Simple gap termination for term graph rewriting systems

Mizuhito Ogawa NTT Basic Research Laboratories 3-1 Morinosato-Wakamiya Atsugi-shi Kanagawa 243-01 Japan mizuhito@theory.brl.ntt.jp

Abstract

This paper proves the Kruskal-type theorem with gap-condition á la Friedman on ω -trees (Main theorem 1 in section 2). As an application, it also proposes a termination criteria, named simple gap termination (Main theorem 2 in section 3), for term graph rewriting systems (on possibly cyclic terms), where the naive extension of simple termination (based on [Lav78]) for term graph rewriting systems does not work well.

1 Better-Quasi-Order

For infinite objects such as ω -trees, Well-Quasi-Order (WQO) does not close under the embedability construction. Instead, we need an extension of WQO, called Better-Quasi-Order (BQO). Note that (1) if (Q, \leq) is a well order then (Q, \leq) is a BQO, and if (Q, \leq) is a BQO then (Q, \leq) is a WQO, and (2) if Q is finite then (Q, \leq) is BQO for any QO \leq [Lav78].

Definition 1.1 Let ω be the least countable ordinal (i.e., set of natural numbers). If $s, t \subseteq \omega$, then $s \leq t$ (s < t) means that s is a (proper) initial segment of t. Define $s \triangleleft t$ to hold if there is an n > 0 and $i_0 < \cdots < i_n < \omega$ s.t. for some m < n, $s = \{i_0, \cdots, i_m\}$ and $t = \{i_1, \cdots, i_n\}$. (Thus, e.g., $\{3\} \triangleleft \{5\}, \{3, 5, 6\} \triangleleft \{5, 6, 8, 9\}, \{3, 5, 6\} \triangleleft \{5, 6\}$.)

Definition 1.2 For an infinite set $X \subseteq \omega$, a barrier B on X is a set of finite sets of X s.t. $\phi \notin B$ and

- 1. for every infinite set $Y \subseteq \omega$ there is an $s \in B$ s.t. s < Y.
- 2. if $s, t \in B$ and $s \neq t$ then $s \not\subset t$.

Theorem 1.1 If B is a barrier and $B = \bigcup_{i \leq n} B_i$ for some $n < \omega$, then some B_i contains a barrier (on $\bigcup_{b \in B_i} b$).

Definition 1.3 Let \leq be a transitive binary relation on a set Q. Then,

- If \leq is reflexive, R is called a quasi-order (QO).
- If \leq is antisymmetric, R is called a partial order (or, simply order).
- If each pair of different elements in Q is comparable by \leq , \leq is said to be total.

¹Corollary 1.5 in [Lav78]. The proof is due to Galvin-Prikry. See Theorem 9.9 in [Sim85a].

A strict part of \leq is $\leq - \geq$ and denoted as <. We also say a strict (quasi) order < if it is a strict part of a (quasi) order \leq . When \leq is a QO, we will sometimes use \leq (resp. \prec) instead of \leq (resp. <), for clarity.

Definition 1.4 Let \leq be a QO on Q. If B is a barrier, $f: B \to Q$ is good if there are $s, t \in B$ s.t. $s \triangleleft t$ and $f(s) \leq f(t)$, and f is bad otherwise. f is perfect if for all $s, t \in B$, if $s \triangleleft t$ then $f(s) \leq f(t)$. Q is better-quasi-ordered (bgo) if for every barrier B and every $f: B \to Q$, f is good.

Remark 1.1 If we restrict the BQO definition s.t. B runs only barriers of singleton sets (i.e., $B = \{1, 2, \dots\}$), then we get the familiar well-quasi-order (WQO) definition.

A (possibly infinite) tree is a set of T on which a strict partial order $<_T$ is defined s.t. for every $t \in T$, $\{s \in T \mid s <_T t\}$ is well ordered under $<_T$. Thus $T = \cup_{\alpha} T_{\alpha}$ where α runs on ordinals and T_{α} , the α -th level of T, is the set of all $t \in T$ s.t. $\{s \mid s <_T t\}$ has type α . The height of T is the least α with $T_{\alpha} = \phi$. A path in T is a linearly ordered downward closed subset of T. If $x \in T$ (resp. a path P in T), let S(x) (resp. S(P)) be the set of immediate successors of x (resp. P). A path is maximal in T if $S(P) = \phi$. Let $br_T(x)$ (or simply br(x) if unambiguous) be $\{y \in T \mid x \leq_T y\}$, the branch above x. An ω -tree is a (possibly infinitely branching) tree of the height at most ω .

Definition 1.5 Let \mathcal{T} be a set of trees which satisfies

- 1. For each $T \in \mathcal{T}$, T has a root (minimum element),
- 2. For each $T \in \mathcal{T}$, if P is a path in T with no largest element then $Card(S(P)) \leq 1$. A Q-tree \mathcal{T}_Q is a pair (T, l) where $T \in \mathcal{T}$ and $l: T \to Q$.

If $T \in \mathcal{T}$, $s,t \in \mathcal{T}$, there is a greatest lower bound of s and t in T, denoted by $s \wedge t$.

Definition 1.6 Let Q be a QO set and $(T_1, l_1), (T_2, l_2) \in \mathcal{T}_Q$. (T_1, l_1) is embeddable to (T_2, l_2) (and denoted $(T_1, l_1) \leq (T_2, l_2)$, or simply $T_1 \leq T_2$) if there exists $\psi : T_1 \to T_2$ s.t.

