
property. That is, E-nonoverlapping property is decom-
posed into (£, n)-nonoverlapping property, which is valid
only for less-than-n-parallel-steps equality-pathes, and
stepwise refinement of elimination lemma and normal-
ization lemma pull up it inductively. The main proof
technique is the induction on parallel steps of equality-
pathes.

Definition Let R be a TRS. A pair of reduction rules
a; — f; and o; — [; is said to be (E,n)-overlapping iff
there exist a context C[ ], a nonvariable term M, and a
substitution 6 s.t. «; = C[M], and (8(¢;) =r 6(M)) A
(€ € Oinu(Se(ayy=ea))) N (F#pS6(a;)=60) < ).

A TRS R is said to be (E, n)-nonoverlapping iff no pair
of tworules in R are (E, n)-overlapping except trivial cases
(ie.i=j5 A C[]=0D).

Then, similar argument as in section 3.3.(1) leads a step-
wise version of elimination lemma and normalization
lemma.

Let a TRS R be (F, n)-
nonoverlapping, and o; — §; € R. If 6(e;) =g ¢’ (o) s.t.

Stepwise-elimination lemma

#pS0(a)=ro'(ai) < n for some substitutions 6,6’ then
¢ =g 0'. Further, # =g 6’ naturally induces 0(5;)
9/(62) s.t. #pgg(@l):‘g/(@l) < #PQG(%):G’(OQ)'

Stepwise-normalization lemma Let a TRS R be
It M =R N s.t. #p%M:N S
n+ 1, there exists a normalized equation-path &, _py s.t.
#pSy=n < #pSm=n.

(E, n)-nonoverlapping.

Proof of theorem 2  we will prove that R is (F, n)-
nonoverlapping by induction on n. The initial induction
step is obvious because (¥, 0)-nonoverlapping is equivalent
to nonoverlapping, and the fact that w-nonoverlapping im-

plies nonoverlapping.
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Assume R be (F,n-1)-nonoverlapping as an induc-
tion hypothesis, and «; and «; be nontrivially (E,n)-
overlapping. That is, there exist a context C] ], a non-
variable term M, and a substitution  s.t. «; = C[M],
and (H(Ozj) =g O0(M)) A (¢ € Omv(gg(%):‘g(M))) A
(#pS6(as)=ro(m) < ).

From assumption, «; and «; are not w-overlapping (ex-
cept «; overlaps with itself at the root). Thus, along the
execution of the infinite unification algorithm on M (a
nonvariable subterm of «; ) and «;, there exist non-variable
subterms P, P’ of M or «; s.t. some frontier {z} = (P, P')
failed. (That is, root(P) % root(P’).)

There are two cases the frontier {x} = (P, P’) fails.

[1] P is a subterm of M, and P’ is a subterm of «;.
[2] P, P’ are both subterms of M (or, «;).

In case [1], there must exists a context C'[] s.t.

e ('[P] is a subterm of M.

o C'[P'] is a subterm of «;.

L] H(Cl[P]) =R H(C/[P/]) and ge(CI[P]):e(CI[PI]) is a sub-
sequence of Sg(ar)=6(a;)-

(ie. #pSaccipn=occiip) < #pSo(m)=6(a;))-

From stepwise-normalization lemma, we assume
that Sg(ciip=s(c[p) 18 normalized. Then, there exists
an occurrence u € 0g(c/[p))=g(c'[p1]) and terms @, Q' s.t.

e u = v where {v} = occur(C'[],0)

* Jp(crP=6(c"Q)) Secrpp=q - (@ Q) -

Sqr=¢(ci[p)) where = Q' is induced by a reduc-

tion at u.

Assume @ = @' is Q — @' by the reduction rule aj —
Br- Then, a; and ay are E-overlapping in #,S4(c/[p))=q
parallel steps. If a; and «j are trivially F-overlapping
(i.e. i = k and overlaps at their roots), then Sg(ar)=g(a;)
is shortened. This contradicts to the induction hypoth-

esis. If not, this also contradicts to the induction hy-

pothesis from #p%t?(C’[P]):Q < #p%t?(C’[P])ZG(C’[P’])(S
#5Se(r)=6(a,) = 7).

In case [2], there must exist a nonlinear variable # in «;
(or, M) corresponding to the occurrences of P and P’ in
M (or, ;). Then, either a pair of P and #(z), or a pair of
P’ and 6(x) have different function symbols at their roots.
Since both Jg(py=s(-) and Sg(pr)=g(s) are subsequences of

So(M)=6(a;), the case [2] is reduced to the case [1]. [ |



