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Chapter 1

Introduction

Functional programs are said to have many nice features, such as clear and transparent
semantics, elegant recursive control structures, and flexible recursive data structures.
Their relative, LISP, is one of the oldest programming languages. For instance, the
first implementation of LISP was reported in 1959, whereas the first implementation of
Fortran was reported on 1957 [Sam69].

At that early stage, machine power was poor, and LISP is proved to be several times
less efficient than Fortran as a result of its flexible description and powerful expressibility.
Thus most scientific computation inclined towards Fortran. Over the last several decades,
hardware has made huge progress, but functional programs still remain in the minority
with most developers still using C, C++4, visual basic, and, recently, Java. Our basic
motivation starts from the question: Is there room for functional programs to survive?

Most applications of functional programs are program manipulations, which are typ-
ically optimization techniques in compilers, especially compliers for the functional lan-
guage itself. For instance, GHC (Glasgow Haskell Compiler) is written in Haskell itself,
and sometimes is used as a test bed for program transformation/analyses of functional
programs. An interesting example would be FFTW (Fastest Fourier Transformation in
the West) [Fri99], which implements Cooley-Tukey’s algorithm and automatically gen-
erates optimized C-codes corresponding to the running environment. This generation is
mostly based on program transformation implemented by Caml Light.

Recent efforts have resulted in large-scale practical systems. They include:

1. The database querying system Kleisli, which is based on functional query descrip-
tion language CPL (implemented by SML) and is used in several international
genom projects [Won00].

2. The Intel-developed hardware verification system Forte, which is implemented by
functional language fl [Seg00].

3. Erlang, which is used in telecommunication systems and was developed by Erikson.

The aim of this thesis is to investigate possible theoretical advantages of functional
programs as a complement to these empirical results. I believe that such advantages could
be obtained by developing automatic or semi-automatic supports to implement correct
and efficient programs, such as automatic program analysis, verification, and generation.



The correctness of a program, which is hopefully detected by either analysis or verifi-
cation, are stratified into termination and partial correctness. For the former, typical au-
tomatic termination verification is based on path orderings in simple termination [D.J90]
and/or dependency pair analysis [AG00]. However, once these methods fail, solving ter-
mination becomes very difficult. A sufficient condition of the property called uniform
normalization, which reduces termination (strong normalization) to a much easier weak
normalization, will be presented in Part 1. This will be useful in manually proving the
termination. For the latter, automatic supports have been widely investigated as compile
time analysis/verification based on abstract interpretation [CC77, Bur91, NNH99], type-
based analysis [HLM94, LP00], model checking [Ste91, Sch98], etc. Techniques presented
in this thesis are mostly based on abstract interpretation, and will appear in Part II.

The conventional direction above is to automatically debug/optimize hand-coded pro-
grams at compile time. Another direction would be to automatically generate an efficient
program from specifications, whose correctness is guaranteed by nature.

Such automatic generation (or synthesis) has been investigated since the late 70’s, es-
pecially in connection with program extraction from constructive proofs. Unfortunately,
this direction has been less successful compared to the progress in compilers. This comes
from the high cost of both describing specifications (which is often more complex than
coding itself) and strong human guidance on heuristics. Of course, critical systems and
commonly used kernels are worth the cost, but we also hope light-weight program gener-
ation even at the cost of restricting the class of problems. In the approach of this thesis,
combinatorics theory, especially well-quasi-orders (WQO) [FL88] and tree decomposition
of graphs [Var00, Flu01], will be applied.

Complexity Generation in theory  Generation in practice

- Indefinite database query processing

based on WQO (Chapter 5)

© Maxmum weight sum problems based on

- tree decomposition of graphs (Chapter 6)

OOooOoboooooooog Oooooomg
Linear time algorithm generation Improving constant
(combinatorics) (Program transformation)

In both cases, there would be three stages: proving the existence of a linear time
algorithm (estimating complexity), automatic generation in theory, and automatic gen-
eration in practice. At each stage, there are gaps; even if the existence of a linear time
algorithm has been known, sometimes it is very hard to find an actual algorithm, and
even if a linear time algorithm is automatically generated, sometimes the constant is
huge and practically useless.



One possible bridge between the first and second stages is the method by WQO. In
Chapter 5, the automatic generation of linear-time programs based on WQQO is presented.
The target example is query processing on indefinite databases, which was posed as an
open problem in [van97]. The possibility of reducing the constant by fold-unfold program
transformation techniques of functional programs will be also discussed.

The possible bridge between the second and third stages is the combination of the
tree decomposition and the program calculational techniques of functional programs. In
Chapter 6, automatic linear time algorithm generation of maximum weight sum prob-
lems based on tree decomposition of graphs will be discussed. There has been lots of
works on this subject [BLW87, Cou90, BPT92], but known methods generate a lin-
ear time algorithm with huge constant, say, the tower of exponentials. The proposal
how to drastically reduce the constant by fusion / tuppling transformation will be pre-
sented [SHTO00, SHTO02]. Currently, the experience is restricted to only simple cases.
To extend the range, we need both to clarify the algebraic structure of construction of
more complex graphs and to extend program calculation to non-initial algebras. As the
first step, the complete axiomatization of the algebraic construction of graphs in [APS90]
will be presented in Section 6.2.

Finally, Chapter 7 discusses future work along with the positioning of the contribu-
tions. The work is ongoing, and this thesis presents the present status. In what follows,
the contributions of this thesis are presented by way of overviewing each technique.

1.1 Rewriting techniques for proving termination

Several useful techniques of automatic termination verification in rewriting theory have
been proposed. Two well-known complementary techniques are simplification order-
ings [Der82, DF85, DJ90], and dependency pair analysis [AGI7, AG00]. Simplification
orderings (such as lexicographic path ordering) are quite powerful tools; for instance,
the termination of the Ackerman function, which is beyond the class of primitive recur-
sive functions, can be automatically detected. However, once simplification orderings
fail, problems become very difficult. Dependency pairs sometimes restore the situa-
tion. Simplification orderings alone require that every term be suitably ordered, but the
dependency-pair method enables us to restrict our attention to dependency pairs only,
which are syntactically computed from rewrite rules. Of course, termination in general
is undecidable, so there always remain harder problems. For instance, termination of
typed lambda calculus [Bar84, P.92] and explicit termination [Bon00, ACCL91] are typ-
ical. Semantic labelling can provide guidance for proving termination manually [Zan95];
however, this method can prove termination of every terminating system. This is too
strong in some sense and sometimes one can find suitable semantic labelling only after
one has found the termination proof.

Uniform normalization comes from the observation that even if strong normalization
(termination) is hard to prove, weak normalization (i.e., existence of a terminating rewrite
sequence for each term) would be easy to prove. Simply typed lambda calculus is a
such case. Uniform normalization guarantees the equivalence of weak normalization and
strong normalization. More precisely, a term ¢ is uniformly normalizing (hereafter, UN



for short) if either it does not have any normal form (i.e., ¢ is not weakly normalizing), or
all reductions starting from ¢ are finite (i.e., ¢ is strongly normalizing). If every term is
UN then the rewrite system is UN. Thus, once uniform normalization is shown, the proof
of strong normalization is reduced to a much easier weak normalization. An example of
uniform normalization is Church’s Conservation Theorem for Aj-calculus [Chu4l], and

recently a useful UN subclass of A-terms has been identified in [MNS99].

Chapter 2 presents the simple sufficient condition for uniform normalization of or-
thogonal higher-order rewrite systems. Orthogonality is quite strong restriction from
rewriting point of view, but since orthogonal rewrite systems can describe every partial
recursive function orthogonality provides enough rich class from programming point of
view.

A key observation of the criteria is that a rewrite system is UN if and only if each
reduction step is perpetual and if and only if each redex is perpetual. A perpetual step
is a reduction step that retains the possibility of infinite reductions. A perpetual redex
is a redex that, when put into an arbitrary context, yields a perpetual step. This obser-
vation reduces the uniform normalization to the construction of a perpetual reduction
strategy. Then, existing criteria below for the perpetuality to orthogonal higher-order
rewrite systems are generalized and refined.

e Folklore lemma that for orthogonal term rewriting systems a reduction step that
does not erase any argument of a redex possessing an infinite reduction is perpet-

ual [K1o92].

e Conservation Theorem [BBKHT76, Bar84], i.e., f-redexes in A-calculus are perpet-
ual.

e A necessary and sufficient criterion for the perpetuality of S -redexes [BK82].

As a framework for higher-order rewrite systems, there are two major choices: one
with or one without metavariables. Typical examples of the former are combinatory
reduction systems [Klo80, KvOvR93] and expression reduction systems [KvO95a] (which
are almost equivalent), and those of the latter are pattern rewrite systems [MN98] and
higher-order rewriting [VO94]. Instead of metavariables, the latter uses a substitution
calculus that pushes out the arguments from a redex when matching is done with the
left-hand side of a rule. For instance, the map function is expressed as

map(F,x : xs) — (F a):map(F,zs) (with metavariables)
AF @ xsomap(Fox:xs) — AF x as.(F ) : map(F,xs) (without metavariables)

and the latter reduces map(1+4,3 : [4,5]) as

map(1+,3 : [4,5]) =" (AF x xs.map(F,x:xs)) 1 + 3 [4,5]
—  (AF 2z xs.(F x):map(F,xs)) 1+ 3 [4,5]
<* (14 (3)): map(1+,[4,5])

where = is a reduction of the substitution calculus (usually, Ag; is used).

4



The choice here is the former; Context-sensitive Conditional Erpression Reduction
Systems (CCERSs) are adopted and a concept of orthogonality, which implies confluence,
is defined. In particular, several important A-calculi and their extensions and restric-
tions can be naturally embedded into orthogonal CCERSs. Then, a perpetual reduction
strategy that enables one to construct minimal (w.r.t. Lévy’s permutation ordering on
reductions) infinite reductions in orthogonal fully-extended CCERSs, is introduced.

Using the properties of the minimal perpetual strategy,

1. the perpetuality of any reduction step that does not erase potentially infinite ar-
guments, which are arguments that may become, via substitution, infinite after a
number of outside steps, and

2. the perpetuality (in every context) of any safe redex, which is a redex whose sub-
stitution instances may discard infinite arguments only when the corresponding
contracta remain infinite.

are proved.

We prove both these perpetuality criteria for orthogonal fully-extended CCERSs and
then specialize and apply them to restricted A-calculi. These criteria cover most of the
known results on uniform normalization [Klo92, Chudl, BBKH76, Bar84, BK82, DG93,
HL93, Len97a]. An exception is [BI94], which treats weakly orthogonal rewrite systems.

Note that even the Conservation theorem fails for orthogonal higher-order rewrit-
ing [VO94, MN98] in general. Instead, [KOvOO01b] showed that the similar perpetuality
criteria hold for weakly orthogonal second-order rewriting, and cover the result in [BI94].

For consistency of rewriting systems, the author also proved Chew’s theorem [MOO01],
whose proof is a long standing problem since 1981 [Che81]. Chew’s theorem gives a
sufficient condition for the unique normal form property, which is closely related to
consistency. This result is not included in this thesis.

1.2 Analyses and verification of hand-coded programs
based on abstract interpretation

Abstract interpretation firstly appeared in the seminal paper [CCT77] and introduced into
the functional world in [Myc80]. The basic idea is to interpret analyses as program execu-
tions on finitely abstracted domains. If the finite domains properly reflect the property
to be detected, then the executions for all possible inputs will give some information
regarding the property. If abstract domains are designed to be finite, such executions
terminate. A typical example is an analysis of the sign of the addition, i.e., determining
whether the output is positive or negative: with the abstract domain consisting of two
elements + and —, the result of the addition of + and + is +, that of — and — is —,
but the result of the addition of + and — cannot be decided and we set it as “+ or —”
({+,—1}). This ambiguity comes from approximation, and this is an inevitable cost for
termination of analyses. The more complex domain will detect more detailed informa-
tion, but of course the design of abstract domains is always carried out under a trade-off
between computational feasibility and analyzing power. For instance, if one would like to



further analyze what happens to the result of multiplication with 0, the abstract domain
must be enlarged to a three-point domain {+, —, 0} from the analysis above. Then one
will find that the multiplication with 0 returns 0.

There are two possible directions in abstract interpretation. One is to pursue efficiency
to analyze relatively simple properties of large-scale programs. The other way is to pursue
analyzing power to analyze difficult properties of relatively small programs. The direction
of this thesis is the latter.

In Chapter 3, an abstract interpretation based on a domain abstraction is charac-
terized by a quadruplet, consisting of a pair composed of abstraction and concretiza-
tion, direction, power domain construction (i.e., a pair composed of a quasi order and
a closure function), and a representative function. This quadruplet is called a HOMo-
morphic Transformer (HOMT), and when the composition of HOMTs are reduced is
analyzed. This enables us to compare and evaluate analyses/verifications, which are
independently proposed. For instance, known strictness analyses are compared in this
framework [O091b].

For instance, the example above, the analyses of the sign of the addition in a two-point
abstract domain {4, —}, is formalized as a HOMT as follows:

e the domain abstraction abs and the domain concretization cone(= abs_l).

0,1,2,--- — + + — {0,1,2,---,1}
abs : ¢ —1,-2,--+ — — conc:¢ — — {-1,-2,--- 1}
1 — L 1 = {1}

e the direction: forward.
e the closure ¢/(X) = XU{L} and the quasi order X C Y ifand only if ¢/(X) C ¢l(Y).
e the representative function (over the abstract power set): rep: X — X U{L}.

The forward analysis detects the properties by computing all possible computations
on the abstract domain, while the backward analysis detects the properties in a demand-
driven manner. In the case of the analysis of the sign, the backward analysis detects that
positive output requires that a pair of inputs is not (—, —).

The computation on the abstract domain is executed over its power domain, and the
quasi order expresses the definedness over abstract power domains. This simple example
does not show why the representative function is needed, but this will be clarified when
the composition of HOMTSs is introduced in Chapter 3.

Next, Chapter 3 presents a computation path analysis (CPA) [O 86, O091b] and
its applications. CPA detects all possible computation paths, which expresses demands
propagation patterns. Consider if(x,y,z); a strictness analysis only detects that x is
strict, but CPA detects that demands are propagated to either {z,y} or {z, z}.

Comparing CPA with various strictness analyses and projection analysis [WH87,
DW90, DW91], the formalization by HOMTs shows that it is more powerful than strict-
ness analyses and has equivalent power to projection analysis. For instance, CPA detects



head strictness, where head strictness cannot be detected by conventional strictness anal-
yses (other than [Hun91]). Head strictness means the synchronous evaluation of leaves
(the car part) to the evaluation of the spine (the cdr part), and the typical example
of head strictness is a function find0(x), which returns true if @ contains 0, and false,
otherwise.

These analyses are useful for debugging and optimizing demand-driven programs,
especially those with recursive data structures, such as lists and streams. A non-strict
cons delays the evaluation of its argument parts, typically the tail part. Such delay
operations require closure constructions, which is usually expensive.

First possibility is to manually specify the use of strict/non-strict cons by his/her
responsibility, such as in [Hen80] and delay/force in Scheme [SF89]. This may be error
prone and would easily produce divergence. To remedy the situation, anomaly detec-
tion [0 88], which detects irrelevant objects and diverged objects, will be introduced in
Section 3.3. For instance, CPA detects anomalies such as

e an irrelevant object y in foo(x,y) = if @ == 0 then 1 else foo(x — 1, foo(y,x)),
and

e a diverged object intseq(n) = cons(n,instseq(n + 1)) where cons is strict.

Another possibility is to automatically optimize a demand-driven programs, such as
Haskell or Clean, by using so-called call-by-need to call-by-value transformation. CPA
also works for this direction [OTAS86], but there have been widely investigated [Bur9l,
NNH99, PJ87, AH87] and applied in compilers, such as GHC (Glasgow Haskell Compiler,
see http://haskell.org). Thus, we prefer not to put more words on it.

The last section in Chapter 3 presents the implementation of CPA. Various CPAs
are constructed by designing modes, that is, designing abstract domains [0 91]. It also
presents an automatic analyzer generator, which accepts the definition of modes as a
finite lattice.

Chapter 4 introduces a more powerful application of abstract interpretation over
recursively defined domains.! That is, it describes the verification of binary proper-
ties [Oga99], whereas Chapter 3 shows the analyses of monadic properties [0 91]. Anal-
ysis and verification are complementary; they are two sides of the same coin. Abstract
interpretation needs an approximation; analysis approximates from the necessary condi-
tion side and verification approximates from the sufficient condition side.

This verification was firstly proposed in [LM95], and [Oga99] reconstructed and ex-
tended it based on a backward abstract interpretation. Two new techniques are intro-
duced to abstract interpretation:

1. lazy abstract domain construction, and

2. inductive predicate constructors.

!Here, only lists are treated, but this is easily extended to recursive data structures of regular

types [BdM96].



From the termination requirement of abstract interpretation, abstract domains must
be finite. If an abstract domain can be generated dependent on an input program to be
analyzed, we would expect to be able to maximize the analyzing ability. The verification
is done in a backward manner, and the abstract domain is lazily created as a set of
formulae constructed from the property to be detected and function/variable symbols
appear in an input program.

For instance, if a list @ : xs satisfies Vgeq © : xs (which means x : xs is a decreasing
list), this is decomposed to Vieg” s and Vgeq xs, where Vleq” xs means that each element
in xs satisfies a newly introduced predicate leq”, i.e., less-than-equal to x. Note that Vieg”
is constructed from the basic predicate leq, the variable name x (which appears in a
program), and the inductive predicate constructor V. Since prepared inductive predicate
constructors always lift a predicate to that of more complex types, only finitely many
nests of predicate constructors are possible, considering the strongly typed nature of a
program, i.e., typing of a program gives an upper bound. Further, since the number of
variable symbols that appear in a program is finite, the number of newly constructed
predicates (i.e., elements of an abstract domain) will be bound. This guarantees the
termination of the verification.

The verification presented in Chapter 4 also allow the binary predicate to represent
the property. Difficulties arise when a variable & needs to satisfy leq(x,y) with a local
variable y. But when the verification algorithm traces the program, the tracing point will
eventually leave the scope of y. In such a case, leg(x,y) must be approximated to the
formula without y. This can be done by observing how y is locally defined. For instance,
if y comes as let y: ys = xsin ---, then leg(x,y) is approximated to V,leg(x, xs), which
means that z is less-than-equal to each element in xs. Here V, is an example of an
inductive predicate constructor.

Typical examples of verification are the properties of various sorting programs, such
as decreasingness (i.e., the resulting list is in decreasing order) and weak preservation.
The former is represented as

true — Vgeq (sort X),

which is interpreted as the true assumption (i.e., no assumptions) on an input resulting
in Vgeq (sort X) (i.e., sort X is a decreasing list). The latter, weak preservation, means
that any element appearing in an input also appears in an output of sort, and vice versa.
This is expressed as

true — (V,3,equal A ‘v’rfllequal)X(sort X).

At last, This part is the new termination criteria for abstract interpretation concluded
Part 2. Analyses in Chapter 3 use prefixed finite abstract domains, and verification
in Chapter 4 uses generated finite abstract domains (dependent to an input program
to verify). With the aids of better-quasi-order (BQO), we can extend the termination
criteria beyond finiteness. The main statement is, roughly speaking, if an abstract domain
is better-quasi-ordered then a backward abstract interpretation terminates. Although no
new applications have been found, this criteria gives a proper extension.



1.3 Automatic generation of efficient programs based
on combinatorics

Recent developments in program transformation, such as partial evaluation and pro-
gram calculation, have enabled us to derive efficient algorithms from simple specifica-
tions/programs. However, there is trade-off between automatic derivation and increased
speed, i.e., most transformations that decrease complexity require human guidance.
One possible way to avoid the need for such guidance is to apply mathematics. In
Chapter 5, WQO is applied, and in Chapter 6, tree decomposition of graphs is applied.

In Chapter 5, a linear time algorithm generation based on WQO techniques is pre-
sented. WQO guarantees the finiteness of the minimal elements of any set. If the set is
upward closed, such minimal elements, called minors, precisely characterize the set. As
a result, the membership problem associated with an upward closed set is reduced to a
comparison with such a finite set of minors. To illustrate, the Graph Minor Theorem
states that the embedding relation on finite graphs is a WQO [NP8§], and this implies
the existence of square time algorithms for a wide range of graph problems [FL88, PR99].
Unfortunately, because if its highly nonconstructive nature, it does not allow us to effec-
tively detect minors. Thus, constructing the actual algorithm is very difficult in many
cases.

Chapter 5 will solve such difficulties for the simplest case, i.e., the embedding over
words.b The idea is suggested by the result of Ehrenfeucht et al. that a set L of fi-
nite words is reqular if and only if L is <-closed under some monotone well-quasi-order
(WQO) < over finite words [EHR83]. This gives the insight that upward closed sets
would be described by regular expressions and introducing well-founded orders on such
descriptions would give computational contents of Higman’s lemma, which states that the
embedding relation on finite words is a WQO. Murthy and Russell gave its constructive
proof by the such scenario [MR90].

The target example is the automatic generation of linear time disjunctive monadic
query processing in an indefinite database on a linearly ordered domain. This problem
was first posed by Van der Meyden in [van97], and he showed the existence of a linear time
algorithm, but its actual construction has not been reported. Van der Meyden’s proof
of existence is based on Higman’s lemma. Using the techniques of its constructive proof
in [MR90], minors for a given disjunctive monadic query can be effectively computed.
This will lead to the construction of a linear time algorithm of disjunctive monadic query
processing.

To get a feeling for the target problem, let us consider its simpler version. Let = and
y be lists, and let sublst(x,y) be a predicate that returns true if a is a sublist of y, and
returns false otherwise. More rigorously, we can write in Haskell:

sublst :: [a] -> [a]l -> Bool
sublst (] ys = true
sublst x:xs (]
sublst (x:xs) (y:ys)

false

1if x == y then sublst xs ys
else sublst (x:xs) ys



Let us consider an easy problem. Fix a list x.

e Input: A finite set of lists y = {y1,- -, y:}.

e Output: A decision as to whether any list z with A’_, sublst(y;, 2) holds sublst(z, z).

This problem can be regarded as a query as follows: We know partial information on
events (which exclusively occur), and this partial information is represented as a set of
lists y;’s. Then, the question is: Can we decide whether there exists an event sequence
represented as x? This problem is simply solved by computing sublst(x,y;) for each y;,
and if some sublst(x,y;) returns true, then it holds; otherwise it does not.

Now we consider two extensions: (a simpler version of) conjunctive query and dis-
junctive query. The conjunctive query is as follows: fix a finite number of lists, x{, - -, x,.

e Input: A finite set of lists y = {y1,- -, y:}.

e Output: A decision as to whether any list 2z with A’_, sublst(y;, z) holds Aj_, sublst(x;, 2).

This is still easy, since this problem is decomposed into a check on each z;, i.e.,
whether for each x;, sublst(x;,y;) for some y; holds.

However, the disjunctive query is much harder. The disjunctive query is formalized
as follows: fix finite number of lists, @y, -, ;.

e Input: A finite set of lists y = {y1,- -, y:}.

e Output: A decision as to whether any list z with A’_, sublst(y;, z) holds Vi_, sublst(z;, z).

Finding an efficient solution (a linear time algorithm) for this problem is not as easy
as it appears. To illustrate, consider 1 = [P, Q, R], 2 = [Q, R, P], and 23 = [R, P, Q].
This holds for y; = [P, Q], y2 = [@, R], and y3 = [R, P], even though none of the z;’s and
y;’s hold sublst(x;,y;).

Of course, if one computes every possible combination of z, a decision is possible, but
this requires an exponentially greater amount of time. For instance, for lists yy,-- -, y; of
lengths nq, - -+, ns, the number of combinations is (ny + -+ 4+ n)!/(ng! X -+ x nyl), which
grows exponentially.

The aim is to generate the linear time algorithm for a given disjunctive query. For
this purpose, a suitable finite set M of a finite set of lists, called minors, is generated
corresponding to x;’s. Namely, for the example z; = [P,Q, R], v = [Q, R, P], and
z3 = [R, P, Q] above,

{[P, Q1 [Q, Bl [R, P}, {[P,Q, B]},{[Q, R, P]} {[R, P, ]},
{(P,Q, Pl,[Q, B}, {[Q, R, &, [k, P]},{[R, P, R], [P, Ql},
{[P, R, P,[Q, B} {[Q, P, QL. [R, P}, {[R,Q, R], [P, Q]}

Then the disjunctive query for input y = {y1,---,y:} is reduced as to whether there
exists a minor m in M such that for each m € m there exists y; satisfying sublst(m,y;).
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The finiteness of minors is guaranteed by Higman’s lemma. When generating mi-
nors, the most difficult aspect is knowing whether all have been found. To do this, the
constructive proof of Higman’s lemma based on regular expressions is applied.

Chapter 5 also gives the extension of the result of Ehrenfeucht et al. that a set L of
finite words is reqular if and only if L is <-closed under some monotone well-quasi-order
< over finite words [EHR83] to regular w-languages. That is,

1. an w-language L is regular if and only if L is <-closed under a periodic extension
=< of some monotone WQO over finite words, and

2. an w-language L is regular if and only if L is <-closed under a WQO =< over w-words
which is a continuous extension of some monotone WQO over finite words.

In Chapter 6, a practical linear time algorithm generation based on tree decomposi-
tion is discussed. Graphs are flexible data structures but are also sources of NP-hardness.
Many graph algorithms have been investigated individually. As a researcher of program-
ming, | am inclined to want to design suitable programming languages that can manage
graphs, or to give methods of systematic derivation and/or automatic generation of graph
algorithms.

As an example of systematic derivation of a graph algorithm, the Dijkstra algorithm,
which is the most efficient one known for computing the shortest path in a weighted
graph with complexity O(e log n) (where € is the number of edges and n is the number
of vertices), can be derived from the naive functional program by program calculational
techniques [0 00]. This is nice, but strong derivation that may decrease complexity often
requires strong human guidance.

On the other hand, by using the tree decomposition techniques for graphs with
bounded tree width [RS86, RS95, ACPS93], there have been investigated on automatic
linear-time algorithm generation for problems specified by monadic second-order formu-
lae [BLW8&T7, Cou90]. The class of problems is extended to maximum weight sum problems
in which constraints are specified by monadic second-order formulae [BPT92]. Typical ex-
amples are the shortest path problem (specified by the reachability constraint), the party
planning problem [CLR90, BAM96] (specified by the independence constraint), and the
maximum segment sum problem [Gri90, Ben84] (specified by the connected constraint).
The key is the dynamic programming technique that traces an algebraic construction of
a graph, which is illustrated in Fig. 1.1. This is excellent in theory, but is still infeasible
in practice, because of the huge constants of generated linear time algorithms. Such
constants easily explode to the tower of exponentials.

The approach in this thesis is; starting from specification by the restricted class
of simple recursive functions, called finite mutumorphism, instead of that by formulae,
fusion /tuppling program transformation of functional programs would drastically reduce
the constant [SHTOO00]. Sometimes this method supplies programs that are as fast as or
faster (both in theory and practice) than hand-coded ones [FMMT96b, BRS99, SHTO01,

SHTO02]. Currently, known examples are restricted to the cases corresponding to simple

2See the list of monadic second order definable properties in [Cou90].
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Figure 1.1: Linear time algorithm generation for graphs with bounded tree width

graphs, such as words. Chapter 6 explores the possibility of extension to more complex
graphs by analyzing algebraic structure of the algebraic construction of graphs.

First, hand-coded programs and automatically generated ones of the same problems
called mazimum segment sum problem (MSS) [Ben84, BPT92, SHTO00] and k-mazimum
segment sum problem (k-MSS) [BRS99, SHTOO02] are presented. MSS receives a finite
sequence of (possibly negative) integers and computes a contiguous subsequence such that
the sum of elements in the subsequence is maximum. MSS is simple, but has important
applications for data mining [FMMT96b]. Surprisingly, MSS was believed to be O(n logn)
in 70’s, and the first linear time algorithm was presented in [Ben84]. The method in
this thesis automatically generates a linear time algorithm from the simple functional
specification. It is worth mentioning that for the extension of MSS, called £-MSS, a
linear time algorithm was quite recently given in [BRS99]. A different but similarly
efficient linear time algorithm can be automatically generated by our method [SHTO02].

To explore the possibility of extension to complex structures, such as to beat the cubic
bottleneck in control flow analyses [HM97, Rep98], we face the problem that the algebraic
construction of graphs (such as tree decomposition) is not initial, whereas most of pro-
gram calculational techniques assume an initial algebra. This problem was already found
in the derivation of the Dijkstra algorithm on the shortest path problem [0 00]. Thus, we
need the extensions of fusion /tuppling program transformational techniques to non-initial
algebra, which were suggested in [Fok96]. As the first step, the complete axiomatization
of algebraic construction of graphs is presented. Another complete axiomatization of
the different algebraic construction of graphs was already presented in [BC87]; however,
their construction almost squarely grows in size. This is not suitable for a linear time
generation. Instead, the complete axiomatization to the algebraic construction proposed
in [ACPS93], in which the size grows linearly, is presented.

At the moment, whether some finite fragment of this infinite axiomatization is com-
plete for graphs with bounded tree-width is not clear; but I strongly believe such com-
pleteness holds and this will be the next step.
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Proving termination of programs
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Chapter 2

Uniform normalization of orthogonal
rewrite systems

The main objective of this chapter is to study sufficient conditions for uniform normal-
ization [KOvOO0la]. Here a term ¢ is uniformly normalizing, UN for short, if either it does
not have any normal form (¢ is not weakly normalizing), or all reductions starting from
t are finite, (¢ is strongly normalizing). We study UN for both first- and higher-order
orthogonal term rewrite systems, where a rewrite system is said to be UN if each of its
terms is so.

Interest in the criteria for UN arises, for example, in the proofs of strong normaliza-
tion of typed A-calculi, since these criteria are related to the work on reducing strong
normalization proofs to proving weak normalization [Ned73, Klo80, Kar85, DV87, DG93,
Kha94a, KW95b, KW95a, Ser97b, Xi97, MNS99]. Furthermore, the question: ‘Which
classes of terms are UN 77 is posed by Bohm and Intrigila [BI94] in connection with
finding UN solutions to fixed point equations, and with the representability of partial re-
cursive functions by UN terms only, in the A-calculus.! A useful UN subclass of A-terms
has recently been identified by Mgller Neergaard and Sgrensen [MNS99].

Let us call a term ¢ an oo-term if it has an infinite reduction. Furthermore, we call
a reduction step ¢ — s and the corresponding contracted redex-occurrence perpetual if
s is an oo-term if ¢ is so. A redex is called perpetual if its occurrence in every context
(and the corresponding reduction step) is perpetual. It is easy to see that a rewriting
system is UN iff all of its reduction steps are perpetual iff all of its redexes are per-
petual. Studying uniform normalization therefore reduces to studying the perpetuality
of redexes and reduction steps, which has been studied quite extensively. The classical
results in this direction are Church’s Conservation Theorem for the Aj-calculus [Chudl],
stating that the Aj-calculus is UN, and the Conservation Theorem (for the Ag-calculus)
due to Barendregt, Bergstra, Klop and Volken [BBKH76, Bar84], stating that g;-redexes
are perpetual in the A-calculus. Bergstra and Klop [BK82] gave a necessary and suf-
ficient criterion for the perpetuality of Sx-redexes. Klop [Klo80] generalized Church’s
Theorem to non-erasing orthogonal Combinatory Reduction Systems (CRSs) by showing
that those systems are UN, and Khasidashvili [Kha94a, KhaOl] generalized the Conser-

LUniform normalization is called strong normalization in [BI94].
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vation Theorem to orthogonal Expression Reduction Systems (ERSs) by proving that all
non-erasing redexes are perpetual in orthogonal fully-extended ERSs.?

For orthogonal Term Rewriting Systems (TRSs), Klop [Kl092] obtained a very power-
ful perpetuality criterion in terms of eritical steps (or critical redex-occurrences). These
are steps that are not perpetual, i.e., they reduce co-terms to SN terms. Klop showed
that any critical step (contracting a redex-occurrence u) must erase an argument of u
possessing an infinite reduction. This is not true for orthogonal higher-order rewrite
systems, because substitutions (from the outside) into the arguments of v may occur
during rewrite steps and such substitutions may turn a SN argument of u into an oo-
term. However, we show that (1) a critical step ¢ = s must necessarily erase a potentially
infinite argument, i.e., an argument that would become an co-(sub)term after a number
of (passive, i.e., performed in the context of u) steps in ¢. From this we derive another
criterion stating (2) perpetuality of safe redexes (in every context), which is similar to
the perpetuality criterion for Sx-redexes [BK82]. These two criteria are the main results
of this chapter, and we will demonstrate their usefulness in applications.

To unify our results with the ones already in the literature for different orthogonal
rewrite systems, we first introduce a framework of Context-sensitive Conditional Expres-
sion Reduction Systems (CCERSs). This framework provides a format for higher-order
rewriting which extends ERSs [Kha92] by allowing restrictions on term formation, on
arguments of redexes, and on the contexts in which the redexes can be contracted. Var-
ious interesting typed A-calculi (such as the simply typed A-calculus [P.92], its extension
with pairing [TS96], and system F [P.92]) and A—calculi with specific reduction strate-
gies (such as the call-by-value A-calculus [Plo75]) can be directly encoded as CCERSs
(see also [KvOvR93]). After demonstrating the expressiveness of CCERSs, we will focus
our attention on orthogonal CCERSs, present a concept of orthogonality for CCERSs,
and prove the standard results for orthogonal CCERSs (the Finite Developments The-
orem [FD], confluence, etc.). Further, by necessity, we will restrict our attention to
fully-extended orthogonal CCERSs; roughly, in fully-extended CCERSs, an erasing step
cannot turn a non-admissible redex into an admissible one.

To prove our perpetuality criteria, we will first generalize, from term rewriting and
the A-calculus to orthogonal fully-extended CCERSs, the constricting perpetual strategies
discovered independently by Plaisted [Pla93], Gramlich [Gra96], Sgrensen [S¢r98], and
Mellies [Mel96]. These strategies specify a construction of infinite reductions (whenever
possible) such that all steps are performed in some smallest oo-subterm. Our strategy
is slightly more general than the constricting ones (i.e., it specifies a set of redexes from
which any one can be selected for contraction), and can be restricted so that resulting
reduction sequences become constricting. The restricted strategy allows for simple and
concise proofs of our perpetuality criteria. We will also show that constricting perpetual
reductions are minimal w.r.t. Lévy’s permutation ordering on reductions in orthogonal
rewriting systems [Lév80, HLI1].

Even though our criteria are simple and intuitive, they are strong tools in proving
strong normalization from weak normalization in orthogonal (typed or type-free) rewrite

2The restriction to full extendedness was missing in [Kha94a]; full extendedness simply means that
no rules are subject to occur conditions like the one in the n-rule.
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systems. We will show that all known related criteria [Chu4l, BBKH76, BK82, Klog0,
Klo92, Kha94a], except the one in [HL99], can be obtained as special cases. We will also
demonstrate that uniform normalization for a number of variations of S-reduction (most
of which cannot be derived from previously known perpetuality criteria) [Plo75, DG93,
BI94, HL93, Len97a] is an immediate consequence of our criteria. ERSs are similar to
the Klop’s CRSs [Klo80] and we claim that all our results are valid for orthogonal fully-
extended CRSs as well (see [VRI6] for a detailed comparison of various forms of higher-
order rewriting). We will demonstrate, however, that our results cannot be extended
to higher-order rewriting systems where function variables can be bound [Wol93, Nip93,
VOvR94], since already the Conservation Theorem fails for these systems.

The chapter is organized as follows: In Section 2.1, we introduce CCERSs and show
how several rewrite and transition systems can be encoded as CCERSs. In Section 2.2,
we prove some standard results for orthogonal CCERSs. In Section 2.3, we study prop-
erties of an extension of existing constricting perpetual strategies, and in Section 2.4,
we use these properties to obtain our perpetuality criteria for orthogonal fully-extended
CCERSs. Section 2.5 gives a number of applications, and Section 2.6 concludes the
chapter.