- 1. For $s, t \in T_1$, $\psi(s \wedge t) = \psi(s) \wedge \psi(t)$,
- 2. For $t \in T_1$, $l_1(t) \le l_2(\psi(t))$.

Theorem 1.2 [Lav78, NW65] If Q is BQO, \mathcal{M}_Q is BQO wrt the embedability \leq .

Remark 1.2 WQO is not enough for Kruskal-type theorem for infinite objects. For instance, consider $Q = \{(i,j) \mid i < j < \omega\}$ ordered by $(i,j) \leq (k,l)$ if and only if either $i = k \ wedge \ j \leq k$ or j < k. Then Q is WQO, but a set Q^{ω} of infinite sequence on Q is not WQO, namely,

```
\begin{array}{lll} f_1 & = & \langle (0,1), (1,2), (1,3), (1,4), \cdots \rangle, \\ f_2 & = & \langle (0,1), (1,2), (2,3), (2,4), \cdots \rangle, \\ \cdot & = & \cdot \\ \cdot & = & \cdot \\ f_i & = & \langle (0,1), \cdots, (i,i+1), (i,i+2), (i,i+3), \cdots \rangle, \\ \cdot & = & \cdot \end{array}
```

The main techniques to prove Kruskal-type theorems are (1) Ramsey-like theorem and (2) the existence of the *minimal bad sequence* (MBS). For (1), theorem 1.1 works. For (2), we first prepare some definitions (See [Lav78]).

Definition 1.7 Suppose Q is quasi-ordered by \leq . A partial ranking on Q is a well-founded (irreflexive) partial order <' on Q s.t. q <' r implies q < r. Let B, C be barriers. Then $B \sqsubseteq C$ if

- 1. $\cup C \subseteq \cup B$, and
- 2. for each $c \in C$ there is a $b \in B$ with $b \leq c$.

 $B \sqsubset C$ if $B \sqsubseteq C$ and there are $b \in B$, $c \in C$ with b < c. For $f : B \to Q$, $g : C \to Q$ and a partial ranking <' on Q, $f \sqsubseteq g$ ($f \sqsubset g$) wrt <' if $B \sqsubseteq C$ ($B \sqsubset C$) and

- 1. g(a) = f(a) for $a \in B \cap C$,
- 2. q(c) < f(b) for $b \in B$, $c \in C$ s.t. b < c.

Definition 1.8 Suppose <' is a partial ranking on Q. For a barrier $C, g : C \to Q$ is minimal bad if g is bad and there is no bad h with $g \sqsubset h$.

Theorem 1.3 Let Q be quasi-ordered by \leq , <' a partial ranking on Q. Then for any bad f on Q there is minimal bad g s.t. $f \sqsubseteq g$.

Thus, the proof of Kruskal-type theorem on infinite objects is reduced to find some appropriate partial ranking <'.

2 Kruskal-type theorems with gap-condition on infinite trees

Kruskal's theorem with gap-condition for finite trees have been proposed for finite ordinals [Sim85b]³. The aim of this section is to prove **main theorem 1**, which extends Kruskal's theorem with gap-condition to ω -trees. **Main theorem 1** is obtained as a corollary to the the stronger statement theorem 2.2). The scenario of its proof is similar to those that in [Lav78] and its extension is inspired by [Sim85b].

Definition 2.1 For $n < \omega$, let \mathcal{M}_n be a set of ω -trees with labels in $n \ (= \{0, 1, \dots, n-1\})$, and $(T_1, l_1), (T_2, l_2) \in \mathcal{M}_n$. $(T_1, l_1) \leq_G (T_2, l_2)$ if there exists $\psi : T_1 \to T_2$ s.t.

- 1. $T_1 \leq T_2$,
- 2. For each $t \in T_1$, $l_1(t) = l_2(\psi(t))$,
- 3. For $t \in T_1$, if there is $t' \in T_1$ s.t. $t \in S(t')$ then $l_2(s) \ge l_1(t)$ for each s s.t. $\psi(t') <_{T_2} s <_{T_2} \psi(t)$,
- 4. For the root t of T_1 , $l_2(s) \ge l_1(t)$ for each s s.t. $s <_{T_2} \psi(t)$.

Theorem 2.1 [Sim85b] For $n < \omega$, let T(n) be the set of all finite trees with labels less-than-equal n. Then \leq_G is a WQO on the set T(n).

Main theorem 1 For $n < \omega$, let \mathcal{M}_n be a set of ω -trees with labels in $n (= \{0, 1, \dots, n-1\})$. Then \mathcal{M}_n is BQO wrt \leq_G .

To show the theorem, we will prove the slightly stronger statement.

²Theorem 1.9 in [Lav78], or equivalently theorem 9.17 in [Sim85a].

³There are two variants of its extensions for infinite ordinals [K89, Gor90].

Definition 2.2 For $n < \omega$, let Q be a QO and $q: Q \to n (= \{0, 1, \dots, n-1\})$. $\mathcal{M}_n(Q)$ is a set of ω -trees satisfying: for $(T, l) \in \mathcal{M}_n(Q)$, $l(t) \in n$ if $t \in T$ is not maximal wrt $<_T$ and $l(t) \in n \cup Q$ if $t \in T$ is maximal wrt $<_T$.

