
Combining Static Analysis and Testing

for Overflow and Roundoff Error Detection

by

DO THI BICH NGOC

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology

July 13, 2010

Abstract

In computer algorithms, real numbers are often represented as floating point numbers.

However, hardware typically uses fixed point number representations for lower cost and

higher speed. Direct transformations from a reference algorithm to a hardware algorithm

with fixed point numbers often cause different computational results because of overflow

errors and roundoff errors. Hence, when implementing hardware algorithms we need to

consider: (1) whether overflow errors occur or not and (2) whether the roundoff errors

exceed a predefined threshold bound or not.

The problem of detecting overflow and roundoff errors has been studied since 1960s,

and is still an active research area. Originally, overflow and roundoff errors are often

detected manually by using mathematical reasoning or testing. Recently, there are some

extensive works of automatically checking overflow and roundoff errors based on static

analysis and abstraction. In order to abstract overflow and roundoff errors, there are

two well known techniques. The first technique is Classical interval (CI) which keeps the

possible lowest and highest values as a segment. The second technique is Affine interval

(AI) which introduces symbolic manipulations on noise symbols, to handle correlations

between variables. AI arithmetic supplies higher precision than CI one. However, for

nonlinear operations, AI arithmetic requires to introduce a fresh noise symbol each time.

A question naturally raised is that: can we construct new interval arithmetic such that it

is simpler than AI but as precise as AI?

It is worth emphasizing that static analysis is useful in automatically proving safety

properties of programs but it may return spurious counterexamples due to approximation.

In contrast, testing can return exact roundoff errors, while it virtually cannot cover all

possible inputs. The challenge is: how to bridge the gap between testing and static

analysis?

Motivated by the above questions, this thesis is concerned about the problem of de-

tecting overflow and roundoff errors when converting floating point numbers to fixed point

numbers for a class of C programs with bounded loops, fixed size arrays, and no pointer

manipulations. This class of programs is sufficient to capture the core algorithms of DSP

encoders/decoders. The contributions and achievements of this thesis are summarized as

follows:

• New intervals: improve current intervals (i.e., CI and AI) to approximate overflow

and roundoff errors. Two new intervals named “Extended affine interval” (EAI) and

“Positive-noise affine interval” (PAI) are proposed. EAI represent ranges as AI form

i

whose each noise symbol is assigned a CI. By this means, the results of nonlinear

operations can be approximated to keep linear form without introducing new noise

symbols as AI does. In positive-noise AI, the noise symbols in PAI lie in [0,1]

(instead of [-1,1]) and the nonlinear operations are designed based on Chebyshev

approximation to improve the precisions.

• Overflow and roundoff error analysis as weighted model checking: propose and im-

plement the overflow and roundoff error analysis based on weighted model checking.

The overflow and roundoff error abstractions based on intervals (CI, AI, and EAI)

are used to create sets of weights. Then, a C program is modeled by a weighted

transition system (a finite transition system + weight domain), where weight do-

main is generated by an on-the-fly manner. Finally, the overflow and roundoff error

problem was reduced to checking reachability properties for the weighted transition

system. The proposed framework is implemented in an automatic overflow and

roundoff error analyzer, called CANA (C ANAlyzer). Experimental results on small

programs show that the EAI is much more precise than CI.

• Combine static analysis and testing for roundoff error detection: propose and imple-

ment a hybrid approach called “counterexample-guided narrowing” in which analysis

and testing refine each other. This approach is applied to improve the precision of

roundoff error analysis and implement the proposed framework as a prototype tool

CANAT (C ANAlyzer and Tester). Although our experiments are still small, the

results outperforms both random test and static analysis.

Key words: software verification, static analysis, model checking, testing, roundoff

error, overflow error, affine interval.

ii

Acknowledgments

This thesis would not have been possible without the help of many people. First of all,

I would like to express my deep gratitude to my principal supervisor, Professor Mizuhito

Ogawa. He has been a good and patient advisor. I learned much from him how to be a

researcher. It would be impossible to pinpoint his contributions large and small to this

work; his encouragement has been very important as well. Without him, this thesis would

simply not exist.

That the thesis does not exist in the present form is due also to the enthusiastic interest,

support, and criticism I have received from my colleagues and members of my reading

thesis committees, Professor. Kokichi Futatsugi, Professor. Shin Nakajima, Professor.

Kazuhiro Ogata, Professor. Toshiaki Aoki, and Dr. Hirokazu Anai. I have greatly

benefited from their guidance and helpful comments. This thesis was markedly improved

because of their critical reading and valuable suggestions. Especially, I would also like

to give special thanks to Professor Toshiaki Aoki for his supervision of my sub-theme

research.

The faculty, staff and students at the Software Verification Laboratory have provided

an excellent academic environment; in particular, Associate Professor Fumihiko Asano,

Assistant Professor Nao Hirokawa, Dr. Li Xin, Dr Li Gouqiang, Dr Nguyen Van Tang, Mr

Klein Dominik, Mr Song Lin, Mr To Van Khanh. Our technical discussions have helped

in my work, while our more philosophical discussions have been thoroughly enjoyable.

Especially, I would like to thank Nao for his valuable guidance and technical supports to

this thesis.

My Vietnamese friends have made my stay in JAIST fun, exciting and memorable.

I would like to thank my best friends Nguyen Quang Huy, Pham Gia Vinh Anh who

always encourage and support me in research whenever I need. I thank the teachers in

the Technical Communication Program Office - who helped me to refine my technical

drafts of papers and thesis.

Finally, I would also like to take this opportunity to thank my family for their love and

supports; especially, for my parents for encouraging me, and for my husband for being

my best friend and supporting me. I dedicate this thesis to my son Nguyen Nhat Hung,

who provided me with many joyous moments. Whenever I needed to clean my head from

all this verification stuff he was ready to give me plenty of other things to do. Without

the joy of having him I am not sure I would have completed this task.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 2

1.1 Sources of Numerical Errors . 2

1.2 Overflow and Roundoff Errors Problem . 3

1.3 The Existing Approaches . 7

1.4 The Proposed Approach and Contributions of the Thesis 9

1.5 Structure of the Thesis . 10

2 Representation of Real Numbers in Computer and the ORE Problem 12

2.1 Floating Point Numbers and ORE problem 12

2.1.1 Floating Point Numbers . 12

2.1.2 OREs of Floating point Numbers 13

2.2 Fixed Point Numbers and ORE Problem 15

2.2.1 Fixed Point Numbers . 15

2.2.2 OREs of Fixed point Numbers . 16

2.3 ORE Arithmetic . 17

2.3.1 Real-to-Fixed ORE Arithmetic . 17

2.3.2 Real-to-Float ORE Arithmetic . 19

2.3.3 Float-to-Fixed ORE Arithmetic . 20

2.4 ORE Constraints of the Programs . 22

3 Dataflow Analysis as Weighted Model Checking 26

3.1 Dataflow Analysis as Model Checking and Abstraction 27

3.1.1 Dataflow Analysis . 27

3.1.2 Model Checking . 28

3.1.3 Dataflow Analysis as Model Checking and Abstraction 30

3.2 Dataflow Analysis as Weighted Model Checking Problem 33

3.2.1 Weighted Model Checking . 33

3.2.2 Dataflow Analysis as Weighted Model Checking and Abstraction . . 35

iv

3.2.3 On-the-fly Weight Creation for an Acyclic Model 36

4 Interval Arithmetics in ORE Propagation 37

4.1 Classical Interval . 37

4.2 Affine Interval . 39

4.3 Extended Affine Interval . 43

4.4 Positive-noise Affine Interval . 46

4.5 Interval Representations by Floating point Numbers 49

5 Abstraction for ORE Problem 52

5.1 CI Abstraction for ORE Problem . 52

5.2 AI Abstract Numbers . 54

5.3 EAI Abstract Numbers . 55

5.4 Meet Operator . 57

5.5 Abstraction for ORE analysis . 58

6 ORE Analysis as Weighted Model Checking Problem 59

6.1 Weighted Domain for the ORE Problem 59

6.2 Weighted Transitions for the ORE Problem 60

6.3 ORE Analysis . 63

6.4 Implementation and Experiments . 65

7 Detecting REs based on Counterexample-guided Narrowing 73

7.1 Counterexample-guided Narrowing Approach 74

7.1.1 Observation on RE Analysis . 74

7.1.2 Counterexample-guided Narrowing Approach 75

7.2 Refining Test Data Generation . 76

7.2.1 Range Reduction . 77

7.2.2 More Ticks for more Sensitive Noise Symbols 78

7.3 Refinement of Analysis by Narrowing Input Domains 79

7.4 Implementation and Experiments . 81

8 Related Work 87

9 Conclusions 91

9.1 Summary of the Thesis . 91

9.2 Future Work . 92

References 94

Publications 100

v

List of Figures

1.1 Typical loops in Mpeg decoder . 5

1.2 An example of a C program . 6

1.3 Results of analyzing and testing C program in Figure 1.2 8

3.1 Model checker structure . 29

3.2 Transition system of program in Figure 1.2 31

3.3 Dataflow analysis as model checking and abstraction 32

3.4 Dataflow analysis as weighted model checking 35

4.1 Chebyshev approximation for 1
:y

. 41

6.1 CIL code for Example 3 . 62

6.2 CFG of three address codes in Fig. 6.1 . 62

6.3 ORE analysis as weighted model checking 64

6.4 CANA system . 66

6.5 The analysis result of P2(x) . 68

6.6 The analysis result of P5(x) . 69

6.7 The analysis result of Sin(x) . 70

6.8 The analysis result of subMpeg(exps) . 70

6.9 The analysis result of rump . 71

6.10 The analysis result of 10-variable functions of degree ¥ 7 72

7.1 Effects of decomposition of Dmax to D1
max, D2

max 81

7.2 CANAT system . 83

vi

List of Tables

2.1 The formats of floating point numbers . 13

2.2 Syntax of core language . 23

2.3 Weakest precondition for ORE problem . 24

6.1 Weight function of ORE analysis . 61

6.2 Weight function for a CIL code in Example 30 63

7.1 Compare CANAT with CANA and random test 84

7.2 Compare CANAT with Matlab test . 85

7.3 Checking result of 10-variable functions of degree ¥ 7 86

1

Chapter 1

Introduction

1.1 Sources of Numerical Errors

In general, a numerical algorithm for solving a given problem may have errors of one or

several types. Although different source initiate the error, they all cause the same effect:

diversion from the exact answer. Some errors are small and may be neglected. Others

may be devastating if overlooked. The major sources of errors are as follows.

1. Human error: is introduced during the process of solving the problem by human,

for example, changing signs in a formula or a simple programming error.

2. Truncation error: occurs when we are unable to evaluate explicitly a given quan-

tity, and replace it by an approximation that can be computed.

For example, the function sinpxq can be replaced by

sinpxq � x�
x3

3!
�

x5

5!
� ...

We may calculate px � x3

3!
� x5

5!
q as an approximation to sinpxq, provide the error

term Epxq � �x7

7!
�

3. Machine error: A floating point (or fixed point) number processed by a computer

may not have an exact representation. Also, floating point (or fixed point) arith-

metic in general is not exact. For example, if the length of a mantissa is 4 bits,

then 0.1101 � 0.1011 � 0.1000 (chopping mode) whereas the exact values of the

left-hand side is 0.10001111. There are two types of machine errors : roundoff error

and overflow error.