2.1 Context-sensitive Conditional ERSs

A pair (A, —) of a set A and a relation — on A is an abstract rewrite system (ARS). A
transitive closure, transitive reflexive closure, and transitive reflexive symmetric closure
of — are denoted by —T, —* and <*, respectively. If an element ¢« € A has no
elements a’ € A such that « — «', we say a a normal form. A set of normal forms
is denoted by NF. An ARS (A, —) is weakly normalizing if any element ¢ € A has
a finite rewrite sequence ¢ — ay — --- — a, such that a, € NF. An ARS (A, —)
is terminating (or, strongly normalizing, SN for short) if there are no infinite rewrite
sequences @ — a3 —» -+ — a, — ---. An ARS (A, —) is locally confluent if for any pair
a,a’ € A with a + - — a' there exists «” € A such that ¢ —=* ¢” and ' —=* ¢”. An ARS
(A, —) is confluent if for any pair a,a’ € A with a «* - —* @’ there exists «” € A such
that ¢« —* a” and «' —* a”.

Lemma 2.1 A terminating and locally confluent ARS is confluent.

A term rewriting system (TRS) is a pair consisting of an alphabet and a set of rewrite
rules. A rewrite rule is a pair of terms denoted by [ — r satisfying two conditions: (1)
[ is not a variable and (2) V(I) 2 V(r). We call [ and r the left-hand side (LLHS) and
the right-hand side (RHS) of [ — r, respectively. The alphabet is used freely to generate
the terms and the rewrite rules can be applied in any surroundings (context), generating
the rewrite relation. In the first-order case one speaks of TRSs, while in the higher-
order case there are several conceptually similar, but notationally often quite different,
proposals. The first general higher order format was introduced long ago by Klop [Klo80]
under the name of Combinatory Reduction Systems (CRSs). Since then, several other
interesting formalisms have been introduced [Kha92, Wol93, Nip93, LS93, VOvR94].
Restricted rewriting systems with substitutions were first studied by Pkhakadze [Pkh77]
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and Aczel [Acz78]. See van Raamsdonk [VR96] for a detailed comparison of various forms
of higher-order rewriting.

It is often of interest to have the possibility of putting restrictions on the generation
of either the terms or the rewrite relation or both. For example, many typed lambda
calculi (such as the simply typed A-calculus and the system F [P.92]) can be viewed as
untyped lambda calculi with restrictions on the formation of terms. (See [KvOvR93] for
an encoding of the system F as a substructure CRS.) On the other hand, many rewrite
strategies are naturally expressed by restricting the application of the rewrite rules. The
call-by-value strategy in A-calculus [Plo75], for example, can be specified by restricting
the second argument of the f-rule to values. In general, restricting arguments gives
rise to so-called conditional ERSs (cf. [BK82]). The leftmost-outermost strategy can be
specified by restricting the context in which the S-rule may be applied. We will call
the latter kind of rules in which contexts are restricted context-sensitive.®> We will now
introduce CCERSs which allow all three kinds of restriction.

2.1.1 The syntax of CCERSs

CCERSs are an extension of ERSs, which are based on the syntax of Pkhakadze [Pkh77].
Terms in CCERSs are built from the alphabet just like they are in the first-order case.
The symbols having binding power (like the A in A-calculus and the [ in integrals)
require some binding variables and terms as arguments, as specified by their arity. Scope
indicators are used to specify which variables have binding power in which arguments.
For example, a f-redex in the A-calculus appears as Ap(Ax ¢, s), where Ap is a function
symbol of arity 2 and A is an operator sign of arity (1, 1) and scope indicator (1). Integrals
such as [! f(z)dx can be represented as [z(s,t, f(z)) by using an operator sign [ of arity
(1,3) and scope indicator (3).

Metaterms will be used to write rewrite rules. They are constructed from metavari-
ables and meta-expressions for substitutions, called metasubstitutions. Instantiation of
metavariables in metaterms yields terms. Metavariables play the réle of variables in the
TRS rules and of function variables in other formats of higher-order rewriting such as
Higher-Order TRSs (HOTRSs) [Wol93], Higher-Order Rewrite Systems (HRS) [Nip93],
and Higher-Order Rewriting Systems (HORSs) [VOvR94]. Unlike the function variables
in HOTRSs, HRSs, and HORSs, however, metavariables cannot be bound.

Definition 2.2 Let ¥ be an alphabet comprising infinitely many variables, denoted by
T, Y, z,..., and symbols (signs). A symbol o can be either a function symbol (simple
operator) having an arity n € N or an operator sign (quantifier sign) having arity
(m,n) € Nt x N, If it is an operator sign it needs to be supplied with m binding
variables x1,. .. 2, to form a quantifier (compound operator) oxy ... &, and it also has

4

a scope indicator specifying in which of the n arquments it has binding power.* Terms

3The distinction between ‘conditional’ and ‘context-sensitive’ is, however, more historical than con-
ceptual.

4Scope indicators can be avoided at the expense of side conditions of the form x € FV (s). In this case,
in order to avoid unintended bindings, such conditions must be imposed on construction of (admissible)
terms rather than on the usage of rewrite rules.
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t, s, e, o are constructed from variables, function symbols, and quantifiers in the usual
first-order way, respecting (the second component of the) arities. A predicate AT on
terms specifies which terms are admissible.

Metaterms are constructed like terms, but also allowing metavariables A, B, ... and
metasubstitutions (¢1/x1, ..., 1./, )to, where each t; is an arbitrary metaterm and the x;
have a binding effect in ty. Metaterms without metasubstitutions are called simple. An
assignment 8 maps each metavariable to a term. The application of 6 to a metaterm t is
written t0 and is obtained from t by replacing metavariables with their values under 6 and
by replacing metasubstitutions (t1/xy,...,ty/xs)to, in right to left order, with the result
of substitution of terms tq,...,t, for free occurrences of xy,...,x, intg. The substitution
operation may involve a renaming of bound variables to avoid collision, and we assume
that the set of variables in X2 comes equipped with an equivalence relation, called renaming,
such that any equivalence class of variables is infinite. We also assume that any variable
can be renamed by any other variable in the corresponding equivalence class.> Unless
otherwise specified, the default renaming relation is the total binary relation on variables
(a partial renaming relation may be useful for conditional systems).

The specification of a CCERS consists of an alphabet (generating a set of terms
possibly restricted by the predicate AT as specified above), and a set of rules (generating
the rewrite relation possibly restricted by admissibility predicates AA and AC as specified
below). The predicate AT can be used to express sorting and typing constraints, since
sets of admissible terms allowed for arguments of an operator can be seen as terms of
certain sorts or types. The predicates AA and AC' impose restrictions respectively on
arguments of (admissible) redexes and on the contexts in which they can be contracted.

The CCERS syntax is very close to the syntax of the A-calculus. Those already
familiar with the A-calculus may therefore find ERSs easier to understand than CRSs,
although the differences between the two are ‘semantically’ insignificant. See also [VR96].
For example, the S-rule is written as Ap(AxA, B) — (B/x)A, where A and B can be
instantiated by any terms. The n-rule is written as AxAp(A,x) — A, where for any
assignment § € AA(n), © € FV(A) (the set of free, i.e., unbound, variables of Af);
otherwise an x occurring free in Af and therefore bound in Az Ap( A6, x) would become
free. A rule like f(A) — Jz(A) is also allowed, but in that case the assignment 6 with
x € A0 is not allowed. Such a collision between free and bound variables cannot arise
when assignments are restricted by the condition (%), described below.

Familiar rules for defining existential quantifier 32 and the quantifier 3!z (there exists
exactly one x) are written as Jz(A) — (7x(A)/x)A and Fa(A) — Jax(A) A VaVy(AA
(y/x)A = x = y), respectively. For the assignment associating @ = 5 to the metavariable
A, these rules generate rewrite steps Jz(x = 5) — 7a(x = 5) = 5 and Fla(z = 5) —
Jx(x = 5)AVaVy(x = 5Ny =5) = & = y). In general, evaluation of a reduction step may
involve execution of a number of substitutions corresponding to the metasubstitutions in
the right-hand-side of the rule. This will be explained by examples in the next section.

> An equivalence class of variables can, for example, be the set of variables of the same type in a typed
language.
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Definition 2.3 A Context-sensitive Conditional Expression Reduction System (CCERS)
is a pair (X, R), where ¥ is an alphabet described in Definition 2.2 and R is a set of
rewrite rules r : ¢ — s, where t and s are closed metaterms (i.e., metaterms possibly
containing ‘free” metavariables but not containing free variables).

Furthermore, each rule r has a set of admissible assignments AA(r) which, to prevent
confusion of variable bindings, must satisfy the following condition of being variable-
capture-free:

(*) for any assignment 6 € AA(r), any metavariable A occurring in t or s, and any
variable x € FV(Af), either every occurrence of A in r is in the scope of some binding
occurrence of x inr or no occurrences are.

For any 6 € AA(r), t0 is an r-redex or an R-redex (and so is any variant of ¢
obtained by renaming of bound variables), and s0 is the contractum of t6. We call R
simple if the right-hand sides of R-rules are simple metaterms. We call redexes that are
instances of the same rule weakly similar.

Furthermore, each pair (r,0) with r € R and § € AA(r) has a set AC(r,0) of admis-
sible contexts such that if a context C[] is admissible for (r,0) and o is the contractum
of w = 18 according to r, then Clu] — Clo] is an R-reduction step. In this case, u is
admissible for r in the term Clu]. We require that the set of admissible terms be closed
under reduction. We also require that admissibility of terms, assignments, and contexts
be closed under the renaming of bound variables.®

We call a CCERS context-free, or simply a Conditional Expression Reduction System
(CERS), if every term is admissible, if every context is admissible for any redex, if the
rules v 1t — s are such that t is a simple metaterm and is not a metavariable, and
if each metavariable that occurs in s also occurs in t. Moreover if for any rule r € R,
AA(r) is the mazimal set of variable-capture-free assignments, then we call the CERS an
unconditional Fzpression Reduction System, or simply an Frpression Reduction System

(ERS).

Note that in CCERSs (but not in CERSs or ERSs) we allow metavariable-rules like
nt: A — AxAp(A,x) and metavariable-introduction-rules like f(A) — g(A, B), which
are usually excluded a priori. This is useful only when the system is conditional. Like in
the n-rule,the requirement () forces x & FV(Af) for every § € AA(n~').

Let r : t — s be a rule in a CCERS R and let § be admissible for r. Subterms of
a redex v = tf that correspond to the metavariables in ¢ are the arguments of v, and
the rest of v is the pattern of v (hence the binding variables of the quantifiers occurring
in the pattern also belong to the pattern). Subterms of v whose head symbols are in
its pattern are called the pattern-subterms of v. The pattern of the right-hand side of a
simple CCERS rule is defined similarly.

Notation We use a, b, ¢, d for constants, use ¢, s, e, o for terms and metaterms, use u, v, w
for redexes, and use N, P, () for reductions (i.e., reduction paths). We write s C ¢ if s is
a subterm (occurrence) of t. A one-step reduction in which a redex u C ¢ is contracted

5Closure of admissibility of contexts under the renaming of bound variables may need some clarifi-
cation: We mean that if « is admissible in Clu] and if C’[u'] is its variant (obtained by a renaming of
bound variables in Cu]), then «’ must be a redex admissible for C'[].

"The renaming relation for ERSs is total.
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is written as t = s or t — s or just u. We write P : ¢ —% s or ¢ L5 s if P denotes
a reduction (sequence) from ¢ to s, write P : ¢ —» if P may be infinite, and write
P :t — oo if P is infinite (i.e, of the length w). For finite P, P 4+ @ denotes the

concatenation of P and ().

Below, when we refer to terms and redexes, we will always mean admissible terms
and admissible redexes except that are explicitly mentioned.

2.1.2 Expressive power of CCERSs

To avoid a significant deviation from the main theme, how to encode conditional TRSs [BK86]
and reduction strategies as CCERSs is described in this subsection only very briefly. More
complex examples, namely, encodings of Hilbert- and Gentzen-style proof systems and
m-calculus into CCERSs are shown in [KvO95b, KOvOO0la]. For more details refer to
Khasidashvili and van Oostrom [KvO95b].

Conditional TRSs

Conditional term rewriting systems (CTRSs) were introduced by Bergstra and Klop [BK86].
Their conditional rules have the form ¢t; = sy A --- At, = s, = ¢t — s, where s; and
t; may contain variables in ¢ and s. According to such a rule, t can be rewritten to
s6 if all the equations s;6 = ¢,0 are satisfied. CTRSs were classified depending on how
satisfaction is defined (‘=" can be interpreted as —» , «*, etc.) As Bergstra and Klop
remark this can be generalized by allowing for arbitrary predicates on the variables as
conditions (cf. also [DOGS88, Toy89]).

Clearly, all these CTRSs are context-free CCERSs since they allow conditions on
the arguments but not on the context of rewrite rules. For this reason results for them
are sometimes a special case of general results holding for all CCERSs. In particular,
stable CTRSs for which the unconditional version is orthogonal as defined in [BK86] are
orthogonal in our sense (to be defined in Subsection 2.2) and so are confluent.

Encoding of strategies

In the literature a strategy for a rewriting system (R,Y) is often defined as a map
F:Ter(¥) — Ter(Y), such that t — F(¢) if ¢ is not a normal form, and ¢ = F(¢)
otherwise (e.g., [Bar84]). Such strategies are deterministic and do not specify the way in
which to obtain F'(¢) from ¢.

The first thing to take into account here is that in a term there may be disjoint
redex occurrences yielding the same result if reduced. For example, take simply the TRS
R={f(z) = a, b — b} and the term ¢t = g(b, f(b)). Then ¢ is rewritten to itself when
either the first or the second occurrence of b in it is rewritten (using the second rule).
The leftmost b is essential (i.e., contributes to the normal form) [Kha93], whereas the
rightmost b is not. Here our knowing that a strategy F' rewrites ¢ to t is not enough to tell
us whether [’ rewrites an essential redex in ¢ or an inessential one. Similarly, [(/x) can
be -reduced in one step to [z, where I = Az.x, but the information [(/x) — [ is not
enough to determine whether the outermost redex has been contracted or the innermost
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one (the effect that contraction of different redexes yields the same result is called a
‘syntactic accident’” [LévT78]). So a strategy should specify which redex occurrence must
be contracted.

The second thing to take into account is that a redex occurrence can be an instance
of more than one rule. That is, LHS(r1)0; = u = LHS(r2)0; for some rules vy and ry
and some assignments 6; € AA(ry) and 02 € AA(ry). And the contracta of the different
redexes can be the same, which shows that even knowing the occurrence of the redex
may not be sufficient for knowing which rule has been applied. For example, consider
the rules for parallel or:

or(true, ) — true,or(x, true) — true.

Then or(true,true) — true by applying either of the two rules. So a strategy should
specify which rule must be applied.

Finally, although for orthogonal ERSs the result of a reduction step from some term
t is uniquely determined by the redex occurrence and the rule to be applied, this need
not be the case in general. For example, applying the (variable-introducing, hence non-
orthogonal) rule « — A to the term a in the empty context may lead to any result,
depending on the assignment to A.

Thus we prefer to view a strategy as a set [ of triples (r, 8, C[]) specifying that rule
r:t— s € R can be used with assignment § in context C[] to rewrite C'[t0] to C'[s0].5
Thus a strategy F' may be non-deterministic in that the redex to be contracted in a term
t can be selected from a possibly non-singleton set of redexes of ¢ specified by F. To a
strategy F' one can associate a CCERS Rp encoding exactly the same information by
taking 6, C[ | admissible for r iff (r,8,C[]) € F. Obviously, this also holds the other way
around; that is, every CCERS can be viewed as a strategy for its unconditional version.

Note that the set of terms und(F') on which a strategy F' (considered as a set of triples)
is undefined need not coincide with the set of normal forms. Indeed, many strategies halt
once they reach terms to a set of values (e.g., head normal forms or weak head normal
forms in the A-calculus), or if a deadlock situation arises; see [Len97b] for a number of such
strategies. So our definition provides for such strategies, except the information about
which terms from und( F') are values (and which correspond to a deadlock situation) must
be added explicitly.

2.2 Orthogonal CCERSs

In this section, we introduce a suitable concept of orthogonality for CCERSs, prove
confluence for them, and illustrate how this result can be used for proving confluence
for restricted A-calculi. We then recall some results concerning the similarity of re-
dexes [Kha94a] in orthogonal CCERSs. Finally, we present a new proof of the existence of
external redexes [HL91] in every reducible term in an orthogonal fully-extended CCERS.
The results concerning the similarity of redexes and external redexes will be used later
on to study the perpetuality of redexes in orthogonal fully-extended CCERSs.

8Note that an ordinary strategy F' can be directly encoded by associating the set {(r:t — 5,0, C[]) |
r € R,C[s0] = F(C[td])} to it.
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2.2.1 Orthogonality and confluence

The idea of orthogonality is that contraction of a redex does not destroy other redexes
(in whatever way) but instead leaves a number of their residuals. A prerequisite for
the definition of residual is the concept of descendant, also called trace, which allows
the tracing of subterms along a reduction. Whereas this concept is pretty simple in
the first-order case, CCERSs may exhibit complex behaviour due to the possibility of
nested metasubstitutions in the right-hand sides of rules, thereby complicating the defi-
nition of descendants. A standard technique in higher-order rewriting [K1o80] (illustrated
below on examples) is to decompose or refine each rewrite step into two parts: a TRS-
part in which the left-hand side is replaced by the right-hand side without evaluating
the (meta)substitutions, and a substitution-part in which the delayed substitutions are
evaluated. To express substitution we use the S-reduction rules

Sn+1$1 $nA1AnA0 — (Al/l’l,...,An/l'n)Ao, n = 1,2,...,

where S™t! is the operator sign of substitution with arity (n,n + 1) and scope indica-
tor (n 4 1) and where xq,...,2, and Ay,..., A,, Ao are pairwise distinct variables and
metavariables. (We assume that the CCERS does not contain symbols S™*!; it can of
course contain a renamed variant of S-rules. The collection of all substitution rules,
renamed or not, is an ERS itself.) Thus S™*! binds only in the last argument. One can
think of S-redexes as (simultaneous) let-expressions.

Thus the descendant relation of a rewrite step can be obtained by composing the
descendant relation of the TRS-step and the descendant relations of the S-reduction
steps. All known concepts of descendants agree in the cases when the subterm s C ¢
which is to be traced during a step ¢t — o is (1) in an argument of the contracted redex
u, (2) properly contains u, or (3) does not overlap with u. The concepts differ when
s is a pattern-subterm (i.e., when s is in the contracted redex w but is not in any of
its arguments), in which case we define the contractum of u to be the descendant of s.
According to many definitions, however, s does not have a u-descendant (descendant is
often used as a synonym of residual, which it is not). In the case of TRSs, our definition
coincides with Boudol’s [Bou85] and differs slightly from Klop’s [Klo92]: according to
Klop’s definition the descendants of a contracted redex, as well as of any of its pattern-
subterms, are all subterms whose head-symbols are within the pattern of the contractum.

We first explain our descendant concept by using examples. Consider a TRS-step ¢ =
flg(a)) = h(b) = s performed according to the rule f(g(x)) — h(b). The descendant of
both pattern-subterms f(g(a)) and g(a) of ¢ in s is h(b)? and a does not have a descendant
in s. The refinement of a S-step t = Ap(Ax(Ap(z,2)),z) =5 Ap(z,z) = e would be
t = Ap(Az(Ap(z,x)),2) =5, 0 = SPxzAp(x,x) =5 Ap(z,z) = e: the descendant of both
t and Az(Ap(z,z)) after the TRS-step is the contractum S?zzAp(x, ), the descendants
of Ap(x,x),z C t are the respective subterms Ap(x, ),z C o, the descendant of both
o = S*zzAp(z,z) and Ap(z,z) after the substitution step is the contractum e, and
the descendants of z C o, as well as of the bound occurrence of x in Ap(x,x), are the
occurrences of z in e.

9 According to Klop’s definition, the occurrence of b in h(b) is also a descendant for both f(g(a)) and
9(a).
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This definition by example can be formalized using paths to refer to subterm positions
in a term ¢. Paths, denoted by ¢, ¢, (, &, are strings of integers: the empty string e refers
to the top-position (i.e., the term t itself) and if a path i1,...,1; refers to a subterm
ox1 ...ty ..., 1) of t, then iy,. .. ik, ix41 is again a path for each 1 < ipy1 < n which
refers to the subterm ¢;  of {; < denotes the prefix ordering on paths. (The binding
variables in a quantifier are considered to be at the same position as the quantifier symbol
itself. They therefore can be ignored because they are not subterms.)

Definition 2.4 Let t be a term in a simple CCERS R (so the refinement of an R-step
coincides with the R-step itself), let r :t' — s’ € R, let u be an (admissible) r-redex in t
occurring at a position ¢, let t 5 s, and let o be a subterm of t at a position ).

1. If ¢ and o are disjoint (i.e, neither ¢ < ¢ norp < @), then the descendant of o is

the subterm of s at the same position ;

2. If ¥ < @, then again the descendant of o is the subterm of s at the same position
v

3. If Y = ¢- ( where ( is a nonvariable position in the left-hand-side t' of r (- is the
concatenation operation on paths), then the descendant of o is the subterm of s at
the position ¢ (i.e., is the contractum of u);

4. If v = @ - (- & where (; is the position of the ith-from-the-left variable occurrence
int', then the descendants (0 or more) of o are the subterms in s at all positions
;= ¢- g €, 1 <5 <k, where (},.. ,Gﬂ are the positions of all occurrences of
the same variable in the right-hand-side s’ of r.

Definition 2.5 Let Sz, ... 2, ¢ ...t tg be an S-redex in a term t at a position ¢ in
a CCERS, let t %5 s, and let o be a subterm of t at a position 1.

1. If ¢ and ¢ are disjoint, then the descendant of o is the subterm of s at the same
position 1,

2. If ¥ < @, then again the descendant of o is the subterm of s at the same position
v

3. Ifv=0¢-n+1-€ (ie., 0 Cty), then the descendant of o is the subterm in s at
position ¢ - £.
4. If o = ¢ -1 & where 1 <1 < n, then the descendants (0 or more) of o are the

subterms in s at all positions ; = ¢ - g &1 < 5 < ki, where (L. ,Gﬂ are the
positions of all occurrences of x; in tg.

To illustrate further the third and the fourth cases of Definition 2.5, consider the
S-reduction step ¢t = Sz f(a)g(z) —s g(f(a)) = s. Then the descendant of @ C ¢ is
fla) C s, and the descendant of g(x) C ¢ is s. The descendants of f(a),a C ¢ are the
occurrences f(a),a C s, respectively.
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The descendant concept extends by transitivity to arbitrary reductions consisting of
TRS-steps and S-reduction steps. If P is an R-reduction, then P-descendants are defined
to be the descendants under the refinement of P. The ancestor relation is the inverse of
the descendant relation. The descendant concept allows us to define residuals:

Definition 2.6 Lett = s be in a CCERS R, let v C t be an admissible redex, and let
w € s be a u-descendant of v. We call w a u-residual of v if (a) the patterns of u and
v do not overlap (i.e., the pattern-occurrences do not share an occurrence of a symbol
int), (b) wis a redex weakly similar to v (see Definition 2.3), and (¢) w is admissible.
(So w itself does not have u-residuals in s.) The concept of a residual of redexes extends
naturally to arbitrary reductions. A redex in s is called a new redex or a created redex if
it is not a residual of a redex int. The predecessor relation is inverse to that of residual.

Definition 2.7 We call « CCERS orthogonal if:
o the left-hand sides of rules are not single metavariables,

o the left-hand side of any rule is a simple metaterm and its metavariables contain
those of the right-hand side, and

e all the descendants of an admissible redex u in a term t under the contraction of
any other admissible redex v C t are residuals of u.

The second condition ensures that rules exhibit deterministic behaviour when they
can be applied. The last condition is the counterpart of the subject reduction property
in typed A-calculi [P.92]. For example, consider the rules a — b and f(A) — A with the
admissible assignment Af = a. The descendant f(b) of the redex f(a) after contraction
of a is not a redex because the assignment Af = b is not admissible. Hence the system
is not orthogonal.

Definition 2.8 Reductions starting from the same term are called co-initial. Recall
that co-initial reductions P :t —» s and ) : t —» e are weakly equivalent or Hindley-
equivalent [Bar84], written P ~p @, if s = ¢ and the residuals of any redex of t under
P and under ) are the same redexes in s. Furthermore, P and () are strictly equiva-
lent [Kha90], written P x4 Q, if s = ¢ and the descendants of any subterm of t under
P and under ) are the same subterms in s.

Using these equivalences and the above definition of residuals, we can easily infer
strong [LévT78, HLI1] and strict [IKha90] forms of the Church-Rosser property for CCERSs.
A standard method of proving the strong version of CR is one using FD and the fact
that any pair of redexes w,v in a term strongly commute: v+ v/u =g v + ufv [LévT8];
that latter property will be called strong local confluence.!® Indeed, as in orthogonal

TRSs [HLI1], the A-calculus [Lév80, Bar84], orthogonal CRSs [Klo80], and orthogonal

10FD is often referred to the stronger property that all developments of a set of redexes in a term
are terminating and all complete developments of the same set of redexes are Hindley-equivalent. This
stronger version follows easily from the weaker version (i.e., termination of all developments) and the
strong commutativity of co-initial steps.
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HRSs [VO94], one can in orthogonal CCERSs use FD and strong commutativity to define
for any co-initial reductions P and @) the residual of P under @), written P/Q. We write
P <, Qif P/Q = 0 (< is the Lévy-embedding relation); P and @ are called Lévy-
equivalent or permutation-equivalent (written P ~y, Q) if P <1, Q and @ <y, P. It follows
from the definition of / that if P + P’ and @ 4+ Q' are co-initial finite reductions in an
orthogonal CCERS, then (P+P')/Q =~ P/Q+P'/(Q/P) and P/(Q+Q") ~1 (P/Q)/Q .
This is all well known and we do not give more details. The strong Church-Rosser theorem
then states that, for any co-initial finite reductions P and ) in an orthogonal ERS,
PUQ ~1 QU P, where PUQ means P+ Q/P. The Strict Church-Rosser theorem states
that, for any co-initial finite reductions P and () in an orthogonal ERS, PUQ ~, QU P.
(Thus, P =~y @ implies P = @).) Like the strong CR property, the strict CR property
follows from FD and the following strict local confluence property: any two co-initial
steps u, v strictly commute: ullv /g4 v U u.

Since developments in CCERSs are obtained by restricting developments in ERSs,
and the latter are a special case of developments in PRSs [VR96] which are finite [VO97],
we obtain the following result.

Theorem 2.9 (Finite Developments) All developments of a term t in an orthogonal
CCERS R eventually terminate.

Using this theorem and the last condition in the definition of orthogonality, the next
theorem follows from some abstract theory of residuals.

Theorem 2.10 Let P and ) be any co-initial finite reductions in an orthogonal CCERS R.
Then

(1) (Strong Church-Rosser) PUQ ~;, QU P.
(2) (Strict Church-Rosser) PLUQ ~; QU P.

The A-calculus [Bar84] is the prime example of an ERS. If one restricts term formation
in it, one arrives at a large class of typed lambda calculi. Since the rewrite relation in
these calculi is not restricted in any way and typed terms are closed under S-reduction,!!
these CCERSs are orthogonal, hence confluent. Another example of an orthognal CCERS
is the call-by-need A-calculus of Ariola et al. [AFM™95], hence confluent [KOvOO0la).

An emerging class of context-sensitive conditional ERSs is the class of A-calculi with
restricted expansion rules like 77 (see e.g. [Aka93]). These calculi are not orthogonal, but
their confluence can be shown by modifying the confluence diagrams arising from FD for
the corresponding unconditional expansion rules.

2.2.2 Similarity of redexes

The idea of similarity of redexes [Kha94b, Kha94a] v and v is that u and v are weakly
similar — that is, they match the same rewrite rule — and quantifiers in the pattern of
u and v bind ‘similarly’ in the corresponding arguments. For example, recall that a

UProving this subject reduction property is sometimes nontrivial.
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p-redex Ap(Axt,s) is an [-redex if © € FV(¢) and is a K-redex otherwise. Then all -
redexes are similar and all K-redexes are similar, but no /-redex is similar to a K-redex.
Consequently, for any pair of corresponding arguments of v and v, either both are erased
after contraction of v and v or none is.

A redex in a CCERS has the form v = CJty,...,t,], where C is the pattern and
t1,...,1, are the arguments. Sometimes we will write u as u = C[T1ty,. .., T,t,], where
T, = {ay,. .. ,l’ini} is the subset of binding variables of (' such that ¢; is in the scope of
an occurrence of each z;,, 7 = 1,...,n;. Let us call the maximal subsequence ji, ..., ji of
1,...,n such that ¢; ,...,t; have u-descendants the main sequence of u (or the u-main
sequence), call ¢;,...,t; the (u-)main arguments, and call the remaining arguments
(u)-erased. Further, call u erasing if k < n and non-erasing otherwise.

Now the similarity of redexes can be defined as follows: weakly similar redexes u =
Clzity, ..., Tht,) and v = Claysy, ..., Tys,] are similar if, for any 1 < ¢ < n, T; N
FV(t;) =7, N FV(s;). For example, consider the rule ox(A, B) — (cx(f(A), A)/x)B.
Then the redexes u = ox(x,y) and v = ox(f(x),y) are similar, while w = ox(y, y) is not
similar to any of them since « ¢ FV (y). However, note that the second arguments of all
the redexes u,v and w are main and the first arguments are erased. In this chapter, it
is more convenient to use a slightly relaxed concept of similarity, written ~, such that
U~ U~ w:

Definition 2.11 We write u ~ v if the main sequences of u and v coincide and for any
main argument t; of u, T, N FV(t;) =T N FV(s;).

The following lemma implies in particular that, indeed, if v and v are similar, then
u ~ v, and that ~ is an equivalence relation. Because its proof involves properties of
essentiality not needed elsewhere in this chapter, we omit the proof and instead refer to
previous work [Kha94a]. The lemma is quite intuitive anyway: it shows that only pattern-
bindings (i.e., bindings from inside the pattern) of free variables in main arguments of a
redex are relevant for the erasure of its arguments.

Below, 8§ will not only denote assignments but will also denote substitutions assigning
terms to variables; when we write o' = 0f for a substitution #, we assume that no free
variables of the substituted subterms become bound in o’ (i.e., we rename bound variables
in 0 when necessary).

Lemma 2.12 Let uw = C[Tity,...,Tpt,] and v = C[T1sy,...,Tp8,] be weakly similar
redexes, and let for any main argument s; of v, T, N FV(t;) C 7 N FV{(s;). Then the
main sequence of u is a subset of the main sequence of v.

Corollary 2.13 Let u = ClTity,...,Tot,] and v = C[Tys1, ..., T,8,] be weakly similar
redexes, and let for any main argument s; of v, TN FV (1) =7 N FV(s;). Then u ~ v.
In particular, if u = v, then u ~ v.

2.2.3 External redexes

In this subsection we will show that every reducible term in an orthogonal fully-extended
(see Definition 2.14) CCERS has an external redex. External redexes for orthogonal TRSs
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were introduced by Huet and Lévy [HLI1], who also proved the existence of external
redexes in every reducible term. Both the original definition of external redexes and the
existence proof are quite lengthy.

With our concept of descendant, external redexes can be defined as redexes whose
descendants can never occur inside the arguments of other redexes. Any external redex
is trivially outermost, but an outermost redex is not necessarily external. Contracting a
redex disjoint from it, may cause its residual to be non-outermost. For example, consider
the orthogonal TRS {f(x,b) — ¢,a — b}. The first a in f(a,a) is outermost but not
external; contracting the second a (which is disjoint from it) creates the redex f(a,b)
having the residual of the first a as argument. The second « is external.

In an ERS, there may be another reason why an outermost redex need not be ex-
ternal. Contracting a redex in one of its argument, may cause its residual to be non-
outermost. This already shows up in the Afn-calculus. Let I = Azx.x and K = Azy.x,
as usual [Bar84]. The redex v = I(K[z) in Ax. /(K Ix)x is outermost but not external;
contracting the redex KIz in its argument creates the n-redex Az./ Iz having the resid-
ual I1 of u as argument. This example can be readily encoded as an orthogonal ERS.
We will see later that because of rules like n which test for the absence of variables in
subterms (occur check!) even the conservation theorem fails for orthogonal CCERSs in
general. To rule out such rules, following [VO96, HP96], we introduce the concept of full
extendedness for CCERSs:

Definition 2.14 We call « CCERS R fully-extended iff for any step t = s in R and
any occurrence w C t of an instance of the left-hand-side (of a rule r € R) such that:

(a) the patterns of w and w in t do not overlap, and
(b) w has a u-descendant w' € s that is a redex,

w 1s an admissible redex in t weakly similar to w'.

Now we can easily generalize the proof of existence of external redexes in [Kha93]

from orthogonal TRSs to fully-extended orthogonal CCERSs.

Definition 2.15 Let P : t —» o in an orthogonal fully-extended CCERS. A subterm
s C t is P-external if no descendants of s along P appear inside redex-arguments and
is P-internal otherwise. A subterm s C t is external if s is (Q-external for any finite
reduction () :t —% ; otherwise s is internal.'?

Consider the A-term t = Q((Axy.xy)l(Ix)), where [ is as defined above and =
(Az.zz)(Az.zz), and consider the f-reduction P : ¢ = Q((Ay.ly)(Iz)) = Q(I(Iz)) = s
contracting the redexes v = (Azxy.xy)l and w = (Ay.ly)(Ix). Then the redexes Q,v C ¢
are P-external, whereas the redex [+ C ¢ is P-internal (since after the step v the residual
of Iz C tisinside an argument the created redex w). Note that for the outermost redexes
O, I(Ix) C s, there are P-external redexes Q,v C ¢ such that the unique P-descendant
of 0 C t overlaps the pattern of 2 C s and the unique P-descendant of v overlaps the

12Tn [Kha93], an external (resp. P-external) redex is called unabsorbed (P-unabsorbed).
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pattern of [(/x) C s. Note also that [a C t may be QU P-internal even if it is Q-external.
For instance, consider a reduction () which contracts the occurrences of €2 a finite number
of times. These intuitions are formalized in the following three lemmas and are then used
to prove the existence of external redexes in reducible terms.

Lemma 2.16 Let P : o 2% t; 2% ... "*3' ¢, in an orthogonal fully-extended CCERS.
Then for any outermost redex v C t, there is a P-external redex u C ty whose unique
P-descendant s C t,, overlaps the pattern of v (i.e., either v C s or s = e for some proper
pattern-subterm e of v.)

Proof By induction on |P|. If |P| = 0 the result is obvious. Suppose |P| > 0 and let
P=P 4+ u,_.

(a) Assume first that v is a residual of a redex v’ C ¢,_1. Let v* =o' if v’ € u,,_y and
let v* = u,_; otherwise. By full extendedness, since v is outermost, v* is outermost. By
the induction hypothesis there is a P’-external redex u C ¢y whose unique P’-descendant
s" C 1,1 satisfies either v* C s’ or s’ = ¢’ for some proper pattern-subterm ¢’ of v*. Since
u is P’-external, s’ has a unique descendant s in ¢,. If v* C s’ it is easy to see v C s.
Otherwise ¢/ = s’ and we consider two cases:

1. v* = ', Since the patterns of the redexes v" and u,,—; do not overlap (by orthogo-
nality), s is a pattern-subterm of v.

2. v* = u,_1. Since the descendant of each pattern-subterm of w,,_; is the contractum
of u,_1, v Cs.

Therefore u is P-external.

(b) Assume now that w,_; creates v. By full extendedness, the contractum of w,_;
overlaps the pattern of v. Since v is outermost, u,_; is outermost. By the induction
hypothesis there is a P’-external redex u C {3 such that its unique descendant s’ C ¢,,_
satisfies either u,_; C s’ or ¢/ = s’ for some proper pattern-subterm e’ of w,_;. Since u
is P’-external, s’ has a unique descendant s in ¢,. Since the descendant of each pattern-
subterm of u,_; is the contractum of u,_;, s contains the contractum of u,_;. Thus s
overlaps the pattern of v. Therefore u is P-external.

Lemma 2.17 Let P :t —» s be in an orthogonal fully-extended CCERS. Ift is reducible,
there is a P-external redex u in t.

Proof If |P| = 0 or |P| > 0 and s is not a normal form, then the lemma follows

immediately from Lemma 2.16. Otherwise, let P : ¢ Py ¢ % 5. Since s is a normal
form, v is outermost. By Lemma 2.16 there is a P’-external redex u C ¢t whose unique
descendant in s’ overlaps the pattern of v. Since s has no redexes, u is P-external.