For $(T_1, l_1), (T_2, l_2) \in \mathcal{M}_n(Q), (T_1, l_1) \leq_{\bar{G}} (T_2, l_2)$ if there exists $\psi: T_1 \to T_2$ s.t.

- 1. $T_1 \leq T_2$,
- 2. For each interior vertex $t \in T_1$, $\psi(t)$ is an interior vertex of T_2 and $l_1(t) = l_2(\psi(t))$,
- 3. For each end vertex $t \in T_1$, $\psi(t)$ is an end vertex of T_2 and either $l_1(t) = l_2(\psi(t)) \in n$ or $l_1(t) \le l_2(\psi(t)) \in Q$.
- 4. For each interior vertex $t \in T_1$, $t' \in S(t)$ and $s \in T_2$ with $\psi(t) <_{T_2} s <_{T_2} \psi(t')$, $l_2(s) \ge l_1(\psi(t'))$ when $l_1(\psi(t')) \in R$ and $l_2(s) \ge q(l_1(\psi(t')))$ when $l_1(\psi(t')) \in Q$.
- 5. For the root t of T_1 and $s \in T_2$ with $s <_{T_2} \psi(t), l_2(s) \ge l_1(\psi(t))$ when $l_1(\psi(t)) \in n$ and $l_2(s) \ge q(l_1(\psi(t)))$ when $l_1(\psi(t)) \in Q$.

We will denote $(T_1, l_1) \equiv (T_2, l_2)$ if $(T_1, l_1) \leq_{\bar{G}} (T_2, l_2)$ and $(T_1, l_1) \geq_{\bar{G}} (T_2, l_2)$

Theorem 2.2 Let $n < \omega$, Q be a BQO and $q : Q \to n$ (= $\{0, 1, \dots, n-1\}$). Let $\mathcal{M}_n(Q)$ be the set of all ω -trees with labels in n for non-maximal verteces and with labels in $n \cup Q$ for maximal verteces. Then $\mathcal{M}_n(Q)$ is BQO wrt $\leq_{\bar{G}}$.

Definition 2.3 Let $n < \omega$. Let Q be a QO and $q: Q \to n$. $\mathcal{W}_n(Q), \mathcal{S}_n(Q), \mathcal{F}_n(Q) \subseteq \mathcal{M}_n(Q)$ are defined to be:

- 1. $\mathcal{W}_n(Q)$ is a set of ω -words in $\mathcal{M}_n(Q)$.
- 2. $S_n(Q)$ is a set of scattered ω -trees in $\mathcal{M}_n(Q)$. (i.e., for each $(S,l) \in S_n(Q)$, $\eta \not\leq S$ where η is a complete binary ω -tree $(2)^{\omega}$.)
- 3. $\mathcal{F}_n(Q)$ is a set of descensionally finite trees. (i.e., For $(T,l) \in \mathcal{F}_n(Q)$, there is no infinite sequence $x_0 <_T x_1 <_T \cdots$ with $(br(x_0),l) >_{\bar{G}} (br(x_1),l) >_{\bar{G}} \cdots$.)

The scenario of the proof of theorem 2.2 consists of four steps: First, $\mathcal{W}_n(Q)$, which is a set of ω -words, is shown to be a BQO wrt $\leq_{\bar{G}}$ (theorem 2.3). Second, $\mathcal{S}_n(Q)$, which is a set of scattered ω -trees, is shown to be a BQO wrt $\leq_{\bar{G}}$ (theorem 2.4). During this step, the principle tool is a recursive definition of $\mathcal{S}_n(Q)$ which (a) starts with one-point or empty trees and (b) constructs the next stage using an element in $\mathcal{W}_n(Q)$ as a *spine*.

 $(T,l) \in \mathcal{M}_n(Q)$ is a countable union of scattered ω -trees, i.e., $T = \cup_i S_i$ with $(S_i,l) \in \mathcal{S}_n(Q)$. Using this decomposition, thirdly $\mathcal{F}_n(Q)$, which is a set of descensionally finite ω -trees, is shown to be a BQO wrt $\leq_{\bar{G}}$ (theorem 2.5). Again using this decomposition, lastly $\mathcal{M}_n(Q) = \mathcal{F}_n(Q)$ is shown (theorem 2.6).

Theorem 2.3 Let $n < \omega$. For a barrier $D, g: D \to \mathcal{W}_n(Q)$ is bad wrt $\leq_{\bar{G}}$, then there is a barrier E and $g \sqsubseteq j$ s.t. $j: E \to Q$ is bad.

Proof Assume g is minimal bad wrt a partial ranking <' on $\mathcal{W}_n(Q)$ where J <' K if and only if $J \leq_G K$ and dom(J) < dom(K). From theorem 1.1, we can assume $\forall d \in D$ s.t. either (1) dom(g(d)) = 1, (2) $dom(g(d)) < \omega$, or (3) $dom(g(d)) = \omega$.

For (1), there exists a barrier $E(\subseteq D)$ s.t. $g(e) \in Q$ for $e \in E$. By taking $j = g|_E$, theorem is proved.