4. Inaccurate observation: Many numerical processes involve physical quantities

such as the speed of light, density of iron, or the constants of gravity. These quanti-

ties are provided by experiments and naturally introduce some experimental errors.

2

For example, the speed of light in vacuum is

c � p2.997925� εq � 1010cm{sec.|ε| ¤ 10�6

Experimental or observational errors cannot be removed or even reduced, without

improving the observational technique.

5. Modeling error: Constructing a mathematical model is the first step in the pro-

cess of solving a problem. However, an equation or a system of equations that is

expected to describe some phenomena will generally only approximate the phys-

ical reality. Occasionally a mathematical model may be solved successfully, and

yet the computed and the experimental results are far apart. This may occur if

an important physical aspect is overlooked and the mathematical model is unjustly

simplified.

Truncation errors, inaccurate observations, and modeling errors are caused by hu-

man when create numerical algorithm from real problem. Thus, they are often analyzed

manually. Human error and machine error are caused by implementing the algorithm in

computer (or hardware system). While human error can be avoided by carefully code the

algorithm, machine error cannot be avoided because of finite presentation of real num-

bers. In this thesis, we focus on automatically analyzing machine error (i.e., overflow and

roundoff errors) when converting floating point numbers to fixed point numbers.

1.2 Overflow and Roundoff Errors Problem

In the computers, the (infinite) real numbers are approximated by finite numbers (e.g.,

floating point numbers, fixed point numbers). Because of finite representation, the over-

flow and roundoff errors (OREs) may occur. There are three kinds of OREs:

1. Real numbers vs floating point numbers: approximating real numbers as floating

point numbers causes OREs. These OREs often appear in computers since most of

them use floating point arithmetic. Most of ORE researches focus on this kind of

OREs [13, 26].

2. Real numbers vs fixed point numbers: OREs may occur when real numbers are

approximated as fixed point numbers. This kind of errors appears when implement

a (reference) algorithm with real numbers in a hardware with fixed point numbers

[32].

3. Floating point numbers vs fixed point numbers: many algorithms implemented

in computers are proved to be satisfied the ORE requirement. We also want to

re-implement them in hardware systems or devices, such as, PDA, mp3 players,

videogame consoles. These devices need to convert the floating point numbers to

3

fixed point numbers for lower cost and higher speed. Recently, there are many works

focus on converting floating point numbers to fixed point numbers [3, 5, 44, 58, 59].

Because the floating point numbers can represent more precise values than that of

fixed point numbers, the conversation from floating point numbers to fixed point

numbers may causes OREs.

The OREs will be propagated through computations of the program. Further, the

computations themselves also cause OREs because the arithmetic needs to round the

result to fit the number format. Besides, OREs are also affected by types of statements

(e.g., branch, loop, assignment). OREs sometimes are propagated too much and may

cause serious problems. One example about disaster causes by roundoff error is “The

Patriot Missile Failure” 1.

Example 1 On February 25, 1991, during the Gulf War, an American Patriot Missile

battery in Dharan, Saudi Arabia, failed to track and intercept an incoming Iraqi Scud

missile. The Scud struck an American Army barracks, killing 28 soldiers and injuring

around 100 other people.

The reason is roundoff error when representing real number 1{10 by fixed point num-

ber. The number 1{10 equals 1{24�1{25�1{28�1{29�1{212�1{213�.... In other words,

the binary expansion of 1{10 is 0.0001100110011001100110011001100.... Now the 24 bit

register in the Patriot stored instead 0.00011001100110011001100 introducing an error of

0.0000000000000000000000011001100... binary, or about 0.000000095 decimal. Multiply-

ing by the number of tenths of a second in 100 hours gives 0.000000095�100�60�60� 10 �

0.34. A Scud travels at about 1,676 meters per second, and thus travels more than half of

kilometer in this time.

Another example about disaster cause by overflow error is “The Explosion of the

Ariane 5” 2.

Example 2 On 1996 June 4, an unmanned Ariane 5 rocket launched by the European

Space Agency exploded just forty seconds after its lift-off from Kourou, French Guiana.

The destroyed rocket and its cargo were valued at $500 million.

The cause of the failure was a software error in the inertial reference system. Specif-

ically a 64 bit floating point number relating to the horizontal velocity of the rocket with

respect to the platform was converted to a 16 bit signed integer. The number was larger

than 32767, the largest integer storable in a 16 bit signed integer, and thus the conversion

failed.

Target programs

1http://www.ima.umn.edu/ arnold/disasters/patriot.html
2http://www.ima.umn.edu/ arnold/disasters/ariane.html

4

Motivated by practical demands, our target programs are reference C algorithms for

DSP encoders and DSP decoders.

Our observation on DSP encoders/decoders is that they contain unbounded loops,

pointers manipulation, dynamic arrays manipulation only in the outermost interface of

large input data (e.g., sound, video). The input data are divided into small pieces and

processed by the core algorithm (e.g., Invert Direct Cosine Transform algorithm), which

(mainly) consists of loops with a bounded number of iterations and arrays with a fixed

size [54]. For instance, in the Mpeg decoder, typical arrays have size 8� 8, typical loops

are 8� 8, and the outermost loop iterates depending on the resolution (Fig. 1.1)

8×8
loop

…

Outermost loop depending on resolution

8×8
loop

8×8
loop

Figure 1.1: Typical loops in Mpeg decoder

Based on this observation, we restrict targets to a subclass of C programs with bounded

loops, fixed size arrays, no pointer manipulations, and no procedure calls.

Then, we set the ORE problems as follows:

Given a program, initial ranges of input parameters, and the fixed point format,

1. Whether the largest RE of a result lies within given threshold?

2. Whether overflow error may occur?

3. If they occur, where?

We say that the program “satisfies the ORE requirement” if for all inputs, there

is no OEs and REs of the result lie in r�θ, θs.

Example 3 Fig. 1.2 shows a C program with annotations that:

• initial ranges of x, y: x P r�1, 3s, y P r�10, 10s,

• fixed point format p11 : 4q, and

• RE threshold is θ � 0.26

Note that base b � 2.

The questions are:

1. Does RE of rst lie within r�0.26, 0.26s?

5

/* CANAT

CANAT ALL sign 11 4

maintest x range -1 3

maintest y range -10 10

_test global rst 0.26 */

typedef float Real;

Real rst;

Real maintest(Real x, Real y){

(1) if (x>0)

(2) {rst=x*x;}

(3) else rst = 3*x;

(4) rst = rst - y;

(5) return rst; }

Figure 1.2: An example of a C program

2. May overflow error occur? Where?

The OREs will be propagated through computations of the program. Further, the

computations themselves cause OREs because the arithmetic needs to round the result

to fit the number format. Besides, OREs are also affected by types of statements (e.g.,

branch, loop, assignment).

Example 4 The function maintest in Figure 1.2 takes two parameters x, y and returns

rst . Assume that the initial ranges of x, y are r�100, 100s, r�100, 100s, respectively.

We need to convert the floating point type to fixed point type in that the width of

integer part is 11 and the width of fraction part is 4. The conversion is called “satisfying

ORE requirement” if there are no overflow error and the roundoff error of rst that lies in

r�0.1, 0.1s.

Floating point function Let us consider one input: px � 99.03, y � 100q. Because

x ¡ 0, the (floating point) function maintest will return rst � x � x� y � 9706.9409.

Fixed point function The corresponding fixed point input is pxfx � 99.00, yfx � 100q.

Hence, the roundoff error of xfx is rx � 0.03 and the roundoff error of yfx is ry � 0. The

(fixed point) function maintest will return rstfx � xfx � xfx � yfx � 9701. It means that

the roundoff error of rst is rrst � rst � rstfx � 5.9409. This value lies out r�0.1, 0.1s.

Furthermore, at statement (3), we have rstfx � xfx � xfx � 9801 ¡ 211, hence, the

overflow error occurs at this location. As a result, this conversion does not “satisfy the

ORE requirement”.

6

1.3 The Existing Approaches

OREs are sources of serious bugs that affect economy, or even cause deaths. Therefore,

ORE detection has been attracted many attention over the past fifty years (since 1960s)

[21, 26, 13, 14, 45, 51]. There are main existing approaches for these problems such as

mathematical reasoning, numerical analysis, and testing. In the following, we are going

to give a survey on these main approaches.

Mathematical reasoning

In the mathematical reasoning [21], the user approximates an ORE formula by inequations

and mathematical transformations. Mathematical reasoning method normally returns

precise results but user may take monthly to solve the ORE formula.

Testing OREs

The OREs when approximating real numbers to floating point (or fixed point) numbers

cannot be tested automatically. The reason is the computer cannot represent (infinite)

real numbers. However, the OREs between program with floating point arithmetic (Pflt)

and the corresponding program with fixed point (Pfxp) can be computed [63]. An overflow

error will occur when the result of a fixed point operation in Pfxp exceeds the range that

fixed point number can represent. A (true) roundoff error is the difference between the

execution of Pflt and Pfxp. The ORE testing problem is: whether there is an input such

that OREs occur or its roundoff error does not lie in a given roundoff error threshold

bound r�θ, θs? If there exists such an input, we call it a counterexample.

Test data depends on both the input domain and the strategy of generating test data.

For example, assuming that a program has 5 variables, each variable is initiated with

range r0, 255s. For each variable, we choose 4 instances for both the fixed point part and

roundoff error part. Then, the number of test cases is 45�2 (about one million). This is a

huge number, and testing becomes infeasible. The challenge of testing method is how to

generate a set of test data that can cover all cases of the program with a small number

of tests.

Static analysis OREs

From the viewpoint of abstract interpretation [9, 57], a static analysis determines ORE

properties of a program by exhausting executions under abstraction, which propagates

the ranges of both fixed point parts and roundoff errors from the begin to the end of

the program [26, 51]. There are two main techniques to represent ranges. The first

method uses classical interval (CI) [2, 47], which keeps the possible lowest and highest

values as a segment. This method is simple but imprecise, because it does not handle

7

the correlations among variables. The second method uses affine interval (AI) [61, 62],

which introduces symbolic manipulations on noise symbols, to handle correlations between

variables. AI arithmetic supplies higher precision than CI one. However, for nonlinear

operations (e.g., multiplication), AI arithmetic requires to introduce a fresh noise symbol

each time. This leads to high complexity if there are many nonlinear operations. In order

to improve efficiency and precision of the analysis, a question naturally raised is that: can

we construct a new interval arithmetic such that it is better than CI and AI? Further,

the over approximations occur at the control flows (such as the conditional branches and

loops) and operations of the programs. Another question is how to reduce this over

approximation.

Testing versus static analysis

We may face a situation that an roundoff error analysis reports that the roundoff error

of the result exceeds the roundoff error threshold bound, but a test cannot find any

counterexamples. The following example shows the problems of both testing and analysis:-0.26 0.260 rstr

-0.26 0.260 rstr

Not safe!

No
counterexamples!

a. roundoff error of rst found by testing � r�0.20, 0.21s

-0.26 0.260 rstr

-0.26 0.260 rstr

Not safe!

No
counterexamples!

b. roundoff error of rst found by analysis � r�0.28, 0.28s

Figure 1.3: Results of analyzing and testing C program in Figure 1.2

Example 5 Assume that for the program in Fig. 1.2, the initial ranges of x, y are

r�1, 3s, r�10, 10s, respectively. The conversion from the floating point type to fixed point

type such that the width of integer part is 11 and the width of fraction part is 4. It satisfies

the ORE requirement if no overflow errors occur and no roundoff errors of rst go beyond

r�0.26, 0.26s.