Lemma 2.18 Let P:t —» s and Q) : t —» e be in an orthogonal fully-extended CCERS.
If u is P-internal, then it is QQ U P-internal.
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Proof By induction on [@]. It is enough to consider the case when |Q| = 1; the rest
follows from the induction hypothesis. So let () = w for a redex w in t. Furthermore,
let P = P*+ v*. Without loss of generality we can assume that u is P*-external, so v*
creates a redex v that contains the unique P-descendant o of u in its argument.

(a) Assume first that o does not have a w/P-descendant. By Theorem 2.10 u does
not have w LI P-descendants. Hence u is w U P-internal (otherwise its descendants cannot
be erased).

(b) Assume now that o has a w/P-descendant o’. Since w/P contracts only residuals
of w and v is a new redex, v has a residual v’ that contains o' in its argument. By
Theorem 2.10 o' is also a w LI P-descendant of «. Hence u is w U P-internal.

Theorem 2.19 Fvery reducible term in an orthogonal fully-extended CCERS has an
external redez.

Proof Assume that for any outermost redex u; C t there is a finite reduction F; such
that w; is Pi-internal (i = 1,...,k). Then by Lemma 2.18 all redexes u; are P-internal
for P = P, U...U P,. But this is impossible by Lemma 2.17.

2.3 A minimal perpetual strategy

2.3.1 A minimal perpetual strategy

In this section we introduce a perpetual strategy F°° for orthogonal fully-extended
CCERSs by generalizing the constricting perpetual strategies in the literature [Pla93,
Ser98, Gra96, Mel96, VRSSX99]. We also study properties of F°° that are used in the
next section to obtain new criteria for the perpetuality of redexes and of redex occur-
rences in orthogonal fully-extended CCERSs. A recent survey on perpetual reductions
in the A-calculus and its extensions can be found in [Sgr97a, VRSSX99].

For convenience we have collected the definitions of all related perpetual strategies
in Section 2.3.2. To unify the notation we follow [Sgr97a, VRSSX99] and use F; and F3
to denote the perpetual strategies of Bergstra and Klop [BK82] and S¢rensen [Sgr98],
respectively. And we use F, to denote the zoom-in strategy of Mellies [Mel96].

Let us first fix the terminology. Recall that a term ¢ is called weakly normalizing
(WN), written WN(¢), if it is reducible to a normal form (i.e., a term without a redex),
and t is called strongly normalizing (SN), written SN (¢), if it does not possess an infinite
reduction. We call ¢ an oco-term (written oot), if =SN(t). Clearly, for any term ¢,
SN(t) = WN(t). If the converse is also true, then we call ¢ uniformly normalizing (UN).
So a UN term ¢ either does not have a normal form or all reductions from ¢ eventually
terminate. Correspondingly, a rewrite system R is called WN, SN, or UN if all terms in
R are WN, SN, or UN, respectively.

Following [BK82, K1092], we call a rewrite step ¢ — s, as well as the redex-occurrence
u C t, perpetual if oot = oos. Otherwise we call them eritical. We call a redex (not
an occurrence) perpetual iff its occurrence in every (admissible) context is perpetual. A
perpetual strategy in an orthogonal fully-extended CCERS is a (partial) function on terms
which in any reducible term selects a perpetual redex-occurrence; the orthogonality of the
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CCERS implies that the redex-occurrence uniquely determines the rewrite rule (and the
corresponding admissible assignment) according to which the redex is to be contracted.

Definition 2.20 Let P : ¢t —» and s C t. Reduction P is internal to s if it contracts
redexes only in (the descendant of) s. (The contracted redexes in P need not be proper
subterms of s.)

Definition 2.21 (1) Let t be an oo-term in an orthogonal fully-extended CCERS and
let s Ct be a smallest subterm of t such that co(s) (i.e., such that every proper subterm
e C s is SN). Then we call s a minimal perpetual subterm of ¢, and call any external
redex of s (such a redex exvists by Theorem 2.19) a minimal perpetual redex of t.

(2) Let FS° be a one-step strategy that contracts a minimal perpetual redex in t if
oot and otherwise contracts any redex. Then we call F2° a minimal perpetual strategy.
We call F*° constricting if for any F>°-reduction P : ty <% t; = ... (i.e., any reduction
constructed using F'°°) starting from an co-term to and for any i, PF :t; = tiy s
internal to s;, where s; C t; is the minimal perpetual subterm containing v;. Constricting
manimal perpetual strategies will be denoted F2° .

Recall that, according to Gramlich [Gra96, Remark 3.3.7], a reduction in a TRS is
called constricting if it has the form

Colso] ™2 Co[Ch[sa]] S ColCh[Calsal]] . ..

where s; are minimal perpetual subterms and uw; C s;. Hence any F2-reduction is
constricting (according to Gramlich). Plaisted [Pla93] constructs a constricting perpet-
ual strategy (for TRSs) that in each step contracts a perpetual redex of the leftmost
(innermost) minimal perpetual subterm.'® Sgrensen’s f-reduction strategy F3 [Ser98,
VRSSX99], as well as Mellies’ zoom-in S-strategy [, produce constricting reductions
(on co-terms) and are special cases of F>°. Specifically, F, is obtained from F2° if in
each step the leftmost redex of a minimal perpetual subterm is contracted (the leftmost
redex in any A-term is external); and Fj is a special case of F,. The perpetual strat-
egy F» [VRSSX99] is not zoom-in but is constricting. Note that F°° is not in general a
computable strategy, since SN is already undecidable in orthogonal TRSs [Kl092]; the
strategies [y, Fy, F5, and F, are not computable either. These four strategies all produce
standard reductions.

Lemma 2.22 Let t be an co-term in an orthogonal fully-extended CCERS, let s Ct be
a mintmal perpetual subterm of t, and let P :t —» oo be internal to s. Then exactly one
residual of any external redex u of s is contracted in P.

Proof Let ¢t = Cls] and s = C'[s1,...,u,...,8,], where C’ consists of the symbols on
the path from the top of s to u (the context C” can be empty, in which case s = «). If, on
the contrary, P does not contract a residual of u, then every step of P takes place either
in one of the s; or in the arguments of u (since u is external in s). Hence at least one of

13As noted by Gramlich [Gra96], Plaisted’s original definition of ‘constricting’ is not correct because
any infinite reduction becomes constricting.
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these subterms has an infinite reduction — a contradiction, since s is a minimal perpetual
subterm. Since wu is external, P cannot duplicate its residuals; hence P contracts exactly
one residual of u.

The following theorem justifies the terminology ‘minimal perpetual redex’.

Theorem 2.23 [I°° is a perpetual strategy in any orthogonal fully-extended CCERS.

Proof Suppose co(tp), let so be a minimal perpetual subterm of ¢g, and let u C sg be a
minimal perpetual redex. Let P : ¢y =3 ¢ = t, —» oo be internal to so. By Lemma 2.22
exactly one residual of u, say wu;, is contracted in P. Let Piyy :tg 3¢, 5 ... & tiy1 and

*

Pry ot B tie —» oo (e, Pt B, ti =5t % ). Since P; and u are co-initial,
u+ Pi/u~y P;+u/P; = P; + u; = Piy; by Theorem 2.10, hence P = Py + Py ~p,

u+ P /u+ P

1~ That is, u is a perpetual redex-occurrence. Hence I’ is perpetual.

Definition 2.24 F?° is the leftmost minimal perpetual strategy, denoted F\2, if in each
term it contracts the leftmost minimal perpetual redex. (See Definition 2.31 for the defi-
nition of F2 for the case of the A-calculus.)

Theorem 2.25 [7X is a constricting strategy in any orthogonal fully-extended CCERS.

Proof Let P:ty 31 5 1, —» oo be a leftmost minimal perpetual reduction, and let
s; C t; be the leftmost minimal perpetual subterm of ¢;. Since by Theorem 2.23 w; is
perpetual for the term s;, the descendant of s; is an co-term and thus contains s;;1, and
it is immediate that P is constricting.

Although we do not use it in the following, it is interesting to note that the constricting
perpetual reductions are minimal w.r.t. Lévy’s embedding relation <;. Hence the term
minimal.

The relations <y, ~, and / (defined in Section 2.2) are extended to possibly infinite
co-initial reductions N, N’ as follows. N < N’ or equivalently, N/N' = () if for any
redex v contracted in N, say N = Ny 4+ v+ Ny, v/(N'/Ny) = 0 (see the diagram below);
and N ~; N'iff N <; N’ and N’ <;, N. Here, for any infinite P, u/P = () if u/P’ =
for some finite initial part P’ of P. And P/Q) is defined only for finite ) as the reduction
whose initial parts are residuals of initial parts of P under Q).

N1 v N2 N

N l lN’ /N,

A\ A\

Theorem 2.26 Let P : ty 3 t; B t, —» oo be a constricting minimal perpetual re-
duction in an orthogonal fully-extended CCERS and let ) : ty —» oo be any infinite
reduction such that () <y, P. Then () ~y, P.

Proof Since P is constricting, there is a minimal perpetual subterm sy C ¢y such that
P is internal to sg. Since @) <y P, @) is internal to sy as well. By the construction, ug is
an external redex in sg, and by Lemma 2.22 exactly one residual u" of ug is contracted in

o/ QF .
Q). So let Q) : 1o 2, = 2 0o, Then Q ~p uo + Q;/uo + Q%,1, and obviously
ug 4z, ). Similarly, since P is constricting, for any finite initial part P’ of P, P" <p @),

and therefore P <, (). Thus Q ~;, P.
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2.3.2 Known perpetual strategies of A\-calculus

In this section we collect definitions of all perpetual strategies mentioned in the previous
section.

Perpetual strategies on A-terms will be defined by induction on the structure of terms
not in f-normal form, and the redex chosen by a strategy for contraction will be indicated
here by underlining. SN (resp. NF3) will denote the set of strongly f-normalizing A-
terms (resp. the set of A-terms in S-normal form). ¢ will denote a sequence of A-terms
t1,-++,t, and t € S will denote ¢; € S for each i.

Definition 2.27 ([BBKH76]) The -reduction strategy F., is defined as follows:

Foo(zls0) = zlF.(s)o ift € NI'g,s & NFg
Foo(Az.t) = Ar.F(t)

Foo((Ax.t)so) = (Aa)F(s)o ifx & FV(t), s NFg
Foo((Ax.t)so) = (Ax.t)so if v € FV(t) or s € NF3

Definition 2.28 ([BK82]) The B-reduction strategy Iy (called F' by Bergstra and Klop [BK82])
is defined as follows:

Fi(xts0) = xtFi(s)o ift € NIF'g,s & NFg
Fi((Az.t)so) = (Axt)Fi(s)o if s € SN
Fi((Az.t)so) = (Alx.t)so if s € SNg

Definition 2.29 ([VRSSX99]) The B-reduction strategy Fy is defined as follows:

Fy(xts0) = xtFy(s)o ift € SNg,s & SN
Fy

(Axt)o) = (Aa.Fy(t))o iftZ SNy
) = (Axt)Fy(s)o ift € SNg,s¢ SN
Fy((Ax.t)so) = (Aa.t)so ift,s € SNz

F5(xts0) = xtFs(s)o ift € SNg,s & SN
F5((Az.t)o) = (Az.F53(t))o ift € SN
Fs((Ax.t)ose) = (Ax.t)oFs(s)e ift,o€ SNg,s & SN
Fs((Ax.t)so) = (Ax.d)so ift,s,0€ SNz

Definition 2.31 The p-reduction strategy F} is defined as follows:

Fro(xtso) = zlF(s)o ift € SNz, s¢ SN

Fro(Ae.t) = v F2(t)

Fre((Ax.t)o) = (Ax.F2(t))o  ift € SNg

Fre((Ax.t)ose) = (Az.t)oF(s)e ift,o,(Ax.t)o € SNg, s € SN
F((Ax.t)soe) = (Ax.t)soe ift,s,0€ SNg, (Ax.t)so & SN
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Definition 2.32 ([Kha9jc, Kha94a, Kha01]) The limit strategy Fy, in an orthogonal
fully-extended CCERS is defined as follows:

1. Let u; be a redex in a term t defined as follows: choose an external redex uy in t;
choose an erased argument sy of uy that is not in normal form (if any); choose in
s1 an external redex uqy, and so on as long as possible. Let uy, 81, Uz, ..., u; be such
a sequence. The redex u; is called a limit redex of t.

2. We call a strategy limit, noted I}, if in any term not in normal form it selects a
limit redex. (Note that by Theorem 2.19 in any term not in normal form there is a
limit redex.)

2.4 Two characterizations of critical redexes

In this section we give an intuitive characterization of critical redex occurrences for or-
thogonal fully-extended CCERSs, generalizing Klop’s characterization of critical redex
occurrences for orthogonal TRSs [Klo92], and derive from it a characterization of perpet-
ual redexes similar to Bergstra and Klop’s perpetuality criterion for f-redexes [BK82].
Our proofs are surprisingly simple, yet the results are rather general and useful in appli-
cations. We need three simple lemmas first.

Lemma 2.33 Let t % s be in a CCERS, let o C t be either in an argument of u or
not overlapping with w, and let o’ C s be a u-descendant of o. Then o' = ol for some
substitution 0. Moreover, if o is a redex, then so is o' and o ~ 0.

Proof Since u can be decomposed as a TRS-step followed by a number of substitution
steps, it is enough to consider the cases when u is a TRS step and when it is an S-
reduction step. If w is a TRS-step, or is an S-reduction step and o is not in its last
argument, then o and o coincide (hence 0o ~ o when o is a redex). Otherwise, o' = of
for some substitution @, and if o is a redex, we have again o ~ o’ by orthogonality and
Corollary 2.13, since free variables of the substituted subterms cannot be bound in 06
(by the variable convention).

Lemma 2.34 Let s be a minimal perpetual subterm of t, in an orthogonal fully-extended
CCERS, and let P : t —» oo be internal to s. Then P has the form P =t —% o
e —» 0o, where u is the descendant of s in o (i.e., a descendant of s necessarily becomes
a redex and is contracted in P).

Proof If P did not contract descendants of s, then infinitely many steps of P would
be contracted in at least one of the proper subterms of s, and this would contradict the
minimality of s.

Lemma 2.35 In an orthogonal fully-extended CCERS, let P = u+ P’ be a constricting
minimal perpetual reduction starting from t, and let uw be in an arqgument o of a redex
v Ct. Then P s internal to o.
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Proof Let s C ¢t be the minimal perpetual subterm containing w. By definition of
minimal perpetual reductions, u is an external redex of s; hence s does not contain v.
Since P is constricting, it is internal to s, and orthogonality and Lemma 2.34 tell us that
s cannot overlap the pattern of v. The lemma follows.

Definition 2.36 (1) Let P : t, <% ¢, 2 ... 5 4k, be in an orthogonal CCERS, and
let s, 81,...,85 be a chain of descendants of so along P (i.e, s;41 is a u;-descendant of
si Ct;). Then, following [BKE2], we call P passive w.r.t. so, 81, .., Sk if the pattern of u;
does not overlap s; (s; may be in an argument of u; or be disjoint from ;) for 0 <i <k,
and we call sy a passive descendant of so. By Lemma 2.33, sp = s for some substitution
6, which we call a passive substitution, or P-substitution (w.r.t. s, s1,...,sk).

(2) Let t be a term in an orthogonal fully-extended CCERS and let s Ct. We call s a
potentially infinite subterm of t if s has a passive descendant s s.t. o0o(s'). (Thus co(sh)
for some passive substitution 6.)

Theorem 2.37 Let t be an co-term and let t — s be a critical step in an orthogonal
fully-extended CCERS. Then v erases a potentially infinite argument o (thus oo(of) for
some passive substitution 8).

Proof Let P:t =1y 3t 31, — oo be a constricting minimal perpetual reduction,
which exists by Theorem 2.23 and Theorem 2.25. Since v is critical, SN (s); hence P/v is
finite. Let j be the minimal number such that u;/V; = 0 and u; € V;, where V; = v/P;
and P; : t —» t; is the initial part of P with j steps. (Below, V; will denote both
the corresponding set of residuals of v and its complete development.) By the Finite
Developments theorem, no tails of P can contract only residuals of v; and since P/v is
finite, such a j exists.

Uy

t= to tl t] t]‘_|_1 P
4w
s =S¢ Sy 85 i Sj41 7 Plv

Since u;/V; = 0 and u; € Vj, there is a redex v’ € V; whose residual is contracted
in V; and erases (the residuals of) u;. Since V; consists of (possibly nested) residuals of
a single redex v C tg, the quantifiers in the pattern of v’ cannot bind variables inside
arguments of other redexes in V;. Therefore, by Corollary 2.13, v is similar to its residual
contracted in Vj, and hence u;/v" = @), implying that v’ erases its argument o', say the
m-th from the left, containing u;. By Lemma 2.35, the tail PF :¢; — oo of P is internal
to o.

Let v; C ¢; be the predecessors of v" along P; (so vg = v and v; = v’; note that a redex
can have at most one predecessor), and let o; be the m-th argument of v; (thus o' = 0;).
Note that w; # v; because v; has residuals. Let [ be the minimal number such that w;
is in an argument of v; (such an [ exists because u; is in an argument of v;). Then, by
Lemma 2.35, all the remaining steps of P are in the same argument of v; and it must be
the m-th argument o; of v; (thus co(o;)); but v’ erases its m-th argument, implying by
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Corollary 2.13 that v; also erases its m-th argument o;. Furthermore, by the choice of [,
no steps of P are contracted inside v; for 0 < ¢ < [; thus v; is a passive descendant of
v, and o7 1s a passive descendant of oy. Hence, by Lemma 2.33 v ~ v;. Thus v erases a
potentially infinite argument oy (since co(0;)), and we are done.

Note in the above theorem that if the orthogonal fully-extended CCERS is an orthog-
onal TRS, a potentially infinite argument is actually an oo-term (since passive descen-
dants are all identical), implying Klop’s perpetuality lemma [K1092]. O’Donnell’s [O’D77]
lemma, stating that any term from which an innermost reduction is normalizing is
strongly normalizing, is an immediate consequence of Klop’s Lemma.

Corollary 2.38 Any redex whose erased arqguments are closed SN terms is perpetual in

orthogonal fully-extended CCERSs.

Proof Immediate, since closed SN terms cannot be potentially infinite subterms.

Note that Theorem 2.37 implies a general (although not computable) perpetual strat-
egy: simply contract a redex u in the term ¢ whose erased arguments (if any) are not
potentially infinite w.r.t. at least one co-subterm s C ¢ (although the erased arguments of
u may be potentially infinite w.r.t. ). It is easy to see that the perpetual strategy F'* of
Barendregt et al. [BBKH76, Bar84] and, in general, the limit perpetual strategy F2 of
Khasidashvili [Kha94c, Kha94a, Kha0l] are special cases, since these strategies contract
redexes whose arguments are in normal form and no (sub)terms can be substituted in the
descendants of these arguments. The strategy Fo° (and hence the strategies F5 and F),
as well as the strategies I} and Fj, are also special cases of the above general perpetual
strategy.

We conclude this section with a characterization of the perpetuality of erasing redexes,
a characterization similar to the perpetuality criterion of Sx-redexes that was given by
Bergstra and Klop [BK82].

Below, a substitution 6 will be called SN iff SN (20) for every variable x.

Definition 2.39 We call a redex u safe (respectively, SN-safe) if it is non-erasing or if
it is erasing and for any (resp. SN-) substitution 0, if uf erases an oco-argument, then
the contractum of u is an co-term. (Note that, by Corollary 2.13, u is erasing iff uf is,
for any 8, erasing.)

Theorem 2.40 In an orthogonal fully-extended CCERS R, any safe redex v is perpetual.

Proof Assume on the contrary that there is a context C[] such that ¢t = C[v] — s is
a critical step. Let [ be the minimal number such that, for some constricting minimal
perpetual reduction P : t = to =3 t1 = t, —» oo, the tail Pr:t; = oo of Pisin an
erased argument of a residual of v. Such an [ exists by the proof of Theorem 2.37 (in the
notation of that theorem, P/ is in an erased argument of v; C ¢;). Let v; be the outermost
of the redexes in ¢; which contain wu; (and therefore, P) in an erased argument o, say
the m-th from the left (thus co(o;)). By the proof of Theorem 2.37, the m-th argument
o of v is v-erased, o; = 0, and v; = v for some passive substitution 6.

We want to prove that the safety of v implies co(s;), hence oo(s), contradicting the
assumption that ¢+ =+ s is critical (see the diagram for Theorem 2.37). By the Finite
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Developments theorem, we can assume that s; is obtained from ¢; by contracting (some
of) the redexes in V; in the following order: (a) contract redexes in V; disjoint from wvy;
(b) contract redexes in V; that are in the main arguments of v;; (¢) contract the residual
vf of vy; (d) contract the remaining redexes, i.e., those containing v; in a main (by the
choice of v;) argument. Since the contractions (a) and (b) do not affect o;, v erases an
oo-argument. (Recall from the proof of Theorem 2.37 that redexes in V; are similar to
their residuals contracted in any development of V}.) Since v; = vf and redexes in (b)
are in the substitution part of v;, v;7 = v0* for some substitution 6*; hence its contractum
e is infinite by the safety of v. By the choice of v;, e has a descendant ¢’ in s; after
the contractions (d). By the following diagram (where t{ is obtained from ¢; by the

steps (a), (b) and (c); wg + wy + ... is an infinite reduction of e C ; Uéd) is the set
()

of residuals of redexes in (d); and Ui(d) are respective residuals of Uj"), oo(e) implies

oco(€'). Indeed, if e¢; C ¢} is the descendant of ¢ in #i, then all Ui(d)—descendants of ¢; in
st are disjoint and identical to ¢;, and st —» si*! contracts exactly one residual of w; in

every Ui(d)—descendant of €; (the latter are also descendants of ¢/ C s;). Hence oo(s;) — a

contradiction.
Wo

w Wwa

& i t &
gy @y oy ol
S; = SO 81 82 83

l [ _I_ [ _I_ [ _I_ [ _I_

Mgller Neergaard and Sgrensen [MNS99] give a different proof of perpetuality of safe
K-redexes in the A-calculus (safe K-redexes are called there good).

The following example demonstrates that non-erasing steps need not be perpetual
in orthogonal CCERSs in general, that is, the restriction to fully-extended CCERSs is
necessary:

Example 2.41 Consider the ERS with rules:

Ae(A,B) — (B/x)A
kyz(A) — (a/z)A
e(A,B) — ¢

fla) — f(a)

where A is a partial quantifier symbol binding only in its first argument, and y ¢ FV (A0)
for any assignment 0 admissible for the k-rule. Consider the term s = ryz(Az(e(x,y), f(2))).
Note that s is not a redex (yet) due to the occurrence of y. On the one hand, contracting
the e-redex yields an infinite reduction

s = ryz(Axz(e, f(2))) = da(e, fla)) — ...
On the other hand, contracting the (non-erasing) A-redex yields
5 = (el f(2), ) = my=(e) = c

as only, and strongly normalizing, reduction. Hence the A-step is non-erasing but critical.
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2.5 Applications

We now give a number of applications demonstrating the power and usefulness of our
perpetuality criteria. In some of the examples we will use the conventional A-calculus
notation [Bar84], and by the argument of a f-redex (Az.s)o we will mean its second
argument o.

2.5.1 The restricted orthogonal A-calculi

Let us call an orthogonal restricted A-calculus (ORLC) a calculus that is obtained from the
A-calculus by restricting the term set and the S-rule (by some conditions on arguments
and contexts) and that is an orthogonal fully-extended CCERS. Examples include the
Ar-calculus, the call-by-value A-calculus [Plo75], and a large class of typed A-calculi.

If R is an ORLC, then in the proofs of Theorem 2.37 and Theorem 2.40, the Pj-
substitution (and in general, any passive substitution along a constricting perpetual
reduction) is SN. This can be proved in a way similar to the one used to prove the
Bergstra-Klop criterion (see [BK82, Proposition 2.8]), since in the terminology of [BK82]
and in the notation of Theorem 2.37 and Theorem 2.40:

e P is SN-substituting (meaning that the arguments of contracted -redexes are SN).
This is immediate from the minimality of F.

e P is simple (meaning that no subterms can be substituted in the subterms sub-
stituted during the previous steps). This follows immediately from externality,
w.r.t. the chosen minimal perpetual subterm, of minimal perpetual redexes (P is
standard).

Hence, we have the following two corollaries. The first one is a perpetuality criterion for
redex-occurrences and can be seen as a refinement of the Bergstra-Klop criterion [BK82]
in that it takes into account passive substitutions that can be generated by the context.
The second corollary is simply an extension of the Bergstra-Klop criterion (in the case
of f-redexes, the converse statement is much easier to prove, see [BK82]).

Corollary 2.42 Let t be an oo-term and let t = s be a critical step in an ORLC.
Then v erases a potentially infinite argument o such that oo(0) for some passive SN-
substitution 0.

Corollary 2.43 In an ORLC, any SN-safe redex v is perpetual.

For the case of the A-calculus, a different proof of Corollary 2.43 was published by
Xi [Xi96]. A simple proof of the Bergstra-Klop criterion, one that uses the strategy F3 and
thus is closely related to our proof was given by van Raamsdonk et al. [VRSSX99] (that
proof was obtained independently). Honsell and Lenisa [HL99] derive a strengthened ver-
sion of the Bergstra-Klop criterion using semantical methods. They show that -redexes
that are safe w.r.t. closed NF-substitutions are also perpetual (closed NF-substitutions
instantiate variables by closed normal forms). This criterion cannot be derived (at least,
directly) from the above corollaries.
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Note that these corollaries are not valid for orthogonal fully-extended CCERSs in
general since, unlike the passive substitutions in an ORLC, the passive substitutions
along constricting perpetual reductions in orthogonal fully-extended CCERSs need not
be SN: Let R = SU {oxAB — Szw(A/x)B, EF(A) — a} where w = Aax.Ap(x, ). Then
the step ox Ap(x, v)E(x) — oxAp(x, x)a is SN-safe (since it erases only a variable) but is
critical as can be seen from the following diagram, of which the bottom part is the only
reduction starting from oxAp(x, x)a:

oxAp(x,z)E(x) — SzwFE(Ap(x,x)) < E(Ap(w,w)) —6> E(Ap(w,w)) 7
E| E| 2 2

oxAp(z,x)a

Sxwa a a

S 0 0

2.5.2 Plotkin’s call-by-value A-calculus

To investigate the relation between the A-calculus and ISWIM language of Landin [Lan64],
Plotkin [Plo75] introduced the call-by-value A-calculus Ay. This calculus restricts the A-
calculus by allowing the contraction of redexes whose arguments are values, i.e., either
abstractions Ax.t or variables (we assume that there are no d-rules in the calculus). Let
the lazy call-by-value A-calculus Apy be obtained from Ay by allowing only call-by-value
redexes that are not in the scope of a A-occurrence (Ary is enough for computing values
in Ay, see Corollary 1 in [Plo75]). Then it follows from Corollary 2.42, as well as from
Corollary 2.43, that any Apy-redex is perpetual; hence Apy is UN. Indeed, let v = (Az.s)o
be a Ary-redex. Then if o is a variable it is immediate that v cannot be critical and that
if 0 1s an abstraction any of its instances is an abstraction too and hence is a Apy-normal
form. This is not surprising, however, because Apy-redexes are disjoint!* and there is no
duplication or erasure of (admissible) redexes.

2.5.3 De Groote’s J;s-reduction

De Groote [DG93] introduced fs-reduction on A-terms by the following rule:
Bs: (Ax. MYN)O — (Ax. MO)N,

where ¢ F'V (M, O). He proved that the Bs-calculus is UN. Clearly, this is an immedi-
ate corollary of Theorem 2.37 since the s- and fBj-rules are non-erasing (note that these
rules do not conflict because of the conditions on bound variables). Using this result, de
Groote proves strong normalization of a number of typed A-calculi.

2.5.4 Bohm and Intrigila’s A-d;-calculus

Bohm and Intrigila [BI94] introduced the A-dj-calculus in order to study UN solutions
to fixed point equations, in the Ap-calculus. Since the K-redexes are the reason for

Mif w, v are redexes in a term ¢ and u = (Az.€)o, then v & e because of the main A of u, and v € o
since o is either a variable or an abstraction; orthogonality of Ay follows from a similar argument.
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the failure of uniform normalization in the A(n)-calculus, Bohm and Intrigila define a
‘restricted” K-combinator dx by the following rule:

(S[{AB — A,

where B can be instantiated to closed A-d;-normal forms (possibly containing dx con-
stants; such a reduction is still well defined). A-d-terms are Aj-terms with the constant
0. Bohm and Intrigila show that the A-dj-calculus is UN.

Whereas the n-rule is not fully-extended on the set of all (possibly erasing) terms,
it is fully-extended on the restricted set of (non-erasing) A-dx-terms. However, UN does
not follow from Corollary 2.38 since A-d;-calculus violates the orthogonality assumption.
It is only weakly orthogonal since there are the usual (trivial) critical pairs between the
p- and n-rule. This is settled in our other paper [KOvOO01b], and will be remarked in
Section 2.6.

2.5.5 Honsell and Lenisa’s Sy.- and [ y-calcului

Motivated by a semantical study of the A\j- and Ay-calculi, Honsell and Lenisa [HL93]
and Lenisa [Len97a] defined similar reductions, Syo- and Sxn-reductions, respectively,
on A-terms by the following rules:

Bne: (Ax.A)B — (B/x)A,
where 6 € AA(Bno) iff (B) is a closed S-normal form, and
Brn: (Ax.A)B — (B/x)A,

where § € AA(Prn) iff either € FV(A0) or §(B) is a variable or a closed f-normal
form. We have immediately from Corollary 2.38 and Corollary 2.43, respectively, that
Bne and By are UN. Note however that these conclusions do not follow (at least, without
an extra argument) from Bergstra and Klop’s or Honsell and Lenisa’s characterizations of
perpetual Sr-redexes [BK82, HL99], since o, Bxn C B but not vice versa. (If ¢ has an
infinite Syo-reduction and ¢t = s is a By.-step, then the Bergstra-Klop and Honsell-Lenisa
criteria imply the existence of an infinite #-reduction starting from s, not the existence
of an infinite fyo-reduction, and similarly for Sxn.) In [HL93], semantical proofs of UN
for Bno and PBx N are given.

2.6 Concluding remarks

We have introduced (orthogonal fully-extended) Context-sensitive Conditional Expres-
sion Reduction Systems in which several (typed or untyped) A-calculi can be expressed
straightforwardly. Furthermore, we have obtained two powerful criteria for the perpet-
uality of redexes in orthogonal fully-extended CCERSs and have demonstrated their
usefulness in applications.

As stated above, we claim that our results are also valid for Klop’s orthogonal fully-

extended substructure CRSs [KvOvR93].
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Intuitively this is the case since both ERSs and CRSs are essentially second-order
frameworks, i.e., abstractions over metavariables are not allowed. We will now present
an example showing that allowing abstractions on function variables, as is possible in Nip-
kow’s higher-order rewriting systems [Nip93], renders the Conservation Theorem invalid.
The example exhibits a non-erasing step which is not perpetual.

Example 2.44 Consider the higher-order rewrite system with rules:

FQyz. FAzy(x),z)) —5 F(Ar.c,Q)
app(abs(Ax. F(x)),S) —pera F(9)
where the first rule contains a function variable (y) as argument to a free variable (F'),

the second rule is the usual [MN98] higher-order rendering of the f-rule from A-calculus,
and Q = app(abs(Ax.app(x,x)), abs(Ax.app(x,x))). Then

FQyz.app(abs(Az.y(x)), 2)) —bera f(Ayz.y(2))

is non-erasing but critical. This can be seen from the following diagram, of which the
bottom part is the only reduction starting from f(Ayz.y(z)).

9] 9]
F(Ayz.app(abs(Ax.y(x)), z)) — app(abs(Ax.c), ) . app(abs(Az.c), Q) T
beta l beta l beta l
fAyzy(2)) 7 ¢ 7 . ¢ T

The point of the example is that, unlike in the ERS- or CRS-case, in HRSs a substitution
inside (caused by contracting a redex outside) a non-erasing redex can turn it into an
erasing one.

In [KOvOO1b], by restricting to second-order rewriting systems, we showed that sim-
ilar perpetuality criteria (Theorem 2.37) holds as well as ERSs or CRSs. Furthermore,
instead of observing wheter a redex is external in all reduction sequences, we restrict
ourselves to observe those in given sequences (which is the result of standardization).
This enables us to loosen the orthogonality assumption to the weakly orthogonality (or
further the biclosed assumption) such that UN of A-dj-calculus [BI94] in Section 2.5.4
becomes an easy corollary.
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Part 11

Automatic support for hand-coded
programs
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Chapter 3

Analysis of monadic properties
based on abstract interpretation

Many static analyses have been proposed towards efficient implementation of lazy func-
tional languages [AH87, Nie86, PJ87, Bur91, NNH99]. The most notable class is a set
of strictness analyses [Blo86, CPJ85, HY86, Myc80, WHS87], that collect information on
the strictness of functions, and this information enables us to optimize a program by the
so-called call-by-need to call-by-value transformation. A strictness analysis detects a set
of parameters that must be evaluated to obtain the resulting value of a function.

Abstract interpretation [AH87, CC77, MK84, Myc80] and projection analysis [WHS7,
DW90] have been proposed as the basis for formalizing various static analyses. Abstract
interpretation executes a program for all instances on a (possibly finite) abstract domain
which reflects the objective property. In contrast, projection analysis interprets a program
as a transformer on a (possibly finite) selections of projections, which reflect the objective
property. Equivalence between their certain sub-classes was investigated in [Bur90].
However, the following questions still remain.

e In [WHS7], Wadler indicated that head-strictness detection on a nonflat domain
cannot be treated by previously proposed abstract interpretation, although pro-
jection analysis can. In [Bur90], Burn divided head-strictness into two parts: H-
strictness and Hp-strictness. He showed that Hp-strictness can be treated by ab-
stract interpretation. In fact, it is much easier to detect as a by-product property
in total/tail strictness analysis. Then, the question is: Can H-strictness also be
treated by abstract interpretation?

o There are various algorithms for program analyses. For instance, strictness analyses
on flat domains were proposed in both forward/backward manners [Myc80, PJ87,
HY86]. Furthermore, a result of some analysis intuitively introduces results of the
others. For instance, this is a case of CPA and strictness analyses. Then, the
question is: How can the equivalence and hierarchy be formally shown?

In this chapter, first, HOMomorphic Transformer (HOMT) is proposed in order to for-
malize relations among strictness analyses on first-order functional programs. A HOMT
is a composition of special instances of abstract interpretation, and has enough ability to
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treat known static analyses including head/tail /total strictness detection on nonflat do-
mains. A set of HOMTSs, furthermore, is an algebraic space such that some composition
of HOMTs can be reduced to a simpler HOMT. This structure gives a transformational
mechanism between various analyses, and further clarifies the equivalence and the hier-
archy among them.

Next, Computation Path Analysis (CPA) is proposed. CPA detects all possible de-
mand patterns of a function, and modes represent the level of required evaluation. CPA
are compared with various analyses within the formalization by HOMTs, and concludes
that CPA is the most powerful.

Finally, an application of CPA on error detection, called anomaly detection, and the
implementation of CPA with modes are shown. For this implementation, the specification
of modes, which reflects the design scheme of an abstract domain, is open to users, and
the system automatically generates a CPA. The design scheme of CPAs for detecting
monadic properties is also discussed.

For simplicity, the arguments are basically for strongly-typed first-order functional
programs, and example programs are described by LISP-like syntax during this Chapter.
(Types are often omitted, if they are clear from the context.) Note that the techniques are
not exclusive of polymorphically typed or typeless programs; the important classification
is among flat /nonflat domains and Boolean values, which decide the choices of conditional
branches.

3.1 Anatomy of abstract interpretation - HOMomor-
phic Transformer (HOMT)

In this section, first, we show a construction of a HOMomorphic Transformer (HOMT)
as a composition of Unit-HOMTs (U-HOMTs), which are specified by quadruplet repre-
sentations. Various analyses are formalized as HOMTs in either a forward or backward
manner. Second, their soundness are discussed in a uniform way. Third, reduction re-
lation among HOMTs are shown as reduction rules among specific pairs of quadruplet
representations. Thus, hierarchy among HOMTs can be clarified by finding some ade-
quate quadruplet representation that bridges one HOMT to another.

3.1.1 Construction of U-HOMTSs and their quadruplet repre-
sentations

A HOMT is a functional that maps continuous functions on power sets of domains to
those on power sets of possibly finite abstract power domains. A HOMT is constructed
as a composition of U-HOMTs. Let us describe them formally.