For (2), we will prove by induction on n. Again by theorem 1.1, we can assume $\forall d \in D$ s.t. either (2-a) g(d) does not contain 0, (2-b) the first element of g(d) is 0, or (2-c) g(d) contains 0 and the first element of g(d) is not 0. For (2-a), by subtracting 1 from each label of g(d), it is reduced to the induction hypothesis. For (2-b), let g'(d) be obtained from g(d) by taking the first element. Then, g'(d) is bad and this contradicts to the minimal bad assumption of g. For (2-c), let $g(d) = (g_1(d), g_2(d))$. Since $g_1(d)$ and $g_2(d)$ are good from the minimal bad assumption of g, there is a barrier E s.t. $g_1(d)$ and $g_2(d)$ are perfect. This implies that g(d) is good.

For (3), if $g(d_1) \not \leq_{\bar{G}} g(d_2)$ with $d_1 \triangleleft d_2$, there exists an initial segment J s.t. $J \not \leq_{\bar{G}} g(d_2)$. Let $h: D(2) \to (n)^{<\omega}$ by $h(d_1 \cup d_2) = J$. Then $g \sqsubset h$ and this contradicts to the minimal bad assumption on g.

Definition 2.4 Let $T \in \mathcal{T}$, P a path in T, $z \in P$. Then let $\tilde{P}(z) = \{br(y) \mid y \in S(z) \text{ and } y \notin P\}$.

Lemma 2.1 (lemma 2.1 in [Lav78]) Let $n < \omega$ and Q be a QO. Let α be an ordinal and λ be a limit ordinal. Let

$$\begin{array}{lll} \mathcal{S}^0(Q) & = & \{ \text{the empty tree} \} \cup n \cup Q \\ \\ \mathcal{S}^{\alpha+1}(Q) & = & \left\{ T \; \middle| \; \begin{array}{ll} \text{there is a maximal path } P \in \mathcal{W}_n(Q) \text{ in } T \\ \\ \text{s.t. } \tilde{P}(z) \subseteq \mathcal{S}^{\alpha}(Q) \text{ for all } z \in P \end{array} \right. \\ \\ \mathcal{S}^{\lambda}(Q) & = & \cup_{\alpha < \lambda} \mathcal{S}^{\alpha}. \end{array}$$

by regarding n, Q as one point trees. Then $\mathcal{S}_n(Q) = \bigcup_{\alpha} \mathcal{S}^{\alpha}(Q)$. We say rank(T) for $T \in \mathcal{S}_n(Q)$ be the least α s.t. $T \in \mathcal{S}^{\alpha}(Q)$.

Theorem 2.4 Let $n < \omega$. For a barrier $C, g : C \to \mathcal{S}_n(Q)$ is bad wrt $\leq_{\overline{G}}$, then there is a barrier E and $g \sqsubseteq j$ s.t. $j : E \to Q$ is bad.

Proof Let a partial ranking <' on $S_n(Q)$ be $(T_1, l_1) <' (T_2, l_2)$ if $(T_1, l_1) \leq_{\bar{G}} (T_2, l_2)$ and $rank(T_1) < rank(T_2)$. Assume g is minimal bad wrt a partial ranking <' on $S_n(Q)$. From theorem 1.1, we can assume $\forall d \in C$ s.t. either (1) card(g(d)) = 1 or (2) card(g(d)) > 1. For (1), there exists a barrier $E(\subseteq C)$ s.t. $g(e) \in Q$ for $e \in E$. By taking $j = g|_E$, theorem is proved.

For (2), let $c \in C$. Let P_c be a maximal path in T_c where $g(c) = (T_c, l_c) \in \mathcal{S}_n(Q)$ s.t. for each $x \in P_c$ and each $T' \in \tilde{P}_c(x)$ $rank(T') < rank(T_c)$. Let $J_c : P_c \to \mathcal{W}_{n+1}(Q) \times \mathcal{P}(\mathcal{S}_n(Q))$ be defined by

$$J_c = (I_c(x), \tilde{P}_c(x))$$

where $I_c(x)$ is the sequence which is obtained by adding n+1 as the maximal element (wrt $<_{T_c}$) to the path from the root of T_c to x. By regarding J_c as a sequence, $J_c \leq J_d$ (embedability without gap-condition) implies $(T_c, l_c) \leq (T_d, l_d)$ for $c, d \in C$. From theorem 1.10 in [Lav78], if g is bad, there is a barrier D and $\bar{g}: D \to \mathcal{W}_{n+1}(Q) \times \mathcal{P}(\mathcal{S}_n(Q))$ s.t. $g \sqsubseteq \bar{g}$ and \bar{g} is bad (by identifying an element as a sequence of the length 1). From theorem 2.3 and theorem 1.11 in [Lav78] (with \leq_1 on $\mathcal{P}(\mathcal{S}_n(Q))$, which is an one-to-one embedability on sets), there exists a barrier E and $j: E \to \mathcal{W}_{n+1}(Q) \times \mathcal{S}_n(Q)$ s.t. $D \subseteq E$ and j is bad. For $j(e) = (I_c(x), T')$ where $x \in P_e \subseteq T_c$ and each $T' \in \tilde{P}_c(x)$ for $c \sqsubseteq e$, let j'(e) be a tree obtained by replacing the last element of $I_c(x)$ (whose label is n+1) with T'. $g \sqsubseteq j'$ and $rank(j'(e)) < rank(T_c)$ (since $rank(T') < rank(T_c)$ and adding a sequence to the root of T' does not change its rank). This contradicts to the minimal bad assumption of g.