By random 100 test cases, all roundoff errors lie in the range r�0.20, 0.21s � r�0.26, 0.26s,

which means no counterexamples are found (Fig. 1.3 a).

The ORE analysis (in Chapter 6) reports that the roundoff error of rst lies in r�0.28, 0.28s,

which exceeds the roundoff error threshold r�0.26, 0.26s (Fig. 1.3 b).

8

Then, both testing and analysis cannot clarify whether the program in Fig. 1.2 satisfies

the ORE requirement.

The challenge now is how to fill the gap between testing and static analysis. Re-

mark that the smaller input ranges (of both the fixed point parts and the roundoff error

parts) will produce a smaller ranges of the roundoff errors of results. Thus, we have an

opportunity to exclude spurious counterexamples by refining input ranges and repeating

executions of roundoff error analysis. A natural question is: can we combine testing and

static analysis to exploit the advantages of these both methods?

• An roundoff error analysis result may show suspicious spots of input ranges, such

as, which input variable affects the most, etc. This will give a focus of test data

generation.

• A testing may show which spot of the input ranges is likely to maximize the roundoff

error of the result. This will give a focus of both an roundoff error analysis and

testing next round after input domain decomposition.

1.4 The Proposed Approach and Contributions of

the Thesis

The aim of this thesis is to develop techniques to automatically detect OREs of a sub-

class C programs. The new techniques are intended to safely estimate OREs with high

precision.

• First, we propose two new interval arithmetics, Extended affine interval (EAI) arith-

metic and Positive-noise affine interval (PAI) arithmetic, which are useful in approx-

imating OREs. EAI is extended from AI by assigning for each noise symbol a CI

coefficient. Unlike AI, EAI nonlinear operations are defined without introducing new

noise symbols. Thus, EAI has two main advantages over current methods. First,

EAI can store information sources of uncertainty, whereas CI cannot. Second, EAI

arithmetic does not introduce new noise symbols, while AI arithmetic does. PAI

is another way to extend AI in that the noise symbols are set to lie in r0, 1s (in-

stead of r�1, 1s) and PAI nonlinear operations are defined to based on Chebyshev

approximation to improve the precisions.

• Second, we propose an ORE analysis framework based on weighted model check-

ing. In particular, the ORE abstraction based on ORE propagation rules and range

representations (CI, AI, and EAI) are used to create the sets of weights. Next,

the C program is modeled by a transition system in that the loops are unfolded as

sequences of statements. Here, we only face with the programs with bounded-loops

9

(which are often appear in the hardware algorithms), hence the transition system

will be finite. (Until now, we still not face with infinite programs because widen-

ing operation is required, thus, the analysis may be often over approximate too

much, while the precision properties is very important in the OREs problem.) The

weighted transition system is then generated as finite transition system + weight

domain, where weight domain is generated in an on-the-fly manner. Finally, the

ORE problem is reduced to checking reachability properties for the weighted transi-

tion system. We implement the proposed framework in an ORE analysis tool, called

CANA (C ANAlyzer).

• Third, we propose a hybrid approach called counterexample-guided narrowing, which

combines static analysis and testing for roundoff error detection. The result of anal-

ysis (in EAI form) provides useful information for testing phase (e.g., variables are

irrelevant to roundoff errors of the results, variables affect the roundoff errors the

most, and the ranges of inputs are most likely to cause the maximum roundoff er-

ror). These observations effectively narrow the focus of test data generation. In

case testing does not find a witness of roundoff error violation, the analysis may

be over approximate too much. Further, the narrower the input ranges are, the

more precise the analysis result will be. Therefore, with a “divide and conquer”

refinement strategy, we can check the most suspicious part first. We implement

the proposed framework as an automatic prototype tool CANAT (C ANAlyzer and

Tester), to detect roundoff errors of the programs which are converted from floating

point numbers to fixed point numbers.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 introduces OREs problem and formalizes the ORE arithmetics.

• Chapter 3 introduces weighted model checking and how to treat dataflow analysis

problem as weighted model checking and abstraction.

• Chapter 4 introduces two well known intervals, CI and AI. Sections 4.3 and 4.4

proposes two new intervals (i.e., EAI and PAI). Section 4.5 present how to implement

above intervals on computers.

• Chapter 5 represents the ORE abstract domain based on ORE arithmetic and in-

tervals.

• Chapter 6 proposes an ORE analysis approach as weighted model checking and

ORE abstraction. An ORE analyzer, CANA, is also presented in this chapter.

10

• Chapter 7 proposes the counterexample-guided narrowing approach to detect REs

and its implementation, CANAT.

• Chapter 7 discusses about related works.

• Chapter 8 closes the thesis with conclusions and discussions about the future works.

11

Chapter 2

Representation of Real Numbers in

Computer and the ORE Problem

We first present overflow and roundoff error (ORE) problem when represent real num-

bers in computers such as floating point numbers (Section 2.1) and fixed point numbers

(Section 2.2). Second, in Section 2.3 we introduce ORE arithmetics, which decomposes

a number into a pair of floating point (or fixed point) and a roundoff error evaluation.

Finally, we shows a method to compute the ORE constraints (a system of equations over

program variables and a given threshold) of a program via using weakest preconditions in

Section 2.4 and shows that solving ORE constraints is double exponential time class.

2.1 Floating Point Numbers and ORE problem

2.1.1 Floating Point Numbers

Floating point numbers are often used to represent real numbers in numerical computa-

tion. In a floating point number, the position of the radix point is dynamic. In general,

we define a floating point number as follows [28]:

Definition 1 A floating point number x has a representation in base b, with sign s,

significand m, and exponent e, such that

x � p�1qs �m� be (2.1)

where s is 0 or 1, m � d0.d1...dp�1 with 0 ¤ di b, and e is an integer. The set of

floating point numbers is denoted by Rfl

Remark 1 In order to optimize the quantity of representable numbers, floating point

numbers are typically in normalized form, which puts the radix point after the first non-

zero digit (i.e., d0 � 0).

12

parameter binary32 binary64 binary128 decimal32 decimal64 decimal128
b 2 2 2 10 10 10
p 24 53 113 7 16 34
emax +127 +1023 +16383 +96 +384 +6144

Table 2.1: The formats of floating point numbers

Example 6 The decimal number x � 8.75, represented as p�1q0 � 0.875 � 101, has

s � 0, m � 0.875, e � 1. Its equivalent binary format is x � p�1q0 � p0.100011q � 2100

with s � 1, m � 0.100011, e � 100. The corresponding normal floating point number

is x � p�1q0 � p1.00011q � 210 with s � 1, m � 1.00011, e � 10.

The floating point format pb, p, emaxq determines a set of representable floating point

numbers, in which:

• b is base (e.g. 2 or 10)

• p is number of digits in the significand

• emax is the maximum value of exponent e (the minimum value of e is emin �

1� emaxq.

We basically follow the IEEE7542008 standard [28], shown in Table 2.1. Thus, a

normal floating point number closest to zero is �bemin and a number farest from zero is

�pb� b1�pq � bemax. For instance, in the binary 64 floating point format,

• The number closest to zero is

�2�1022 � �2.225073858507202010�308

• The number farest from zero is

�pp1� p1{2q53q21024q � �1.7976931348623157� 10308

2.1.2 OREs of Floating point Numbers

Since floating point numbers have the finite precision, roundoff error may occur due to

the finite significand, and overflow error may occur due to the finite exponent.

Roundoff error (RE) If the significand m of x is represented by more than p bits,

x will be truncated (or chopped) in some way. The IEEE7542008 standard defines four

rounding algorithms [28].

13

• Round to Nearest : This is the default mode. In this mode results are rounded to

the nearest representable value. If the result is midway between two representable

values, the even representable is chosen. Even here means the lowest-order bit is

zero.

• Round toward 0 : All results are rounded to the largest representable value whose

magnitude is less than that of the result. In other words, if the result is negative it

is rounded up; if it is positive, it is rounded down.

• Round toward �8: All results are rounded to the smallest representable value,

which is greater than the result.

• Round toward �8: All results are rounded to the largest representable value, which

is less than the result.

Definition 2 Let x be a real number and let xfl be its floating point number representa-

tion. The roundoff error (RE) is reflpxq � x� xfl.

Example 7 In the IEEE 754 decimal32 format (b � 10, p � 7, emax � 96),

Floating point representation For x � 10{3, its floating point number representation

is xfl � p�1q0 � 3.3333333� 100 and the RE is

reflpxq � 0.0000000333333333333333333333333....

Floating point addition

e = 5 m = 1.234567 (123456.7)

+ e = 2 m = 1.017654 (101.7654)

e = 5 m = 1.234567

+ e = 5 m = 0.001017654 (after shifting)

e = 5 m = 1.235584654
This is the exact sum of the operands. It will be rounded to seven digits and then

normalized (if necessary). The final result is e � 5; m � 1.235585, and the low 3 digits of

the second operand (654) are lost. The RE of the addition is p�1q0 � 0.000000654105 �

0.0654.

Floating point multiplication

e = 3 m = 4.734612

�e = 5 m = 5.417242

e = 8 m = 25.648538980104 (true product)

e = 8 m = 25.64854 (after rounding)

e = 9 m = 2.564854 (after normalization)

14

In this case, the lost information of the significand m after normalization are (-

0.0000001019896). The RE of the multiplication is

p�1q1 � 0.0000001019896� 109 � 101.9896

Based on rounding mode, the value of RE may differ.

Lemma 1 For real number x and its normal floating point representation xfl, the RE

reflpxq satisfy:

|reflpxq{x| ¤ Emach where

• Emach � b1�p for the rounding toward zero, and

• Emach � b1�p{2 for the rounding to nearest.

Overflow error (OE) If the exponents e of x is greater than emax, it is an overflow

error (OE). More precisely, for a real number x and its floating point format pb, p, emaxq,

if x ¡ pb� b1�pq � bemax, an OE occurs.

Example 8 In the IEEE 754 decimal32 format (b � 10, p � 7, emax � 96),

e = 48 m = 4.734612

� e = 48 m = 5.417242

e = 96 m = 25.648538980104 (true product)

e = 96 m = 25.64854 (after rounding)

e = 97 m = 2.564854 (after normalization)
Since e ¡ emax, an OE occurs.

2.2 Fixed Point Numbers and ORE Problem

2.2.1 Fixed Point Numbers

Fixed point numbers are a simple and an easy way to express real numbers, using a fixed

number of digits. Due to the hardware simplicity, fixed point numbers are frequently used

when hardware cost, speed, and/or complexity are important issues. Fixed point places

a radix point somewhere in the middle of the digits.

Definition 3 (Fixed point number) A fixed point number a on base b is represented

in the form:

a � spa1a2 . . . aip � aip�1 . . . aip�fp ,

where

• sign part sp P t�,�u determines if a is positive or negative,

15

• ak P r0, b� 1s for each k P r1, ip � fps,

• ip is the width of integer part, and

• fp is the width of the fraction part.

The set of fixed point numbers is denoted by Rfx. We omit the sign if it is positive.

In the fixed point format pb, ip, fpq,

• b is base (e.g. 2 or 10).

• ip is number of digits in the integer part.

• fp is number of digits in the fraction part.