A quasi order C is a binary relation that satisfies reflexivity (i.,e. X T X) and
transitivity (i.,e. X C Y and Y C Z imply X C 7), but may not satisfies anti-symmetry
(iie. XCVYand X JY imply X =Y).

Definition 3.1 Let (D,C) be a partially ordered set. A subset X C D is directed if
X#¢oandVer,ye DIze DaCz A yC 2.
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(D,C) is a complete partial order (CPO) if
1. There exists the least element L (€ D).
2. For each directed set X(C D), the supremum UX (€ D) exists.

For CPOs (D,C), (D',C), a function f: D — D' is monotonic if f(x) C" f(y) for
each * C y. a function f: D — D" is continuous if f(UX) = Uf(X) for each directed
set X(C D).

Definition 3.2 Let D be a CPO [Bar84]. A power domain PD[D] is a quotient of
P[D]) ={X|X(# ¢) C D} by E N I for a quasi order C [Plo76, Smy78]. We define

RC(X) = {eeD|JyeXyla}t Min(X) = {zxeX|-Jye Xy a}
LC(X) = {eeD|IyeXaly}t Max(X) = {zeX|-JyeXaCy}
Conv(X) = LCO(X)NRC(X) Conv(X) = LC(X)N RC(X)

and

XCoY & RO(X)DRO(Y)
XC, Y & LOX)CLO®Y)
XCpnY & X5V A XLE Y

For Co, Ty, and Cga, a pair (cl(X),rep(X)) of a closure function and a representa-
tive function is (RC(X), Min(X)), (LC(X), Max(X)), or (Conv(X),Conv(X)), respec-
tively. We also identify PD[D] with P™?[D] = {rep(X)|X(# ¢) C D}.

Definition 3.3 The quasi order "_, is X T_, Y if and only if X 1, Y where C, is
either EO; El; or EEM

Definition 3.4 Let D and Abs be CPOs. We denote power sets of D (resp. Abs) by
P[D] (resp. P[Abs]).

A map abs : P[D] — P[Abs] is a domain abstraction if abs is bottom-reflecting [Bur90]
(i.e. abs({x}) = {Laps} tmplies v =Lp). A map conc : P[Abs] — P[D] is a domain
concretization if abs-conc = 1d. They are called necessary if conc-abs D id, and sufficient
if conc - abs C ud.

Let Dy, Dy be sets A map f: P[D1] — P[D3] is centerized if f(X) = Uzexf({z}). A
map f: P[D1] — P[Ds] is alifting of a map f': Dy — Dy if f(X)={f"(x) | x € X}.

Remark A necessary pair composed of an abstraction abs and concretization conc is
frequently called a Galois connection. For a necessary pair, the typical choice of conc is
the inverse abs™!, as in Chapter 3. In Chapter 4, the example of a sufficient pair will be
presented (i.e., conc other than abs™!).

Frequently in literature, an abstraction abs is a map from a domain D to an abstract
domain Abs. Our definition covers them by regarding an abstraction as its lifting. Actu-
ally, a centerized abstraction (in our definition) coincides with the conventional definition.
The reason why we use an abstraction P[D] — P[Abs] is the construction of sufficient
pairs, which have been neglected in literature.
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D" D D" D

f-1

P P

PlD"] P[D]
abs | | conc Q abs abs D abs conc
P[Abs"] P[Abs] P[Abs" P[Abs]

cl Q rep rep D cl

PD[Abs"| ) PD[Abs] PD[Abs"] ) PD[Abs]
forward U-HOMT h backward U-HOMT h

Figure 3.1: Construction of U-HOMT h

A U-HOMT, which is a HOMT induced from a domain abstraction and a concretiza-
tion, is classified into two types: forward U-HOMTSs and backward U-HOMTs. They
correspond to forward analyses and backward analyses. A forward U-HOMT transforms
a function to that of the same direction, and a backward U-HOMT transforms it to that
of the opposite direction. Their constructions are shown in commutative diagrams in
Fig. 3.1. In Fig. 3.1, abs is an abstraction map, conc is a concretization map, ¢l is a
closure map, proj is a projection (from a power set to a power domain), and rep is a
representative function.

U-HOMTs are constructed in following steps. For a forward U-HOMT, first, a
function f : D™ — D is naturally lifted to a function f : P[D"] — P[D] as
f(X) = {f(2) | « € X}, where P[D"] and P[D] are power sets of D" and D, re-
spectively. Next, f is transformed to a function abs- f-conc : P[Abs"] — P[Abs]. Then,
h(f) : PD[Abs"] — PD[Abs] is obtained by rep-abs- f-conc-cl. By regarding P D[Abs"]
as P"P[Abs"] and PD[Abs] as P"*?[Abs], the interface of composition of U-HOMTs is
kept as power sets, which will be introduced in Section 3.1.3. On the other hand, a
backward U-HOMT % is h(f) = rep-abs- f~* - conc-cl, where f~1(Y) ={xz | f(z) € Y}.
Then the algorithm of analysis or verification is formalized as the least-fixed-point com-
putation on power domains, i.e., start with the minimal element in a power domain, and
iteratively unfold function definitions until convergence.

Formally, there are several differences between constructions of forward and backward
U-HOMTs. A result of a backward U-HOMT A(f) is induced from an inverse relation
/71, whereas a result of a forward U-HOMT is induced from a relation f itself. Therefore,
the function inverse may require the empty set ¢ as a result value when f is not an onto
relation. Thus, a power domain PD[D] must be extended with ¢ to make h(f) well-
defined. The quasi orders Ty, C; are also naturally extended so that ¢ is largest wrt C,
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and ¢ is least wrt C;.!

Further, for a forward case the more informative function returns the more informative
output for the same input, whereas for a backward case the more informative function
requires the less informative input for the same output. This means that backward
abstract interpretations use the inverted quasi orders, such as C_o (= o) (e.g., strictness
analysis in [HY86, Bur90, HL94]) and C_; (= ;) (e.g., verification in [Oga99]).

Therefore, the parameters that specify these U-HOMT constructions are a pair com-
posed of domain abstraction and concretization, a direction (that is, either forward or
backward), a power domain construction (a pair composed of a quasi order and a closure
function), and a representative function® By definition, a power domain construction is
composed of the selection of quasi order C on power set combined with a closure function
closure. Thus, once a domain abstraction is fixed there are relatively small choices.

Definition 3.5 A U-HOMT, h, is specified by a domain abstraction abs: P[D] — P[Abs]
and a domain concretization conc: P[Abs] — P[D], a direction dir (whether forward (4)
or backward (—)), a power domain construction (i.e., a pair of a quasi order and a closure
function) (C,¢l), and a representative function rep.

A quadruplet ((abs, cone), dir, (=, cl), rep) is called the quadruplet representation.

There could be many choices, but in practice U-HOMTSs are classifies into following
cases and the power domain construction is specifically decided for each case:

necessary  sufficient
forward (Cy, LC)  (Co, RC)
backward (C_o, RC) (E_q,LC)

Note that even if the framework of an abstract interpretation is determined, still the
design of the abstraction and concretization is difficult. Below are some examples from
literature.

e Strictness analyses over flat domains use the abstract domain Abs = {0,1} with
0 C 1, the (centerized) abstraction map, abs({L}) = {0}, abs({z}) = {1} for
x € D\ {L}, and the concretization conc = abs™".

Then a forward strictness analysis is obtained with the power domain construc-
tion (RC(X),C1) and the representative function Max, and a backward strictness
analysis is obtained with (LC(X),E_¢) and Min (See below).?

e A backward compile-time verification (in Chapter 4) uses the abstract domain Pred,
which consists of a certain class of predicates with P C @) if and only if () = P,
the abstraction map abs, concretization map conc,

abs(X) = Venepcrox)P Vv false
conc(P) = LC({x € D| P(z)})
!This means that the power domain construction with (RC(X) N LC(X),Co N C1) can be applied

only for a forward U-HOMT such as in [MK84].
2Here, we consider only the first-order abstractions; for a higher-order abstraction, refer [Hun91].

3Here, Min and Max are implicitly assumed to be well-defined over abstract domains. This trivially
holds if an abstract domain is finite.
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and the power domain construction (RC(X),C_;). Note that this verification as-
sumes termination of a program (i.e., defined values are mapped to defined values);
thus, this is partial correctness.

To conclude this section, strictness analyses are formalized in terms of HOMTs. in-
troduce strictness analyses more formally. A strictness analysis may be either forward
or backward. A strictness analysis is forward, if it clarifies the properties of results from
the properties of parameters. Conversely, a strictness analysis is backward, if it clarifies
the conditions satisfied by parameters from the properties of results. For simplicity, here
we concentrate on strictness analyses on flat domains (i.e. Integer, Boolean, etc).

Example 3.6 Forward Strictness Analysis (FSA) is an example of a forward analysis
[Mye80]. Similar algorithms are found in [AHS87, CPJ85]. FSA interprets a function,
f, on a flat domain (such as Integer or, Boolean ) to a {0,1}-valued function frsa,
where 0 means totally undefined and 1 means possibly defined. Thus, frsa returns 1 if
there possibly exists a computable real instance of f, and returns O if there never exists
a computable real instance of f. For instance, i f(x,y, z) is interpreted to

ifFSA . (17171) — 17 (17170) — 17 (17071) — 17
(0,1,1) — 0, (1,0,0) — 0, (0,1,0) — O,
(0,0,1) — 0, (0,0,0) — O.

Then, requisite parameters can be detected by firstly testing frsa for all {0,1}-input pat-
terns, next collecting the set of minimum input patterns that returns 1 (called 1-frontier
in [AHS87]), and finally detecting requisite parameters that are always required to be 1 in all
patterns in the 1-frontier. For instance, if(x,y, z), the 1-frontier is {(1,1,0),(1,0,1)},
and then, the requisite parameter is x.

A quadruplet representation of FSA is qrsa = ((absy, abs;'), +,(Cy, LC), Maz). For
example, i f(x,y, z) are interpreted to by hpsa as

hrsa(if) : Max({(1,1,1)}) — Maz({1}),  Maz({(1,1,0)}) — Maz({1}),
Maz({(1,0,1)}) — Maz({1}), Max({(0,1,1)}) — Max({0}),
Maz({(1,0,0)}) — Maz({0}), Max({(0,1,0)}) — Max({0}),
Maz({(0,0,1)}) — Maz({0}), Max({(0,0,0)}) — Max({0})

Thus, equivalence among ifpsa and hpsa(if) is easily shown from an embedding x €
{0,1} to{x} € PD({0,1}). Fquivalence of quasi orders follows fromx Cy = {x} T,

{y}

Example 3.7 On the other hand, Boolean-algebraic Strictness Analysis (BSA) [HYS6,
Ono88] is an example of a backward analysis.* BSA interprets a function, f, to a function
fBsa which is a symbolic manipulation on the set-characteristic expressions of input pa-
rameters. For example, i f(x,y, z) is interpreted to i fpsa(x,y,z) = Avyz.(zUy)N(zUz).

4If we put id as an abstraction map in SIA, we will obtain Inverse Image Analysis [Dyb91].
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Then, requisite parameters are collected by substituting actual variable names to corre-
sponding set-characteristic expressions. For instance, requisite parameters of i f(a,b,b)
are detected as ( Axyz.(zUy)N(xUz) )({a},{b},{b}) = {a}U{b)N({a}U{b}) = {a,b}.

Both FSA and BSA have equivalent analytical power except that FSA can detect di-
verged functions when its 1-frontier is an empty set, whereas BSA cannot. By adding the
spectal element # that represents the divergence with rules xt N# = # and xU# = z, and
setting the initial value of the algorithm as # (instead of a strict function), we obtain the
backward analysis with the same analytical power, called Strictness Information Analysis
(SIA) [Ono88].

SIA, the extension of BSA, is represented as @ HOMT hgra of a quadruplet represen-
tation is ((absy, abs; '), —, (C_o, RC), Min). The main difference between BSA and SIA
is that STA can detect diverged functions whereas BSA cannot. That is, a diverged func-
tion is interpreted as Ay ... xn.F by SIA whereas Axy ... v, 21U, . .Uz, (strict function)
by BSA because of the initial value of iterative algorithms. Other primitive functions
are interpreted to the same functions on abstract domains. For example, if(x,y,z) and
+(x,y) are interpreted to

/ ‘ hpsa(f) hsra(f)
if(x,y,2) | Aaeyz.(zUy)N(zUz) Min({1}) - Min({(1,1,1),(1,1,0),(1,0,1)})
+(x,y) Ary.x Uy Min({1}) = Min({(1,1)})

As shown in examples above, a backward analysis can provide the demand-driven
detection, whereas a forward analysis needs to compute all possibility. This is because
the property is usually described as whether the result is such and such, etc., and an
analysis needs to detect what kinds of inputs will lead some specific result value. Thus,
it is frequently said that a backward analysis is more efficient than a forward one if they
have same analyzing power. This folklore will be discussed again in Section 4.4, next
Chapter.

3.1.2 Soundness of a HOMT

A U-HOMT h(f) that reflects a run-time property of a function is not computable, even
if the abstract domain Abs is finite. Therefore, instead of h(f), we compute h°(f) by the
least fixed point computation over an (possibly finite) abstract domain. Thus, h°(f) is
an approximation of h(f), and validity of the analysis depends on whether h°( f) is sound

for h(f).

Definition 3.8 Let f be a fix(r) = U,7"(Q), for a recursion equation T and an unde-
fined function 0 which maps every elements to the bottom element L. Let h be a forward

(resp. backward) HOMT. A computed HOMT h¢ is he(f) e U, (hr(7))"(R(Q)), where
h.(T) is a syntactically identical (resp. inverse) equation, and interprets each primitive
function priv to h(priv).

Thus, h(f) is a result of a fixed-point computation on a power domain of an abstract
domain, starting with A(Q). From the viewpoint of annalyses as HOMTs, a computed
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HOMT A° must properly approximates a HOMT h. For instance, consider strictness anal-
ysis, relevance analysis (which detects a set of parameters that may be evaluated), and
CPA (which detects a set of all possible demand patterns called PDPS, see Section 3.2)
on flat domains. They must satisfy the conditions shown in Table 3.1. These conditions
are generalized to the soundness condition as defined below.

Table 3.1: Safeness of SRAs on flat domains

‘ real property detected property
CPA real PDPS - detected PDPS
strictness analysis real strict parameters DO detected strict parameters
C detected relevant parameters

relevance analaysis | real relevant parameters

Definition 3.9 An abstract interpretation h is sound if and only if h(f) T he(f) for all
continuous functions f where C is a quasi order associated to a power domain construc-
tion of h.

In general, soundness h C h°, is shown by two steps. That is, first show h(f - ¢g) C
h(f) - h(g) if h is forward, and A(f - g) C h(g) - h(f) if h is backward. Second, show
h(fUg) Ch(f)Uh(g). (As the special case, h(fUg) = h(f)Uh(g), i.e., h is continuous.)

Then, the first condition guarantees A(f®) T (h.(7)) (h(R)), and thus U;h(fD) C
Ui (R (7)) (h(w)) = h(f). The second condition guarantees h(f) = h(U; fD) C LA (fD).
Therefore, soundness A(f) C h°(f) is shown. The next theorem collects folklore results
on soundness (for instance, case 3 appears in [MK84]).

Theorem 3.10 Let h be a U-HOMT with a quadruplet representation ((abs, conc), dir, (C
ccl),rep). Then, h is sound if the following conditions are satisfied.

e The domain abstraction abs : P[D] — P[Abs| and the concretization conc
PD[Abs] — PDI[D] are continuous (wrt C).

e The pair (dir,(C,cl)rep) is either

1. (+,(Cq, LC), Max), (—,(E_o, RC), Min) with conc - abs D id (necessary),
2. (+,(Co, RC), Min), (—,(C_y, LC), Max) with conc-abs C id (sufficient), or
3. (+,(Egn, Conv), Conv) with conc - abs Jgp id.

Proof Let us consider the case of (+,C;, Max). For other cases, discussion similarly
proceeds except that instead of C, D for case 2 and gjs for case 3 are applied.

Let f) be the i-th approximation 7¢(Q) of the recursive equation 7 of f. First, we
show A(fO) T (h(7))(h(R)) by proving h(f - g) C h(f) - h(g). Since abs is bottom-
preserving, so conc is from abs- conc = id. Therefore h°(2) = h(Q). Since conc-abs 2 id,
h(f - g) S h(f) - hlg) (resp. h(f-g) S h(g)-h(f)). Thus h(f-g) T h(f)- h(g) (resp.
h(f-g9) E hlg) - h(f)).
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Second, we show h(f) = h(U;fD) = Uh(fD). This holds since an abstraction
abs : D — Abs and a concretization conc : PD[Abs| — PD[D] are continuous. Thus, we
conclude A(f) = h(U; fO) = L;A(FD) T he(f) = Us(h(1))(h()). [ |

Example 3.11 FSA and SIA (see Fxample 3.6 and 3.7) are sound from Theorem 3.10.

When a domain abstraction is not continuous (such as computation path analysis in-
troduced in Section 3.2), the next theorem is useful. This theorem is obtained by pursuing
set-inclusion relations and does not depend on how a HOMT (which is a composition of

U-HOMTs, defined below) is constructed.
Theorem 3.12 A necessary HOMT h is sound if the following conditions are satisfied.

o Ifh is a forward HOMT, it satisfies h(f - g) C h(f) - h(g). If h is a backward
HOMT, it satisfies h(f -g) C h(g) - h(f).

o h(fUg) Ch(f) Uhlg) and h(Lifi) C Lh(f).

3.1.3 Reduction relation among HOMTSs
A HOMT is a composition of U-HOMTs. To define the composition, Let us first define

a necessary inverse and sufficient inverse.

Definition 3.13 Let [ : P[D{] — P[D;]. For X C D, a necessary inverse of [ is
I NX)={y € Di | f{yh) N X # &}, and a sufficient inverse is f~°(X) = {y €
Dy | f({y}) € X}

Note that if f is a lifting of a map from D; to D,, then these inverses coincide with
the ordinary inverse f_;.

Definition 3.14 Let h, b’ be U-HOMTs with quadruplet representations ((abs, conc), dir, (C
ccl),rep) and ((abs', cond), dir', (', el’), rep’) with abs : Dy — Dy and abs’ : Dy — Ds.

When both h and h' are either necessary or sufficient, the composition h' o h is defined
as in Figure 3.2 by regarding PD[ DY) and PD[D3] as P*?[D3] and P"*[Ds], respectively.
Note that for forward/backward and backward/backward compositions, h(f)™ is applied
when U-HOMTs are necessary, and h(f)~° is applied when U-HOMTs are sufficient.

Let a HOMT h be a composition of U-HOMTs A, 0---0hy. A HOMT is forward if the
product of all directions in each quadruplet expression of U-HOMTSs hy, - - -, h,, 1s positive,
and is backward if a product of all directions is negative. From this definition, the name
of a forward HOMT is validated as it transforms a function to that of same direction.
Similarly, the name of a backward HOMT is validated as it transforms a function to that
of different direction.

Some compositions of U-HOMTs may eventually coincide with a simpler U-HOMT.
This shows that some HOMTs may be equivalent although they have different repre-
sentations as compositions of U-HOMTs. This equivalence is introduced from the next
Reduction Theorem, and defines an algebraic structure on HOMTs. Before introducing
it, we prepare two notations on quasi orders.
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20y i D1
absl/ conc Q abs
P[D3] P[D;)
cl Q rep
PD[D%] h(f) PD[DQ]
ppg) " pipy
abs’l/ cond Q abs’
P|Dj] P[D;]
rep Q cl’
PD[DQ] h' o h(f) PD[D3]
Forward /forward composition
PO P[D|
abs @ absl/ conc
P[Dy] P[D;)
rep @ cl
PDIDjl =5

Py " pp,

abs’ @ abs’l/ conc

P[Dy] P[D;
rep @ cl’
PD[DQ] h' o h(f) PD[D3]

Backward /forward composition

P[Dy] P[D;]
cl Q rep
PD[D%] h(f) PD[DQ]
L(f)~N(S)
ppy)< " Py
abs’ @ abs’l/ cond
P|Dj] P[Ds]
rep @ cl’
PD[DI?] h' o h(f) PD[D3]
Forward /backward composition
PIDY) = P[D]
abs @ absl/ conc
P[Dy] P[D;]
rep @ cl
PD[D;] h(f) PD[DQ]
W F)=N(S)
I )
abs’l/ cond Q abs’
P|Dj] P[Ds]
rep Q cl’
PD[DI?] h' o h(f) PD[D3]

Backward/backward composition

Figure 3.2: Composition of U-HOMTs h, A’/
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Figure 3.3: Relation among quasi orders

Definition 3.15 The order < among quasi orders C is C'<C if and only if X T Y =
Xoy.

The lattice due to this ordering < is presented in Fig. 3.3. Intuitively speaking,
C’'«C means C has more detailed information than C'.

Theorem 3.16  Let h and h' be U-HOMTs, and ((abs, conc), dir,(C, cl),rep) and
((abs’, cond), dur', (C', cl'), rep’) be their quadruplet representations. If one of follow-
ing conditions is satisfied, a composition h' o h is reduced to a single U-HOMT h" as
((abs’, cond), dir’, ' rep’)o((abs, conc), dir, =, rep) = ((abs’-abs, conc-cond'), dir'-dir, (C'
col'),rep’).

1. (abs',conc) = (id,id), dir' = +, and either C' < C when dir = +, or C' < C_
when dir = —.

2. dir = dir' =4, C = ', and abs, conc, abs’, conc are monotonic.

3. Assume that abs,conc are monotonic and centerized. dir' = —, (abs',conc’) =

(id,id), and either

e h is necessary, dir = +, (C,C') = (E_o,C4), rep = Min, and rep’ = Max,

e h is necessary, dir = —, (C,C") = (C4,C_g), rep = Max, and rep’ = Min,

e h is sufficient, dir = +, (C,C') = (Co,C_1), rep = Min, and rep’ = Maz,

e h is sufficient, dir = —, (C,C') = (C_1,Cy), rep = Max, and rep’ = Min,
or

o (C.C)=(C. Q).

Proof For case 1 and 2, the proof is easy. We consider case 3, namely, i, h' are necessary,
dir = —, (C,C) = (C1,C_g), rep = Max, and rep’ = Min. Let abs : P[Dy] — P[Ds]
and conc : P[Dy] — P[D4]. It is enough to show that each primitive function f satisfy
h'oh(f)=h"(f).

Since abs, conc are centerized and f is a map, k' o h(f) and h”(f) are also centerized.

Thus we consider A’ o h(f) over D3.
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Since abs, conc are monotonic, by definition,

Woh(f)(z) = Min({y € D} | h(f)(y) N RC(2) # 6}
= Min({y € D} | Max o abso foconco LC(y)N RC(z) # ¢})
= Min({y € Dy | Max o abs o f o conc(y) N RC(z) # ¢})

for z € Dy. Since abs is centerized and by definition,

R"(f)(z) = Minoabs({x € D} | f(x) € conc- RC(2)})
= Min({abs(x) | f(x) € conc- RC(2)})

Since h is necessary,

W(f)(z) = Min({abs(x) | f(z) € conc: RC(z)})
= Min({abs(x) | abso f(x) € RC(2)})
= Min({y € Dy | 3= € conc(y) s.t. abso f(x) € RC(x)})

Thus, we conclude h' o h(f) = h"(f). [ |

Definition 3.17 Let hy and hy be HOMTs. We denote hy < hy if there exists a HOMT
hay such that hy = hgy © he, and hy ~ hy (i.e., equivalent) if hy <hy A hg < hy.

Example 3.18 The equivalence of FSA and SIA (see FExample 3.6 and 3.7) is proved by
the existence of forward/backward conversion operators. These operators are easily found

from Theorem 3.16. That is, the underlined U-HOMTs transform FSA to SIA

((id,id), —, (E_o, RC), Min) o ((absy, abs; '), +, (Cy, LC), Max)
= ((absb7 absb_l)v _7 (E—Ov RC)? Mln)

and SIA to FSA

((id,id), —, (Ey, LO), Maz) o ((absy, absy '), —, (C_o, RC'), Min)
= ((absy, abs; "), +,(Cy, LC), Maz).

Note that this example corresponds to the reversal in [HL9/).

3.2 Computation path analysis

3.2.1 Computation path analysis (CPA)

For simplicity, we first consider functional programs over flat domains, and the abstrac-
tion absy, that is, the abstract domain is a lattice consisting of two elements {4°,4'},
where §° and &' correspond to the bottom L and evaluated values, respectively.
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Computation path analysis over flat domains

Computation Path Analysis (CPA) detects the property dependency parameter set (PDPS),
which is a set of all possible demand propagation patterns of functions. For instance, the
possible demand patterns of i f(x, y, z) are {x, y} and {x, z}, and its PDPS is {{z, y},{z, 2} }.
From these interpretations for primitive functions, CPA detects the PDPS of recursively
defined functions. For instance, the PDPS of the function foo, defined by

(defun foo (x y) (if (zerop x) 1 (1+ (foo (1- x) (foo y x)))))

is computed as {{z}}.

The CPA algorithm is formalized as a collection of deduction rules on a finite set of
the algebraic expressions [Ono88]. The natural interpretation on primitive functions of
CPA have the following set-like expressions.

(ifxyz)  Avyz{{z,y},{z,2}}

(+ y) Avy{{e,y}}
const(x) Az.{o}

Note that interpretations in CPA for a constant function const(z) and the undefined
function Q(x) (which is an initial value in fixed-point computation) are different. Ax.{¢}
means that no demands are required to get a result, whereas Az.¢ means that no demand-
propagation patterns exist (i.e. no way to evaluate).

Internal expressions in the algorithm have algebraic expressions below, which consist
of function symbols +, * and constant symbols 0, 1, with an ordering M = N if and only
if M+ N = N. Here, %, and +, 0, and 1 correspond to the merge of paths, the collection
of paths, ¢, and {¢}, respectively.

(if xyz) Aryz.x sy +a * 2

(42 y) Ary.x *y
const(x) Az.1
Q) Az Ax.0

The algebraic relations among these expressions for the CPA are as follows:

(redundancy elimination) rTkr = T+ =2
(commutativity) THRY =Y kT r+y=y+ua
(associativity) (xxy)sz=ax*x(y*xz) (r4+y) +z=a+(y+2)
(distributive laws) Tk (y+z)=axxy + w*z

(zero element) Oxx=0 O+z==2x

(unit element) lxx==x

Then, a recursive function, such as Peyton-Jones’s f (in pp.389 [PJ8T])

(defun £ (x y z p)
(if (zerop p) (+ x2) (+ (£ y 00 (1-p)) (£ z 2z 0 (1- p)))))
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is analyzed by the fix point computation as follows.

Axyzp.0

ATyzp.p*k T * 2

ATyzp.prxx k2 + pry* 2
ATyzp.pkarkz+pxykz+p*z
Axyzp.p+pkr*kz+pxy+pry*xz+pkz

b) Aaxyzpp+prxakz+pry+prykz+pxz converged

Thus, PDPS of fis {{p}, {p, 2,2}, {p,y}, {p, v, 2}, {p, 2} }-

M [N}
e e e

e~~~

Computation path analysis with modes

When analyzing programs over recursively defined data structures such as lists, a two-
point abstract domain {8 '} is not enough. Such an abstract domain represents only
whether demands are propagated to variables. However, recursively defined data struc-
tures have demand levels; that indicate how deeply data need to be evaluated. For
instance, (length @) which returns the length of a list & requires the evaluation of x, but
does not require the full structure of x. It requires only the evaluation of the spine of
x (i.e., the cdr direction), and does not require leaves of = (i.e., the car parts). This
is called tail strictness [WH8T7]. Similarly, (sum x) which returns the sum of a list
requires the full evaluation of x, and (search0 ), which returns true if 0 is found in =
and returns false otherwise, requires the synchronous evaluation of leaves (the car part)
to the evaluation of its spine (the cdr part). They are called total strictness and head
strictness, respectively. (Head strictness is equivalent to H-strictness in [Bur90].)

Such depth of demands is expressed by introducing modes. A mode “: 4” is an index
to a variable x and denoted as x**. The requirements for a set of modes are that:

1. it be a finite complete lattice, and
2. the result of demand merging of modes : ;1 and : v be in a mode lub(: u,: v),
and the additional algebraic rule is
(lub) 2% 2 = glblr)

which is applied for merging information of a multiply used variable x.
As a HOMT, lub(: p,: v) corresponds to the interpretation of a let sentence. The
set of modes corresponds to an abstract domain and

lub(: p,: v) = abs({x Uy | € conc(: p), y € cone(: v)})
where conc is abs™!.

Example 3.19 CPA with modes can be applied to a list structure, and to any recursive
data structures as well. For instance, the simplest example of a recursive data structure
is the domain of lazy integers (see Fig. 3.4). Let us consider the even/odd analysis, which
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Figure 3.4: Two kinds of integer domains

o®: inconsistent ) )
1 wnconsistent

SN TT— °
a?: even o’ odd  ot: zero / \
\ / al: true ol false
a': non-zero \ /
at: delayed at: delayed
(a) Integer type. (b) Boolean type.

Figure 3.5: Abstract domains for even-odd analysis

detects what kinds of inputs are required when the output is even (or odd). The mode
definition, which consists of the design of abstract domains and abstract interpretation
of primitive functions, is given in Fig. 3.5 and 3.6. Then, Fig. 3.7 shows the (part of)
analysis result for

(defun lazy-add (x y) (if (zerop x) y (1+ (lazy-add (1- x) y))))

when the output is odd.

3.2.2 CPA as HOMT

To describe and/or implement the CPA algorithm, the formalization by modes is useful.
However, to compare CPA with various analyses, the formalization by the quadruplet
representation, HOMT, is convenient. First, we will formalize CPA over flat domains as
necessary HOMTs, and later by adding the treatment of modes, we will formalize CPA
over nonflat domains.
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Figure 3.6: Inference for primitive functions for even-odd analysis

CPA over flat domains as a HOMT

CPA cannot be treated as a single U-HOMT, but represented as a composition of
two U-HOMTs. We will see this with the examples, if(x,y,z) and serial-or(z,y,z),
where serial-or(x,y, z) returns values true when (x,y, z) = (true, L, L), (false,true, L),
(false, false,true), and returns false only when (false, false, false). By definition,
ifopa = deyz {{x,y}, {x, 2} } and serial-orcpa = Aeyz {{z}, {=,y},{z,y,2}} [Ono88].
The first step to get a HOMT hcpy is the construction of the function inverse. This
U-HOMT £k has a quadruplet representation ((id,id), —, (E_o, RC'), Min) such as

ha(if) : {h} — {(true,5, L), (false, L,5)},
{4} — {(true,4, L), (false, L, 4)},

hi(serial-or) : {tr;w} — {(true, L, L), (false,true, L), (false, false,true)},
{false} — {(false, false, false)}.
ha () fany(#L)} — o.

and the initial value of the algorithm for an n-ary function is Azy---z,.¢. The second
step abstracts differences of values, but keeps the difference between an evaluated value

and 1. This U-HOMT hy has a quadruplet representation ((abs;, abs;'), +,(C,id),id)

such as
s o hu(if) {1} & {(1,1,0,(1,0,1)}
hy o hy(serial-or) : {1} — {(1,0,0),(1,1,0),(1,1,1)}
hy o hy(Q) {1} = ¢

which exactly correspond to i fops and serial-orcps. Thus, CPA as a HOMT has a
quadruplet representation

((absy, absy ), +,(C,id),id) o ((id,id),—,(E_o, RC), Min).

CPA over nonflat domains as a HOMT

Next we consider CPA on lists as a HOMT. Apart from CPA over flat domains, we divide
absy to abs;,; and absp,,, which are corresponding to integers and Booleans, respectively.

57



non-zero

z )
K/F:zero T:odd
lazy-add
Gerop Gerop T
‘true false :odd
T i
:odd :odd
(a) Initial condition (b) Inductive step

Figure 3.7: Analysis on lazy-add(x,y) : odd

abs;,; 1s defined identically to abs, on integers, and absp,, is defined to be an identity
map on Booleans. That is, an abstraction on Boolean values is not necessary because the
Boolean domain is originally finite, and a naive abstraction on Boolean values loses the
information on dataflow at conditional branches, which is crucial in analyses on nonflat
domains.

The following domain abstraction absis(ins) ignores differences among values, but
keeps shapes of list data structures.

Definition 3.20 The base domain abstraction abs;,;:int — {0,1} on a flat domain
int is extended inductively according to the structure of domain D. For instance, the
extension to list(int) is

constructor(absin(y), absiisi(ing)(2)) if « = constructor(y, z)

absiisi(ing + T — { NIL if x= Nil

absiisi(ingy(list(int)) is still an infinite domain, thus we need further abstraction. Typ-
ical properties of interest are head/total/tail strictness, which were firstly proposed by
projection analysis [WH87, DW90]. The abstraction for CPA for head/total/tail strict-

ness are given below.

Example 3.21 Let the abstract domain consisting of n’s be as shown in Fig. 3.8, and
let abs,y be the abstraction

absa = list(int) = {n",n" 0 0™ gt 0" 0t 0™,
The meaning of n’s are
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n#: inconsistent

.
n®: total-strict
/

‘ . 6: car-is-strict
n": cdr-is-total-strict " & taikstrict

~ _—

n°: tail-strict n*: car-is-strict
~ — o~ :
n3: non-nil n%: head-strict  n™: nil
™~ —
n': Cdr—is—head—strict/
™~
n°: delayed

Figure 3.8: Abstract domain for strictness over a list domain

770 and nNIL

consists of a single element L and NIL, respectively.

nt collects the elements in that their cdr parts are head-strict.

n? collects the elements thal are head-strict.

n? collects the elements thal are non-nil lists, but neither their head-parts
nor their spines are evaluated.

n* collects the elements in that their head-parts are evaluated, but spines are
not evaluated.

n° collects the elements in that their spines are evaluated, but head-parts and
else remain unevaluated.

n% collects the elements in that their head-parts and spines are evaluated.

n" collects the elements in that every parts except head-parts are evaluated.

n® consists of the elements that are completely evaluated.

Then the quadruplet representation of CPA for head/total/tail strictness is

((absay, abs), +,(C,id),id) o ((id,id),—,(E_o, RC), Min).

Remark 3.22  Compare n’s in Fig. 3.8 with the G-point abstract domain in [Bur90].
The difference is the addition of n' and n*, which enables us to detect head strictness
by CPA. Note that the lattice in Fig. 3.8 does not work correctly with (mere) strictness
analyses.

3.2.3 Comparison with various analyses
The hierarchy of static analyses arises for two reasons :

e The objective property of a program itself is more informative on S A, than SA;.
(Property hierarchy)

e The objective property of a program is the same for S A; and S A,, but the abstrac-
tion of S'As is more detailed than that of SA;. (Approximation hierarchy)

In the following, we will investigate these hierarchies.
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Property hierarchy among strictness analyses and CPA

An example of a property hierarchy appears already in Section 3.1.2 as forward /backward
conversion among SIA and FSA (see Example 3.6 and 3.7). They are equivalent, and
the abstract domain contraction leads to BSA from SIA. Another property hierarchy is
found in the relation among CPA, SIA, and relevance analysis [Ono88], where a relevance

analysis detects a set of parameters that may be evaluated. For example, Peyton-Jones’s
f (in pp.389 [PJ87], also pp.54 in this thesis) is analyzed as

PDPS Heh Az, 25 4Ap.y b Apy, 23, Ap, 21}

relevant parameters {z,y,z,p}

requisite parameters {r}

Roughly speaking, the union of all elements in PDPS is a set of relevant parameters,
and the intersection is a set of requisite parameters. Therefore, CPA is more powerful
than both strictness analysis and relevance analysis.

Example 3.23 From Theorem 3.16, SIA is induced from CPA as

((ed,id), +,(C_o, RC), Min) o hcpa
= ((id,id),+,(C_o, RC), Min) o ((absy, abs;"), +,(C,id),id)
o ((¢d,id), —,(C_o, RC), Min)
= ((absy, abs; "), +,(E_o, RC), Min) o ((id,id), —, (C_o, RC'), Min)
= ((absy, abs;"), —, (E_o, RC), Min)

- hSIA

Similarly relevance analysis with a quadruplet representation ((absy,abs;'), —, (C,

,LC), Max) is induced from CPA as

((ed,id), +,(Cy, LC), Max) o hepa
= ((id,id),+,(Cy, LC), Maz) o ((absy, absy '), +, (C, id), id)
o ((id,id), —,(C_o, RC), Min)
= ((absy, abs;"),+,(Cy, LC), Maz) o ((id,id), —, (E_o, RC), Min)
= ((absy,abs;*), —, (Cy, LC), Max)

= hRA

For simplicity, here we consider analyses only on flat domains, but the comparison
is easily extended to nonflat domains. For instance, CPA for total/tail strictness (see
Fig. 3.9) and SIA on 6-points domain [Bur90] has the similar property hierarchy, by the
same discussion above except for replacing abs;, with abs,(= abs, . - abs,).