Adding (possibly infinite numbers of) finite trees to $(S, l) \in \mathcal{S}_n(Q)$ does not exceed the class of $\mathcal{S}_n(Q)$. Thus without loss of generality, for each $(T, l) \in \mathcal{M}_n(Q)$ we can assume the decomposition $T = \bigcup_i T_i$ with $(T_i, l) \in \mathcal{S}_n(Q)$ satisfies that if x is maximal wrt $<_{T_i}$ then either br(x) does not contain 0 or l(x) = 0.

Definition 2.5 Let $(T,l) \in \mathcal{F}_n(Q) \subseteq \mathcal{M}_n(Q)$ and $T = \bigcup_i T_i$ with $(T_i,l) \in \mathcal{S}_n(Q)$ s.t. if $x \in T_i$ is maximal wrt $<_{T_i}$ then either br(x) does not contain 0 or l(x) = 0. If T does not contain a vertex labeled 0, $subt(T,l) \in \mathcal{F}_{n-1}(Q)$ is (T,l') where l'(x) = l(x) - 1 for each $x \in T$. With a fresh symbol Ω , let $Q^+ = Q \cup \{\Omega\}$ with $q(\Omega) = 0$. We denote $\mathcal{F}_n(Q)^{<(T,l)} = \{(U,m) \in \mathcal{F}_n(Q) \mid (U,m) <_{\bar{G}} (T,l)\}$.

Define $A_{(T,l)}(i)=(\bar{T}_i,\bar{l})\in\mathcal{S}_{n+1}(Q^+\cup\mathcal{F}_{n-1}(Q)\cup\mathcal{F}_n(Q)^{<(T,l)})$ where

- 1. If $x \in T_i$ is not maximal wrt $<_{T_i}$, then $\bar{l}(x) = l(x)$.
- 2. If $x \in T_i$ is maximal wrt $<_{T_i}$ and (br(x), l) does not contain 0, then add a new vertex x^+ below x and set $\bar{l}(x) = n + 1$, $\bar{l}(x^+) = subt(br(x), l)$.
- 3. If $x \in T_i$ is maximal wrt $<_{T_i}$, l(x) = 0 and $(br(x), l) <_{\bar{G}} (T, l)$, then $\bar{l}(x) = (br(x), l)$.
- 4. If $x \in T_i$ is maximal wrt $\langle T_i, l(x) \rangle = 0$ and $(br(x), l) \equiv (T, l)$, then $\bar{l}(x) = \Omega$.

Define $A((T,l)) = \{A_{(T,l)}(i) \mid i < \omega\} \in \mathcal{P}(\mathcal{S}_{n+1}(Q^+ \cup \mathcal{F}_{n-1}(Q) \cup \mathcal{F}_n(Q)^{<(T,l)}))$. For $(T,l), (U,m) \in \mathcal{F}_n(Q)$, define $A((T,l)) \leq A((U,m))$ if for each $A_{(T,l)}(i) \in A((T,l))$ there exists $A_{(U,m)}(j) \in A((U,m))$ s.t. $A_{(T,l)}(i) \leq_{\bar{G}} A_{(U,m)}(j)$.

Lemma 2.2 For $(T, l), (U, m) \in \mathcal{F}_n(Q), A((T, l)) \leq A((U, m))$ implies $(T, l) \leq_{\bar{G}} (U, m)$.

Proof We will construct an embedding $H:(T,l)\to (U,m)$ (with gap-condition) in ω steps. The induction hypothesis is:

If $x \in T_i$ is maximal wrt $<_{T_i}$, there is a 1-1 function J_i s.t.

- 1. if (br(y), l) does not contain 0 then $(br(y), l) \leq_{\bar{G}} (br(J_i(y)), m)$,
- $2. \ \text{if} \ l(y)=0 \ \text{and} \ (br(y),l)<_{\bar{G}} (T,l) \ \text{then} \ m(J_i(y))=0 \ \text{and} \ (br(y),l)\leq_{\bar{G}} (br(J_i(y)),m),$
- 3. if l(y) = 0 and $(br(y), l) \equiv (T, l)$ then $m(J_i(y)) = 0$ and $(br(J_i(y)), m) \equiv (U, m)$.

Since $A((T,l)) \leq A((U,m))$, there exists $A_{(U,m)}(j) \in A((U,m))$ s.t. $A_{(T,l)}(0) = (\bar{T}_0,\bar{l}) \leq_{\bar{G}} A_{(U,m)}(j) = (\bar{U}_j,\bar{m})$. Then set H_0 by the embedding $T_0 \to U_j$.

Suppose that H_i has been defined, $y \in T_i$ is maximal. If either (1) (br(y), l) does not contain 0 or (2) l(y) = 0 and $(br(y), l) <_{\bar{G}} (T, l)$ then $(br(y), l) \leq_{\bar{G}} (br(J_i(y)), m)$. Thus extend H_i with an embedding of br(y) into $br(J_i(y))$.