Example 9 The number Π is 3.14159 in the fixed point format pb � 10, ip � 2, fp � 5q.

A fixed point number has a fixed window of representation. The range value that can

be represent is p�bip � 1, bip � 1q, and the smallest positive is b�fp .

2.2.2 OREs of Fixed point Numbers

Fixed point format is the simple representation of real numbers. The OREs not only occur

when converting real numbers to fixed point number, they also occurs when converting

floating point number to fixed point numbers.

Roundoff error (RE) If the fraction part of number x has more than fp digits, it

needs to truncates to fit the fixed point format. This loses information from digits fp � 1

in fraction part, and an RE occurs.

Definition 4 Let x be a real number and let its fixed point number representation be xfx

under the fixed point format pb, ip, fpq. An RE is refxpxq � x� xfx.

Depending on a rounding mode, the value of RE may differ. For instance, for a real

number x and its fixed point representation xfx, the RE refxpxq satisfies

• |refxpxq| b�fp for the round toward zero, and

• |refxpxq| b�fp{2 for the round to nearest.

Example 10 Let the fixed point format be pb, ip, fpq � p10, 8, 7q.

16

Fixed point representation x � 10{3 is represented as fixed point number xfx �

�3.3333333. The RE is

refxpxq � x� xfx � 0.0000000333333333333333333333....

Fixed point multiplication

4.734612

� 5.417242

25.648538980104

25.6485389 (after truncating)
It loses information from the 8th digit of the fraction part 0.000000080104, and its RE

is 0.000000080104.

Overflow error (OE) If the integer part of number x (real or floating point) has more

than ip digits before the radix, it cannot be represented in the fixed point numbers, and

an OE occurs. More precisely, for a real number x and fixed point format pb, ip, fpq, if

x ¥ bip, an OE occurs.

Example 11 For fixed point format pb � 10, ip � 8, fp � 7q,

4734.612

� 54172.42

256485389.80104
Since the integer part has more than 8 digits, an OE occurs.

2.3 ORE Arithmetic

In a program, the propagated error depends on not only values of variables but also

operators of the program. For instance, the result of fixed point multiplication could

potentially have as many bits as the sum of the number of bits in the two operands. An

ORE arithmetic decomposes a number into a pair of a finite representation and an RE

estimation, and each arithmetic operation is defined on such pairs. There are three kinds

of ORE arithmetics corresponding with three kinds of OREs (i.e., real numbers vs floating

point numbers, real numbers vs fixed point numbers, and floating point numbers vs fixed

point numbers).

2.3.1 Real-to-Fixed ORE Arithmetic

For a real number x and fixed point format pb, ip, fpq, we denote the fixed point part

of x by rdfppxq and the RE by refppxq (� x � rdfppxq). If rdfppxq ¡ bip we conclude

that OE occurs, and if refppxq ¡ θ (where θ is predefined threshold) we conclude that RE

17

occurs. The following definition describes the rules of propagating ORE when converting

real numbers to fixed point numbers.

Definition 5 (Real-to-Fixed ORE arithmetic) Let pxf , xrq and pyf , yrq be pairs of

fixed point parts and REs of real numbers x, y. Real-to-Fixed ORE arithmetic f �

t`,a,b,cu is defined below.

pxf , xrq`pyf , yrq � prdfppxf � yf q, xr � yr � refppxf � yf qq

pxf , xrqapyf , yrq � prdfppxf � yf q, xr � yr � refppxf � yf qq

pxf , xrqbpyf , yrq � prdfppxf � yf q, xr � yf � xf � yr � xr � yr � refppxf � yf qq

pxf , xrqcpyf , yrq � prdfppxf � yf q, pxf � xrq � pyf � yrq � xf � yf � refppxf � yf qq

Because of RE, the result of fixed point conditional expression is sometimes different

from the result of real conditional expression. Therefore, the fixed point program leads to

incorrect results. We define the Real-to-Fixed ORE comparison operators by comparing

the range values of fixed point representations. For a given fixed point representation

pxf , xrq, the corresponding range value is rxf � |xr|, xf � |xr|s. The results of Real-to-

Fixed ORE comparison operators may be true, false, or unknown. Unknown means

that the ranges of a fixed point expression traverses both true and false of the condition,

and we cannot decide which will hold in real computation. Formally, Real-to-Fixed ORE

comparison operators are defined as follows:

Definition 6 (Real-to-Fixed ORE comparison operators) Let pxf , xrq, and pyf , yrq

be pairs of fixed point parts and REs of real numbers x, y.

ppxf , xrq pyf , yrqq �

$'''&'''%
true if pxf � xr yf � yrq ^ pxf yf q

false if pxf � xr ¥ yf � yrq ^ pxf ¥ yf q

unknown otherwise

ppxf , xrq � pyf , yrqq �

$'''&'''%
true if pxf � yf ^ xr � yrq

false if pxf , xrq pyf , yrq _ pyf , yrq pxf , xrq

unknown otherwise

Remark 2 Other comparison operators (e.g., ¡, ! �) can be defined using the above

operators.

Example 12 Let x � 34.5678, y � 98.76543. We assume the fixed point format pb �

10, ip � 3, fp � 2q, “round toward �8”, and the RE threshold θ � 0.01. We have:

• The fixed point value of x is xfx � 34.56 and the corresponding RE is xr � 0.0078

18

• The fixed point value of y is yfx � 98.76 and the corresponding RE is yr � 0.00543

We next show how to evaluate ORE arithmetic:

• Addition:

pxf , xrq`pyf , yrq� prdfpp34.56� 98.76q, 0.0078� 0.00543� refpp34.56� 98.76qq

� p133.32, 0.01323q

That means the result of addition is 133.32 and its RE is 0.01323 ¡ θ. Thus, RE

exceeds RE threshold, or we can conclude this computation does not satisfy the ORE

requirement.

• Substraction:

pxf , xrqapyf , yrq� prdfpp34.56� 98.76q, 0.0078� 0.00543� refpp34.56� 98.76qq

� p�64.20, 0.00273q

That means the result of substraction is �64.20 and its RE is 0.00273 θ. We can

conclude this computation satisfies ORE requirement.

• Multiplication:

pxf , xrqbpyf , yrq� prdfpp34.56� 98.76q, 0.0078� 98.76� 34.56� 0.00543

� 0.0078� 0.00543� refpp34.56� 98.76qq

� p3413.14, 0.963631154q

That means the result of multiplication is 3413.14 p¡ 103q and its RE is 0.963631154 ¡

θ. Thus, OE occurs and RE exceeds RE threshold. We then conclude this computa-

tion does not satisfy ORE requirement.

• Division:

pxf , xrqcpyf , yrq� proundfpp34.56� 98.76q, p34.56� 0.0078q � p98.76� 0.00543q

� 34.56� 98.76� refpp34.56� 98.76qq

� p0.34, 0.0099989824374783767964155069238295q

The result of division is 0.34 and its RE is 0.0099989824374783767964155069238295

p θq. We can conclude this computation satisfies ORE requirement.

2.3.2 Real-to-Float ORE Arithmetic

Similar to the above cases, we can define the rule to propagate OREs when converting

real numbers to floating point numbers. For a floating point format pb, p, emaxq and a

19

real number x, we denote the floating point part by rdflpxq and the RE by reflpxq

(� x � rdflpxq). If rdflpxq ¡ pb � b1�pq � bemax, we conclude that OE occurs, and if

reflpxq ¡ θ (where θ is predefined threshold) we conclude that RE occurs. The following

definition describes the rules of propagating ORE when converting real numbers to floating

point numbers.

Definition 7 (Real-to-Float ORE arithmetic) Let pxf , xrq and pyf , yrq be pairs of

floating point parts and REs of real numbers x, y. Real-to-Float ORE arithmetic f �

t`,a,b,cu is defined below.

pxf , xrq`pyf , yrq � prdflpxf � yf q, xr � yr � reflpxf � yf qq

pxf , xrqapyf , yrq � prdflpxf � yf q, xr � yr � reflpxf � yf qq

pxf , xrqbpyf , yrq � prdflpxf � yf q, xr � yf � xf � yr � xr � yr � reflpxf � yf qq

pxf , xrqcpyf , yrq � prdflpxf � yf q, pxf � xrq � pyf � yrq � xf � yf � reflpxf � yf qq

Real-to-Float ORE comparison operators when converting real numbers to floating

point numbers are defined as follows:

Definition 8 (Real-to-Float ORE comparison operators) Let pxf , xrq, and pyf , yrq

be pairs of fixed point parts and REs of real numbers x, y.

ppxf , xrq pyf , yrqq �

$'''&'''%
true if pxf � xr yf � yrq ^ pxf yf q

false if pxf � xr ¥ yf � yrq ^ pxf ¥ yf q

unknown otherwise

ppxf , xrq � pyf , yrqq �

$'''&'''%
true if pxf � yf ^ xr � yrq

false if pxf , xrq pyf , yrq _ pyf , yrq pxf , xrq

unknown otherwise

Remark 3 Other comparison operators (e.g., ¡, ! �) can be defined using the above

operators.

2.3.3 Float-to-Fixed ORE Arithmetic

The RE of the conversion from floating point numbers to fixed point numbers will be

computed based on the REs when converting from real numbers to floating point numbers

and converting from real numbers to fixed point numbers. For a floating point number x,

the floating point format pb, p, emaxq, and the fixed point format pb, ip, fpq, we denote the

fixed point part by rdfxpxq and the RE by reff pxq (� refxpxq�reflpxq). If rdfxpxq ¡ bip

we conclude that an OE occurs, and if refxpxq ¡ θ (where θ is predefined threshold) we

20

conclude that an RE occurs. The following definition describes the rules of propagating

ORE between floating point numbers and fixed point numbers.

Definition 9 (Float-to-Fixed ORE arithmetic) Let pxf , xrq and pyf , yrq be pairs of

fixed point parts and REs of floating point numbers x, y. Float-to-Fixed ORE arithmetic

f � t`,a,b,cu is defined below.

pxf , xrq`pyf , yrq � prdfxpxf � yf q, xr � yr � refxpxf � yf q � reflpx� yqq

pxf , xrqapyf , yrq � prdfxpxf � yf q, xr � yr � refxpxf � yf q � reflpx� yqq

pxf , xrqbpyf , yrq � prdfxpxf � yf q, xr � yf � xf � yr � xr � yr � refxpxf � yf q � reflpx� yq

pxf , xrqcpyf , yrq � prdfxpxf � yf q, pxf � xrq � pyf � yrq � xf � yf � refxpxf � yf q � reflpx� yqq

Float-to-Fixed ORE comparison operators when converting floating point numbers to

fixed point numbers are defined as follows:

Definition 10 (Float-to-Fixed ORE comparison operators) Let pxf , xrq, and pyf , yrq

be representations of two floating point numbers x, y.

ppxf , xrq pyf , yrqq �

$'''&'''%
true if pxf � xr yf � yrq ^ pxf yf q

false if pxf � xr ¥ yf � yrq ^ pxf ¥ yf q

unknown otherwise

ppxf , xrq � pyf , yrqq �

$'''&'''%
true if pxf � yf ^ xr � yrq

false if pxf , xrq pyf , yrq _ pyf , yrq pxf , xrq

unknown otherwise

Remark 4 Other comparison operators (e.g., ¡, ! �) can be defined using the above

operators.