Approximation hierarchy among CPAs

The approximation hierarchy arises from the fact that an analysis is a compile-time
technique, whereas the objective property is a run-time property. Thus, approximation
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accuracy is traded off with computational feasibility (including termination). Therefore,
even for the same objective property, there are many selections for approximation levels.
These levels can be measured by domain abstractions.

The example is the relation among CPAs on non-flat domains (e.g. lists), which detect
head/tail/total strictness. Recall CPA on lists in Example 3.21 with the quadruplet
representation .y = ((abs.y, absyp), +,(C,id),id) o ((id,id), —, (E_o, RC), Min). Thus,
their approximation hierarchy (shown in Fig. 3.9) follows from the reduction of quadruplet
representations below. Note that abs,, abs,, and abs,_,, are nonmonotonic.

abs, e, abs L ), +,(C,id),id) o hay

n—e

abs, o, abs t ).+, (C,id),id) o hay

Phead ((
Riaitytotal (( n—ra
Ptotal ((
hiail = ((absy, abs;iw), +,
hflat = ((

((

((

Y4 7+
= b b_l)—l—(C d),id)oh
a SE—>57 a SE_>5 9 = (2 9 (2 head
where
o at
NIL nil
—
778 6 n* —
Ui - « nil nil
7 7 n — ¢
n — o SCIPACIE R BN
abs, n° — at abs, . g o 9
5 3 n,n — ¢
n - « 71 1
4 2 2 n,n — ¢
nL,n =« 0 0
3 .1 1 n — ¢
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7° BN
6nzl 63 62 61 - 51
Clen_>e 0 s &by o
€ — 4
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3 1 1 0 0
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aY — p°
il a4 a3 42 A1 1 o2 1 1
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Comparison with projection analysis

Head/tail strictness detection was firstly proposed as a projection analysis, where a pro-
jection of a domain D is an idempotent mapping over an extended domain D, with a

61



head/total/tail strictness

n#: inconsistent

.
n®: total-strict
0 CdI’—iS—tOgl—StI’iCt\nG: car-is-strict
NG - & talkStI’lCt
n°: tail-strict n*: car-is-strict
~ _ ~ ’
n3: non-nil n% head-strict " nil
™~ —
n': cdr-is-head-strict
™~ :
. abs,_,. ]
. 1% delayed EEN O head strictness
€* inconsistent
Coabs, . 5 _—
¢°: not-head-strict
' |
. . 2. —stri nil. o
total /tail strictness a*: inconsistent ¢*: head St‘HCt €": nil

e!: cdr-part-is-head-strict

aof: total-strict

5 T Tat carisstrict ®: delayed
a”: cdr-is-total-strict & tail-strict
o tail-strict a?: car-is-strict  a”: nil
. —
al: non-nil
.
0.
absq_yp 0 O delayed o absa s
total strictness #: inconsistent ‘ M
N ~#: inconsistent
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B3 cdr-is-total-strict $2: car-is-strict 47 nil ) | Al il
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7% delayed
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(5#: inconsistent)
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Figure 3.9: Hierarchy of abstract domains for strictness over lists

62



ABS U INF ID

INF ID ABS U FIN ID ALL

TOT

H/ \T
N

INF STR ABS U FIN STR

ABS
BOT
Lattice of projections for lists Lattice of PERs for lists
(backward analysis) (forward analysis)

Figure 3.10: Lattice of abstract domains for strictness of lists ([WH87], [Hun91])

special constant 4 [WHS87]. This analysis is incomplete in terms of its non-relational (or
low-fidelity [DW91], i.e., the strict parameter of ¢ f(x,y,y) is detected as = only) nature.
It is enhanced to a relational (or high-fidelity) analysis in [DW90].

Burn tried to clarify the relationship between projection analysis and abstract inter-
pretation, and obtained only tail-strictness and the very weak part (Hp analysis) of head-
strictness detections [Bur90]. Ernoult and Mycroft also showed that a uniform abstract
interpretation cannot treat head-strictness [EM91]. Their results show that the simple
abstract interpretation on first-order abstract domains cannot treat head-strictness.

Hunt introduced a forward abstract interpretation over a partial equivalence relation
(PER), and showed that the abstract domain in Fig. 3.10 can treat head-strictness [Hun91].
His basic idea is that a PER expresses the range of values of an input variable that does
not affect the output. For instance, the irrelevance of a variable in the input is expressed
such that any substitution to the variable does not affect the value of the output.

I conclude that the head strictness detection, which requires simultaneous analyses
of strictness and irrelevance, requires either higher-order abstract domains (as PERs
in [Hun91], or the composition of HOMTs.

The table below briefly summarizes the correspondence between the projections anal-
ysis and CPA. For details, please see [0 96].
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‘ projection analysis CPA projection | mode of CPA
abstract domain projection « a(Dy) — {4} FAIL 1)
demand combination L + ABS 0
demand merge & lub STR S (=1)
ID D (={0, 1})

3.3 Applications of computation path analysis

Analyses are the heart of compile-time optimizations. There are many applications of
static analyses. For instance, the call-by-need to call-by-value transformation is a natural
optimization based on strictness analyses [AH87, Bur91]. A binding time analysis is
equivalent to a strictness analysis [Lau91], thus strictness analyses can also be applied
for the control of partial evaluation. CPA is more powerful than strictness analyses, thus
CPA can be applied for them as well (or better) [OTA86, O 87, OTA84].

In this section, the application of CPA other than listed above is presented. This is
an error detection, called anomaly detection [0 88]. For instance, consider functions

(defun easy (x y) (if (zerop 0) 1 (easy (1- x) (easy y x))))
(defun diverged (x y)
(if (< (+ x y) 0) (diverged (1+ x) y) (diverged (1- x) y)

By CPA, the PDPS of (easy x y) and diverged(x,y) are {{z}} and { } (empty),
respectively. This means that the parameter y in (easy x y) is irrelevant and the
function diverged diverges. Strictly speaking, such irrelevance and divergence may not
be errors; for instance, consider that divergence of some expression does not affect the
output of the function. Thus, instead of errors, we call them anomalies. These anomalies
require more sophisticated observations than previously known ones, such as undefined
and unreferred objects [AU77, JA84].

We will show that such anomaly detection not only works for external anomalies (as
above), but also for more detailed internal anomalies, which will specify the source of
errors in expressions. For this purpose, we will show how dataflow information with func-
tion bodies are reconstructed from PDPSs of functions. For simplicity, we use CPA on flat
domains even for lists, but the extension to more sophisticated CPA is straightforward.

3.3.1 Intra-functional computation path analysis (VDPS anal-
ysis)

The computation path of the expression exp in a function body can be represented by a

tuple of variables (including local variables), by performing the labeling transformation,

which labels each output of each function in the function body, beforehand. This tuple
is called the minimally sufficient value set (MSVS). The VDPS is the set of all MSVSs
and is denoted by V(exp).

The VDPS analysis determines the VDPS of each expression in the function body
based on the PDPS of each function. Consider, for example, the function
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result result result
a) {x,a} b) {x,y,a,b,d,e} c) {x,y,a,b,c,d,e}

Figure 3.11: Relation between MSVSs of function f(x,y) and its computation paths.

(defun f (x y) (if (zerop x) 1 (x (f (1- x) (1+ y)) y)))

Then, its PDPS is {{z},{z,y}}.

By the labeling transformation, which assigns a fresh variable name (called a label
variable) for each output of each function in the function body and flattens to the letrec
expression [Hen80], we obtain the following function body of f:

(defun f (x y) (letrec ((a (zerop x)) (b (1- x)) (c (1+y)) (d (£ b <))
(e (x d y)) (result (if a 1 e)))
result))

Let @ be an operator on a power set such that A@ B = {aUb|a € A,b € B}. Then
VDPSs are computed by the recursive procedure that

V(2) = Uy, i )ePpPsi) V(2) @ @ V(@) @ {(z, -, 2i,) }

where z is locally defined as z = g(x;,,- -+, x;,). Thus V(result) of the output result of
function f is given by

{{x7 a}? {x7 y7 a? b? d7 6}7 {x7 y7 a? b? c7 d7 e}}'

Each MSVS corresponds, as in Fig. 3.11, to the computation path leading to the local
variable result indicated by a line. The algorithm in the VDPS analysis corresponds to
determining the transitive closure of the variable set on which each expression of the

function body depends. For details, see [OTA86] and [0 87].

3.3.2 Anomaly detection

An MSVS, which is an element of a VDPS, is a tuple of parameters, local variables,
and/or label variables that are referred to in the computation path of the function. An
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internal anomaly, such as irrelevant local variables and diverged local variable definitions,
can be detected in the same way as an external anomaly. The unique difference with
an external anomaly is the presence of diverging loops in a function body that does not
affect to the result of the function. Thus, additional loop detection and its propagation
is required.

The diverging loop is determined essentially by determining self (circular) reference,
i.e., whether the VDPS of the variable contains the same variable. Assume, for example,
that the VDPS of a variable a is {{b,c},{a,b,c}}. Then the latter MSVS {{a,b,c}}
contains variable a. This MSVS implies that the definition circulates so that the value
of variable a is required in the computation of the value of a. Then it is regarded as a
diverging loop.

In the loop detection for the functional language containing a delayed evaluation, the
variable reference mode plays an important role in discriminating between the stream
and the diverging loop. Consider, for example,

(letrec ((a (cons 1 a)) (b (cons-stream 1 b)) (c (car a)) .... )

Then, V(a) ={{a}}, V(b) = {{b}.{ }}, and V(¢) = {{a}}. The computation paths for a
and b are both in loops. The definition of value a circulates and diverges, while that of b
gives a stream (1 1 1 ...). The difference can be detected from the fact that every MSVS
of value a is with self reference, while some MSVS of value b is without self reference.
The divergence of a variable affects the divergence of the variable that refers to that
variable. Consider, for example, the MSVS of the value ¢ in the foregoing case. Only
MSVS of ¢ refers to the value of @, thus ¢ also diverges. Consequently, by propagating
the divergence based on the data dependency given as the result of the VDPS analysis.
To be precise, anomaly detection consists of two steps.

Step 1. Detection of an erroneous expression (diverging loop detection)
For a variable z, if each MSVS in V(z) contains z (i.e., each MSVS is with self

reference), z is detected as an error.

Step 2. Propagation of errors to local variables.

Assume zq, 29, - - - be erroneous. For a variable z, if each MSVS in V(z) contains some
zi, then z is also detected as an error. If some MSVS in V(z) contains some z;, then z is
detected as a warning.

Examples of internal anomaly detection

An internal anomaly is detected based on the result of the VDPS analysis after applying
the labeling transformation to the source program.

Example of program.
(defun foo (x y z)

(letrec ((a (+ x y)) (b (cons y b)) (c (cons-stream y c))
(d (if (> a 0) (car b) (car c))))
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Figure 3.12: Diverging loop detection (Step 1)

(easy a (* (diverged y z) d))))

Then PDPS of foo is {{z,y}} (2 is irrelevant), and after labeling transformation we
obtain

(defun foo (x y z)
(letrec ((a (+ x y)) (b (cons y b)) (c (cons-stream y c))
(d1 (> a 0)) (d2 (car b)) (d3 (car c))
(d (if d1 d2 d3)) (e (diverged y z)) (f (x d e))
(result (easy a £)))
result))

After VDPS analysis, we obtain

V(result) = {{z,y,a}}, V(a) = {{z,y}}, V(0) = {{y,b}}, V() = {{y. e}, {y}},
V(d) = {{x7y7 a? b7 d17d2}7 {x7y7 a? c7 d17d3}7 {x7y7 a7d17d3}}7

V(dl) = {{a}}, V(d2) = {{b}}, V(d3) = {{c}}, V(e) = ¢,
V(f)={{z,y,a,b,d,dl,d2,e},{x,y,a,e,d,dl,d3, e}, {x,y,a,d,dl,d3,e}}.

A variable z is detected to be irrelevant if each MSVS in V(result) does not contain
z. Thus, in the function body of foo, variables b,¢,d,dl,d2,d3,e, f are detected as
irrelevant.

Step 1. Detection of an erroneous expression (diverging loop detection)

In the case of function foo, for example, MSVS {y,b} € V(b) of b = cons(y,b) is
b € {y,b}, thus b is in a diverging loop. Since V(e) is empty, e is diverging. They
correspond to the thick line in Fig. 3.12.
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Figure 3.13: Error propagation to output and local variables (Step 2)

Step 2. Propagation of errors to local variables.

Step 2 detects which variables are affected by erroneous variables b and e. In Fig. 3.13,
the part indicated by the thick line is the computation path that is the cause of an error,
or the computation path that propagates errors. The part indicated by the thick dotted
line is the computation path that propagates warnings.

From the result of VDPS analysis, all MSVS of d2 contain b and all MSVS of f contain
e, thus errors are propagated to d2 and f. Similarly, some MSVS of d contains b, thus
it is worth a warning message to d. No errors are reported for variables result, a, dl,
d3, x, y. Note that result is not affected by e, since the second parameter f of easy is
irrelevant.

3.4 Implementation of automatic analyzer generator

3.4.1 Overview of automatic analyzer generator

Our experimental automatic analyzer generator runs on VAX/VMS. The system is im-
plemented by Common Lisp, and its size is about 3K lines. The specifications of the
analysis are given as a table, which is about 0.1K lines. This system also has a simple
interactive user interface [0 91].

An overview of the system is shown in Fig. 3.14. First, the user defines the mode
definition of CPA by using the table. (Recall Fig. 3.5 and 3.6 for the even/odd analysis.)
Then, the system automatically generates the CPA program by supplementing the tables
in the specification and combining the general purpose least fix point calculator. Finally,
the program to be analyzed is given to the generated CPA analyzer with specified modes.

68



lubla o’ o” lnput
2% o /o program
o s . o e

Definition of modes

Generated knowledge ‘ ‘ Generic knowledge
. . data table table driven
SP?ClﬁC?tlQn generator 7? j analyzer
ol analysis program program
Generated ||
analysis U Least fix point
é computation on
abstract domawn
query i
_— query
processing @ result of
result system analysis

Figure 3.14: Analyses based on an automatic analyzer generator.

(defun lazy-add (x y) (if (zerop x) y (1+ (lazy-add (1- x) y))))
(defun lazy-mult (x y)

(if (zerop x) (zero) (lazy-add y (lazy-mult (1- x) y))))
(defun evenp-1 (x)
(if (zerop x) (true) (let ((y (1- x)))
(if (zerop y) (false) (evenp-1 (1- y))))))
(defun evenp-of-n*inc-n (n) (evenp-1 (lazy-mult n (1+ n))))

Figure 3.15: Examples of functions for even-odd analysis
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1. (load ”primfunc—even—odd”) ;; loading CPA mode definition data
2. (load "funcs-for-even-odd") ;; loading functions to be analyzed
3. (test-example-num :lub :fully-lazy-lub) ;; generate analyzer

4,

5. (analyze ’(lazy-add lazy-mult evenp-1 evenp-of-n*inc-n))

6. ;Converged after 6 iterations. CPU Time:37.94 sec., Real Time:38.07 sec.
7.

8. (show—all—possible—combinations ’evenp-of-n*inc-n :true)

9. (EVENP-OF-N*INC-N 1 ((1 :ZERO)) ((1 :0DD)) ((1 :EVEN)))

10. (show—all—possible—combinations ’evenp-of-n*inc-n :false)

11. (EVENP-OF-N*INC-N 1)

12. (show-all-possible-combinations ’lazy-add :odd)

13. (LAZY-ADD 2 ((1 :ZERD) (2 :0DD)) ((1 :EVEN) (2 :0DD))

((1 :0DD) (2 :EVEN)) ((1 :0DD) (2 :ZERD)))
Figure 3.16: Interactive session logging of the even-odd analysis

Fig. 3.16 shows the interactive session of the even/odd analysis of evenp-of-n*inc-n.
Line 1 loads the specification of the even/odd analysis. Line 2 loads the program to be
analyzed. Line 3 specifies the generator options, where :fully-lazy-lub means that the
deduction table for the [ub operations and the control table are generated in a demand-
driven manner. (From our experience, the demand-driven generation is a realistic choice,
since the eager one often consumes more than several minutes or hours. In the demand-
driven generation, the table is generated during the analysis, but this does not practically
affect to the execution time of the analysis.) Line 5 commands the actual analysis (i.e.,
the least-fixed-point computation). The time denoted is obtained by the compile code of
VAX Common Lisp running on VAX3500.

Line 8 asks for the possible combinations of the inputs when the output is true. In
line 9, (1 :ZERO) means that the first parameter is requested to be 0, (1 :0DD) means
that the first parameter is requested to be a positive odd integer, and (1 :EVEN) means
that the first parameter is requested to be a positive even integer. In contrast, line 10
asks for the possible combinations of the inputs when the output is false. The answer
(in line 11) means that there are no possible computation paths for the false output.
This means that the multiplication of n and n + 1 is always even.

Several automatic dataflow analyzer generators have been proposed [0090, YHI93].
Cecil detects program anomalies of procedural programs, such as wrong ordering of ex-
ecutions [0090]. . Our method differs in that an inter-functional analyses is applied,
whereas Cecil uses an intra-procedural dataflow analysis for imperative programs.

Set constraints [HJ90, AKW95, BGW93, GTT93] introduced different kinds of analy-
ses, called set-based analyses [Hei93, Hei94], and an automatic analyzer generator, called
BANE (Berkeley ANalysis Engine), was proposed based on set-based analyses [SFA00,
AFFS98, FFSA98]. In general, solving set constraints, which is a core technique of set-
based analyses, is NEXPTIME-complete. The restriction avoiding intersection, union,
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(defun append-1 (x y) (if (null x) y (cons (car x) (append-1 (cdr x) y))))
(defun reverse-1 (x)

(if (null x) (nil) (append-1 (reverse-1 (cdr x)) (comns (car x) (nil)))))
(defun search-0 (x)

(if (null x) (false) (if (zerop (car x)) (true) (search-0 (cdr x)))))
(defun len-1 (x) (if (null x) (zero) (1+ (len-1 (cdr x)))))
(defun sum-1 (x) (if (null x) (zero) (+ (car x) (sum-1 (cdr x)))))

Figure 3.17: Definitions of example functions for CPA

and complement operations reduces it to cubic time [MR00], and further sophisticated im-
plementation techniques enables BANE to analyze large-scaled programs. Many practical
examples can be found at http://http.cs.berkeley.edu/Research/Aiken/bane.html.

3.4.2 Design scheme for abstract domains

The result of the even-odd analysis is the same regardless of the order of tracing compu-
tation paths and the lub operations of modes. That is, functions over an abstract domain
satisfy f(e Uy) = f(x) U f(y). In this sense, such analyses are continuous. However,
some analysis of inductive properties on more complex structures such as lists would be
sensitive to such order. In this section, we explain such a non-continuous scheme. The
example is a strictness analysis over lists, which detects tail strictness, total strictness,
and head strictness [WH87, Bur90].

Lists on integers are described by the recursive equation
list(Int) = nil 4+ Int x list(Int).
Corresponding to this expression, the above mentioned strictnesses are described as

tail strictness  tail = nil + delay x taul
total strictness total = nil + strict x total
head strictness head = delay + strict x head

where delay means that the demand will not be propagated to the argument, and strict
means that the demand will be propagated to the argument.

Intuitively, tail strictness expresses that the evaluation of the result requires the eval-
uation of the spine (top level structure) of an input list. Total strictness expresses that
the evaluation of the result requires the evaluation of the whole structure of an input
list. For instance, consider the functions in Fig. 3.17; reverse-1(x), reverse an input list,
search-0(x), return true if 0 is found and false otherwise, len-1(x), return the length of
an input list, and sum-1(x), return the sum of all elements. Then, the function len-1(x)
and sum-0(x) are tail-strict and total-strict, respectively.

Head strictness expresses that the evaluation of the result requires the simultaneous
evaluation of the element and the top level structure of an input list. For instance, the
function search-0(x) is head-strict.
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Figure 3.18: Design scheme for an analysis on lists

Among these strictnesses, only tail strictness is continuous. Non-continuous properties
are classified into monotonic and nonmonotonic ones. The following sections will explain
that total strictness is monotonic and head strictness is nonmonotonic.

Design scheme for monadic properties: tail/total strictness analyses

The property P is monotonic if for each element = in an abstract domain satisfying P,
any element y(# o) with @ C y satisfies P. For an abstract domain of the monotonic
property, functions are interpreted to satisfy that @ C y implies f(x) C f(y).

For example, total strictness is monotonic. Recall that the abstract domains of total
strictness were shown in Fig. 3.8, where 3%, 8%, and 3* in that figure correspond to o,

a®¥ and o'"*! in Fig. 3.18, respectively.
Note that total strictness is not continuous; so the lub operation, which deduces a'**!
from o and o as an inductive step, must be done immediately after computation

paths are merged. Otherwise, the information would be lost.
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(1) With immediate lub operations
(show—all—possible—combinations ‘reverse-1 :totally—strict)
(REVERSE-1 1 ((1 :NIL)) ((1 :TOTALLY-STRICT)))
(show—all—possible—combinations 'search-0 :false)

(SEARCH-0 1 ((1 :NIL)) ((1 :TOTALLY-STRICT)))
(show-all-possible-combinations ’(len-1 sum-1) :int)
((LEN-1 1 ({1 :NIL)) ({1 :TAIL-STRICT)))

(suM-1 1 ((1 :NIL)) ((1 :TOTALLY-STRICT))))

(2) Without immediate lub operations
(show—all—possible—combinations ‘reverse-1 :totally—strict)
(REVERSE-1 1 ((1 :NIL)) ((1 :CAR-IS-STRICT :TAIL-STRICT)))
(show—all—possible—combinations 'search-0 :false)

(SEARCH-0 1 ((1 :NIL)) ((1 :CAR-IS-STRICT :TAIL-STRICT)))
(show-all-possible-combinations ’(len-1 sum-1) :int)
((LEN-1 1 ({1 :NIL)) ({1 :TAIL-STRICT)))

(SUM-1 1 ((1 :CAR-IS-STRICT :TAIL-STRICT)) ((1 :NIL))))

Figure 3.19: Total strictness analysis with/without immediate lub operations

Fig. 3.19 shows the difference between total strictness analysis with and without im-
mediate lub operations.

This situation occurs because at each function call non-nil lists are decomposed by car
and cdr, and such list decompositions exceed the scope of the scheme without immediate
lub operations. The immediate lub operation at each function call step restores the
information and enables us to detect total strictness. Similarly, total strictness of a
program that decomposes lists more than twice in its body cannot be detected. This also
means that the unfolding transformation will be harmful to the analyses.

Note that tail strictness is correctly detected regardless of with/without immediate
lub operations in Fig. 3.19. This is because tail strictness is essentially the property of
the cdr part of a list.

Design scheme with negative information: head strictness analysis

Head strictness contains a negative constraint so that it is nonmonotonic. Fig. 3.20 shows
the scheme for the property with negative constraints. In Fig. 3.9, ¢ expresses that the
list is head strict, ¢! that the cdr part is head strict, and ¢ that the list is not head strict.
They correspond to a**, o and o™, respectively. As special cases, a®¥ contains the
list in which its cdr part is undefined (i.e., L), and a'*' contains the list in which its car
part is strict (i.e., evaluated) and its cdr part is undefined (i.e., L). The nonmonotonicity
appears in the deduction rules corresponding to the primitive function edr: o/t — a°%
and acdr - aﬁlist7 where acdr E alist E Ozﬁlist‘

Fig. 3.21 shows the results of the head strictness analysis for append-0(x), search-0(x),
len-1(x), and sum-1(z). From the result of total strictness analysis in the previous

section, search-0(x) is detected as total strict when it returns false, and is detected as

—list cdr
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(show—all—possible—combinations ’search-0 :true :minimal nil)

(SEARCH-0 1 ((1 :HEAD-STRICT)))

(show—all—possible—combinations ’search-0 :false :minimal nil)

(SEARCH-0 1 ((1 :NIL)) ((1 :HEAD-STRICT)))
(show-all-possible-combinations ’(len-1 sum-1) :int :minimal nil)
((LEN-1 1 ((1 :NIL)) ({1 :CDR-IS-HEAD-STRICT)) ((1 :ANY-LISTS)))
(SUM-1 1 ((1 :HEAD-STRICT)) ((1 :NIL))))

Figure 3.21: Head strictness analysis (with lub)

head strict when it returns true.

Note that when head strictness and tail strictness are merged, we can conclude neither
total strictness nor head strictness (i.e., lub(n?,1n°) = n° # n* 1® in Fig. 3.9). For instance,
consider find-0(x), which returns n if the first 0 is found at the n-th position in x. Then
find-0(x) + len-1(x) requires that the first occurrence of « is head-strict and the second
occurrence of x is tail-strict, but if 0 is at the first position in x, neither total strictness
nor head strictness holds. As illustrated by the example, the nonmonotonic property
easily conflicts with other useful properties.
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Chapter 4

Verification of binary properties
based on abstract interpretation

Program errors cause failures during execution that can be classified into three categories.

1. Execution eventually stops as a result of illegal operations.
2. Execution does not terminate.

3. Execution results are not what was intended.

Errors of the first kind are detected by type inference, with such languages as ML and
Haskell. In addition, although termination is in general undecidable, errors of the sec-
ond kind can be automatically prevented by several techniques, such as simple termina-
tion [DJ90, DF85], termination analysis [Gis97], and dependency pairs [AGO00].

The third kind of error cannot be prevented without a specification language, and
there is always a trade-off between expressiveness and feasibility. If the aim is to express
everything, it is easy to fall into the trap of undecidability. Moreover, too much expres-
siveness may make users hard to learn. For compile-time error detection, an automatic
verifier that functions without any human guidance is desirable even if it verifies only
partial specifications. Then the user can concentrate on what kind of properties, under
the limitation of a simple and restricted specification language, properly approximate the
program behavior.

By restricting both properties and languages, Le Métayer developed an automatic
verification technique [LM95]. Its target language is a strongly-typed first-order func-
tional language with product types and recursive types. The important restriction is that
the conditional part of an if-expression contains only basic predicates (such as null, leq,
geq, and equal) without any functional symbols.

He defines a language which prescribes a class of uniform predicates over recursive
types. These predicates are constructed by predicate constructors from basic predicates
on base types. As an example, his system expresses that a sort program returns a
list of decreasing values (if the sort program terminates) and automatically verifies it.
This property is called orderedness of the sort program, which is expressed by true —
Vgeq(sort X) in his specification language. Note that the termination of the sort program
is not verified; this verification is left to a termination analysis, such as discussed in Part 1.
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Similar ideas are also found in [EM91, Jen94, Ben93, O091al; however, the significant
differences are that

e binary predicates are allowed, and
e free variables in binary predicates are allowed.

The former extends the expressiveness of target properties from other flow analyses. The
last maintains the power of inter-functional inferences. However, the expressive power
of the specification language is still fairly restricted as a verification; for instance, the
input-output relation cannot be described.

In this chapter, we reconstruct and extend the automatic verification technique of
Le Métayer [LM95] based on a backward abstract interpretation [Oga99]. The abstract
domain is designed as the set of predicates which are defined in our specification language
and are constructed dependent to the program to verify. The termination and soundness
proofs of the verification are naturally derived from the formalization as a backward
abstract interpretation.

Similar to [LM95], we adopt the simple and inefficient sorting program for orderedness
as a running example, but we also tried efficient sort programs, such as orderedness of
quick-sort and merge-sort (both topdown and bottomup), and weak preservation of the
topdown merge-sort. Recall that verification of these properties are quite messy even for
human-being [Pau96].

Extensions are achieved by (1) using the input variable in function properties, (2)
introducing new predicate constructors, and (3) using uninterpreted function/predicate
symbols. They are demonstrated by verifying the sorting and formatting programs. The
first and the second extensions expand the ability of the specification language so that
it covers another major specification of the sorting program; namely, weak preservation,
i.e., the input and the output are the same set. This is expressed by true — V3, equal A
V. diequal(sort X). Note that since our specification language cannot express the number
of elements in a list, our algorithm cannot detect the full specification of sort, called
preservation, i.e., the input and the output are the same multiset.

The third extension expands the range of both target programs and the specification
language. The expansion of target programs is achieved by loosening the restrictions on
the conditional part of an if-expression. The running example is format, which formats a
given sentence (expressed as a list of strings) to a specified width. The technique behind
this extension is the use of uninterpreted functions. We also show how partial evalua-
tion will cooperate with the verification. Other major specifications of format become
expressible by the use of uninterpreted predicates. This technique drastically expands
the expressive ability, such as the specification that the order of words is preserved by
format.

At the end of this Chapter, a new termination criteria for a backward abstract inter-
pretation over an infinite abstract domain is presented. This criteria is inspired by the
fact that the constraints in terms of WQO guarantee the termination of symbolic model
checking over infinite states [ACJYK96, AAB199, AN00, ACJYKO00, FS98].

This chapter is organized as follows: Section 4.1 defines programming and specifi-
cation languages. Section 4.2 provides the verification algorithm based on a backward

77



The language of expressions
E = BE|(BE,E)|(E,BE)|BE:E|fE|opE|(E)]
if Cond then F; else F; | let * = F; in F,; end |
let (#,y) = Fy in Fy end | let « : ¢s = Fy in F> end
BE = z|c
Cond = py x| p (2,9)

Ee FExp expressions fe Fv function variables
BE € BFExp basic expressions r € Bv variables
where . .
pu, Py € Pred  basic predicates c € Const constants
op € Prim  primitive functions
The syntax of programs Prog = {fun fix;,=F;; }

The language of types

T = TG | TF TF = TG — TG
TG = TU | Tp | TR Tp = TG X TG
TR = panil+Ts: Ty = 7 (basic types)

Figure 4.1: Syntax of Programming Language.

abstract interpretation. The termination and soundness proofs are also given. Section 4.3
demonstrates the verification of orderedness of the (simple but inefficient) sort program
to explain the algorithm, and presents extensions and demonstrates the verification of
major specifications of the sorting and formatting programs. Section 4.4 presents a new
termination criteria in terms of a better-quasi-order (BQO).

4.1 Target programming and specification language

4.1.1 Programming language

The target language is a strongly-typed first-order functional language with Haskell-like
syntax, in which product types and recursive types, such as lists list(A) = po.nil + A x
list(«), are allowed. We use : to mean infix cons, ++ to mean infix append, and [ ] to
mean a list, namely, [a1, az,as] = aq : (a2 : (a3 : nil)). The semantics of the language is
given by an ordinary least fix-point computation. We assume that the language is strict,
but the same technique can be applied to a lazy language as well. The precise syntax
and semantics of the language are shown in Fig. 4.1 and Fig. 4.2. Parentheses in the
syntax are used for either making pairs or clarifying the order of applications of infix
operators. Basic concrete domains Dp,e and Dy, are flat CPO’s (as usual), and the
other concrete domains D, of type a are constructed by the list and pair constructors.
The interpretation @ of expressions has the hidden argument, i.e., for simplicity the
environment fve of function variables are omitted in Fig. 4.2.
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el {fun fiz;, = E;; }] = fve whererec
foe =1y yn-if (bottom? yy - --yy)
then L else Y[F]ly;/x;])/fi]
P[Clove = &[C]

px]bve = bvefx]
pllop E]bve = {lop] (L[ E]bve)
Plpu xJbve = Glpu](boefz])

Ulpy (z,y)]bve

ULf Elboe
Y[(BE, E)]bve

Eplpel(boelz], boely])

foe[fI(¢[£]bve)
(Y[ BE]bve, [ E]bve)

Y[(F, BE)]bve (Y[ E]bve, [ BE]bve)
Y[BE : E]bve (Y[ BE]bve) : (Y[ E]bve)
Y[if Cond then F; else Ey]bve = if (bottom? (p[Cond]bve)) then L
elsif Y[Cond]bve then Y[ E1]bve else [ Fx]bve

Yplet x = Ky in Fs]bve = Y[ Ey](bve[p[Fi]bve/x])
Jliet (e,y) = By in Bolbve = $El(boele[EJboe/(.v))
Yplet x : xs = Fy in Ey]bve = Y[E](bve[y[Fi]bve/x : xs])
bottom? yy -+ -y, = (p=L)V---V(y.=1)
Y (Fve—=)Exp — Bve — D & Prim — D — D
where Y, + Prog — Fve ¢ : Pred = D — Bool
fve€ Fve=Fvo—D — D £ Const — D

bve € Bve = Bv — D

Figure 4.2: Semantics of Programming Language.

An important restriction is that the conditional part of an if-expression must consist
only of basic predicates without any functional symbols. Section 4.3 discusses how this
requirement can be loosened. Until then, we use only null as the unary basic predicate on
lists, leq, geq, and equal as the binary basic predicates on integers, : as a binary primitive
function, and nil as a constant. The type description in a program is often omitted if it
can be easily deduced by type inference.

For technical simplicity, we also set the following restrictions.

e Basic types are Int and Bool.
e Product types and recursive types are pairs and lists, respectively.
e Each function is unary, i.e., pairs must be used to compose variables.

The third restriction means that binary functions and predicates are respectively re-
garded as unary functions and predicates which accept the argument of pair type. This
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fun sort as = if null as then nil else
let (b,bs) = max as in b:sort bs

fun max cs = let d:ds = ¢cs in
if null ds then (d,nil) else
let (e,es) = max ds in
if leq(e,d) then (d,e:es) else (e,d:es) end

Figure 4.3: Example sorting program

assumption can easily be extended to a more general setting, for instance, with tuple

types.

Values are denoted by a, b, ¢, - - -, lists by as, bs, cs, - - -, and lists of lists by ass, bss, css, -+ -.1
We also assume that variable names of input variables and locally defined variables are

different. The functions in Fig. 4.3 present a sorting program with types

sort 1 int list = int list
max : int list = int X int list

4.1.2 Specification language

The language for specifying properties is constructed by using predicate constructors
Y,V V., and V on basic predicates, constants, free variables, and variables appearing in
a program. Predicate constructors will be extended in Section 4.3. A basic predicate is
denoted by p and a predicate by P. When the distinction of unary and binary is stressed,
we add the index ¢y and g, respectively. As convention, bound variables are denoted by
a,b,e,--- x,y, 2,00, as,bs,es, -+, x8,y8, z8, - - -, free variables by X, Y, Z. ..., constants
by C, M, ---, basic expressions by BE, BFE,, BFE,,---, and expressions by E., Fy, Fy,---.
A binary predicate P is transformed into a unary predicate PP¥ by substituting a
basic expression BE for the second argument. That is, PP¥(E) = P(E,BE). P is

defined by P(Ey, Fy) = P(FE,, Ey). The grammar of the construction of predicates is
shown in Fig. 4.4, in which P, represents a predicate on values of type a. (We will
often omit types when they are clear from the context.) Specification of a function f is

expressed with a free variable by
P(X) = Q(f X)

which means if an input X satisfies P then an output f X satisfies (), when f:a — £,
P e P, and Q € P;. Each input X is a distinct free variable for each function and
property to avoid name crash.

Note that negation is not allowed except for basic predicates. The meanings and

examples of the predicate constructors V,V;,V,, and V are given as follows.

las is a reserved word of Haskell, but we ignore it.
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iy = Py (X)= P5 (fX)

P = predicates in P, without bound variables
P, = P,ANP,| P,V P,| P;fﬁ | true | false
Plist(a) = null | ~null | VP, | VP,y,

PaXB = nga|Pa><P5

Prisiayxp = YiPaxp

Paxlzst(ﬁ) = \V/rPaxB

Proxim = leq | geq | equal | = Protxint

V. X, | BE,

BE,

Xo

properties of functions

properties

properties of lists
properties of pairs
properties of pairs
properties of pairs
basic binary predicates

basic expressions of type «
free variables of type «

Figure 4.4: Language for specification of properties.

e VPy(xs) if and only if either xs is nil or the unary predicate Py(x) holds for each

element z in zs.

o VPg(xs) if and only if either @s is nil or YP§ (ys) A VPg(ys
VPg(xs,y) and V,Pg(x,ys) are defined by VPg(zs) and VPg(ys

examples are shown in the table below.