Suppose that (3) l(y) = 0 and $(br(y), l) \equiv \bar{G}(T, l)$ then there exists an embedding $L: (U, m) \to (br(J_i(y)), m)$. Since $A((T, l)) \leq A((U, m))$, there exists $A_{(U,m)}(j) \in A((U, m))$ s.t. $A_{(T,l)}(i+1) = (\bar{T}_{i+1}, \bar{l}) \leq_{\bar{G}} A_{(U,m)}(j) = (\bar{U}_j, \bar{m})$. Let $K: (T_{i+1}, l) \to (U_j, m) \subseteq (U, m)$ be an induced embedding. Thus extend H_i on $br(y) \cap T_{i+1}$ with LK. Since L isomorphically embeds (U, m) into $(br(J_i(y)), m)$, the induction hypothesis is satisfied to the next stage.

Theorem 2.5 Let $n < \omega$. For a barrier $B, f : B \to \mathcal{F}_n(Q)$ is bad wrt $\leq_{\overline{G}}$, then there is a barrier E and $f \sqsubseteq j$ s.t. $j : E \to Q$ is bad. Thus if Q is a BQO then $\mathcal{F}_n(Q)$ is a BQO (wrt $\leq_{\overline{G}}$).

Proof We will prove by induction on n. For $n=0, \leq_{\bar{G}}$ and \leq (without gap-condition) are equivalent (see lemma 2 in theorem 2.4 of [Lav78]). Assume the theorem has been proved until n-1.

Define a partial ranking <' by: (U,m) <' (T,l) if and only if for some $x \in T$ $(U,m) = (br(x),l) <_{\bar{G}} (T,l)$. By theorem 1.3, we can assume $f: B \to \mathcal{F}_n(Q)$ is minimal bad. Let $f(b) = (T_b,l_b)$ for $b \in B$ and let $\bar{f}(b) = A((T_b,l_b))$. From lemma 2.2, \bar{f} is bad. From lemma 1.3

⁴If Q is a BQO, Q^+ is also a BQO.

in [Lav78], there is a barrier $C \subseteq B(2)$ and an g defined on C s.t. for $c \in C$ ($c = b_1 \cup b_2$ where $b_1 \triangleleft b_2$ and $b_1, b_2 \in B$) $g(c) \in \bar{g}(b_1)$ and g is bad. Since $g(c) \in \mathcal{S}_{n+1}(Q^+ \cup \mathcal{F}_{n-1}(Q) \cup \mathcal{F}_n(Q)^{<(T_b,l_b)})$ and g is bad, from theorem 2.4 there is a barrier D with $C \subseteq D$ and h defined on D s.t. $h(d) \in Q^+ \cup \mathcal{F}_{n-1}(Q) \cup \mathcal{F}_n(Q)^{<(T_b,l_b)}$ for $(b <)d \in D$ and h is bad. Since Q^+ and $\mathcal{F}_{n-1}(Q)$ are BQO, from theorem 1.1 there is a barrier $E \subseteq D$ and f defined on f s.t. $f(e) < f(T_b,l_b)$ for f(e) < f(f(e)) < f(f(e)) is bad. Thus f(e) < f(f(e)) < f(f(e)) and this is contradiction.

Theorem 2.6 $\mathcal{M}_n(Q) = \mathcal{F}_n(Q)$.

We will prove theorem 2.6 by induction on n. For $n=0, \leq \text{ and } \leq_{\bar{G}}$ are equivalent and this is shown by lemma 4 in theorem 2.4 in [Lav78]. Note that if $(T,l) \in \mathcal{M}_n(Q)$ does not contain 0, by induction hypothesis $subt(T,l) \in \mathcal{M}_{n-1}(Q) = \mathcal{F}_{n-1}(Q)$, and $(T,l) \in \mathcal{F}_n(Q)$.

Definition 2.6 Let $(T, l) \in \mathcal{M}_n(Q)$ and $T = \cup_i T_i$ with $(T_i, l) \in \mathcal{S}_n(Q)$ s.t. if $x \in T_i$ is maximal wrt $<_{T_i}$ then either br(x) does not contain 0 or l(x) = 0. Let $Q^+ = Q \cup \{\Omega\}$ with $q(\Omega) = 0$. Define $B_{(T,l)}(i) = (\bar{T}_i, \bar{l}) \in \mathcal{S}_{n+1}(Q^+ \cup \mathcal{F}_n(Q))$ where

- 1. If $x \in T_i$ is not maximal wrt $<_{T_i}$, then $\bar{l}(x) = l(x)$.
- 2. If $x \in T_i$ is maximal wrt $<_{T_i}$ and (br(x), l) does not contain 0, then add a new vertex x^+ below x and set $\bar{l}(x) = n + 1$, $\bar{l}(x^+) = (br(x), l)$.
- 3. If $x \in T_i$ is maximal wrt $<_{T_i}$, l(x) = 0 and $br(x) \in \mathcal{F}_n(Q)$, then $\overline{l}(x) = (br(x), l)$.
- 4. If $x \in T_i$ is maximal wrt $\langle T_i, l(x) \rangle = 0$ and $(br(x), l) \in \mathcal{M}_n(Q) \mathcal{F}_n(Q)$, then $\overline{l}(x) = \Omega$.