An instance of transformation

When we fix the conversion, such as from the floating point IEEE 754 binary64 p2, 53, 1024q

to the fixed point p2, ip, fpq with size 2 bytes (e.i., ip � fp � 16) (which frequently ap-

pears in practice), we can obtain better estimation of OREs. Assume “round to nearest”

in Definition 9.

Let us modify Definition 9 for transformation from floating point IEEE 754 binary64

p2, 53, 1024q to fixed point p2, ip, fpq. Assume that the rounding mode is “round to near-

est”.

Let δ� � refxpx � yq � reflpxf � yf q where � P t�,�,�,�u. We now find the bound of

δ� by considering the bound of reflpxf � yf q and refxpx � yq:

21

• Floating point roundoff error rdflpx � yq:

Assume rdflpx � yq � p�p1qs �m � beq, we have |reflpx � yq| 2�53�e{2. Without

loss of generality, we can assume e ¤ ip (otherwise an OE occurs in the fixed point

operator pxf � yf q). Thus, we have:

|reflpx � yq| 2�53�e{2

 2�53�ip{2

 2�53�16�fp{2pbecause ip� fp � 16q

 2�38�fp

• Fixed point roundoff error refxpxf � yf q:

Because the fixed point format is unique, the results of the addition and the sub-

straction have the same format. Thus, refxpxf � yf q � 0 for � P t�,�u.

For the multiplication, the fraction part of the result has 2�fp digits. The fraction

part is round to fp digits, and |refxpxf � yf q| 2fp{2� 22�fp{2.

For the division, similarly |refxpxf � yf q| 2fp{2.

Hence, we have: $'''''&'''''%
|δ�| 2�38�fp

|δ�| 2�38�fp

|δ�| 2fp�1 � 22�fp�1 � 2�38�fp

|δ�| 2fp�1 � 2�38�fp

(2.2)

Definition 11 (Float64-to-Fixed16 ORE arithmetic) Let pxf , xrq and pyf , yrq be

pairs of fixed point parts and REs of floating point numbers x, y. Float64-to-Fixed16 ORE

arithmetic f � t`,a,b,cu is defined below.

pxf , xrq` pyf , yrq �prdfppxf � yf q, xr � yr � δ�q

pxf , xrqa pyf , yrq �prdfppxf � yf q, xr � yr � δ�q

pxf , xrqb pyf , yrq �prdfppxf � yf q, xr � yf � xf � yr � xr � yr � δ�q

pxf , xrqc pyf , yrq �prdfppxf � yf q, pxf � xrq � pyf � yrq � xf � yf � δ�q

where δ�, δ�, δ�, δ� are given in Equation 2.2.

2.4 ORE Constraints of the Programs

To consider whether the RE of result of a concrete program lies within threshold bound

or not, we firstly create the RE constraint based on the the initial range of input and the

22

threshold bound of RE. Next, we need to solve the RE constraint to clarify whether the

RE occur or not.

A sample program language

A general program basically includes three types of instructions: assignments, conditions,

and loops. This program language does not contain exception, recursive function and

pointers.

We define the syntax of the core language as in Table 2.4.

Program := Block
Block := Stm;

|Stm;Block
E := c (constants)

|x (variables)
|E op E (operator �,�,�,�)

B := E cp E (compare operator ��, ,¡, and, or, not)
Stm := x � E

|If B then Block else Block
| while n do Block

Table 2.2: Syntax of core language

In fact, we focus on analyzing the programs which are implemented in the hardware

(e.g., Mpeg decoder algorithm), thus, this limitation of programming language are not

affect to. Further, we does not analyze original C language, only it three address codes

(CIL codes) which can be extended from this core languages.

Create ORE constrains based on Weakest precondition technique

Program verification based on weakest precondition The RE constraint can be

generate directly by using weakest precondition technique [11]. Let us assume we want

to verify a program where we know the postcondition but not the precondition:

t?uStRu

In general, there could be arbitrarily many preconditions Q which are valid for the

program S and a postcondition R. However, there is one precondition Q that describing

the maximal set of possible initial inputs such that the execution of S leads to a state

satisfying R. This Q is called the weakest precondition.

Formally, weakest-preconditions are defined recursively over the abstract syntax of

statements. Given a program s1; s2; �; sn with preconditiontP u and postcondition tRu,

weakest precondition strategy to verify this program is started from sn and tRu. We

23

produce tPn�1u is the weakest precondition for the statement sn. tPn�1u now becomes

the postcondition for sn�1. Then we continue produce tPn�2u is weakest precondition of

sn�1.

tP us1; s� 2; �; sntRu

tP u

tP0u

ts1u

tP1u

�

tsn�1u

tRu

Doing similarly, we obtain P0 finally. What remains is to prove

P ñ P0

Create ORE constraints The weakest preconditions for RE constraint is defined as

Table 2.4.

wppx � E1� E2, Cq = Crpxf , xrq{pE1f , E1rq` pE2f , E2rqs
wppx � E1� E2, Cq = Crpxf , xrq{pE1f , E1rqa pE2f , E2rqs
wppx � E1� E2, Cq = Crpxf , xrq{pE1f , E1rqb pE2f , E2rqs
wppx � E1� E2, Cq = Crpxf , xrq{pE1f , E1rqc pE2f , E2rqs

wppif B then Block1 else Block2, Cq = p pB ñ wppBlock1, Cqq ^ p pB ñ wppBlock2, Cqq
wppstm; Block, Cq = wppStm, wppBlock, Cqq
wppwhile n do Block, Cq = wppBlock � � � pn timesqBlock, Cq

Table 2.3: Weakest precondition for ORE problem

Thus, for a given algorithm P, RE constraints for P is computed by:

1. the precondition (called R) are the constraints of forms li ¤ vi ¤ hi, where rli, his

is the initial range of variable vi.

2. the postcondition (called T) are the constraints of forms |resulte| ¤ θ, where θ is

the threshold of RE of result.

3. the RE constraint for the algorithm P will be:

@v1...vn.R ñ wppP, T q (2.3)

24

If 2.3 is true then the RE value is acceptable. Otherwise, there is a input that makes

the RE value too large. The problem now is how to verify the constraint (2.3).

Solving ORE constraint problem

We consider the case: the fixed point part is fixed, and the RE part is changeable. We

have an observation that, even with this simple case, it will be reduced to polynomial

inequations over real. Brown [6] shows that the quantifier elimination of polynomial in-

equations over real are double exponential. Therefore, the problem of solving requires

doubly exponential time complexity. As a consequence, finding exactly ORE is impracti-

cal.

25

Chapter 3

Dataflow Analysis as Weighted

Model Checking

It has been suggested intimate connections between dataflow analysis and model check-

ing [48, 57]. A program is firstly encoded into a model (transition system) by abstraction,

and a program analysis is formulated as a model checking problem. This is nicely adopted

for control flow analysis and/or classical dataflow analysis in Dragon book [1, 35]. How-

ever, as natural requests, we intend more richer dataflow, such as quantity properties

with more precise treatments on conditional branches. For instance, linear constraint

propagation [48], affine relation analysis [56], or ORE constraint analysis [51] are such

examples. In these cases, the direct encoding will be a-transition-as-an-environment-

transformer, which requires all possible environments as states. This will lead the state

explosion problem in model checking. In 2003, Rep [55] proposed weighted pushdown

model checking, in which each transition is associated with a weight. A weight directly

represents dataflow, that is, how an abstract environment will be transformed, without

generating explicit environments as states. This will not improve complexity in theory,

but in practice we can combine with an on-the-fly generation of weights, which drastically

reduces the search space during model checking. We follow this weighted model check-

ing approach (but without using a pushdown stack). In this chapter, we briefly describe

how to transform dataflow analysis problem as a model checking problem and abstraction

(Section 3.1). We then describe the idea of transforming dataflow analysis problem to

weighted model checking problem and abstraction in Section 3.2.

26

3.1 Dataflow Analysis as Model Checking and Ab-

straction

3.1.1 Dataflow Analysis

Dataflow analysis [50] is a special case of program analysis which statically computes

information about the flow of data for each program point. This information must be

a safe approximation of the desired properties of the run-time behavior of the program

during each possible execution of that program for all possible inputs. In general, there

are 3 common approach for solving dataflow analysis problem:

• Constraint resolution systems: consist of a constraint store and a logic for solving

constraints. In particular, a program component constraints the semantic prop-

erties. These constraints are expressed in form of inequalities and the semantics

properties are derived by finding a solution which satisfies all the constraints. In

this approach, SAT/SMT solver can be used to help solving the constraints [19].

• Model checking: the classical dataflow analysis can be transformed to model checking

problem by creating suitable abstractions of the programs as models and expressing

desired properties in terms of boolean formulae. A model checking algorithm then

discovers the states in the model that satisfy the given formulae.

• Abstract interpretations use abstraction functions to map the concrete semantic

values to abstract semantics, perform the computations on the abstract semantics,

and use concretization functions to map the abstract semantics back to the concrete

semantic.

Dataflow analysis can be characterized by the following properties:

• Context sensitive: analysis is an interprocedural analysis that considers the calling

context when analyzing the target of a function call. In particular, using context

information one can jump back to the original call site, whereas without that infor-

mation, the analysis information has to be propagated back to all possible call sites,

potentially losing precision. In general, fully context sensitive analysis is very inef-

ficient and most practical algorithms employ a limited amount of context sensitive.

• Flow sensitive: analysis takes into account the order of statements in a program. For

example, a flow-insensitive pointer alias analysis may determine “variables x and

y may refer to the same location”, while a flow-sensitive analysis may determine

“after statement 20, variables x and y may refer to the same location”.

• Path sensitive: analysis computes different pieces of analysis information dependent

on the predicates at conditional branch instructions. For instance, if a branch

27

contains a condition x¿0, then on the fall-through path, the analysis would assume

that x¡=0 and on the target of the branch it would assume that indeed x¿0 holds.

Basically, the representations of dataflow are sets of program entities such as variables

or expressions satisfying the given property. The classical dataflow analysis [1](e.g., live-

variable, partial-redundancy elimination) implements these sets by bit-vectors. However,

the new dataflow analysis problems [25, 51](e.g., linear constraint, affine relation) may

need extra information about value of variables, hence these sets must be implemented

by non-bit-vectors.

Dataflow analysis is used to: (1) determining the semantic validity of a program (e.g.,

type correctness); (2) understanding the behavior of a program for debugging, verification,

testing [25, 51]; (3) transforming a program for optimized the program for space, time, or

power consumption [24].

3.1.2 Model Checking

Model checking, proposed independently by E.M. Clarke and E.A. Emerson (USA) and

J.Sifakis (France) in 1980 [7], is an automatic verification technique for finite state con-

current systems. The model checking problem is:

Given a program (system model) M and a correctness specification S, deter-

mine whether or not the behavior of M satisfies the specification B?.

Applying model checking to a system consists of two main tasks:

Specifying the properties that system should have, for example, deadlock, divergence

or deadlock. The specification is usually given in some logical formalism. For hardware

and software systems, it is common to use temporal logic [12], which can assert how the

behavior of the system evolves over time, such as CTL (computation tree logic) and LTL

(linear time logic). An important issue in specification is completeness. Model checking

provides means for checking that a model of the design satisfies a given specification, but

it is impossible to determine whether the given specification covers all the properties that

the system should satisfy.

Construct a formal model for the system. In many cases, this is simply a compilation

task. In other cases, the modeling of a design may require the use of abstraction to

eliminate irrelevant of unimportant details. For example, when modeling programs for

checking ORE, we it is useful to consider numerical variables, rather than string variables.