) for xs =y : ys.

), respectively. The

predicate true false

geq(a) 4 2
Vgeq*(as) [3,6,4], nil (3,6,1]
Vileg(as,a) | ([3,6,4], 8), (nil, 8) ([3,6,4], 5)
V.leg(a,as) | (3, [3,6,4]), (3, nil) (5, [3,6,4])
Vgeq(as) [6,4,3], nil [4,6,3]

For instance, the sorting program is fully specified by the following conditions.

L. Output must be ordered (called orderedness).

2. Input and output are the same multiset (called preservation).

Orderedness is expressed as true — Vgeq(sort X). That is, the output of the sorting
program is decreasing if the input satisfies true (i.e., empty assumptions). For preser-
vation, the weaker condition called weak preservation, i.e., the input and the output are

the same set, is expressed by

true — (V,3,equal A ‘v’rfllequal)X(sort X).

with the introduction of additional predicate constructors 3, 3;, and 3, (which intuitively
mean —V—, =V;=, and =V, —, respectively), which will be discussed in Section 4.3. Note
that only the input variable of a function remains in the scope when a function call
occurs, thus our definition of properties of functions (Pr) is possible (which was neglected

in [LM95]).
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4.2 Automatic verification as abstract interpretation

4.2.1 Verification algorithm as abstract interpretation

An abstract interpretation consists of an abstract domain, its order, and an interpretation
(on an abstract domain) of primitive functions [CC77, AH87, Bur91]. Our choice is a
backward abstract interpretation with

abstract domain Pred = UP,
order C (the entailment relation)
interpretation U : Kxp — Pred — Bvp where Bup = P[Bv — Pred).

P,, C, and V¥ are formerly defined in Fig. 4.4, Fig. 4.5, and Fig. 4.6, respectively.
Then, for a program { fun f; x; = E; ; }, the verification algorithm is the least fixed
point computation to solve whererec equations in a backward manner.

In Fig. 4.6, an element in Bvp is regarded as a disjunctive canonical form in which
each predicate (in Fig. 4.4) accepts only bound variables (in the scope of an expression)
and constants as an instance. The disjunction V is introduced when analyzing conditional
expressions, and is regarded as composing branches of the verification, i.e., each branch
(conjunctive formula) is analyzed independently. The conjunction A is regarded as an
assignment from bound variables to predicates. Section 4.3 explains how this algorithm
performs on the sorting program.

The entailment relation C (in Fig. 4.5) is intuitively the opposite of the logical impli-
cation. That is, P C () means that () implies P. By definition, true is the least element
and false is the greatest element in the abstract domain. We denote by P = Q if P C @)
and P 3 (). The entailment relation may be used to trim at each step of interpretation
V. Formally, the entailment relation consists of axioms on basic predicates/predicate
constructors, and ordinary logical rules, and their extensions by predicate constructors,
as defined in Fig. 4.5.

The projection v |, extracts a unary predicate Py whose instance is a variable x € Bv
from a conjunctive formula 7, and the projection v |, ,) extracts a binary predicate
Pp whose instance is a pair of variables (x,y) € Bv x Bv. For instance, (leq(x,y) A
V(xzs)) Jo= leg?(x). For a conjunctive formula v = Pi(xy) A -+ A Pi(xy), a predicate P,
and a bound variable x, we define

\ P(l‘) . Pl(l'l) VANEIIAN Pi—l(l'i—l) A Pi-l—l(xi-l—l) VANEIIAN Pk(l'k) if PZ(J}Z) = P(l‘)
i | Pu(ar) Ao A Pr(ag) otherwise
The convex-hull operator &) (which eliminates =) is defined by
O (Cond A P)V (=Cond A P') | = V,Q;

where each ); satisfies Cond AP C @); and =~CondA\ P' C @;. For instance, O [ (leg(e, d) A
Vieg'(es)) V (—leq(e, d) AVieq®) | = VieqH(es) V Vieq(es).

A special treatment is required on the interpretation of a function call
VIS ETP = WIET((fopl/1P7)07)
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Axioms on basic predicates

equal = equal leq = geq null(nil) = true null(x: xs) = false
equal(x,x) = true geq(x,x) = true leg(x,x) = true
equal C equal® x equal’ geq C geq” x geq” leq C leg® x leq”
z D C px pe e .
PE P x P PEP <P ————— Transitivity

VPYC VP A P(z,y)  V¥,.PC (VV,P)™ x (V,P)™

Ordinary logical rules on logical connectives

PANP = P PP C PAANB truen P = P false A P = false
PVP = P VP C P truev P = true falsev P = P
PCP  PCP PCP,  PCP
PoNPCPAP, PV P CPVPE

Entailment relation of predicate constructors

EIEEQ Plgpz
AREPR  TPACTH

PCP  PRBLCP

list 'i'(Pl/\PQ)E'i'Pl/\'i'PQ WlthTE{\V/,\V/[,\V/T,V}

PP EP %Pl pair (PLx Py) AN (P x Py)=(PLAP))x(PyAPy)
P=r PPANP,=P NP, P VP=P VP P xP,=P,x P
Y,P =V, P Y.P=V,P (V,P)Y =Vv(PY) YV,.P =V,YP
VP(a:as) = Pla) NVP(as) VP(nil) = true PY(z) = P%y)
VP(a:as) = YP*as)AVP(as) VP(nil) = true

Figure 4.5: Entailment relation
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O[ { fun fi vi= B } 1] —  fop whererec fop = [ APy -+ P W[E]P/ ]

vicr - (e ke
U[z] P = P(a)
Ulop E]P = VY[E](=E[op] P)
v[f E]P = V[EN(foplfIP7)07)
VI(BE, B)]P - { o s
V(B BE)P - ol

. [ U[BE]Q A V[E]VQ if P=vQ
V[BE: E]P = { V[(BE, EY]V,Q AV[E[VQ it P=V0Q
U[if Cond then E; else FhlP = O)[(Cond AN V[EL]P)V (~Cond AN W[ E,] P)]
U[let v = Ey in E5]P = U[E(V[E]P)Ls A (U[E]P\ (V[ES]P) L)
U[iet (v,y) = Er in E]P = V[EJ(P[E]P) by A (PLEP N\ (P[E]P) Liay)

V[EJVQ A C[E](U[E]P\Y,Q(x, zs))
if (V[E]P)(zws) 2 V.Q
U[EYQ N VEJ(P[E]P\ Q(x))

Ullet : xs = Ky in F;]P = if (V[EL]P)): 3 Q
U[EVQ AN V[E(Y[E]P\ YQ(xs))
if (V[EL]P))zs I VQ
U[E,] P otherwise
U (Fop—)Exp — Pred — Bup =: Prim — Pred — Pred
®: Prog — Fuop l: Bup = Bv — Pred
where

fop € Fop= Fxp — Pred — Pred ©): Bup — Bup
bup € Bup = P[Bv — Pred]

Figure 4.6: Abstract semantics of verification
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1, -1 1
abs, o [ o concy

D, b, PD[D,J< PDID)

1 2

abs}, | (clp,) conch | (Mazp,) abs?, concy

PD[D,]¢———— PD|Dy] Pred,<————— Predg

1 -1 1 2 1 -1 1 2
abs, o f~" o concy abs, o abs, o f~1 o concy o concy

Figure 4.7: Two steps of domain-induced abstract interpretation

That is, when a function call of f occurs, a predicate P may contains some bound
variables. However, except for the input of f, all bound variables except for an input
variable become out of scope. Thus, a predicate P is separated to a predicate P,
which is obtained by replacing each bound variable z in P with a free variable Y, and
a substitution #~, which is a collection of [V <« z], such that P = P~#~. For instance,
when W[f E]Vieq® is analyzed, Vieq’ is separated to a predicate P~ = Vieq? and a
substitution 8~ = [Z « b].

Theorem 4.1 The verification algorithm always terminates.

(Sketch of proof) Basic predicates, variables, and constants appearing in a program are
finite. A free variable is introduced as a substitute for an expression only when function-
calls; thus, only finitely many free variables are used during verifications. Since each
predicate constructor enriches types, once types of functions are fixed only finitely many
applications of predicate constructors are possible. The finiteness of an input-dependent
abstract domain is then guaranteed. The algorithm is therefore formulated as the least
fix-point computation on a finite abstract domain, so that it terminates. [ |

4.2.2 Soundness by domain-induced abstract interpretation

In this section, we will show how the abstract interpretation ® is obtained as a domain-
induced abstract interpretation, i.e., an abstract interpretation induced from domain
abstractions. As a consequence, the soundness proof is given. Note that an automatic
verification cannot be complete by nature.

Let the domain and codomain of a function f of type a — 8 be D, and Dg, respec-
tively. Let the power domain PD[D,] of D, be {clp (X) | X C D,} with the order
C_; = D, where ¢lp, is the downward closure operator in D,.

¢ (in Fig. 4.6) is expressed as the two-step domain-induced abstract interpretation
(as indicated in Fig. 4.7). The first step is backward and consists of

e the abstract domain PD[D,]

e the concretization map conc!, = Mazp,
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e the abstraction map abs! = clp,

This step precisely detects how much of the input is enough to produce the output
satisfying the specification. The next step approximates according to the specification
language in order to make the analysis decidable. Let Pred, be a set of predicates on
D, generated as Pj in Fig. 4.4. The second step is forward and consists of

e the abstract domain Pred,,.

e the concretization map conc?(P) = clp,({x € D, | P(x)}) for P € Pred,.

[}

e the abstraction map abs?(X) = M({P € Pred, | conc’(P) C X}) for X € PD[D,].

Note that the abstract domain Pred, is a lattice wrt the entailment relation. For instance,
PUQ and P11Q always exists as P A () and PV @), respectively.

Thus an abstract interpretation = on a primitive function op of type o — [ is defined
by Z(op) = abs,-op~' -concs, where abs, = abs?-abs! and concs = concé-concé. Similar
to W on expressions. The abstract interpretation ® on recursively defined functions f;’s
is obtained by the least fix-point computation.

Definition 4.2 For an abstract interpretation ®, a function f is safe if [ satisfies abs -
[t conc E ®(f). An abstract interpretation W is safe if each primitive function is safe.

Theorem 4.3 The verification algorithm is sound (i.e., the detected property of a pro-
gram always holds if a program terminates).

(Sketch of proof) From definition in Fig. 4.6, U is safe. Let f be a function defined by
a recursive equation R, and let f’ be a function defined by a recursive equation W(R).
Then, f = Fiz(R) = U{f;} and ®(f) = f' = Fiz(V(R)) = U{f!} where f; = R'(L) and
7= (B(R))(L)

Since W is safe and (abs, conc) is the dual of Galois connection (i.e., abs,-conc, = idp,
and cone, - abs, C idp,), thus abs - f7' - conc C fI.

It is not difficult to show abs - Uf7" - conc C U(abs - f7') - cone C U(abs - f7' - cone),
thus abs - f~1 - conc = abs - LUf7 - conc C U(abs - 7' - conc) CUf! = f' = U(f). [ |

4.2.3 Related work

Many studies have been undertaken on verification. Most are based on theorem provers,
for example, Coq, LCF, Boyer-Moore prover, Larch, and EQP. They require either com-
plex heuristics or strong human guidance (or both), either of which is not easy to learn.
However, for huge, complex, and critical systems, this price is worth paying.

The complementary approach uses intelligent compile-time error detection for easy
debugging. For imperative programs, Bourdoncle proposed an assertion-based debugging
called Abstract debugging [Bou93b, Bou93a]. For logic programs, Comini, et. al. [CLMV96]
and Bueno, et. al. [BT97] proposed extensions of declarative diagnosis based on abstract
interpretation. Cortesi, et. al. [CLCR96, LCLRC97] proposed the automatic verifica-
tion based on abstract interpretation. Levi and Volpe proposed the framework based
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on abstract interpretation to classify various verification methods [LV98]. Among them,
target specifications primarily focus on behavior properties, such as termination, mutual
exclusion of clauses, and size/cardinality relation between inputs and outputs.

In contrast, Métayer’s [LM95] and our specification language (for functional pro-
grams) directly express the programmer’s intention in a concise and declarative descrip-
tion. This point is more desirable for some situation, such as, when a novice programmer
writes a relatively small program.

As an abstract interpretation, our framework is similar to inverse image analy-
sts [Dyb91]. The significant difference is that inverse image analysis determines how much
of the input s needed to produce a certain amount of output and computes Scott’s open
sets. Our framework, in contrast, determines how much of the input is enough to produce
a certain amount of output and computes Scott’s closed sets. In terms of [O091b], the
former is expressed by a HOMT ((id,id), —, (C_o, RC'), Min), and the latter is expressed
by ((id,id),—,(C_1, LC), Max).

Similar techniques that treat abstract domain construction as a set of predicates are
found in several places. In [EM91, Jen94, Ben93, O091al, predicates are either limited
to unary (such as null and —null), or in [CFW91] predicates are limited to propositions
corresponding to variables appearing in a (logic) program. Refs. [HPS96, XP98, XP99,
CKO00] adopt Presberger arithmetic (in which the satisfiability is decidable) in type-based
analyses. That is, data structures are projected to their sizes, whereas our approach
works on the properties reflecting structures of recursive types. The combination with
our method would be the possible direction of extensions.

4.3 Examples and extensions

4.3.1 Verifying orderedness of sorting

The verification algorithm is explained here by an example of orderedness true —
Vgeq(sort X). When unknown properties of user-defined functions are required, new con-
jectures are produced. For instance, when verifying true — Vgeq(sort X), it automati-
cally produces and proves the lemmata; Vieg?(X) — Vieq?(sort X), =null A¥leg?(Y) —
leq? x Vleg?(maz Y), and —null(Y) — V,geq(mazx Y). The generation of lemmata is
shown at the top of Fig. 4.8. The vertical wavy arrow indicates an iterative procedure, the
double arrow indicates the creation of a conjecture, and the arrow returns the resulting
lemma.

For instance, Vleq?(X) — Vleg?(sort X) means that if an input of sort is less-than-or-
equal-to any given 7, an output is also less-than-or-equal-to 7. This lemma is generated
as a conjecture true — Vleq?(sort X) at the else-branch of the if-expression in sort
(U[b:sort bs]|Vgeq) as follows.

Vgeq(b: sort bs) V.geq(b, sort bs) N Vgeq(sort bs)

Vieg*(sort bs) A Vgeq(sort bs)

Since there are no conjectures related to Vieq®(sort X) in the recursion hypothesis, a
new conjecture is created. But properties of functions (Pr in Fig. 4.4) exclude bound
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true — Vgeq(sort X) K true —> Vieq? (sort X)
ﬂ ( T

true — leq? x true(maz Y)

true — ViegZ(sort X) | first 5/

: é iteration U AT s 1o y
L Vieq? (X) — Vieq? (sort X) L null(Y) eq” — leq? X true(maz Y)
ﬂ _ Vieq? (X) — Vieq? (sort X)

\ ( =N

true — Y, geq(maz Y) true — leq? x Vleq? (maz Y)

d
5/ \\ itsee:;gon \5/

—null(Y) — V,.geq(maz Y) | —null(Y) AVleg? (Y) — leq? x Vleq? (maz Y)
\ L Aéf”’/’
é | Vieg? (X) — Vleq? (sort X) (converged)

success T

Figure 4.8: Generation of lemmata for true — Vgeq(sort X)

variables. Thus, by separating a predicate Vieq’ to Vieq? and the substitution [Z < b],
true — Vieq?(sort X) is created. This means that no local information on b is used
during the verification of true — Vieq?(sort X). This conjecture does not hold; instead,
we obtain Vieq?(X) — Vleg?(sort X) as a lemma.

A typical example of the use of the entailment relation appears in the verification of
—null(Y) — V,.geq(max Y'). At the second if-expression in max,

U[if leq(e,d) then (d,e:es) else (e,d:es)] V,geq

is created. Thus, (leq(e,d) AVieg'(es)) V (=leg(e,d) AVleq(es)) is obtained. From the
transitivity of leq, leg(e,d) AVleg¥(es)) C leg(e,d) AVleg®(es) (see the underlined parts),
therefore we obtain Vieq®(es) by the convex-hull operation. Note that the convex-hull
operation also creates Vieq?(es), but only Vieq®(es) branch is successful, i.e., from the
recursion hypothesis U[max ds]V,geq is reduced to ~null(ds), as desired. Thus Vieq?(es)
is omitted.

4.3.2 New predicate constructors: verifying weak preservation
of sorting

In this section we introduce new predicate constructors and extend the entailment relation
to make it possible to verify weak preservation of sort programs. The new predicate
constructors are 3,3;,3,, and A. The predicates are extended by updating part of the
grammar in Fig. 4.4 with

Pisiwy = null | VP, | 3P, | VPyxo | APyxa  properties of lists
Piistayxs = YiPaxp | 31Paxs properties of pairs
Poiist3y = YePaxp | 3 Paxs properties of pairs
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— — list 'i'(Pl\/PQ)E'i'Pl\/'i'PQ WlthTE{EI,EI[,EIT}

E|IP = Hrp E|,,P = Hlp (HIP)E = (PE) E|IE|TP = E|,E|IP
PLC P*x P* PLC P*x P*
— ——— Transitivity
\V/IHTP E (\V/IHTP)QUS X (\V/IHTP)QUS HIVTP E (EIN,,P)“ X (EIN,,P)“
dP(a:as) = P(a)V IP(as) Vi3, P(as,b:bs) T V¥ 3,.P(as,bs)
dP(ml) = false V,3iP(a:as,bs) T V.3 P(as,bs)
AP(a:b:bs)=3Pb:bs) A (null(bs)V AP(b: bs))
AP(a :nil) = false AP(nil) = false

Figure 4.9: New entailment relation

where the underlined parts are newly added. Their meanings are shown by examples in
the table below. The entailment relation is enriched as in Fig. 4.9.

predicate true false
dgeq®(as) (3,6.,4] ([3,2,4]), nil
dileq(as, a) ([3,6,4], 5) ([3,6,4], 2), (nil, 5)
d,.leq(a,as) (5, [3,6,4]) (7, [3,6,4]), (5, nil)
Aleg(as) (3,2.4] [3,6,4], [3], nil

Then weak preservation of sort is expressed by

true — V3, equal A ‘v’rfllequalX(sort X).

During the verification of true — ‘v’ﬁlrequalX(sort X)), the key step is at V,3,equal(as,b:
sort(bs)) in sort. By transitivity V,3,equal(as,b: bs) A ¥ 3,equal(b : bs,b : sort(bs)) is
inferred. To solve the second component, the entailment relation ¥;3, P(a : as,b: bs) C
P(a,b) ANV, 3, P(as,bs) is used. This is obtained as a transitive closure by

Vi3, P(a:as,b:bs) = 3, Pa,b:bs) AV, 3, P(as,b: bs)
C (P(a,b) vV 3,P(a,bs)) AV, 3, P(as,bs)
C  P(a,b) AV3,P(as,bs).

Thus V;3,equal(b: bs,b: sort(bs)) is reduced to V,3,equal(bs, sort(bs)) which is a recur-
sion hypothesis. The rest V,3,equal(as,b: bs) creates the conjecture

true — Vi(equal x true V true x Elrequal)y(max Y)

at (b,bs) = max as, and similar approximations occur in max at expressions (d,e:es)
and (e,d:es). true — Ell‘v’,,equalX(sort X)) is similarly verified.
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fun format as = £ (as,nil);

fun £ (bs,cs)

if null bs then [cs] else
let d:ds = bs
in if leq (width (cs++[d]),M)
then f (ds,cs++[d]))
else cs:f (ds,[d])

fun width es = if null es then 0 else
let f:fs=es in
if null fs then size f
else 1+(size f)+(width fs)

Figure 4.10: Example format program

4.3.3 Uninterpreted functions and predicates

This section extends the range of conditional expressions that can be included in the
programs to be verified. Function symbols (either primitive or user-defined) in the con-
ditional part of an if-expression are allowed. They are left uninterpreted during the
verification, and the result will be refined by partial evaluation of these function sym-
bols.

The example is a formatting program format (shown in Fig. 4.10) that formats a
sentence (expressed by a list of strings) as a list of sentences each of which has a width
less-than-or-equal-to a specified number M. Its specifications are as follows.

e Each sentence of the output must have a width less-than-equal to M.
e The order of each word in the input must be kept in the output.

e Each word of the input must appear in the output, and vice versa.

In this example, string is added to base types. Basic functions + and constants 0, 1
also are used in the program, but they are not directly related to the verification. Thus,
their interpretation and entailment relations are omitted.

The first specification of format states that an output must satisfy ¥(leq™ - width).
Note that this predicate allows a function symbol width in it. Verification starts with
true — V(leq™ - width)(format X), which is immediately reduced to true — V(leg™ -
width)(f Y'). The result of the verification is

(Vleg™ - width - []) x (leg™ - width)(Y) — V(leg™ - width)(f Y),
and this deduces
(Vieg™ - width - [ )(X) A (leg™ - width)(nil) — V(leg™ - width)( format X).

Note that the result is not affected by whatever width is, since width is left uninterpreted.
The key steps are at if leq (width (cs++[d]),M) then .... Since the throughout of
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then-branches leqg(width (cs + +[d]), M) holds, the second argument of f (ds, cs + +[d])
always satisfies leq™ - width. These steps depend only on the convex-hull operation so
that the function symbol width remains uninterpreted.

With the aid of partial evaluation which leads to width nil = 0, width [x] = size z,
we obtain V(leq™ - size)(X) A leq(0, M) — V(leg™ - width)(format X). For the partial
evaluation, only the relation between size and width is important. The information on
the function size is required only when the final result above is interpreted by a human
being. Note that in general a partial evaluation may not terminate. However, this final
step is devoted to transforming the detected property into a more intuitive form for a
human being, and even if it fails the detected property is correct.

The second and the third specification of format are similar to orderedness and weak
preservation of sort, respectively. They require further extensions.

The second specification of format is expressed by a fresh binary predicate Rel on
pairs of strings as VRel (X) — YV Rel AVORel (format X) where O is an abbreviation
of V,V,. Note that throughout the verification the predicate Rel is left uninterpreted.
This implies that the specification above holds for any binary relation Rel. Finally,
the meaning of Rel is assumed by a human being, and in this case it is suitable to be
interpreted as the appearance order of strings.

The third specification is expressed by true — ‘v’lflrflrequalX(format X) and true —

‘v’,,‘v’,,fllequalX(format X). Our algorithm detects the latter, but for the former we also
need a new transitivity-like entailment relation of type list(a) x list(list(a)), i.e.,
PLC P* x P
V3,3, P C (V3. P)” x (V,3,.3,P)™.

4.4 Termination criteria beyond finiteness

The termination of abstract interpretation has been guaranteed by the finiteness of ab-
stract domains. For instance, we discussed the instance of CPAs over finite domain in
Chapter 3. These standard abstract interpretations have the fixed abstract domains; but
we can also postpone to fix an abstract domain until an instance of the input is given.
For instance, the verification presented in this chapter generates a finite abstract domain
corresponding to variable names in an input program. Thus, the size of the abstract
domain is unbounded in general, but still finite for each instance.

There have been several trials to extend an abstract interpretation to infinite do-
mains [Hal90, Jag89]; however, they rely on either lazy evaulation or inductive methods,
and did not guarantee termination. Cousot and Cousot proposed widening, and men-
tioned that the ascending chain condition guarantees the termination [CC92].

The aim of last section is to give a new termination criteria for a backward abstract
interpretation in terms of better-quasi-order (BQO), which is a sufficient condition for
the ascending chain condition: If an abstract domain is better-quasi-ordered, then its
power domain (either with £, or Cy) is also better-quasi-ordered. Therefore, a backward
abstract interpretation associated with either C_q (such as a backward stractness analysis
in Chapter 3) or £_ (such as verficication in Chapter 4) will terminate.
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4.4.1 Better quasi prder

BQO is the extension of WQO intended for infinite objects. For example, consider
Higman’s lemma, which tells that the embedding over finite words is WQO if the base
domain is WQO. This is not true for infinite words as Rado’s example shows [Rad54].

Rado’s example Let A={(s,7) | 0<i <y}

(1,7) < (k,I) if and only if either e = kA j <lor j <k

t ¢ J
koo kol
a1, Qa,- -+ is a bad sequence where
o = ((0,1),(1,2),(1,3),(1,4),--)
az = ((0,1),(1,2),(2,3),(2,4),- )

a; = ((0,1),---, (e, 04+ 1), (2,0 +2),(e,0 4+ 3),---)

The difference between WQO and BQO is that the former uses a map from natural
numbers (to express a sequence) and the latter uses a map from a barrier (over natural
numbers). The precise definition of BQO is given below. First, we define what is a
barrier.

Definition 4.4 Let w be the least countable ordinal (i.e., set of natural numbers). If
5,1 Cw, then s <t (s <t) means that s is a (proper) initial segment of t (as ascending
sequences).

Definition 4.5 For an infinite set X C w, a barrier B on X is a set of finite sets of X
s.t. € B and

1. for every infinite set Y C w there is an s € B s.t. s <Y.

2. ifs,t € Bands#tthens ¢ t.

Example 4.6 Fig. /.11 illustrates an example of a barrier on natural numbers consisting

of (0), (1), (2,3),(2,4),(2,5),---, (3,4),(3,5),(3,6),(3,7,8),(3,7,9),(3,7,10), - - -.

Definition 4.7 Define s<t to hold if there isann > 0 and ip < -+ < 1, < w s.t. for some
m<n,s={ig, -, ln}andt ={iy, -, i,}. (Thus, e.g., {3} {5}, {3,5,6}<{5,6,8,9},
{3.5.6} #{5,6}.)

Definition 4.8 Let < be a QO on Q. If B is a barrier, f : B — @ is good if there
are s,t € B sit. s<at and f(s) < f(t), and [ is bad otherwise. f is perfect if for all
s,t € B, if sat then f(s) < f(t). Q is better-quasi-ordered (BQO) if for every barrier B
and every f : B — @, [ is good.
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— barrier
8 9 10 11

1 23 4---2345--/3456...45¢6 7.
L NN
0 3

Tree of infinite ascending chains on natural numbers

Figure 4.11: An example of barrier

The simple examples of BQO are: a QO over a finite set, well-order (i.e., linear
WQO), etc. Further, Kruskal-type theorems guarantee that the extensions of BQOs
as the embedding (over various data structures) are again BQOs. Thus, although the
definition of BQO is quite complex compared to WQO, their construction is same to one

for WQO in practice. Let P[Q)] be a power set of Q.

Definition 4.9 Let < be a QO on Q, let «, [ be ordinals, and let Q* = {w : a = Q}.
Forw € Q%, v € QP, a one-to-one mapping ) : a — 3 is an embedding if w(n) < v(zp(n))
for each n € a.

Theorem 4.10 [Lav78, NW65] If Q is BQO, U,Q° is BQO wrt the embedding.
Corollary 4.11 [Lav78] If Q is BQO, (P|Q],C) is a BQO.?

Definition 4.12 Suppose @) is quasi-ordered by <. A partial ranking on Q) is a well-
founded (irreflexive) partial order <' on Q s.t. q <' r implies ¢ < r. Let B,C be
barriers. Then B C C if

1. UC CUB, and
2. for each ¢ € C there is a b € B with b < c.

BC C i BCC and there arebe B, ce C withb<c. For f: B—=Q,qg: C =@
and a partial ranking <" on Q, gC f (¢9C f) wrt <" if BCC (BC C) and

1. g(a) = f(a) fora e BNC,
2. g(c) <" f(b) forbe B, ce C st. b<c.

Definition 4.13 Suppose <" is a partial ranking on Q. For a barrier C, g: C — Q) is
minimal bad if g is bad and there is no bad h with g T h.

’In [LavT78], C; is denoted by C,,.
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Theorem 4.14 ° Let Q be quasi-ordered by < and let <' be a partial ranking on Q.
Then for any bad f on Q) there is minimal bad g s.t. f C g.

Note that P.Jan¢ar showed that Cg is WQO if and only if the base domain is w?-WQO
(i.e., a WQO that not includes Rado’s example) [Jan99]. We can also state the fact Cg
is BQO if and only if the base domain is BQO.

Corollary 4.15 [f Q) is BQO, (P[Q],Co) is a BQO.

Proof Let Co=Co \ o be a partial ranking. Assume that there exists a minimal
bad sequence f : B — P[Q] for a barrier B. Let ¢ : B(2) — f(b1) U f(by) where
B(2) ={by Uby | by 4by,b1,by € B}. Then, g C f and the contradiction. [ ]

This BQO techniques will enlarge the possibility of abstract interpretation, and fur-
ther investigation for the useful application is desired.

4.4.2 Termination of backward abstract interpretation over in-
finite abstract domains

Recall that the construction of backward HOMTSs in Chapter 3. The basic power do-
main construction is either (C_g, RC') (when necessary) or (C_y, LC') (when sufficient).
Then, roughly speaking, the next theorem guarantees that if a (possibly infinite) ab-
stract domain is better-quasi-ordered then a backward abstract interpretation correctly
terminates (assuming termination of each primitive function).

Theorem 4.16  Let a backward HOMT h be ((abs,conc),—,(E_o, RC), Min) (resp.
((abs, conc), —, (E_1, LC), Max)) with abs : P[D] — P[Abs] and conc : P[Abs] — P[D].
Assume that (abs,conc) is necessary (resp. sufficient). If the abstract domain Abs is
better-quasi-ordered, then the computation of h(f)(X) terminates for each X C Abs.

Proof Since an abstract domain is a BQO, its power domain (wrt either C; or Co)
is also a BQO by Corollary 4.11 and 4.15. A necessary (resp. sufficient) backward
abstract interpretation computes the least fixed point wrt C_q (resp. C_p), thus from
the definition of BQO it converges after finitely many unfolding of the recursive equations.

Since any finite domain is better-quasi-ordered, this theorem gives a proper exten-
sion of existing termination criteria. Note that this criteria does not hold for a forward
abstract interpretation. It is said that a backward abstract interpretation is more effi-
cient than a forward one, and this result actually shows the sharp distinction between
them. Unfortunately, we have not found any new applications yet. We hope that fur-
ther investigation finds interesting examples of analyses/verification over infinite abstract
domains.

3Theorem 1.9 in [Lav78], or equivalently theorem 9.17 in [Sim85].
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Part 111

Automatic generation of efficient
programs
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Chapter 5

Automatic generation based on
well-quasi-orders

This chapter demonstrates the generation of a linear time query processing algorithm
based on WQO. The target example is a linear time evaluation of a fixed disjunctive
monadic query in an indefinite database on a linearly ordered domain, first posed by Van
der Meyden [van97]. Van der Meyden showed the existence of a linear time algorithm
by Higman’s lemma, that is, an evaluation of a fixed disjunctive monadic query in an
indefinite database is reduced to the comparison of the database with finitely many
minimal models (called minors) that are affirmative to the query. Enumerating minors
are possible, but enumerating all minors is very difficult, since the naive methods cannot
decide know when all minors are enumerated. Thus, an actual construction of a linear
time evaluation has, until now, not been reported elsewhere.

The obstruction is non-constructive nature of Higman’s lemma. Fortunately, Ehren-
feucht et al. showed that a set L of finite words is reqular if and only if L is <-closed
under some monotone well-quasi-order (WQO) < over finite words [EFHR83]. This gives
the insight that upward closed sets would be described by regular expressions and in-
troducing well-founded orders on such descriptions would give computational contents
of Higman’s lemma. Murthy and Russell gave a constructive proof by the such sce-
nario [MR90]. We will use their proof, especially their descriptions of (the complement
of ) upward-closed sets by regular expressions, to decide when all minors are enumerated.

This chapter is organized as follows: Section 5.1 gives the constructive proof of
Higman’s lemma [MR9I0] and its extension. Section 5.2 presents the automatic linear
time algorithm generation for fixed disjunctive monadic query processing in an indefi-
nite database. Section 5.3 presents the extension of the result in [EHR83] to w-words.
Section 5.4 discusses the possible future direction to reduce the constant by fold/unfold
program transformation.

5.1 Higman’s lemma and the constructive proof

In this section, we will briefly explain the constructive proof of Higman’s lemma. Hig-
man’s lemma states that any bad sequence has finite length, and the constructive proof
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of Higman’s lemma is presented by constructing the effective well-founded-order (WFO)
among bad sequences.

The basic idea is as follows: for a bad sequence, we first assign a union of special
regular expressions that approximate the possible choice of the next element to enlarge a
bad sequence. Next, we construct an WFO on sets of special regular expressions such that
for each bad sequence the regular expression associated with the bad sequence strictly
decreases when it is enlarged. Thus, this means that any extension of bad sequences
eventually terminates. For details, see [MR90]. We also show an extension of the proof.
For definitions related to WQO, please refer Section 4.4 in Chapter 4.

5.1.1 Constructive proof by Murthy-Russell
Lemma 5.1 (Higman’s lemma) [Hig52] If (¥, <) is a WQO, then (¥*, <) is a WQO,

where < is a subword relation constructed based on < (i.e., u < v if there is an order
preserving injection [ from u to v s.t. u; < vy for each i).

The standard proof by Nash-Williams [NW63] is non-constructive, especially the rea-
soning called minimal bad sequence, in which (1) the proof proceeds based on contradic-
tions, (2) the existence of a minimal bad sequence is a result of Zorn’s lemma, and (3) the
arguments on a minimal bad sequence are heavily impredicative. An example is universal
quantification over all bad sequences. A minimal bad sequence is a bad sequence which
is minimal wrt the lexicographical order of sizes.

Murthy-Russell, Richman-Stolzenberg, and Coquand-Fridlender independently gave
constructive proofs for Higman’s lemma [MR90, RS93, CF93]'. For a constructive proof,
we must make the following assumptions.

1. Let A and B be bad sequences of 3, and let A ,., B if, and only if, A is a proper
extension of B. [, is well founded and equipped with a well founded induction
scheme.

2. The WQO < on ¥ is decidable.

Classically, the first assumption is obviously based on the WQO property of <, but,
constructively, it is not. The WQO that satisfies the assumptions above is called a
constructive well-quasi-order (CWQO) [Sim88)].

We will briefly review the techniques used in [MR90]. We will refer to an empty word
as € and an upward closure of words that contains w (i.e., {z € ¥* | w < x}) as w°.

As a convention, we will refer to the symbols in ¥ as a,b,¢,---, the words in ¥* as
u,v,w,- -, the finite sequences in ¥ as A, B, - - -, the finite sequences in >* as V, W, - - -, the
subsets of ¥* as L, L, - -, the finite subsets of ¥* as a, 3, - - -, the subsets of finite subsets
of ¥ as L, L, -, the special periodic expressions called sequential regular expressions as
a,0, - -, the finite sets of sequential regular expressions as ©, 01, O, - - -, the special power
set expressions called base expressions as .0, ---, and the finite sets of base expressions

as (I),(I)l,q)g, cee.

LA similar idea to [RS93] is also found in [Sim88].
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Definition 5.2 Let b € X, and let A = ay, a9, -+, a; be a bad sequence in . The
constant expression (b — A) denotes a subset of ¥ defined by

{reX|b<a A a; L for each 1 <k},
and the starred expression (X — A)* denotes a subset of ¥* defined by
{w=-ciey- ¢, € X" | aj L ¢; for each i <n,j <k}.

The concatenation of A and a € ¥ is Ala.

A sequential reqular expression (sequential r.e.) o is a (possibly empty) concatenation
of either constant or starred expressions. The size size(o) of o is the number of the
concatenation. For a finite set © of sequential expressions, we define L(O) = Uy,co0.

Let wy, wsq, ws, - - - be a bad sequence of elements in ¥*. We will explicitly construct a
finite set Oy of sequential r.e.’s for wy, wy, - - -, wy, such that ¥*\ (wjU---Uw}) C L(O).
For describing O, we define (o, w). The basic idea of ©(o,w) is that, for a word not
to be a superword of w, it can only contain a proper subword of w. So what we do is
write down the sequential r.e.’s that accept classes of words containing different proper
subwords of w.

Definition 5.3 For sequential r.e.’s o1, --,0,, we define their concatenation oy --- o,
as {wy---w, | w; € a; for i < n}, and denote + for the union operation. Let o be a
sequential r.e. and let w € o. We will define O(o,w) as follows.

1. When o is a constant expression (b — A)*, we can identify w as a single symbol in

Y because 0 C X, Then O(o,w) = (b— Alw) + €.