Define $B((T,l)) = \{B_{(T,l)}(i) \mid i < \omega\} \in \mathcal{P}(\mathcal{S}_{n+1}(Q^+ \cup \mathcal{F}_n(Q))) \text{ For } (T,l), (U,m) \in \mathcal{M}_n(Q) - \mathcal{F}_n(Q), \text{ define } B((T,l)) \leq B((U,m)) \text{ if for each } B_{(T,l)}(i) \in B((T,l)) \text{ there exists } B_{(U,m)}(j) \in B((U,m)) \text{ s.t. } B_{(T,l)}(i) \leq_{\bar{G}} B_{(U,m)}(j).$

Lemma 2.3 Let $(T,l), (U,m) \in \mathcal{M}_n(Q) - \mathcal{F}_n(Q)$ s.t. l(root(T)) = m(root(U)) = 0. If $B((T,l)) \leq B((br(u),m))$ for each $u \in U$ s.t. m(u) = 0 and $(br(u,m)) \notin \mathcal{F}_n(Q)$, then $(T,l) \leq_{\bar{G}} (U,m)$.

Proof We will construct an embedding $I: (T, l) \to (U, m)$ (keeping gap-condition) in ω steps. The induction hypothesis is:

If $x \in T_i$ is maximal wrt $<_{T_i}$, there is a 1-1 function J_i s.t.

- 1. if (br(y), l) does not contain 0 then $(br(J_i(y)), m)$ does not contain 0.
- 2. if l(y) = 0 and $(br(y), l) \in \mathcal{F}_n(Q)$ then $m(J_i(y)) = 0$ and $(br(J_i(y)), m) \in \mathcal{F}_n(Q)$,
- 3. if l(y) = 0 and $(br(y), l) \notin \mathcal{F}_n(Q)$ then $m(J_i(y)) = 0$ and $(br(J_i(y)), m) \notin \mathcal{F}_n(Q)$.

Since $B((T,l)) \leq B((U,m))$, there exists $B_{(U,m)}(j) \in B((U,m))$ s.t. $B_{(T,l)}(0) = (\bar{T}_0,\bar{l}) \leq_{\bar{G}} B_{(U,m)}(j) = (\bar{U}_j,\bar{m})$. Then set I_0 by the embedding $T_0 \to U_j$.

Suppose that I_i has been defined, $y \in T_i$ is maximal. If either (1) br(y) does not contain 0 or (2) l(y) = 0 and $(br(y), l) \in \mathcal{F}_n(Q)$ then $(br(y), l) \leq_{\bar{G}} (br(J_i(y)), l)$. Thus extend I_i with an embedding of br(y) into $br(J_i(y))$.

Suppose that (3) l(y) = 0 and $(br(y), l) \notin \mathcal{F}_n(Q)$, then from induction hypothesis $m(J_i(y)) = 0$ and $(br(J_i(y)), m) \notin \mathcal{F}_n(Q)$. Thus from the assumption, $B((T, l)) \leq B((br(J_i(y)), m))$ and there exists j s.t. $B_{(T,l)}(i+1) \leq_{\bar{G}} B_{(br(J_i(y)),m)}(j)$ via an embedding K. Then I_i can be extended on $br(y) \cap T_{i+1}$ with K, and the induction hypothesis is preserved.

Proof of induction step for theorem 2.6 Let $(T, l) \in \mathcal{M}_n(Q) - \mathcal{F}_n(Q)$ and $S = \{x \in T \mid l(x) = 0 \text{ and } (br(x), l) \in \mathcal{M}_n(Q) - \mathcal{F}_n(Q)\}$. For each $s, t \in S$ s.t. $s <_T t$, $B((br(s), l)) \geq B((br(t), l))$ by an identity embedding.

If (br(x), l) does not contain 0 then $(br(x), l) \in \mathcal{F}_n(Q)$. Thus S (wrt $<_T$) is an infinite tree of the height ω .

Since $B((T,l)) \in \mathcal{P}(\mathcal{S}_{n+1}(Q^+ \cup \mathcal{F}_n(Q)))$, $\{B((U,m)) \mid (U,m) \in \mathcal{M}_n(Q) - \mathcal{F}_n(Q)\}$ is a BQO, thus well-founded. Then there exists $s \in S$ s.t. for each $t \in S$ with $s <_T t B((br(s),l)) \not > B((br(t),l))$ (thus $B((br(s),l)) \equiv B((br(t),l))$). From lemma 2.3, $(br(s),l) \leq_{\bar{G}} (br(t),l)$. But since $(br(s),l) \in \mathcal{M}_n(Q) - \mathcal{F}_n(Q)$, from definition there must be an infinite sequence $s = s_0 <_T s_1 <_T \cdots$ s.t. $(br(s_i),l) >_{\bar{G}} (br(s_{i+1},l))$ for each i. This is contradiction.

3 Simple gap termination for term graph rewriting systems

A reduction \rightarrow is terminating if there is no infinite sequence s.t. $s_1 \rightarrow s_2 \rightarrow \cdots$. Simple termination [Der82] is the frequently used criteria for a term rewriting system. For a term graph rewriting system (TGRS) on possibly cyclic term graphs, the naive extension of simple termination based on Kruskal-type theorem on infinite trees [NW65, Lav78] does not work well. Let $R = \{a(a(b(x))) \rightarrow a(b(x))\}$. Then R is terminating. R rewrites a term graph y: a(a(b(y))) to y: a(b(y)), but $unfold(y: a(a(b(y))) \geq unfold(y: a(b(y)))$ and $unfold(y: a(a(b(y))) \leq unfold(y: a(b(b(y)))) = unfold(y: a(b(b(y))))$, because only fairness of occurrences of a, b on each path relates to \leq .