28

Model checker

System
model

System
properties

Property fulfilled?

yes

Notification

no

Counter-examples

Figure 3.1: Model checker structure

A model checker (Figure 3.1) then takes the system model and system properties as

the inputs. Model checker will check whether the properties are fulfilled or not? If the

answer is yes then the system satisfies its properties. If the answer is no, the system

violates its properties. In practice, the model checker can procedure the counterexamples

for debugging purposes.

Model checking has several advantages over others verification techniques (e.g., auto-

mated theorem proving). That is, the user of a Model checker does not need to construct

the correctness proof. In particular, user only need to enter a description for a system

or program to be verified and the specification to be checked. The checking process is

automatic. Further, model checking is fast compared to other methods such as the use

of a proof checker, which may require months of the user’s time working in interactive

mode. However, one problem of model checking is that a counterexample can also result

from incorrect modeling of the system or from an incorrect specification (often called a

false negative). The counterexamples can also be useful in identifying and fixing these two

problems. Another problem is that the verification task will fail to terminate normally,

due to the size of the model, which is too large to fit into the computer memory. In this

case, it may be necessary to redo the verification after changing some of the parameters of

the model checker or by adjusting the model (e.g., using additional abstractions). Model

checking for finite state systems has been successfully implemented in automatic tools

such as SPIN 1, SMV/NuSMV 2.

1http://www.spinroot.com/
2http://www.cs.cmu.edu/modelchecker/code.html

29

3.1.3 Dataflow Analysis as Model Checking and Abstraction

As we known, the classical dataflow analysis can be transformed to model checking prob-

lem by creating suitable abstractions of the programs as models and expressing desired

properties in terms of temporal formulae (e.g., CTL formulae) [34].

Modeling program Given a program, the standard program model includes:

• program states are the program locals (e.g., program point),

• actions are the elementary statements and expressions, and

• transitions are defined by the small steps and are labeled with corresponding prim-

itive statements/expressions.

The programs can be modeled as labeled transition systems.

Definition 12 A label transition system P is a tuple pS, A, ∆q in which

• S is a finite set of nodes or program states,

• A is a set of actions, modeling elementary statements,

• ∆ � S � A � S is a set of labeled transitions, which modeling the flow of control,

and

Example 13 For the program in Figure 1.2, the transition system is P1 � pS, A, ∆q

with:

• S � tst1, st2, � � � , st5u

• A is the set of statements of the program

• ∆ is defined as figure 3.2

Next, for dataflow analysis problem, the states must be labeled with sets of atomic

propositions which describe properties of states:

Definition 13 A labeled state transition system Pl is a tripletpP, B, λq in which

• P is a label transition system pS, ∆, s0q,

• B is a set of atomic propositions, and

• λ is a function λ : S Ñ 2B that labels states with subsets of B.

30

st5

st1

st2 st3

st4

true false

Figure 3.2: Transition system of program in Figure 1.2

Given a labeled transition system, one can define the corresponding labeled state

transition system by using a lattice of entities of observation D. Then, a monotonic transfer

function will be defined for each action a P A fa : D Ñ D, a P A. Lastly, each program

state p P S will be labeled by valp �
�
tfapvalqq| pp, a, qq P ∆u.

Example 14 Let us consider live-variables analysis for the program in Figure 1.2. The

labeled transition system is given in Example 13. The corresponding labeled state transition

system will be given as follows:

• D � 2V ar, where V ar � tx, y, rstu is the collection of the program’s variables;

• fapsq � UsedaYpnotModifiedaXsq, where Useda defines those variables referenced

in action a,a nd notModified defines those variables that are not modified in a.

Abstraction in Dataflow Analysis Data abstraction is probably the most important

technique for reducing the state explosion theorem. Data abstraction is based on the

observation that the specifications of the programs that include data paths usually involve

fairly simple relationships among the data values in the program. The abstraction is

usually specified by giving a mapping between the actual data values of variables in the

programs and a small set of abstract data values.

Definition 14 For labeled transition system Pl � pP, B, λq and the abstract function

fA : B Ñ B1 such that |B1| B, the abstract transition system of Pl is Pa � pP, B1, λ1q

where λ1 : S Ñ 2B1

The abstract model is often much smaller than the actual model, and as a result, it is

usually much simpler to verify properties at the abstract level.

31

Example 15 For the program in Figure 1.2, assume that the initial values of variable

x, y lie in t�1, 1, 3u. We would like to check whether the result of rst is even or odd.

The transition system P1 is already given in Example 13. Directly, we can set the

states of the transition system P1 in example are all possible values of x, y, rst. Hence,

B � t�1, 0, 1, 2, 3, 4, 9, ...u. However, we can safety abstract B to B1 � teven, oddu where

fApxq � even if x div 2, fApxq � odd otherwise. By this, the abstract model will become

simpler than the concrete model.

Source program + abstraction of input data

Finite program model:
• arcs labelled

by program actions

Finite program model:
• arcs labelled

by abstract actions
• node labelled

by abstract states

static analysis result

Model checking

Abstraction

Pre-processing

Figure 3.3: Dataflow analysis as model checking and abstraction

To apply model checker as the engine for dataflow analysis, a third component, ab-

straction, must be used. First, from a operational semantics definition and a program,

one constructs a program model, which is a state-transition system that encodes one (or

many, or all) of the program’s executions. Second, one might abstract upon the program

model, reducing the detail of information in the model’s nodes and arcs. Finally, one

analyzes the model for the properties, etc (Figure 3.3).

32

3.2 Dataflow Analysis as Weighted Model Checking

Problem

3.2.1 Weighted Model Checking

Weighted model checking (WMC) computes dataflow (or, an update of environments)

by associating a weight to each transition in the model, and the goal is to determine the

weight summary of the meet-over-all-path. In one hand, the computation of fixpoint often

require widening operation that causes over approximation too much (e.g., approximate

value of variable to 8). In other hand, the most important requirement of ORE analysis

is precision. Thus, in order to avoiding widening operation, we restrict the underlying

pushdown system to a finite state transition system. By this, the weighted pushdown

model checking becomes weighted model checking.

Weight domain and weighted transition system. In weighted model checking, the

weight domain D is an idempotent semiring.

Definition 15 An idempotent semiring is a quintuple pD,`,b,0,1q, where 0,1 P D

and `, b are binary operators on D such that, for a, b, c P D,

• pD,`q is a commutative monoid with the unit 0,

• pD,bq is a monoid with the unit 1,

• b distributes over `, i.e., abpb`cq � pabbq`pabcq and pa`bqbc � pabcq`pbbcq,

• ` is idempotent, i.e., a` a � a, and

• 0 is the zero element of b, i.e., ab 0 � 0b a � 0.

In the context of dataflow analysis, each element of an idempotent semiring is regarded

as follows:

• 0 stands for interruption of dataflow,

• 1 stands for the identity function (i.e., no state update),

• b is the composition of two successive dataflow, and

• ` merges two dataflow at the meet of two transition sequences.

The weighted transition system is then defined as a transition system “plus” a weight

domain.

33

Definition 16 Let P � pP, ∆, s0q be a transition system with P to be a finite set of states,

∆p� P � P q to be a set of transitions, and s0pP P q to be an initial state. A weighted

transition system (WTS) is a triplet W � pP , S, fq, where S � pD,`,b,0,1q is an

idempotent semiring and f : ∆ Ñ D is a map that assigns a weight to each transition.

Let ∆� be the set of all sequences of transitions. For σ � rr1, . . . , rks P ∆�, we

define vpσq �∆ fpr1q b . . .b fprkq. If σ is a transition sequence from a state c to a state

c1, we denote c ñσ c1. The set of all such sequences is denoted by pathspc, c1q, i.e.,

pathspc, c1q � tσ | c ñσ c1u

Weighted model checking. Weighted model checking finds the weight summary of

pathspc, c1q, which is the summation `σPpathspc,c1qvpσq.

There are two kinds of generalized reachability problems:

Definition 17 Let W � pP ,S, fq be a weighted transition system with P � pP, ∆, s0q.

Let C � P and c P P .

• The generalized predecessor problem is to find δpcq � `tvpσq | σ P pathpc, c1q, c1 P

Cu.

• The generalized successor problem is to find δpcq � `tvpσq | σ P pathpc1, cq, c1 P

Cu

If a cycle exists in a weighted model, pathspc, c1q becomes infinite. For the termination

of a weighted model checking, an idempotent semiring needs to be bounded.

Definition 18 An idempotent semiring is bounded if there are no infinite descending

chains wrt �, where a � b if, and only if, a` b � a.

Data Abstraction and Weight Domain

For the purpose of dataflow analysis, the weights capture the relationships between the

values of variables before and after the statements. Thus, the weight domain can be

treated as a set of abstract transformers.

More formally, let V, V be the set of variables and the set of their corresponding values,

respectively. The abstract function is fA : V Ñ VA where VA is abstract domain of V.

Hence, the weight domain D is the set of functions f : VA Ñ VA which stands for the

transformations from abstract values of variables before statements to the abstract values

of variables after statements.

34

3.2.2 Dataflow Analysis as Weighted Model Checking and Ab-

straction

Solving dataflow analysis problem based on weighted model checking basically includes

three main steps (Figure 3.4). First, the pre-processing step obtains the transition system

and input domain of source program. Next, by abstracting the input domain, we obtain

the abstract domain and the corresponding weighted transition system. This is the input

of Step 3, weighted model checking. Finally, we obtain the analysis result.

Source program and input domain

Static analysis result

Weighted model checking

Pre-processing

Transition System
and input domain

Weighted Transition System
and abstract domain

Abstraction

Figure 3.4: Dataflow analysis as weighted model checking

For dataflow analysis, common actions are extending the weights along one path,

and composing the weights of paths. Each element of a bounded idempotent semiring is

regarded as follows:

• 0 stands for interruption of dataflow,

• 1 stands for the identity function (i.e., no state update),

• b is the composition of two successive dataflows, and

• ` merges two dataflows at the meet of two transition sequences.

The target weighted transition system consists of

• State: is a pair of program location and abstract environment,

35

• The initial state s0: is the program entry, and

Note that for if statement “if x�y then s”, the abstraction of the condition x�y affects

the analysis; its dataflow is interrupted (by the weight 0) when px � yq is evaluated to

false.

3.2.3 On-the-fly Weight Creation for an Acyclic Model

Because of the requirement of dataflow properties, the abstract domain is sometimes still

infinitely many. Thus, designing the weight domain that satisfy the descending chain

condition (boundedness) is difficult. For example, the ORE analysis abstracts OREs as

intervals, which is infinite domain.

We now create weight domain for a subclass of program model called “acyclic model”,

in which weights can be designed by on-the-fly manner. Let val0 be the abstract value of

input domain, val0 will be the parameter for the on-the-fly weight domain generation. We

first introduce the augmented weight domain to associate an input abstract environment

to each weight. “ ” means any input.

Definition 19 The augmented weight domain S� � pD�,`,b,0�,1�q consists of D� �

tpW, wq | W P AbsEnv, w P Du, 0� � p ,0q, 1� � p ,1q, and

w�
1 ` w�

2 �

$&%pW1, w1 ` w2q if W1 � W2

0� otherwise

w�
1 b w�

2 �

$&%pW2, w1 b w2q if W1 � w2pW2q

0� otherwise

for w�
1 � pW1, w1q, w

�
2 � pW2, w2q P D�.