2. When o is a starred expression (X — A)*? let w = cjea- -+ ¢ with ¢; € ¥ for each

J. Then O(o,w) is

Ul { (X = Aler) ((er = A) + ) -+ (8 = Alej) (-1 — A) £ ¢) }
T E = Al (e = A) + (B = Alejn) - (@ = A) + )(X = Ala)”

3. When o = gy09--- 0, where o; is either a constant or starred expression, we fix a
decomposition of w into o;s (i.e., w = wyws - - w,) with w; € o; for each 1 < n.
Then

O(o,w) =U{o1--0i_100i11---0, | 0 € O(0;,w;)}.

Let O be a finite set of sequential r.e.’s. Let size(©) be max({size(o) | o € O}).
The following lemma shows that if we remove the sequential r.e. o from O, and replace
it with the set O(o, w) with w € o, the resulting (finite) set of sequential r.e.’s includes
all the finite words in L(0) not containing w.

2Ref. [MRI0] has a flaw that O(c, w) is simply defined as (b — A|w).
3Ref. [MR90] has a flaw that ©(c, w) is simply defined as (X — Ale1)*(e1+¢€) - (ci—1 +€)(Z — Ale)*.
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Lemma 5.4 Let L C X*. Assume that there is a finite set O of sequential r.e.’s such
that L C L(©). For anyw € L, 0 € © with w € o,

L\ w® C L((0\ {o}) UB(a,w)).

Thus, for a bad sequence wy,w,,---, we can construct O by starting from * and
repeating the applications of Lemma 5.4. If this process terminates, O eventually emp-
ties. This means that < is a WQO. For termination, we construct a well-founded order
Csetesp, Which strictly decreases when Lemma 5.4 is applied. This gives a constructive
proof of Higman’s lemma.

Definition 5.5 For the finite sequences A, B in 3, A Cyey B if B is a proper prefix of
A. For any pair of constant expressions (a — A) and (b— B), (a — A) Ceonst (b— B)
ifa =b N A Csy B. For any pair of starred expressions (X — A)* and (¥ — B)*,
(X—A) Cu (X =B) if Alseq B. Let Cepp = Ceonst U T U {(a— A)} x {(¥ = B)}
(i.e., all the constant expressions are below the starred expressions). Let Cseterp be a
multiset extension [NZ79] of Cerp.

We define an ordering C,. of sequential r.e.’s by o C,. 0 < W {07} Coctenp &ngl{e]},
foro =010, and 0 = 0y ---0;, where the o;s and 0;s are either constant or starred
expressions. We also denote a multiset extension of T, with Tsepre.

Theorem 5.6 Let W = wy, wq, - -+, wy be a finite bad sequence in ¥*. One can effectively
compute a finite set O; of sequential r.e.’s for 1 < k such that

ST\ (wy Uwy U=+ Uwy) C L(6;)
and Oipy Coetre O; for i < k.
Corollary 5.7 If (3, <) is a CWQO, then (X, <) is a CWQO.
Example 5.8 Let ¥ = {a,b}. Consider the bad sequence ab, bbaa,ba, bb,a,b wrt <.

Oy = (X —¢)f
0, (X —a)*(b+e)(X—=0b)*U (X —a)(a+e)(X—0b)"
{b7a”}

O, = b+e)(X—=-b)U(X—a)(a+e¢)
= {ba*,b*a}

O3 = X=-D0)Ub+e)U(a)U(X—a)
= (o)

O, = (X=-0)U(b+e)
— {w.b)

05 = {é,b}

0 = {¢}
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5.1.2 An Extension

For our purposes, we need further extension to the sets of finite sets of finite words (which
is not included in [MR90]). Let F(X*) be the set of all finite sets of ¥*. Assume that
(3, <) satisfies the CWQO assumptions. Note that an embedding (¥*, <) satisfies them
as well. We define o <,,, B for o, 5 € F(X*) if, for each « € a, there exists y € § such that
x < y. We also denote the upward closure of a in F(¥X*¥) (i.e., {y € F(X) | a <, v})
with o°.

Definition 5.9 Let W = wy,wy, -+, wy be a finite bad sequence in ¥*. The base expres-
ston is

(XeW)=F({ue X | w Lu for each i <k})
We define X* OV Tpgee X O W if V Ty W. For a finite set @ of base expressions, we
define L(P) = Uszeq0.

Let a1, ag, - - - be a bad sequence of elements in F(X*). We will explicitly construct a
finite set @y, of base expressions for ay, - - -, ay such that F(X*)\ (ajU---Uay) C L(D;).
For describing @, we define ®(X* & V, a). The basic idea of ®(X* 5V, o) is, for a finite
set not to be a superset of «, it must not contain at least one of the elements in «.
What we do is write down base expressions which accept finite sets not containing some
element of a.

Definition 5.10 Let (X* S V) be the base expression for a finite bad sequence V in ¥*,
and let o € (X* 5 V). We then define ®(X* s V,a) = {¥* Vv |v € a A v £
v for each v; € V'}.

Lemma 5.11 Let £L C F(X*). Assume that there is a finite set ® of base expressions
such that L C Uzeqpo. For any o € L and o € ® with o € 7,

L\ a® C L2\ {o}) U E(a,a)).

Let Cppse be the multiset extension of Cy.,. Since < is a WQO on ¥*, [, is well
founded, and so is Cpuse. Thus, by using a constructive proof similar to Higman’s lemma,
we obtain the next theorem.

Theorem 5.12 Let A = ay,az,- -, ap be a finite bad sequence in F(X*). Then one can
effectively compute a finite set ®; of base expressions for 1 < k such that

FEI\(ajUazU---Uaf) C L(D;)
and @11 Cpose D for 1 < k.

Corollary 5.13 [If (¥*,<) is a CWQO, then (F(X*),<,) is a CWQO.
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Example 5.14 Let ¥ = {a,b}. Consider the bad sequence {ab, bbaa}, {ba,bb},{a,b} wrt

<,.
o = {(EZ"eqg; = {F(E)}
d, {(X* © (ab)), (¥*© (bbaa))}
(). F({a(b+ ab(a + b))
o, = {(¥* 6 (ab,ba)), (X* & (ab,bd)),
(X* & (bbaa, ad)), (X* & (bbaa,bb))}
= {F({a07}), FHb+€e)a™ b"(a+€)}),
F({a"(b+€)a"})}

¢; = {(¥* 6 (ab,ba,a)), (XS (ab,ba,b)),
(X% O (ab,bb,a)), (X* & (ab,bb b))
(X* & (bbaa,ab, a)), (X* (bbaa,ab, b)),

by
(X* & (bbaa, bb, a)), ((Z
= {F({a"}), ({b*})}

By combining the techniques in Section 5.1.1, we can write down each basic expression
as a finite set of sequential r.e.’s. Thus, F(¥*)\ (ajUasU---Ua?) is, too. For instance,
¢, = F(¥*) \ {ab,bbaa}® in Example 5.14 can be written as follows:

¢ = {(¥" ( b)), (%7 & (bbaa))}

= {F((E=a) b+ )X =b)"U(X —a)(a+e)(X=b)),
FIUZ=b)"(b+ ) (X =b)*(a + ) (X = a)(a+ ¢)(¥ — a)U
(E=0)b+e)(X—=b)(b+e)(X—a)(at+e)(X—a))}

& (bbaa, bb, b))}

5.2 Algorithm generation based on WQO techniques

Throughout this section, we use the symbol D for an indefinite database, and fix a dis-
junctive monadic query ¢ = ¥ Vg V- - - Vb, where the ©;’s are conjunctive components
(i.e., conjunctive monadic queries). In our situation, combining Theorem 5.6 and 5.12
shows that ¥* & W is approximated with a finite set of sequential r.e.’s. More precisely,

(X" W) CFO(G--0(0(X",w),ws), -, wg)
for a finite bad sequence W = wy, ws, - -+, wy in X*, and
X oW, a)={F(OO- - -O(X " wy), -, wg),v) | vEa N w Av}.

From now on, we use a finite set of finite sets of sequential r.e.’s as a substitute for a
base expression .

5.2.1 Disjunctive monadic query on indefinite database

As a target example, we used the linear time fixed disjunctive monadic query processing
of indefinite database proposed by Van der Meyden [van97]. He posed the following
unsolved problem:
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In a fized disjunctive monadic query, there is an algorithm answering the
query, which is linear wrt the size of the indefinite database on a linearly
ordered domain. What is the actual algorithm?

Here, we briefly review his results. For details, please refer to [van97].

Proper atoms are of the form P(a), where P is a predicate symbol, and « is a tuple
of constants or variables. Order atoms are of the form u < v, where u and v are order
constants or variables. An indefinite database D is a set of ground atoms. The atoms are
either proper atoms or order atoms. A model D of D is a linearly ordered domain (such
as time) satisfying D. D is a collection of partial facts on a linearly ordered domain, and
thus is referred to indefinite.

We concentrate on monadic query processing, (i.e., the database and queries contain
only monadic predicate symbols except for <). A predicate symbol is monadic if its
arity is less than or equal to one. The class of monadic queries is restrictive, but con-
tains nontrivial problems, such as a comparison between two gene alignments (regarding
C,G, A, T as monadic predicates).

For linearly ordered domains D and D', a map f : D — D’ is order-preserving if any
constant ¢, € D with ¢t < ¢ holds f(t) < f(#'), and predicate-preserving if a proper atom
P(t) € D implies P(f(t)) € D' and vice versa. An embedding e is an order-preserving,
predicate-preserving one-to-one map, and a projection p is an order-preserving, predicate-
preserving onto map. A model D is embedded to a model D’ if there is an embedding e
from D to D', and A model D’ is projected to a model D if there is a projection p from
D' to D.

A disjunctive query (or, simply a query) is a positive existential first-order clause
constructed from proper and order atoms using only 3, A, and V. A conjunctive query
is a first-order clause constructed from proper atoms and order atoms using only 3 and
A. For simplicity, queries are expressed in disjunctive normal forms, i.e., disjunctions
of conjunctive queries. Each conjunctive query in a disjunctive normal form is called a
conjunctive component.

For an indefinite database D and a query ¢, we define D |= ¢ if ¢ is valid in any model
of D. For instance, let D = {P(a),Q(b),a < b,Q(c), R(d),c < d, R(e), P(f),e < f}, and
let ¢ = 1y V 1y V 3 where

Yy = Fayz[P(a)ANQy)ANR(z)N <y <z,
Yy = Jaxyz[Q(z)ANRy)AP(z) N <y <z], and
g5 = JuyelR(z)A P(s) A Q)N <y <]

As a result, D = ¢. Note that neither D |= ¢y, D | 1y, nor D |= 5.
Definition 5.15 A conjunctive query is sequential if its form is
Jtate -ty [Prt) A AP (t) N T <ty <o < ).

Let Pred be a set of monadic predicates, and let ¥ = P(Pred) be the power set
of Pred. Y* is the set of all the finite words of the symbols in ¥. Without losing
generality, we can assume that a monadic query does not contain constants, i.e., if the
query ¢ contains the constant w, we can eliminate u by adding P,(u) to a database
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and replacing ¢ with Ja [P,(x) A ¢] for a new predicate P,. Thus, up to variable-
renaming, sequential monadic queries correspond one-to-one to words in ¥*. For instance,
dtitats [P(1) AQ(t1) A P(t2) A R(t3) A t1 < ty < t3] corresponds to { P, Q}H{ PH{ R}. This
correspondence is naturally extended to conjunctive queries, i.e., correspondence from a
conjunctive query to a finite set of words in F(X*). For instance, 3t1tats [P(t1) A Q(t1) A
P(t2) N R(ts) Nty <ty < ts] A Ftytats [P(t1) AN Q(t1) A P(t2) A S(ta) A 1 < tg < 4]
corresponds to { { P, QH{PHR}, {P,QHP}H{S} }. If ¢ isa conjunctive monadic query, a
path in ¢ is a maximal (wrt implication) sequential subquery of 1. We use the expression
Paths(i) for the subset of ¥* corresponding to paths of ¢, length(v) for the sum of the
lengths of all the paths, and base(1)) for the set of all predicate symbols appearing in .

Lemma 5.16 Let D be a monadic database and ¢ be a conjunctive monadic query.

Then, D = if and only if D |= p for every path p € Paths().

Let Py, Py, ---, P, be either proper or order atoms. By regarding the indefinite
database D = {P;, Py, -+, P,} as a conjunctive monadic formula Py A P, A -+ A Py,
the paths of the database are similarly defined. We denote the set of paths as Paths(D).
Note that the paths in an indefinite database can be computed in linear time wrt the
size of the database.

Lemma 5.17 Let ¢ be a sequential query, and let < be a subword relation on X* con-
structed from C on X (i.e., w < v if there is an order preserving injection f from u to v
s.t. u; C gy for each i). Then D |= o if, and only if, there is a path ' € Paths(D)
st <,

For a disjunctive query ¢, D | ¢ may be true even if D |= 1 does not for each
conjunctive component 1 of ¢. This makes it difficult to judge whether D |= ¢. For the
indefinite databases, Dy and Dy, Dy C Dy if Paths(Dy) <,, Paths(Ds), where U <,, V
if Vu € Udv € V s.t. u < v. We frequently identify an indefinite database D and the set
of its paths Paths(D), and also identify C and <,,.

Theorem 5.18 For any disjunctive monadic query ¢, if D1 |E ¢ and Dy © Dy, then
D2 |: P.

Here, we remark on the existence of the linear time algorithm to decide whether
D = ¢ for a fixed disjunctive query p. Elements in the Pred of interest are elements in
the monadic queries. Thus, without loss of generality, we can assume that Pred is finite,
and the set inclusion C in ¥ = P(Pred) is a WQO. Then, according to Higman’s lemma,
(X%, <) and (F(¥*), <) are WQOs, where ¥* is the set of finite words of ¥ and F(X*)
is the set of finite sets of ¥*. Based on Theorem 5.18, the set of indefinite databases
which hold a fixed disjunctive query ¢ is upward closed wrt C. Thus the problem of
judging whether D |= ¢ is reduced to a comparison of D with minimal (wrt C) indefinite
databases {D;} with D; |= ¢, called minors. The judgment can be made linearly in the
size of D. From this observation, the next theorem follows.

Theorem 5.19 Let us firx a disjunctive monadic query ¢. Then, there exists a linear
time algorithm to decide D |= ¢ for a monadic database D.
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Example 5.20 Consider the example above. Recall that ¢ = 11 V 10y V 13 where

Yy = Jayz[P(e) ANQy) ANR(z) N x <y <z,
vy = Jayz[Qx) AN Ry)ANP(z)N 2 <y<z], and
s = Jayz[R(@)ANPYy)ANQ(z)N v <y <z

Then, D |= ¢ if and only if there exists D' with D" © D such that Paths(D') is one of

{A{PHOY {QHEY, {RHP) 1, { {PHOHREY }, {{QHEHP} ), {{BH{PHE} )
{{PHOHPY {AQHE} J, { {QHEHQ), {BRHP} ), { {BH{PHE}L {PHQ} }
{{PHENPY, Q3 {E) }, {{QHPHQ), {BHPY ), { {BHOHR}, {PHO} )

Note that if a disjunctive monadic query varies, the complexity becomes co-NP. This
theorem only states the existence of a linear time algorithm, and the construction, which
is reduced to the generation of all the minimal indefinite databases wrt C, will be shown
below.

5.2.2 Design of disjunctive query processing algorithm

We say minors for minimal indefinite databases wrt C that are valid for ¢, and a set
of all minors is denoted by M. From the observation in Section 3, we know that the
essence of linear time algorithm generation for deciding D |= ¢ is reduced to generating
M. Thus, our aim is to generate M,,.

Let Pred be the set of monadic predicate symbols appearing in ¢, and let ¥ =
P(Pred). ¥ is a lattice wrt set inclusion C, and C is a WQO because Pred is finite.
Thus, from Corollary 5.7 and 5.13, <., on F(¥*) is a WQO. Then the ideal algorithm to

generate minors, which is presented in Fig. 5.1, has the following predicates and functions.

e Enumerate(n). Enumerates all elements of F(X*) (i.e., an one-to-one onto map
from N to F(X*) satisfying that Enumerate(i) <,, Enumerate(j) implies: < j).

o Exclude(L,a). Compute the subset of L consisting of elements not greater-than-
equal to a wrt <,,.

e QueryTest(«). For a € F(¥*), decide whether D |= a implies D |= .
e In(x,L). Decide whether an element x is in L.

e ExistsMinor(®). For a finite set ® of finite sets of sequential r.e.’s, decide whether
there exists a € Ugea F(L(0)) satisfying QueryTest (a).

We choose Enumerate(n) as any enumeration with the condition above. The imple-
mentation of QueryTest («) is as follows.
QueryTest («) is decidable, because this is specified in the monadic second order logic

S1S [Tho90a]. To illustrate, let ¢ = 41 V 13 V b3, where

Yy = Fayz[P(a)ANQy)ANR(z)N <y <z,
Yy = Jaxyz[Q(z)ANRy)AP(z) N <y <z], and
s = Jayz[R(x)ANPy)ANQ(z)N o<y <zl

and let o = {PQ,QR, RP}. QueryTest(«) is represented in SIS as

104



1: begin

2: M:={ };

3: L:={{¥*}};

4. n=0;

5: begin

6: while ExistsMinor(L) do

7: begin

8: NotFound:= true;

9: while NotFound do

10: begin

11: if QueryTest(Enumerate(n)) and In(Enumerate(n),L) then
12: begin

13: add Enumerate(n) to M;
14 : L:= Exclude(L,Enumerate(n));
15: NotFound:= false;

16: end

17: n:= n+i;

18: end

19: end

20: return M;

21: end

22: end

Figure 5.1: The ideal algorithm to detect minors M.,

(Fayzuvw. Pa)ANQy)he <y NQE)ANRu)Az<u ANRW)APw)Av < w
Ne#y ANao#z Nax#Fu Nar#Fv A cFw
ANy#zANy#uANy#v ANy#w A z#u
Nz#v AN zZ£w ANuv AN utw A v#uw)

— (Y1 VP2 Vi)

This is valid and QueryTest(«) is true.

The difficulties are at Exclude(L,«) and ExistsMinor(®). For Exclude(L,a), we
will use the approximation constructed ApproxExclude(L,a) by the repeated applica-
tions of Theorem 5.6 and Theorem 5.12, and we need some modification of the algorithm
in Fig. 5.1. In(«,L) will be also given in this context. They will be formally shown in
Section 5.2.3.

The test of ExistsMinor(L) ensures termination of the algorithm, and its construc-
tion will be shown in Section 5.2.4. Note that if ExistsMinor(L) then eventually
QueryTest (Enumerate(n)) and In(Enumerate(n),L) becomes true.
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1: begin

2: M:={ };

3: O:={{¥*}};

4. n=0;

5: begin

6: while ExistsMinor(®) do

7: begin

8: NotFound:= true;

9: while NotFound do

10: begin

11: if QueryTest(Enumerate(n)) and In(Enumerate(n),®) then
12: begin

13: add Enumerate(n) to M;
14 : $ .= ApprozEzclude (®,Enumerate(n));
15: NotFound:= false;

16: end

17: n:= n+i;

18: end

19: end

20: M:= Minimize(M);

21: return M;

22: end

23: end

Figure 5.2: The revised algorithm to detect minors M.,

5.2.3 Implementation of disjunctive query processing algorithm

Precise computation of Exclude (L, «) is not easy. Instead, by using the regular expression-
like construction of a base expression ® in Section 5.1, we approximate it as ApproxExclude (P, )
with

Exclude(L,a) C ApproxExclude(®,a)
for L C L(®). Corresponding to this setting, the algorithm presented in Fig. 5.1
is modified as in Fig. 5.2. The modifications are at L14 and L20 (in idtalic); since
Exclude(L(®),«)) C ApproxExclude(®,a), there may be some element 8 such that

8 >,, a for some minor a and [ eventually satisfies the condition in L11. To remove
such garbage, we need to minimize the final result by Minimize (M) at [.20.

o ApproxExclude(®,a). For a finite set ® of finite sets of sequential r.e.’s and
a € F(X¥), construct a finite set @ of finite sets of sequential r.e.’s such that
U@)eq)[/(f(@)) \ a® g U@/eq)/[/(f(@/)) and ® >m (I)/.

e Minimize(M). For a finite subset M of F(¥*), minimize M wrt <,,.
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Exclude is implemented by repeating the applications of Theorem 5.6 and Theo-
rem 5.12. In(a,®) is computed by checking whether each element in « is contained one
of sequential r.e.’s in ©(€ ®). Minimize is easily computed by using <,,.

5.2.4 Construction of ExistsMinor (L)

We will construct the upper bound of indefinite database for ExistsMinor(®) for a
base expression ®. The basic idea is to construct database Dy, for a sequential r.e.
§ = oy--- 0y (where o, is a constant or starred expressions) such that

Paths(Dg,) = (o)™ X - X (o)™
= {Pl,l"'Pl,nl"'Pl,nl | PZ,] € ¢(0-2) for 1 Slglvl S]Snz}

where n; = 1 if 0; is a constant expression, and n; = n otherwise. Then we will show that
Dy |E ¢ and Dy, = ¢ are equivalent for sufficiently large n,n’. Then, by computing
the upper bound n for each set @(€ ®) of sequential r.e.’s. ExistsMinor(®) becomes
equivalent to Uges Do | .

Definition 5.21 Let A be a bad sequence ay,aq, -+, ap in X and b € Y. For the constant

expression (b — A) and the starred expression (¥ — A)*, we define ((b— A)) as the set
of the maximum elements in (b — A), i.e.,

max({X Cbase(v) | bC X,a € X for each a € A})
(X — A)*) as the set of the mazimum element in ¥\ (a5 Uaj U---af), ie.,

max({X Cbase(p) | a £ X for each a € A})

For either constant or starred expression o, ¥(¢) can be computed, because ¥ =
base(p) (i.e., the set of all subsets of predicate symbols appearing in the fixed query, see
Section 5.2.1) is finite in our context.

Definition 5.22 [or the sequential r.e. 0 = oy--- 0y, we define an indefinite database
Dé’,n by

AP, eu(e)a<i<n; 3811 T [Pra(@a) A A Py (1) Ay <o < i
where n; = 1 if 0; is a constant expression, and n; = n otherwise.

Definition 5.23 Let © be a finite set of sequential r.e.’s Oy,---,0,. Let o = 101 V by V

Vb, where Py, -+ - 0y are conjunctive components. Then () = max{length(¢;) | 1 <
1 <t} and [(O,¢) =1(p) - size(O) - |O].

Lemma 5.24 Fiz a disjunctive query @ = 1 V g V -+ V b, where oy, -, ; are
conjunctive components. Let © be a finite set of sequential r.e.’s 01,---.0,. For each

n > l(®799); UISkSSDé’k,n |: ¥ if, and only if, UlSkSSDekvl(Gv@) |: L
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Proof “Uici<sDy, n = ¢ if Ui<k<s Dy, 10,0) = ¢ is obvious. We prove the opposite
direction. Assume Dye,,) £ ¢ for some model Dye,;). We show that some model D,, of
Ui<k<s Dy, n, which is a suitable extension of Dyg ), holds D, .

Let us focus on a starred expression o; in 0 = gy0,5---0; € O. Since the number of
constant and starred expressions appearing in O is at most size(0)-|0|, ¥ (7;)"® ¥ has a
segment longer than [(¢) that overlaps with at most one starred expression. Let D;(@),@)

be an extension of Dye,,) by inserting ¢(o;)"~(®) to that segment. Then, Dyo,m) F @
from Dye,¢) = @-

Repeating this process to each starred expression appearing in ©, we obtain a model
D,, of Ui<k<s Do, n, keeping D, = .
The next theorem is immediate from Lemma 5.24.

Theorem 5.25 Let ® be a finite set of finite sets of sequential r.e.’s. Then,
ExistsMinor(®) = Veecs QueryTest(Usce Dy o,4))-
Theorem 5.26 The algorithm (in Fig. 5.2) to detect a set of minors M, terminates.

Proof From Theorem 5.12, for each iteration of while ExistsMinor(L), L strictly
decreases wrt <,,,, and <,, i1s an WFO from Corollary 5.13.

Thus, we can effectively compute a set of minors M., and obtain a simple algorithm
to decide D = ¢.

Corollary 5.27 For a fized disjunctive monadic query o, the linear time algorithm to
decide whether D |= ¢ for an indefinite database D is as follows:

begin
Flag:= false;
for each m in M, do Flag:= Flag or [m <, D];
return flag;

end

Since the comparison wrt <,, can be done in linear-time to the size of D, this Corollary
shows the generation of linear-time algorithm of fixed disjunctive query processing over
indefinite databases.

5.3 WQO and regularity

In [EHRS83], Ehrenfeucht et al. showed that a set L of finite words is regular if and only
if L is <-closed under some monotone well-quasi-order (WQO) < over finite words. We
extend this result to regular w-languages. That is,

1. an w-language L is regular if and only if L is <-closed under a periodic extension
=< of some monotone WQO over finite words, and
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2. an w-language L is regular if and only if L is <-closed under a WQO =< over w-words
that is a continuous extension of some monotone WQO over finite words.

Throughout this section, we will use A for a finite alphabet, A* for a set of all (possibly
empty) finite words on A, and A“ for a set of all w-words on A. A concatenation of two
words u, v is denoted as u, v, an element-wise concatenation of two sets U, V' of words by

UV, V.V.---V by Vi, and V.V.V.--- by V¥. The length of a finite word u is denoted
ﬁ_/

by |u]. As a convention, we will use ¢ for the empty word, w,v,w,--- for finite words,
a, 3, -+ for w-words, ay,as,--- for elements in A, 1,7, k,{,--- for indices, and U, V,---
(capital letters) for sets. We sometimes use x,y, - -- for elements of a set.

5.3.1 w-words

A regular w-language is a set of w-words that are accepted by a (nondeterministic) Biichi
automaton A = {Q), qo, A, F'}, where @) is a finite set of states, go an initial state, A C
Q) x A x () a transition relation, and F' a set of final states. a = ajazaz--- € A¥ is
accepted by A if its corresponding run ¢q @2 tuns through some state of

F' infinitely often. A set of w-words accepted by A is denoted as L(A). For states ¢, ¢’
and w € A*, we write ¢ — ¢ if there is a run of 4 on w, and we write ¢ LN ¢ if there is

a run of A on w from ¢ to ¢’ such that the run runs through some state of F.
A congruence ~ is an equivalent relation over A* preserved by concatenations. It is
finite if there are only finitely many ~-classes. Details are given elsewhere [Tho90b].

Definition 5.28 Let L C A and let ~ be a congruence over A*. We say that ~
saturates L if for each ~-class U, V, UV“ N L # ¢ implies UV C L.

Lemma 5.29  For a Biichi automaton A and u,v € A*, we define u ~4 v if (¢ = ¢ &

qg—4) N (q LN q & q LN q') for each ¢,¢' € ). Then ~4 is a finite congruence that
saturates L(A).

Theorem 5.30 [ C A¥ is regular if and only if some finite congruence saturates L.

Lemma 5.31 Let ~ be a finite congruence over A*.

1. Let o = wqug--- € A and let u(i,7) = wtjq1 -~ - uj—1 where u; € A*. There exist
a ~-class V and i1 < ip < --- such that u(ij,u;) € V for each j, k with j < k.

2. Let U,V be ~-classes. There exist ~-classes U', V' such that U.VY C U'. V"V
UV CU',and VLV C V.

Proof

1. Since ~ has only finitely many ~-classes, this is a direct consequence of (infinite)
Ramsey Theorem.
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2. Note that for each ~-class Uy, -+, U, , W, Uy.--- .U, "W # @) implies Uy.---.U, C
W. Since ~ has only finitely many ~-classes, from (infinite) Ramsey Theorem there

exist a ~-class V' and iy < i3 < --- such that V=% C V’ for each j,k with j < k

and V'.V' C V'. Let U’ be a ~-class that includes U.V*. Then U.V* C UV,
UV CU',and VLV C V. [ |

For a QO (5,<) and L C 5, L is <-closed if + € L and < y imply y € L. A QO
(A", <) is monotone if u < v implies wyuwy < wyvw; for each w,v,wy,wy € A*. As a

convention, a QO over finite words is denoted as <, and a QO over w-words is denoted
as <.

5.3.2 First theorem

Definition 5.32 A QO (A%, <) is a periodic extension of (A* <) if the following
conditions are satisfied:

e For each u;,v; € A*, u; < v; for any ¢ imply ujuqus -+ < v1v9v3 - - -.
o Lor each o € A%, there exist u,v € A such that o < w.v¥ and o > uv.v*.

Theorem 5.33 Let L C A¥. L is regular if and only if L is <-closed under a periodic
extension (A%, <) of a monotone WQO (A*, <).

For instance, the embedding over w-words is the periodic extension of the embedding
over finite words. Note that a periodic extension of a monotone WQO over A* is a WQO
over A¥. We will prove Theorem 5.33 below.

Lemma 5.34 Let ~ be a finite congruence on A* and let U,V be ~-classes. For
u,v € A ifwo¥ € UVY, UV CU, and V.V C V| there exist wy; € U and wy € V such
that wiw§ = uv®.

Proof Let uwv” = u'vjvy--- satisfying v’ € U and v{ € V, and let w(z,7) = v}---v;_;
for i < j. Let k; = |w(1,7)| (mod |v]). Then there exist k;, and kj, such that k; < kj,

and kj, = k;, (mod |v|). Since there are infinitely many such pairs, we can assume that
lu| < |u'w(l,51 —1)|. Let wy = v w(l,5; — 1) and wy = w(j1,J2 — 1). Since U.V C U
and V.V.CV, w, € U, wy € V and uv® = wywy. [ |

Lemma 5.35 For a Biichi automaton A and a € AY, let [a] = {UVY | o € UV¥}
where U,V are ~ 4-classes. We define o <" 8 if [a] N [B] # 0. Then,

1. L(A) is <'~closed.
2. u; ~4 v; for each ¢ imply wjug - -+ <" vivg---.

Proof From Lemma 5.29, ~ 4 saturates L and U.V¥ C L for each UV¥ € [o]. Thus L
is <'-closed.

From Lemma 5.31 (i), there exist a ~4-class V and i1; < i3 < --- such that u(i;, 1) €
V for each j < k. Let U be a ~ 4-class such that u(1,i;) € U. (We borrow the notation
from Lemma 5.31 (i).) Since ~4 is a congruence, v(1,i;) € U and v(i;,ix) € V for each
J < k. Thus uyug--- € U.V* implies vyvy--- € U.VY, and o < 3. [ |
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Definition 5.36 [Arn85] For u,v € A*, we define u =~y v if w(wuw,)? € L &
w(wivwz)” € L and wiuwaw® € L & wivwsw® € L for each w,wq, wy € A

Proof of Theorem 5.33

Only-if part: Assume L is regular. Let A be a Biichi automaton such that L = L(A).
Since ~ 4 is a finite congruence, (A*, ~ 4) is a monotone WQO. Define < as the transitive
closure of <’ (defined in Lemma 5.35), then (A“, <) is a periodic extension of (A*, ~4)
and L(A) is <-closed.

If part: Assume that L is <-closed where < is a periodic extension of a monotone WQO
<. First, we show that ¢, is a finite congruence. Assume that {u;} is an infinite set
in A* such that w; % u; for ¢ # j. Since (A*, <) is a WQO, there exists an infinite
ascending subsequence {uy, }.

Let F(u) = {(v,v1,02, w1, w3, w) € A* X A* X A* X A* X A* X A" | v(vuvy)® €
L N wiuwsw® € L}. Since < is a periodic extension of < and L is <-closed, each F'(u) is
< x < x < x < x < x <-closed and hence F(uy,) C F(uy,) for ¢ < j. Since uy, %1 ug,
for i # j, F(ug,) # Fuy,;), thus F(uy,) C F(ug,). Then there exists an infinite sequence
in which each pair of different elements is incomparable. Since < x < x < x < x < x <
is a WQO over A* x A* x A* x A* x A* x A*, this is a contradiction.

Second, we show that ~j saturates L. Assume that some ~j-classes U,V satisfy
UVeNL#¢and UVY Z L. From Lemma 5.31 (ii), we can assume that U.V C U and
V.V CV.

Let « € UV¥ N L and g € UVY\ L. Since (A%, <) is a periodic extension, from
Lemma 5.34 there exist u,u’ € U and v,v" € V such that a = wv* and § = v'v'. By
definition of ~y, uv¥ € L and u'v"™ ¢ L are contradictory. [ |

5.3.3 Second theorem

Definition 5.37  For a monotone QO (A%, <), a QO (A¥, <) is a continuous extension
if the following conditions are satisfied.

1. For each u,v € A* and o, 8 € A, v < v and o < B imply ua < vf.

2. Let uj,v; € A* for each j and let o; = vy - v;_qu; -+ - for each 1 and o, = vyvg---.
For g € A%, if u; < v; and o; <  for each 7, then a,, < 3, and if u; > v; and
a; = (3 for each 1, then a., = f.

Theorem 5.38 Let L C A%. L is regular if and only if L is <-closed under a WQO
(A“, <) that is a continuous extension of a monotone WQO (A*, <).

For the embedding < over finite words, let (A*, <°) be defined as u <° v if and only
if u<w and elt(u) = elt(v), where elt(u) = {a; | u = ayay---a;}. Since the embedding
< over finite words is a WQO from Higman’s lemma, <° is also a WQO. Then the
embedding over A“ is a continuous extension of <°. Note that the embedding over A is
a continuous extension of the embedding < over finite words. Actually, any continuous
extension of the embedding < over finite words is a trivial WQO (i.e., A¥ x A“). For
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instance, given «a, 5 € A¥. Let a(1,1) be the prefix of a of the length ¢ and o; = (1,1).5
for each 1. Since a(l,i) > €, a; = P for each . Thus, by definition of continuity,
0o = « = . Hence, for any o, € AY, we conclude a > j3.

Definition 5.39  Let u,v € A* and let L C A¥. We write
e u ~! vifand only if Yw € A*,Va € A¥. wua € L & wva € L,
e u~?vifand only if Vw € A* . wu* € L. & wv¥ € L, and

e u ~; vif and only if v ~} v and u ~% v.

Proof of Theorem 5.38

Only-if part: Assume L is regular. Let A be a Biichi automaton such that L = L(A).
Since ~ 4 is a finite congruence, (A*, ~ 4) is a monotone WQO. Define < as the transitive
closure of <" (defined in Lemma 5.35), then L(A) is <-closed. Since <’ is symmetric,
(A“, <) is a continuous extension of (A*, ~4) from Lemma 5.35 (ii). For the index n of
~ 4, the number of <-classes is bound by 2*°. Thus < is a WQO.

If part: First, we show that ~ is a finite congruence. Assume that {u;} is an infinite
set in A* such that w; %7 u; for ¢ # j. Since (A*, <) is a WQO, there exists an infinite
ascending subsequence {uy, }.

Let F(u) C A* x A x A* be a set such that (w,a,v) € F(u) & wua € LAvu® € L.
Then, each F(u) is < x =< x <-closed and hence F'(uy,) C F(uy,) for ¢ < j. Since
ug, 2r ug, for v # 3, Fuy,) # Fuy,), thus F(ug,) C F(uy;). Then there exists an infinite
sequence in which each pair of different elements is incomparable. Since < x < x <'is
a WQO over A* x A“ x A*, this is a contradiction.

Second, we show that ~j saturates L. Assume that some ~j-classes U,V satisfy
UVYNL#¢and UVY Z L. From Lemma 5.31 (2), we can assume that V.V C V.

Let o = uvyvy - - - be a minimal element (wrt <) in U.V¥ N L, and let g = w'vjvl--- €
UV \ L such that u,u’ € U and v;, v} € V. Let {v;} be sets of minimal elements of V
wrt <. Since (V, <) is a WQO, {v,} are finite.

Let o/(j,7 + k) = vj---vjpr. Since v, are finitely many, from (infinite) Ramsey

Theorem there exist [ and an ascending sequence 0 < j; < jy < -- - such that o (Jum, Jmt+1—
1) > vy for any m > 0.
Let a, = u o/(1,71 — 1) 077" a'(jm, Jms1 — 1)+ -. Obviously, a,, < a and a,, €

UV¥N L. Since o is minimal in U.V¥ N L, «,, = «. By definition of the continuous
extension, o, = u /(1,71 — 1) v = a. Thus, since L is <-closed, a., € UV N L.