Definition 3.1 [JKdV94] A term graph s is a finite directed graph satisfying:

- 1. s has a root.
- 2. each vertex of s has a label (function symbol) which has a fixed arity.

An ω -term obtained by unfolding s is denoted unfold(s). A term graph rewriting system (TGRS, for short) R is a finite set of rewrite rules $l \to r$ which are pairs of acyclic term graphs l, r s.t. l is not a variable and $V(l) \supseteq V(r)$.

Roughly speaking, reduction relation \rightarrow is defined similar to those which of a term rewriting system, except that a TGRS regards a variable as an address. For precise definition, please refer [JKdV94, AK94]. We will consider reduction \rightarrow of a TGRS on possibly cyclic term graphs⁵.

Main theorem 2 Let $R = \{l \to r\}$ be a TGRS. Assume that a set of function symbols is totally ordered. If there is a $QO \le on$ ground term graphs s.t.

- 1. s > t implies C[s] > S[t] for each context $C[\cdot]$.
- 2. $C[s] \ge s$ where each function symbol f on a path from the root of C[s] to the root of s satisfies $f \ge root(s)$.
- 3. For each ground term graphs s,t, $s \xrightarrow[l \to r]{\lambda} t$ (i.e., reduction at the root by the rule $l \to r$) implies s > t.

⁵The definition of reduction of TGRS on a cyclic term graph requires some unfolding mechanism for a term graph. For instance, when the rule $a(x) \to x$ is applied on a term graph y: a(y), [JKdV94] asserts y: a(y) as the result of the reduction. This requires some unfolding mechanism by default - otherwise, the result would be y: y. However this mechanism is not explicitly defined in literatures. Our termination criteria - *simple gap termination* (for a TRS see [Oga94]), on which unfolding does not effect - is a safer choice.

4. s > t implies $unfold(s) \neq unfold(t)$.

Then R is terminating.

Proof Define a QO \leq_{uf} on ω -trees by: $unfold(s) \leq_{uf} unfold(t)$ if $s \leq t$. From (4), s > t implies $unfold(s) >_{uf} unfold(t)$. From (2), $C[unfold(s)] \geq_{uf} unfold(s)$ if each function symbol f on a path from the root of C[unfold(s)] to the root of s satisfies $f \geq root(unfold(s))$. Since unfold(s) has repeated patterns (produced by cycles in s) except for its downward-closed finite subset, thus $C[unfold(s)] \geq_{uf} unfold(s)$ and transitivity implies $\leq_{uf} \subseteq \leq_{G}$ on ω -trees obtained by unfolding finite term graphs.

Suppose there exists an infinite reduction sequence $s_1 \to s_2 \to \cdots$. Without loss of generality, we can assume that each s_i is a ground term graph. Thus from (1),(3), $s_1 > s_2 > \cdots$ and $unfold(s_1) >_{uf} unfold(s_2) >_{uf} \cdots$. However, from the main theorem 1 there exists i, j s.t. i < j and $unfold(s_i) \leq_G unfold(s_j)$. This is contradiction.

Then $y: a(a(b(y))) \to y: a(b(y))$ for $R = \{a(a(b(x))) \to a(b(x))\}$, and $unfold(y: a(a(b(y)))) >_G unfold(y: a(b(y)))$ with a > b.

References

- [AK94] Z.M. Ariola and J.W. Klop. Cyclic lambda graph rewriting. In *Proc. 9th IEEE sympo.* on Logic in Computer Science, pp. 416–425, 1994.
- [Der82] N. Dershowitz. Ordering for term-rewriting systems. Theoretical Computer Science, Vol. 17, pp. 279–301, 1982.
- [Gor90] L. Gordeev. Generalizations of the Kruskal-Friedman theorems. *Journal of Symbolic Logic*, Vol. 55, No. 1, pp. 157–181, 1990.
- [JKdV94] M.R. Sleep J.R. Kennaway, J.W. Klop and F.J. de Vries. The adequacy of term graph rewriting for simulating term rewriting. In M.J.Plasmeijer M.R. Sleep and M.C.J.D. van Eekelen, editors, *Term Graph Rewriting, Theory and Practice*, pp. 157–169. Wiley, 1994.
- [Kš9] I. Kříž. Well-quasiordering finite trees with gap-condition. proof of Harvey Friedman's conjecture. *Ann. of Math.*, Vol. 130, pp. 215–226, 1989.
- [Lav78] R. Laver. Better-quasi-orderings and a class of trees. In Studies in foundations and combinatorics, advances in mathematics supplementary studies, volume 1, pp. 31–48. Academic Press, 1978.
- [NW65] C.ST.J.A. Nash-Williams. On well-quasi-ordering infinite trees. *Proc. Cambridge Phil. Soc.*, Vol. 61, pp. 697–720, 1965.
- [Oga94] Mizuhito Ogawa. Simple termination with gap-condition. Technical report, IPSJ PRG19-2, 1994.
- [Sim85a] S. G. Simpson. Bqo Theory and Fraïssé's Conjecture. In Recursive Aspects of Descriptive Set Theory, volume 11 of Oxford Logic Guides, chapter 9. Oxford University Press, 1985.
- [Sim85b] S.G. Simpson. Nonprovability of certain combinatorial properties of finite trees. In L. A. Harrington, editor, *Harvey Friedman's research on the foundation of mathematics*, pp. 87–117. Elsevier, 1985.