Now we are ready to define the on-the-fly weight domain S�
P,val0

for a transition system

P and V al0 P VA. The intuition is, starting from the initial abstract environment val0,

only reachable instances of weights are computed in on-the-fly manner.

Definition 20 For a transition system P and val0 P VA, the weight domain S�
P,val0

�

pD�
P,val0

,`,b,0,1q is a sub semiring of S� with D�
P,val0

� D�. D�
P,val0

is given by#
pW, wq

Dσ, σ1 P ∆� Dc, c1 P P . s0 ñ
σ c ñσ1 c1

^W � vpσqpval0q ^ w � vpσ1q

+

36

Chapter 4

Interval Arithmetics in ORE

Propagation

In general, we do not know the exact values of variables in the program, only their

ranges. Hence, estimating ORE can be solved by propagating fixed point ranges and

round off error ranges of variables. In order to estimate OREs of operations, there are

two known range representations: classical interval [47] and affine interval [61, 62]. In

this chapter, we firstly describe these two methods in detail in Sections 4.1 and 4.2.

Then, motivated by the disadvantages of these two interval methods, we propose two

novel range representation methods, called “extended affine interval” and “positive-noise

affine interval”, in Section 4.3 and Section 4.4, respectively. Lastly, we represent how to

implement these intervals on computers using floating point type in Section 4.5.

4.1 Classical Interval

Classical interval (CI) was introduced in the 1960s by Moore [47] as an approach to

putting bounds on rounding errors in mathematical computations. In CI, each quantity

is represented by the set of all possible values. Formally, CI is defined as follows:

Definition 21 A classical interval of x is an interval x � rxl, xhs with xl ¤ x ¤ xh.

The set of classical intervals is denoted by R.

The result of CI arithmetic is also a CI that binds all possible results. In particular,

CI arithmetic is evaluated as follows:

Definition 22 CI arithmetic consists of operations t� ,� ,� ,�u on pairs of CIs

37

defined below:

rxl, xhs � ryl, yhs � rxl � yl, xh � yhs

rxl, xhs � ryl, yhs � rxl � yh, xh � yls

rxl, xhs � ryl, yhs � rminpxlyl, xlyh, xhyl, xhyhq, maxpxlyl, xlyh, xhyl, xhyhqs

rxl, xhs � ryl, yhs � rxl, xhs � r
1
yh

, 1
ul
s if 0 R ryl, yhs

The following example demonstrates how to compute CI operations:

Example 16 For x P x � r�1, 3s, y P y � r�6, 10s. Let us compute the bound of z � x�y

(� P t�, �, �, �u) by using CI:

• Addition z � x� y:

z � x � y

� r�1, 3s � r�6, 10s

� r�1� 6, 3� 10s

� r�7, 13s

Hence, we can conclude z P r�7, 13s.

• Substraction z � x� y:

z � x � y

� r�1, 3s � r�6, 10s

� r�1� 10, 3� p�6qs

� r�11, 9s

Hence, we can conclude z P r�11, 9s.

• Multiplication z � x� y:

z � x � y

� r�1, 3s � r�6, 10s

� rmint6,�10,�18, 30u, maxt6,�10,�18, 30us

� r�18, 30s

Hence, we can conclude z P r�18, 30s.

• Division z � x� y:

z � x � y

� r�1, 3s � r�6, 10s

Because 0 P r�6, 10s, hence we cannot compute the bound of z, in this case a “divide

for zero” warning might be displayed.

38

For x, x1, ..., xn P R, � P t�,�,�,�u, and a constant c, we denote:

• x1x2 � x1 � x2, cx � xc � x � rc, cs,

• c � x � rc, cs � rxs, x � c � x � rc, cs, and

•
°n

i�1 xi � x1 � x2 � � � � � xn.

CI arithmetic assumes that all intervals are independent, even if their corresponding

quantities are dependent. The next example illustrates such a problem.

Example 17 Let x P x � r�1, 3s. It is easy to see that:

x � x � r�1, 3s � r�1, 3s

� r�4, 4s

CI arithmetic assumes the first operand and the second operand to be independent, while

in fact, they represent the same quantity x and the result must be r0, 0s.

This assumption leads to a great loss of precision in a long computation chain, which

is called “error explosion”.

4.2 Affine Interval

Affine interval (AI) was introduced by Stolfi [61, 62] as a model for self-validated numer-

ical analysis. It was proposed to address the “error explosion” problem in conventional

CI. Unlike CI, in AI, the quantities are represented as affine combinations (affine forms)

of certain primitive noise symbols, which stand for sources of uncertainty in the data or

approximations made during the computation.

Definition 23 An Affine interval of x is a formula

:x � x0 � x1ε1 � x2ε2 � � � � � xnεn

with x P rx0 �
°n

i |xi|, x0 �
°n

i |xi|s. x0 is called the central value. For each i P

r1, ns, εi P r�1, 1s is a noise symbol, which stands for an independent component of the

total uncertainty. The set of affine interval forms is denoted by :R.

In AI arithmetic, the results of linear operations (i.e., addition, subtraction) are

straightforward operations on AIs. However, the results of nonlinear operations (i.e.,

multiplication, division) are not AI forms. Hence, we need to approximate the nonlinear

parts of the results by introducing new noise symbols.

39

Definition 24 AI arithmetic consists of operations t:�, :�, :�, :�u on pairs of AIs as

defined below. Let :x � x0�
°n

i�1 xiεi and :y � y0�
°n

i�1 yiεi. AI operations are as defined

below:
:x :� :y � px0 � y0q �

°n
i�1pxi � yiqεi

:x :� :y � px0 � y0q �
°n

i�1pxi � yiqεi

:x :� :y � x0y0 �
°n

i�1px0yi � xiy0qεi � Bεn�1

:x :� :y � :x :� p 1
:y
q, if 0 R rx0 �

°n
i |xi|, x0 �

°n
i |xi|s

where εn�1 P r�1, 1s is a new noise symbol, B is the maximum value of p
°n

i�1 xiεiqp
°n

i�1 yiεiq,

and 1
:y

is computed by Chebyshev approximation [61].

Remark 5 An easy approximation of B is p
°n

i�1 |xi|qp
°n

i�1 |yi|q

Chebyshev approximation

In general, Chebyshev approximation aims to minimize the maximum absolute error.

Specifically, let F be some space of functions, (polynomials, affine forms, etc.). An element

of F that minimizes the maximum absolute difference from a given function f over some

specified domain Ω is known as a Chebyshev (or minimax) F -approximation to f over Ω.

In particular, for univariate functions, the minimax affine approximation is character-

ized by the following property:

Theorem 1 Let f be a bounded and continuous function from some closed and bounded

interval I � ra, bs to R. Let h be the affine function that best approximates f in I under

the minimax error criterion. Then, there exist three distinct points u, v, w P I where the

error fpxq � hpxq has maximum magnitude; and the sign of the error alternates when the

three points are considered in ascending order.

This theorem provides an algorithm for finding the optimum approximation in many

cases, via the following corollary:

Theorem 2 Let f be a bounded and twice differentiable function defined on some interval

I � ra, bs, whose seconde derivative f2 does not change sign inside I. Let fapxq � αx� ζ

be its minimax affine approximation in I. Then:

• The coefficient α is simply pfpbq � fpaqq{pb � aq, the slope of the line rpxq that

interpolates the points pa, fpaqq and pb, fpbqq.

• The maximum absolute error will occur twice (with the same sign) at the endpoints

a and b of the range, and once (with the opposite sign) at every interior point u of

I where f 1puq � α.

• The independent term ζ is such that αu � ζ � pfpuq � rpuqq{2, and the maximum

absolute error is δ � |fpuq � rpuq|{2.

40

This result gives us a method for finding the optimum coefficients α and ζ, as long as we

can solve the equation f 1puq � α.

If the AI projection of :y, y, includes zero, a “division by zero” might be displays. We

only consider the cases y � rl, hs are entirely either positive or negative (i.e., l ¡ 0 or

h 0). The Chebyshev approximation of 1
:y

(Figure 4.1) is computed as follows:

• a � mint|l|, |h|u, b � maxt|l|, |h|u.

• α � �1{b2.

• dmax � 1{a� αa, dmin � 1{b� αb.

• ζ � pdmin � dmaxq{2, if l 0 then ζ � �ζ.

• δ � pdmax � dminq{2.

• 1
:y
� α:y � ζ � δεk where εk is a new noise symbol.

Figure 4.1: Chebyshev approximation for 1
:y

Conversion between CI and AI

Standard range representation is a CI. To apply AI, conversion between them are needed.

• CI to AI : Given a CI x � rl, hs, a corresponding AI is :x � l�h
2
� h�l

2
εk. Under

valuations of noise symbol εk to r�1, 1s, they represent the same range. This is

called AI coercion.

• AI to CI : An AI :x � x0 � Σn
i�1xiεi is projected to a CI x � rx0 � Σn

i�1|xi|, x0 � Σn
i�1|xi|s.

This projection loses information about source of uncertainty. This is called AI pro-

jection.

The following example demonstrates how to propagate the ranges by using AI:

41

Example 18 For x P x � r�1, 3s, y P y � r�6, 10s. The corresponding AI coercions of

x, y are:

• :x � 1� 2εx

• :y � 2� 8εy

Let us compute the bound of z � x � y (� P t�, �, �, �u) by using AI:

• Addition z � x� y:

:z � :x :� :y

� p1� 2εxq :� p2� 8εyq

� 3� 2εx � 8εy

The AI projection of :z is r3� 2� 8, 3� 2� 8s � r�7, 13s. Hence, we can conclude

z P r�7, 13s.

• Substraction z � x� y:

:z � :x :� :y

� p1� 2εxq :� p2� 8εyq

� �1� 2εx � 8εy

The AI projection of :z is r�1�2�8,�1�2�8s � r�11, 9s. Hence, we can conclude

that z P r�11, 9s.

• Multiplication z � x� y:

:z � :x :� :y

� p1� 2εxq :� p2� 8εyq

� 2� 4εx � 8εy � 16ε1

where ε1 is new noise symbol standing for εxεy.

The AI projection of :z is r2� 4� 8� 16, 2� 4� 8� 16s � r�26, 30s.

Hence, we can conclude that z P r�26, 30s.

• Division z � x� y:

:z � :x :� :y

� p1� 2εxq :� p2� 8εyq

Because 0 P r�6, 10s, hence we cannot compute the bound of z, in this case a “divide

for zero” warning might be displayed.

AI is more precise than CI for linear operations, as shown in the next example.

42

Example 19 For x P x � r�1, 3s, let us consider how to compute the bound of z � x�x

by using CI and AI.

• CI substraction:

z � x � x � r�4, 4s

We hence conclude z P r�4, 4s.

• AI substraction: The AI coercion of x is :x � 1� 2εx. Hence:

:z � :x :� :x � 0

We hence conclude z � 0. This result is the correct result of the subtraction px�xq.

However, in AI arithmetic, each time we perform a nonlinear operation, we introduce

a new noise symbol, which is problematic for a program with a large number of nonlinear

operations.

4.3 Extended Affine Interval

AI is more precise than CI for linear operations, but each time we perform a nonlinear

operation, it introduces a new noise symbol. This would be problematic for a program

with a large number of nonlinear operations.