Let 3'(5,5 + k) = v’ vl . Since v are finitely many, from (infinite) Ramsey Theo-
rem there exist [" and an ascending sequence 0 < jj < 75 < ---such that 5'(s,,j,, ., —1) >
vp for any m > 0. Let B = o’ p'(1,51 —1) v}i. By definition of the continuous extension,

Boo < B. Since L is =<-closed, 3 & L implies 3., & L. Thus 3 € U.V¥\ L.
Since u ~} u’ and v; ~7 v; for each j, repeated applications of ~} and an application
of ~7 imply that a., € L if and only if 3., € L. This contradicts a., € L and ., € L.
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Example 5.40  Either the periodic or continuous assumption in the theorems is needed
to conclude regularity. Let 8 = abaabaaabaaaab--- and let L(3) be the set of w-words
that have a common suffix with 8. For a € A%, let pg(a) = 1 if o € L(B) and let
ps(a) = 0 if o & L(F). Define @ < o' & psla) < ps(a’). Then < is a WQO over
w-words and L(f) is <-closed, but L(/3) is not regular.

5.4 Possible improvement by fold/unfold program
transformation

This chapter described the generation of a linear time query-processing algorithm for a
fixed disjunctive monadic query in an indefinite database on a linearly ordered domain.
This problem was first posed by Van der Meyden [van97] and had, until now, not been
reported elsewhere. There are several future directions:

1. Our method is based on the regular expression techniques in Murthy-Russell’s
constructive proof of Higman’s lemma [MR90]. Among its known constructive
proofs [MR90, RS93, CF93] (or intuitionistic proofs [Ges96, Fri96]), [CFI3] would
be one of the most simple and is implemented on Coq prover?. This could be applied
to a simpler method of algorithm generation, in combination with well-developed
proof-extraction techniques.

2. We are designing an automatic generator based on MONA.> MONA, which runs on
Linux, efficiently decides the satisfiability of formulae in monadic second order logic
S1S/S52S. For efficient implementation, we also need some reduction of sequential
r.e.’s to smaller and equivalent sequential r.e.’s by removing redundancies.

3. The next extension may be to use the constructive proof of Kruskal’s theorem [NW63]
for more general problems. Gupta demonstrated the constructive proof of the
weaker form [Gup92], and recently Veldman presented an intuitionistic proof of
Kruskal’s theorem [Vel00]. These would correspond to, for instance, query-processing
in an indefinite database over partial ordered domains (i.e., events on branching
time).

Adding to topics listed above, we may need to reduce the constant of a generated linear
time algorithm to make it practical. For instance, as the example of the disjunctive query
@ = 1 V by V b5 (Section 5.2) where

o Jryz[P(x) A Qy) A R(z) N w <y <z,
Yy = Jaxyz[Q(z)ANRy)AP(z) N <y <z], and
s = Jayz[R(x)ANPy)ANQ(z)N o<y <zl

4See http://coq.inria.fr/contribs/logic-eng.html.
% Available at http://www.brics.dk/mona.

113



suggests the number of minors would easily explode. The example requires comparison
with 10 minors

{{PHOY, {QHRY, {rH{P} ), { {PHOHR} }, { {QHEHP} }, { {RHPHQ} },
{A{PHQMPY, {QHEY }, {AH{QHENHQ), {RHPY |, { {BHPHEL, {PHQ} }.
H{PHEHPY, {QHE} 1, {{@HPHO), {BRHPY ), {{BHOHEL {PHQ} }

We expect that a program transformational approach, such as stratification by folding,
would be useful in reducing the number of comparisons with minors. For instance, the
number of the tests will be reduced (from 10 times to at most 6) if the comparison is
stratified as follows.

query
2

| ves [ {{PHQ). {Q}R). (R}{(P} ). [ {PHQHE} ).
Hte). (a3t )= { ({PHQMPY. {QHRY ). { {RHQMERY. {PHQ) ).

ves [ {{QHRIP} }.
e, ey )= { {{QHEHQY {RHPY 3, { {PHRHPY, {QHR} }.

ves [ {{R}P}Q) ).
LRHPY APHQY ) { {{RHPHR}, {PHQ} }. { {QHPHQ} {R}P} }.
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Chapter 6

Automatic generation based on tree
decomposition

A graph is a flexible relational structure for describing problems, but solving such prob-
lems is often not so easy. Difficulty arises because an efficient implementation of a graph
is not obvious. In mathematics, a graph is expressed by a pair of a vertex set and an
edge set. This is clear, but a set as a data structure is a source of inefficiency from the
algorithmic view point. Some algorithms (especially those for network flow problems)
express a graph by a matrix, but even for a sparse graph the size of the matrix grows to
the square to the size of a graph.

Recently, graphs with bounded tree width [RS86] (or, partial k-tree [ACPS93], the
same concept appeared simultaneously) have been receiving attention because of their
interesting algorithmic properties, such as the fixed parameter tractability [DF95, Flu01,
Gro01]. That is, the complexity of inherently difficult graph problems is often estimated
as Q21U L |V(G)|) for a graph G, its tree width twd(G), and its vertex set V(G).
This suggests that the restriction of graphs with the fixed upper bound of tree width
(called bounded tree width) can make NP-hard graph algorithms (such as Hamiltonian
circuits and chromatic numbers) be even linear-time solvable. Actually, we know that
linear time solutions for monadic second order definable properties (such as reachability
and connectivity, see the list of properties in [Cou90]) are automatically generated for
graphs with bounded tree width [BLW87, Cou90, BPT92, SHTOO00], as illustrated in
Fig. 6.1.

This is excellent in theory, but still infeasible in practice, because of the huge con-
stants of generated linear time algorithms. Such constants easily explode to the tower
of exponentials. Our basic approach is specification by finite mutumorphism, instead of
that by formulae. Then, fusion/tuppling program transformation of functional programs
would drastically reduce the constant.

Section 6.1 shows simple but non-trivial examples of our methods [SHTO00, SHTO02];
mazimum segment sum problem (MSS) and k-mazimum segment sum problem (k-MSS).
The generated linear time programs are as fast as hand-coded ones [Ben84, BRS99], both
in theory and practice.

Their back born structures remain in simple graphs, such as words and trees. To
extend the scope as in Section 6.4, we face the problem that the algebraic construction of
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specification (of constraints)

algorithm generator

input —> | preprocessor|—> | lineartime algorithm | —> output
graphs tree decomposition  dynamic programming

;q© @ ¢ ©&f©@/®@ @
¢ o

twd=2 & ¢ e

Figure 6.1: Linear time algorithm generation for graphs with bounded tree width

graphs (such as tree decomposition) is not initial, whereas most of program calculational
techniques assume an initial algebra. This problem was already found in the derivation of
the Dijkstra algorithm on the shortest path problem [ 00]. Thus, we need the extensions
of fusion/tuppling program transformational techniques to non-initial algebra, which were
suggested in [Fok96].

For this purpose, Section 6.2 presents the complete axiomatization of the algebraic
construction of graphs [ACPS93]. At the moment, whether some finite fragment of this
infinite axiomatization is complete for graphs with bounded tree-width is not clear; but
I strongly believe such completeness holds and this will be the next step.

6.1 Examples of linear time algorithms for data min-
ing

Data mining, which is a technology for obtaining useful knowledge from large database,
has been gradually recognized as an important subject. There have been developed many
efficient algorithms for various kinds of data mining problems; here we concentrate on
the problem of mining optimized association rules [BRS99, FMMT96b, FMMT96a).

The core of mining optimized gain association rules problem is transformed to the
problem called mazimum segment sum problem (MSS for short) [FMMT96b], and we
have a linear time algorithm [Ben84]. Input of the MSS problem is a number list s, and
output is a segment (consecutive sublist) of xs that has the maximum sum among all
segments of xs. For example, in the case of zs =[5, —10,20, 5, —15,30, —5], the result is
[20, 5, —15,30], which has the maximum sum 40.

6.1.1 MSS problem

The hand-coded linear time program by Bentley is shown in Fig. 6.2 (which is originally
a C program and reorganized as a Haskell program) [Ben84]. In Fig. 6.2, mssloop scans
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mss xs = mssloop xs 0 O

mssloop [] mval val = max mval val
mssloop (x:xs) mval val = let newval = max 0 (val + x)
in mssloop xs (max mval newval) newval

Figure 6.2: Program of MSS by Bentley

the input list xs from the head to the end. mval expresses the maximum sum in the
currently scanned prefix (which is expressed as MaxSoFar in Algorithm 4 in [Ben84]), and
val expresses the maximum value among the sums of suffixes in the currently scanned
prefix (which is expressed as MaxEndingHere).

As an (easy) instance of the automatic generation based on tree decomposition [BLW87,
Cou90, BPT92], the linear time algorithm of MSS is automatically generated; however

its cost is still too expensive. That is, the constant grows up to 22222 . Our aim is
to apply program transformational techniques, such as fusion and tuppling transforma-
tion [Fok89, MFP91, TM95, HITT97], to reduce the constant. For MSS, we have suc-
cessfully reduced the constant to 2° [SHTO00], which is comparable to the hand coded
program above [Ben84, Gri90].!

Let marked elements express a (possibly non-contiguous) sublist in a list. A marked
element x is represented as (x,True), and (x,False) otherwise. Starting from the finite
mutumorphism specification of connectivity conn

conn [x] = True
conn (x:xs) = if marked x then nm xs || (marked (head xs) && conn xs)
else conn xs

nm [x] = not (marked x)
nm (x:xs) = not (marked x) && nm xs

we obtain the classification consists of all possible combinations of the results of 3 boolean-
valued functions that characterize connectivity. More specifically, these functions are:
conn, marked elements in the list are contiguous, nm, no elements in the list are marked,
and mh, the first element in the list are marked. Their values correspond to (c,n,m)
(in this order) in Fig. 6.3. The number of their possible combination is 2° and for each
combination the maximal candidate is computed. After scanning the input list, we can
choose the maximum value from combinations satisfying conn, which is filtered by the
accepting function accept mss.

Fig. 6.3 presents the generated Haskell program. opt is the generic function for
maximum weight sum problems, presented in Fig. 6.4. Refer [SHTOO00], for details.

!Similar for the party planning problem [CLR90, BAM96].
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mss = opt accept_mss phil_mss phi2_mss
accept_mss (c,n,m) = ¢
phil_mss mx = (True, not (marked mx), marked mx)

phi2_mss mx (c,n,m) = (if marked mx then (n || (m && c)) else c,
not (marked mx) &%& n,
marked mx)

Figure 6.3: Automatically generated program of MSS

opt accept phil phi2 xs =
let opts = candidates phil phi2 xs
in third (getmax [(c,w,t) | (c,w,t) <- opts, accept c])

candidates phil phi2 [x] =
eachmax [(phil mx, if marked mx then weight mx else 0, [mx])
| mx <- [mark x, unmark x]]

candidates phil phi2 (x:xs) =
let opts = candidates phil phi2 xs
in eachmax [(phi2 mx ¢, (if marked mx then weight mx else 0) + w,
mx:cand)
| mx <- [mark x, unmark x], (c,w,cand) <- opts]

getmax [] = error "No solution."
getmax xs = foldrl f xs
where £ (c1,wl,candl) (c2,w2,cand2) =
if wi>w2 then (cl,wl,candl) else (c2,w2,cand?2)

eachmax xs = foldl £ [] xs
where £ [] (c,w,cand) = [(c,w,cand)]
f ((¢’,w’,cand’) : opts) (c,w,cand) =
if c==c’ then if w>=w’ then (c,w,cand) : opts
else (c’,w’,cand’) : opts
else (c¢’,w’,cand’) : f opts (c,w,cand)

Figure 6.4: Definition of the generic function opt for the maximum weight sum problem
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6.1.2 k-MSS problem

The extension of MSS, called £-MSS, is used to solve the extension of the mining opti-
mized association rules [BRS99]. Input of the £-MSS problem is a number list xs, and
output is the (at most) k-segments of as that have the maximum sum among all other
choices from xs. For example, in the case of xs = [5, —10, 20,5, —15, 30, —5] and k=2, the
result consists of [20,5] and [30], which have the maximum sum 55. [BRS99] proposed
the linear time algorithm (both linear to k and the input size) of k-MSS. The algorithm
is a k-path algorithm, and at each ¢-th path a solution of :-MSS is obtained.

e ¢ = 1: At the first path, solve 1-MSS as in [Ben84].

e i > 1: Let the solution of the (¢ — 1)-MSS be s1, $2,...,5,-1 and the remaining
sublists be t1,%5,...,¢; with 2 — 1 < 5 <14 1. Solve 1-MSS for 4,t5,...,1; and
let one that has the maximum solution be ?,,,,. Solve I-minimum segment sum
problem for sq,$5,...,s;_1 and let one that has the minimum solution be s,,;,. If
the segment sum of ¢,,,, plus the segment sum of s,,;, 1s less than 0, then split
Smin Into three subintervals with the solution of s,,;, as the middle interval and
delete s, from the solution of (i —1)-MSS and add the first and third intervals to
it, which gives the solution of :-MSS. Otherwise, split ¢,,,, into three subintervals
with the solution of ¢,,,, as the middle interval and add the solution of ¢,,,, to the

solution of (¢ — 1)-MSS, which gives the solution of :-MSS.

This algorithm iterates k times the process of finding the most effective sublist and
splitting it, and its complexity is O(kn).

Our method in [SHTOO00] generates the linear time algorithm; the property descrip-
tion that the marked elements form k-contiguous components is given below for 1 <1 < k.
The intuition behind is; p_i xs returns True if the marked elements in xs compose at
most i-contiguous components, and returns False otherwise.

p_i [x] = True
p_i (x:xs)

if marked x
then if marked (hd xs) then p_i xs
else p_i-1 xs
else p_1 xs

not (marked x)
not (marked x) and p_0 xs

p_0 [x]
p_0 (x:xs)

The generated program first computes the maximum value for each possible combina-
tion of the result of £+2 boolean valued functions, p_i for 0 < ¢ < k, marked, and marked
hd, next filters the maximum values of the cases that fit to the property description, and
choose the maximal value among them. Thus, the program is linear to the size of the
input and the size of the possible combinations; 2¥*%. Thus, the complexity is O(2%n),
which is much worse than that in [BRS99].

By supplementing the accumulators in the specification, we obtain the automatic
generation of the linear time algorithm (both linear to k and the input size) of k-

MSS [SHTOO02]. This is done by extending the generic algorithm opt from Fig. 6.4
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to Fig. 6.5 [SHTO01] and the specification from mutumorphisms to functions of the form
pas = g (foldry (¢1,02) § x5 €g)

where ¢ is a function from multi-marking to boolean values and foldry, is the higher-order
version of foldr defined as

foldry (¢1,¢2) 6 [] e = ¢ €
foldry (d1,02) 6 (x:as)e = ¢y e (foldry (p1,P2) § xs (6 x e).

Multi-marking is an extension of marking, that is, allowing an index of finite values
instead of boolean values to each element. For k-MSS, an index of boolean values (here
we consider True as 1 and False as 2) is enough, but we essentially need the accumulator
e in the definition of foldr; to reduce the number of function symbols (from k to 2) in
the specification of £-MSS. For instance, the specification for k&-MSS with an accumulator
parameter is rewritten as below.

p xs = p’ xs (2, k)

p’ I (m,e) = True
p’ (x:xs) (m,e) = if m==1 then p’ xs (markKind x, e)
else if markKind x
then if e > 0 then p’ xs (1, e-1)
else False
else p’ xs (2, e)

markKind (x,m) = m

This specification is transformed to the program with foldr; by program calculational
techniques, such as fusion and tuppling transformations. Actually, we successfully obtain
the following specification by MAG system [dMS99], which is the system for automatic
program transformation based on higher order pattern matching.

g X =X
phil (m,e) = True
phi2 x (m,e) r = if m==1 then r
else if markKind x
then if e > 0 then r else False
else r
delta (m,e) = if m==1 then if markKind x then (1,e) else (2,e)
else if markKind x then (1,e-1) else (2,¢e)
e_0 =0

Then, O(kn) algorithm of k-MSS is automatically generated as
opt 2 accept (f,+,0) phil phi2 delta
where

accept (c,e) = c && e == (2,k)
f x = 1f marked x then w x else 0
w (x,m) = x
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opt k accept (f, oplus, id_oplus) phil phi2 delta xs =
let opts = foldr psi2 psil xs
in snd (getmax [(w,r) | Just (w,r) <- [ opts!i
| i <- range bnds,
opts'i /= Nothing,
accept i]])
where psil = array bnds [(i, g i) | i <- range bnds]
psi2 x cand = accumArray h Nothing bnds
[((phi2 xm e ¢, e),
(f xm ‘oplus‘ w, xm:r))
| xm <- [(x,m) | m <- [1..k]],
e <- acclist,
((c,_), Just (w,r)) <-
[ (i,cand'i)
| 1 <- [ (c’,delta xm e)
| ¢’ <- classlist],
inRange bnds 1,
cand'i /= Nothing]]
g (c,e) = if (c == phil e) then Just (id_oplus, [])
else Nothing
h (Just (wi1,x1)) (w2,x2) = if wl > w2 then Just (wl,x1)
else Just (w2,x2)
h Nothing (w,x) = Just (w,x)
bnds = ((head classlist, head acclist)
(last classlist, last acclist))

getmax [] = error "No solution."
foldrl £ xs
where £ (c1,wl,candl) (c2,w2,cand2) =
if wi>w2 then (cl,wl,candl) else (c2,w2,cand?2)

getmax xs

Figure 6.5: Definition of the generic function opt for the maximum marking problem
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6.2 Complete axiomatization for algebraic construc-
tion of graphs

We obtained success to generate a practical linear time algorithm for k-MSS. However,
still the data structure of £-MSS is simple, i.e., sequence. These techniques are also
applicable to trees, which compose an initial algebra. When we try to extend the method
to more general graphs, we face to the problem that the algebra of graphs is not initial.
Thus, the validity of the program calculational transformation rules is not clear yet. Our
first step is to clarify the algebraic construction and the algebraic structure of graph.

Bauderon and Courcelle presented an algebraic construction of graphs [BC87, Cou90,
CMO1]. In general, a graph may have several algebraic constructions. Thus the algebraic
structure of graphs should be clarified for the recursive computation to be well defined.
[BC87, Cou90] also give the complete (infinite) axiomatization, but the size of their
construction may grow square to the number of vertices; this is unwelcome situation
from the algorithmic view point.

This section presents the complete (infinite) axiomatization for another algebraic
construction of graphs. This algebraic construction is an extension of that in [ACPS93],
of which the size grows linear to the number of vertices for graphs with bounded tree
width [RS86]. For terminology for rewriting, refer Chapter 2.

6.2.1 Algebraic construction of graphs

A k-terminal graph (G is a graph with a tuple of £ vertices, called terminals. For simplicity,
we consider simple graphs without loops (which are obtained as 0-terminal graphs after
removal of terminals). The set of vertices of G is denoted by V() and the set of edges
of GG is denoted by E(G).

Definition 6.1 k-terminal graphs Gy, Gy are isomorphic if there exists a one-to-one
onto map o : V(Gy) = V(Gy) such that
- Forv € V(Gh), if v is the i-th terminal of Gy with 1 <1i <k, then o(v) is the i-th
terminal of Gy, and vice versa.
- For v,v" € V(Gy), if (v,0) is an edge of Gy, then (a(v),a(v')) is an edge of Gy,

and vice versa.

Definition 6.2 Let By, be sorts for k > 0. Let %, pr, 1, 0k, €2, 0 be signatures with sorts
below

0: BO, rE: Bk — Bk—h Ui: Bk — Bk
where 1 <k, j <k, and k > 0. Let B, = T({0,¢* I\, v, pr,ot | 1 <@ <k < n}).

{ e BQ, lz Bk—l — Bk, pki Bk X Bk — Bk,

A term t € By is interpreted as a k-terminal graph (defined below) by interpreting
signatures [%, pg, 7%, 0%, €2, 0 as following operations. This interpretation is denoted by
Y(t). A term tis connected if ¢(1) is a connected graph.

Definition 6.3 Let ¢ be an edge with two terminals and O be an empty graph. We
define operations among k-terminal graphs as
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- 1i(s) is a lifting for 1 < 1 < k, i.c., insert a new isolated terminal at the i-th
position in k — 1 terminals.

- ri(t) removes the last-terminal.

- pr(s,1) is a parallel composition for k > 0, i.e., fuse each i-th terminal in s and t
for1 <<k,

- oi(t) is a permutation, i.e., permute the i-th terminal and the i + 1-th terminal in
t forl <i<k.

Example 6.4 Fig. 6.6 shows that the algebraic construction of a (0-terminal) graph.
FEach operation, underlined in ry - 19 - pa(€®,r3 - p3(13 - p2(€2, 13 - m2(€?)), (3(€?))), is figured
in lower columns.

A: ry 1o - pa(€? rs - ps(ls - pale®, 1] - ra(€?)), 15(€%)))

L N N =S A

@\@2 . 121© %@ 1
X 3 .
B e G

le 1 1 1
2 2 2

Figure 6.6: An example of the algebraic construction

Definition 6.5 Two terms s,t with sort By are equivalent if the k-terminal graphs
Y (s), (1) are isomorphic.

Example 6.6 1y -y pa(e®,r3 - ps(l - pa(e?, 1y - m2(€7)), 13(€?))) and vy - 13 - pa(pa(€?, 1 -
ra(€?)),rs - pa(l3(€?),13(€?))) are equivalent and both denote the (0-terminal) graph in
Fig. 6.6.

&r in Fig. 6.7 is the set of axioms indexed by k. Let &, = Up&, and &<, = Up<, &
We denote the finite application of axioms in a set E is denoted by =g. It is easy to see
that each axiom in &€, 1s sound.

Theorem 6.7 (Soundness)  Let s,t be terms in Bo,. Then s and t are equivalent if
S =€ t.
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pe(Gh, G2) = pr(Gla, Gh) (Commut.) (AC1)
Pe(pi(G1,G2),Gs) = pu(Gr,pe(Ga, Gs)) (Assoc.) (AC2)
L-G2G) = (@) 1<i<j<k (I-Com)
UG E(G) = li(per(Gr,Go) L<i<h (Dist
e N (e 1 <i<k (Bl
re s pe(lE(Gh), Ga) = proa(Gry el G)) (E2)
p(Glf - 110)) = G (3)
p2(€%, €?) = e? (E4)
ol - 1L(G) — li - ol 21 (G) 1<i<j<k (ol-a)
ol - 1L (G) = [N (G 1<i<k (ol-b)
R A(E) = [L(G) 1<i<k (ol-c)
ol - 1L(G) = Lol (G) 1<j+1<i<k (o1-d)
os(e?) = e? (02)
o (p(Gr,Ga)) = pil(oi(Gh), o4(Gy)) L<i<k (03)
i oL (G) = ol (@) 1<i<k—-1 (04)
rhot Tk op H(G) = -1 - Te(G) (05)

Figure 6.7: Axioms & of the algebraic construction of graphs

Remark For simplicity, we consider axioms only for simple graphs. The extensions for
graphs with multiple edges/loops, and/or digraphs are straightforward.

For instance, removal of (E4) in Fig. 6.7 gives the axioms for graphs with multiple
edges. By adding a constant ' as a 1-terminal graph that consists of the unique ter-
minal and the unique edge from the terminal to the terminal, we obtain the algebraic
construction of graphs with loops.

For direct graphs, instead of an edge €*, we use €3 and e?, where € is the directed
edge from the first terminal to the second, and €% is opposite. Then, the replacement of

03(€®) = €* (02) with o}(e}) = €2 and oy(e” ) = €} lead the axioms for directed graphs.

6.2.2 Complete axiomatization of graphs

Theorem 6.7 and 6.8 show that a(n infinite) set of axioms &, is sound and complete.
The key of the proof of Theorem 6.8 is the existence of a canonical form, which will be
illustrated in Example 6.13.

Theorem 6.8 (Completeness)  Let s,t be terms in Bo,. Then s =g t if s and t are
equivalent.

We will denote reduction rules by adding the index _, or . to the axioms. For instance,
(K1) is a left-to-right reduction rule of the axiom (£1).
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Definition 6.9 For axioms in &, let TRSs Ry and Ry be defined as

{Rl = {(El)e.(B2)e, (E2)_,(I-Dist), (03), (04) .,
Ry = {(ol)5,(02)=],

where (E2),_ is pr_i(ri(Gh), Ga) = i - pe(G1, 15(Gy)). for each k.
Lemma 6.10 R, and Ry are terminating over ground terms.

Proof Let é(¢, f) be the number of occurrences of a signature f in a term ¢, and let
A(t, g, f) be the sum of all §(s, f) where s is a subterm of ¢ such that root(s) = g. We
define the weight w(t) of a term ¢ by

w(t) = (Wpr (1) wir () + wip(1) + wor (1) 4 wop(1))

where
wpr(t) = NijuA(t, pr,7j),
wip(t) = Tijog A ry),
whp(t) = Zi7]‘7kA(t,l},pk),

ww(t) = Zi7]‘7i/7‘/A(t O'Z: T]‘/),

270

wop(t) = i jx AL, 0%, pr),

and define the lexicographic order on the weight. Then, for each reduction of R; the
weight w(t) decreases, and Ry is SN. Similarly, each reduction of Ry decreases the weight
wml(t) = Ei7j7i/7]‘/A(t O'Zi Z;I/), and R2 is SN.

04
Definition 6.11 A term t is a canonical form if there exist
o Ropl]=rpr---ral ],
o P, -, ] consists of p,,

o Ly[],--, L[] consist of {l:} fori<j<mn,

such that t = R, ;[Pu[L1[€*], -, Ln[€*]]] ort = R, x[L1]0]] for n = |[V(¥(1))] and m =
[E( ()]

Lemma 6.12 For any term t, there exists a canonical form s € B,, such that s =¢_ 1

where n = |V (¢ (1))].

Proof We first show that there exists ¢’ in the form ¢’ = R, x[P'[Li[c1], - -, L;]e]]] with
t=¢, 1" where

o Rupl]=rppa---rall;

e P[] consists of p;’s, and

Li[ ]+, LL,[] consist of [}’s and ols.

¢; is either €% or 0,
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T2 P2

( ( ( ))s 15
—R T1°72 -p2(€2,7“3 p3(lil)> p2(€2,7“3 lila(ez) )7 %(62) )
—pr, 1112 pa(€? s ps(ly - ra(pa(B3(€2), 5(e?))), B3(e?)))
EE— Increase
—R, T1°T2 -p2(€2,7“3 “p3(ra - ] (pS(ZS( ) l%(ez)))alg(GQ))) the number
Sr e paleh s palra ol B(1), - B(eN), () Of terminals
Ry 112 pale?iry o ra - pa(pa(ly - B3(€7), I - 5(e?)), 1 - 13(€)))

om0 () plpdlde 8 (@) B (@), 18 ()

Figure 6.8: Transformation to a canonical form

From Lemma 6.10, ¢ has an Rj-normal form t' of the form R, x[P'[Li[c1], -, L., [em]]]-
Since all vertices in ¢? are terminals and l;, 0] preserves a set of terminals, all vertices of
each L! [e?] are terminals. r; and p; do not change the number of vertices, thus each p; in

P'[ ] satisfies j = n = [V(¢(1))|. Further, from Lemma 6.10 each L![¢;] has an Ry-normal
form, i.e., a Ui—free term.

If |E(¢(t))| = 0, this means 1 (t) consists of isolated vertices and all ¢;’s are 0. Thus,
L] =1f---1}] by (I-Com), and ¢ is reduced to a canonical form R, x[L;[0]] by (AC1),
(AC2), and (E3).

If |E((t))| > 0, we can sort each Li[ ] by (I-Com).. Since there exists ¢; = €*, we
can erase 0’s by (AC1), (AC2), and (E3)_,. Thus we assume ¢; = e* for each 1. If Li[¢;]
and L'[c;] are equal, we can eliminate redundant L}[¢;]’s by (AC1), (AC2), and (£4)_
Then, since each L[¢;] corresponds to an edge in ¢(t) (i.e., the number of L[¢;]’s is the
number of edges in v(¢)), we obtain a canonical form ¢ = R, x[P,[L1[€?], -, Ln.[e*]]].

Example 6.13 Fig. 6.8 shows a transformation to obtain a canonical form of the ex-
pression in Example 6.4. The underlined parts correspond to the rewrite steps.

Sketch of proof of Theorem 6.8 Let s,¢ be two terms such that ¢(s) and () are
equivalent such that an isomorphism « : V(¢(s)) — V(¢(t)) satisfies the conditions in
Definition 6.1. If |E(x(s))| = |E((t))| = 0, they have the unique canonical form from
Lemma 6.12 and obviously the theorem holds. We assume |E(¢(s))| = |E(¢(1))] > 0.

From Lemma 6.12, we can assume that both s and ¢ are canonical. Let n =
V)] = VL m = [EGE)] = B, s = RuslPollale] -, Lol
and ¢ = Ry [P, - - L[]

Thus, a can be regarded as the permutation o on {k 4+ 1,---,n}.

Non-trivial permutation needs at least two elements, so we can assume k£ < n — 2.
Then from (04) and (o)), r’,;'_'} ol (G) = r’,;'_'} (G for k41 <0< n-—1

n n
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Since a permutation over {k + 1,--+,n} is generated by ¢'’s for k +1 < i < n — 1,
r’,jﬂ et o(G) = r’,jﬂ -+ -r?(G). Thus, it is enough to show

o(Pallale®), -, Lule®]]) =eg, PrlLAle?], -+, L [e”]]

Since ¥(s) and (t) are isomorphic, if there is an edge between the i-th and j-th
vertices of 1(s), there is an edge between the a(i)-th and «a(j)-th vertices of (), and
vice versa. Let e(n,i,7)=1--- l;_ﬁ : lj_l c Ul () for 1 <i < <.

If there is an edge between the i-th and j-th vertices in ¢ (s) (resp. the a(7)-th and
a(j)-th vertices in ¢(t)) then there uniquely exists Lg[e?] such that Li[e?] =¢_, e(n,i,j)
(resp. L}[e?] such that Li[e?*] =¢_, e(n,a(i),a())). B

Since a(e(n,i,7)) = e(n,a(i), a(j)), the equation above holds by (AC1), (AC2), (c2),
and (03).

6.3 Related Work

Such complete axiomatization was firstly presented in the different algebraic construc-
tion [BC87]. Unfortunately, its construction almost squarely grows in size. This is not
suitable for a linear time generation. Instead we presented the complete axiomatization
of the algebraic construction proposed in [ACPS93], in which the size grows linearly.

Arnborg et al. investigated a canonical form of graph reduction, i.e., a graph holds
its property when it reaches to some canonical form by graph reduction. Their method
is based on automata theoretic observation. The use of finite congruence makes the
canonical forms finite and provides a constructive method for finding canonical forms of
graphs with bounded tree width. However, the actual computation of canonical forms is
not so easy, and they gave only for small tree widths, such as 2 and 3 [AP92, ACPS93].

There have been proposed several recursive constructions of a graph [F'S96, Gib95,
Erw97, KL95]?, which were intended to apply program transformational/calculational
approaches in functional programming [Fok89, TM95]. For instance, Erwig proposed the
construction of directed graphs by

graph = Empty | (p,v,s) & graph

where p is a list of predecessors and s is a list of successors of a vertex v (See Fig. 6.9).
Note that the same graph may be denoted by multiple constructions. For example, the
directed triangle with the root vertex A can be expressed as

{ ([1,A,[B,CY & (C], B, [1) & ([1,C,[]) & Empty,
([1,A,1¢B]) & A([],6,0B]) & ([, B, []) & Empty.

Thus, he introduced active pattern matching &, which traces an expression by converting
it with a conditional rule, and demonstrated its flexible expressibility. However, its
algebraic structure is not so clear, and the validity of calculational laws is not inconclusive.

2Comparison will be found in [Erw97]
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Figure 6.9: Recursive construction of graphs by Erwig

6.4 Future applications on complex structures

The class of graphs with bounded tree width is restrictive; for instance, planar graphs
are not (namely, m x n mesh has tree width min(m,n)). However, the class is still
useful in practice; there are lots of interesting examples. For instance, in database theory
tractable classes of constraint satisfaction problems are found in terms of bounded tree
width [Var00].

The more interesting example is a class of control flow graphs of structural programs,
namely, tree width of the control flow graph of a GOTO-free C program is at most 6 [Tho98].
This suggests the possibility to beat the cubic bottleneck of control flow analyses [HM97,
Rep98]. The cubic bottleneck is mostly caused from difficulty to solve the variation of
graph reachability problems, called CFG-graph reachability. However, the observation
that the control flow graph of a program is not an arbitrary graph, but is in a restricted
shape constructed by programming language primitives, would improve the complexity
of control flow analyses, hopefully to linear time, even at the cost of the restriction to
the regular or deterministic CFG reachability .

Of course, this estimation is in theory; for practice, we will face huge constants, say,
the tower of exponentials. To reduce constants, our approach is the use of program
calculational techniques, such as fusion and tuppling, similar to our result on simple
cases [SHTO00, SHTOO02]. However, the algebraic construction of graphs (such as tree
decomposition) is not initial, whereas most of program calculational techniques assume
an initial algebra. This demands further investigations, namely,

e complete axiomatization for the algebraic construction of graphs with bounded tree

width,
e calculational program transformation for data structures of non-initial algebra.

For the former, we expect that the axiomatization (presented in Section 6.2) of sorts By
up to some fixed k is complete for graphs with tree width at most k£ — 1.

For the latter, we expect that similar fusion/tuppling transformation techniques is
also valid for non-initial algebras as suggested in [Fok96], which must be checked step by
step on the proof, such as in [Jiir00].
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Chapter 7

Concluding Remark

Many automatic support for programming have been realized as their compilers, and
many fundamental compiler techniques and their limitations have been clarified. The
topics of Part 1 and 2 in this thesis were investigated along with such growth.

If we want more powerful automatic support, we must shift trade-off point under
problem-specific restrictions. My recent research, like Part 3, focuses on this direction.
Part 3 already discussed near future work at the end of each chapter. To conclude the
thesis, I would like to discuss more about far reaching future works.

The first one would locate in middle distance. Chapter 6 presented the automatic
linear time algorithm generation for monadic second order specification over graphs with
bounded tree width [BLW87, Cou90, BPT92, SHTOO00]. This will grow to the strong
tool, but the class of graphs with bounded tree width is restrictive; for instance, planar
graphs are not (namely, m x n mesh has tree width min(m,n)).

Recently, Grohe showed automatic (almost) linear time algorithm generation for
monadic first-order specification over graphs with locally bounded tree width [FG99,
GMn99, Gro00], based on Gaifman’s Locality Theorem [Gai82]. This result shows the
reasonable trade-off; we need to restrict specification to first order, instead we obtain the
larger class of graphs with locally bounded tree width. Note that this class covers planar
graphs. Since the reachability is first order definable [AF90], a linear time algorithm
finding the shortest path in a planar graph would be automatically generated. ! This
observation also showed us the clear trade-off with the well-known Dijkstra algorithm,
which is the most efficient known algorithm for computing the shortest path with com-
plexity O(e log n) (where e is the number of edges and n is the number of vertices). For
this linear time generation, the problem of the constant explosion will also occur as for
discussed in Chapter 6. I hope the combination with program calculational techniques
would make it practical, too.

The second one, which is truly far reaching future work, is an automatic generation
of probabilistic algorithms. Of course, there are already lots of work on the individual
probabilistic algorithm. However, my view is similar to Part 3; to apply theory of com-
binatoric and obtain certain automatic support for designing/programming probabilistic
algorithms. The possible tool from combinatorics, which I expect, is theory of random

L As well for a linear time algorithm generation of the cylinder problem presented in [BAM96].
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graphs [Spe01, Bol01]. Theory of random graphs introduces us many interesting phe-
nomena; under the assumption that the connecting probability between two vertices is
uniform, many global properties follow so-called 0-1 laws, i.e., there exists a threshold.
For instance, consider connectivity of a graph. If the connecting probability is smaller
than log n/n (where n is the number of vertices), then almost every graph is not connected
when n — oco. In contrast, if the connecting probability is greater than log n/n, then
almost every graph is connected. Such threshold always exists for first order definable
properties [Spe01].

What I expect is to generate an efficient program whose correctness is almost guaran-
teed. Of course, critical systems, whose correctness must be strictly guaranteed, always
exist. However, there will be also strong demand for almost correct and efficient programs
at low cost. Consider your PC. It runs almost correctly, especially if your PC runs on
Windows OS.

Probably, these directions will be out of the scope of functional programs. However,
among lots of choice of programming languages, still I believe that functional programs
will fit to the purpose, because lots of theoretical tools/techniques, such as program
transformation, have been developed for them. I hope that this thesis contributes to
such development and bridges towards the far reaching future work discussed here.
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