In [27], instead of introducing new noise symbols, coefficients of noise symbols are

replaced with CIs. Arithmetic operations are designed for under approximation, and we

apply similar ideas for over approximation. This is called an extended affine interval

(EAI), which also avoids introduction of new noise symbols for nonlinear operations.

Definition 25 An extended affine interval of x is a formula

px � x0 �
ņ

k�1

xkεk

with x P x0 �
°n

k�1 xkr�1, 1s, where εi P r�1, 1s is a noise symbol for each i P r1, ns and

xj P R for each j P r0, ns. The set of extended affine intervals is denoted by pR.

The linear operations of EAI arithmetic are designed similarly to those of AI arith-

metic. For nonlinear operations, unlike AI, EAI arithmetic does not need to introduce

new noise symbols. The results of nonlinear operations are guaranteed to be EAIs by ap-

proximating nonlinear parts. For example, let us consider the multiplication of two EAIs.

Let px � x0 �
°n

i�1 xiεi, py � y0 �
°n

i�1 yiεi. Without loss of generality, assume that

43

°n
k�1 ykr�1, 1s �

°n
k�1 xkr�1, 1s. We have: px p� py � px0 �

°n
i�1 xiεiq p� py0 �

°n
i�1 yiεiq

� x0y0 �
°n

i�1px0yi � xiy0 � xiBqεi, where B �
°n

i�1 yiεi. An easy approximation of B

is
°n

k�1 ykr�1, 1s. Formally, EAI arithmetic is defined as follows:

Definition 26 EAI arithmetic consists of operations

tp�, p�, p�, p�u on pairs of EAIs.

Let px � x0 �
°n

i�1 xiεi, py � y0 �
°n

i�1 yiεi, X �
°n

k�1pxk r�1, 1sq, and Y �°n
k�1pyk r�1, 1sq. Then,

px p� py � px0 � y0q �
°n

i�1pxi � yiqεipx p� py � px0 � y0q �
°n

i�1pxi � yiqεipx p� py � x0y0 �
°n

i�1px0yi � xiy0qεi � Bpx p� py � px p� p 1
py
q if 0 R x0 �

°n
k�1 xkr�1, 1s

where:

B �

$&%p
°n

i�1 xiY εiq if Y � X

p
°n

i�1 Xyiεiq otherwise

and 1
py

is computed by Chebyshev approximation [61].

Similar to AI arithmetic, the commutative property holds for both addition and mul-

tiplication; the associative property only holds for addition; and the distributive property

does not hold.

Remark 6 The over approximation B may conceal some noise symbols. If we are sensi-

tive to this matter, B can be modified as:

B � αp
°n

i�1 xiY εiq � βp
°n

i�1 Xyiεiq

with α � |X|

p|X| � |Y |q
and β � p1� αq.

Conversion between CI and EAI

Standard range representation is a CI. To apply EAI, the conversion between them are

needed.

• CI to EAI : Given a CI x � rl, hs, a corresponding EAI is x̂ � l�h
2
� h�l

2
εk. Under

valuations of a noise symbol εk to r�1, 1s, they represent the same range. This is

called EAI coercion.

• EAI to CI : An EAI x̂ � x0 � Σn
i�1xiεi is projected to a CI x � x0 � Σn

i�1xir�1, 1s.

Replacement of a noise symbol εk to r�1, 1s loses information about source of un-

certainty. This is called EAI projection.

44

The following example demonstrates how to propagate the ranges using EAI:

Example 20 For x P x � r�1, 3s, y P y � r�6, 10s. The corresponding EAI coercions of

x, y are:

• x̂ � 1 � 2εx

• ŷ � 2 � 8εy

Let us compute the bound of z � x � y (� P t�, �, �, �u) by using EAI:

• Addition z � x� y:

ẑ � x̂ �̂ ŷ

� p1 � 2εxq �̂ p2 � 8εyq

� 3 � 2εx � 8εy

The EAI projection of ẑ is 3 � 2r�1, 1s � 8r�1, 1s � r�7, 13s.

Hence, we can conclude that z P r�7, 13s.

• Substraction z � x� y:

ẑ � x̂ �̂ ŷ

� p1 � 2εxq �̂ p2 � 8εyq

� �1 � 2εx � 8εy

The AI projection of :z is �1 � 2r�1, 1s � 8r�1, 1s � r�11, 9s.

Hence, we can conclude that z P r�11, 9s.

• Multiplication z � x� y:

ẑ � x̂ �̂ ŷ

� p1 � 2εxq �̂ p2 � 8εyq

� 2 � 4εx � 8εy � B

where X � 2r�1, 1s � r�2, 2s and Y � 8r�1, 1s � r�8, 8s.

Because X � Y . Hence, B � 8εyX � r�16, 16sεy. Then, ẑ � 2 � 4εx � r�8, 24sεy

The AI projection of :z is 2 � 4r�1, 1s � r�8, 24s�r�1, 1s � r�26, 30s.

Hence, we can conclude that z P r�26, 30s

• Division z � x� y:

ẑ � x̂ �̂ ŷ

� p1 � 2εxq �̂ p2 � 8εyq

45

Because 0 P r�6, 10s, hence we cannot compute the bound of z, in this case a “divide

for zero” warning might be displayed.

Although EAI does not introduce new noise symbols, this does not mean EAI arith-

metic is always less precise than AI arithmetic. AI arithmetic only advances in cases when

we reuse the results of some nonlinear parts. Let us consider the example below:

Example 21 Let z � x� x; t � z � z and x P r�1, 31s.

The bound of t is computed based on AI and EAI arithmetics as follows:

• AI arithmetic: :x � 1�2εx, :z � 1�4εx�4ε1 where ε1 is introduced for multiplication

εxεx.

:t � :z :�:z � 0

• EAI arithmetic: px � 12εx, pz � 1�r0, 8sεx.

t̂ � ẑ�̂ẑ � r�8, 8sεx

The bound of :z, [0,0], lies within the bound of pz, [-8,8]. So, AI arithmetic is more precise

in this case. However, if we compute the bound of t � x � x � x � x without reusing the

multiplication x� x, then both AI arithmetic and EAI arithmetic return the same bound.

:t, pt can be computed in a similar way. To keep things simple, we omit the details of these

computations here.

4.4 Positive-noise Affine Interval

In this section, we propose another way to “extend” AI which tries to reduce the over

approximation in the nonlinear operations.

We start by an example:

Example 22 Let us consider the multiplication: x � εk � εk.

It easily sees that x P r0, 1s for all εk P r�1, 1s. However, by applying AI multiplication

and EAI multiplication, we get:

• AI multiplication :x � εk :�εk. We have:

:x � εn�1, where B � 1 and εn�1 is new noise symbol.

Hence, :x P r�1, 1s (instead of r0, 1s) and we already lose information about εk.

• EAI multiplication x̂ � εk�̂εk. We have:

x̂ � r�1, 1sεk.

Hence, x̂ P r�1, 1s (instead of r0, 1s).

46

Therefore, both AI and EAI are over approximate too much. Further, If we apply

Chebyshev approximation, the result will be more precise: x̂ � r0, 1s. However, this result

still not keep information about εk.

Note that, if εk P r0, 1s Chebyshev approximation will return x̂ � εk � r
�1
4

, 0s. This

result still keep information about εk.

In AI arithmetic and EAI arithmetic, the over approximations often occur in non-

linear operations, especially when multiplying of operands which are same noise symbol.

The above example give us a new idea to extend AI for reducing over approximation

in multiplication. In particular, the noise symbol εi P r0, 1s (instead of εi P r�1, 1s)

and the multiplication between same noise symbol will be refined by applying Chebyshev

approximation.

Definition 27 An Positive-noise affine interval of x is a formula

rx � x0 �
ņ

k�1

xkεk

with x P x0 �
°n

k�1 xkr0, 1s, where εi P r0, 1s is a noise symbol for each i P r1, ns and

xj P R for each j P r0, ns. The set of positive-noise affine intervals is denoted by rR.

The linear operations of positive-noise affine interval (PAI) arithmetic are designed

similarly to those of EAI arithmetic. Unlike EAI, the PAI multiplication approximate

the multiplication between same noise symbol by apply Chebyshev approximation. In

particular, PAI arithmetic is defined formally as follows:

Definition 28 PAI arithmetic consists of operations

tr�, r�, r�, r�u on pairs of PAIs. Let rx � x0 �
°n

i�1 xiεi, ry � y0 �
°n

i�1 yiεi, Xi �°n
k�1,k�ipxk r0, 1sq, and

Yi �
°n

k�1,k�ipyk r0, 1sq. Then,

rx r� ry � px0 � y0q �
°n

i�1pxi � yiqεirx r� ry � px0 � y0q �
°n

i�1pxi � yiqεirx r� ry � x0y0 �
°n

i�1px0yi � xiy0qεi � Brx r� ry � rx r� p 1
ry
q if 0 R x0 �

°n
k�1 xkr0, 1s

where:

B �

$&%
°n

i�1pxiεiYi � xiyiεi � r�1{4, 0sq if Y0 � X0°n
i�1pX iyiεi � xiyiεi � r�1{4, 0sq otherwise

and 1
ry

is computed by Chebyshev approximation [61].

47

Remark 7 Similar to EAI arithmetic, the over approximation B may conceal some noise

symbols. If we are sensitive to this matter, B can be modified as:

B � αp
°n

i�1 xiY iεiq � βp
°n

i�1 X iyiεiq � xiyiεi � r�1{4, 0s

with α � |Xi|

p|Xi| � |Y i|q
and β � p1� αq.

Conversion between CI and PAI

• CI to PAI : Given a CI x � rl, hs, an PAI is rx � l � ph � lqεk. Under valuations

of a noise symbol εk to r0, 1s, they represent the same range. This is called PAI

coercion.

• PAI to CI : An PAI rx � x0 � Σn
i�1xiεi is projected to a CI x � x0 � Σn

i�1xir0, 1s.

Replacement of a noise symbol εk to r0, 1s loses information about source of uncer-

tainty. This is called PAI projection.

Like EAI, PAI does not introduce new noise symbols for nonlinear operation. Further,

it is designed to reduce the over approximation in multiplication which is often appear

in ORE analysis. PAI is sometimes more precise than both EAI and AI as following

examples:

Example 23 Let x P r1, 3s and y P r�4, 2s, we want to find the bound of z � x �

x � x� y � y.

We will find the bound of z by applying AI, EAI and PAI arithmetics.

1. AI arithmetic

Using AI coercion, we get: :x � 2 � ε1 and :y � �3 � ε2 for ε1, ε2 P r�1, 1s.

We have:

:x :� :x � 4 � 4ε1 � ε3 where ε3 is new noise symbol standing for ε1 � ε1

:x :� :y� �6 � 3ε1 � 2ε2 � ε4 where ε4 is new noise symbol standing for ε1 � ε2

:z � :x :� :x :� :x :� :y :� :y

� 1 � ε1 � ε2 � ε3 � ε4

Applying AI projection, we get the bound of z is r�3, 5s.

2. EAI arithmetic

Using EAI coercion, we get: x̂ � 2 � ε1 and ŷ � �3 � ε2 for ε1, ε2 P r�1, 1s.

We have:

48

x̂ �̂ x̂� 4 � 4ε1 � r�1, 1sε1

x̂ �̂ ŷ� �6 � 3ε1 � 2ε2 � r�1, 1sε1

ẑ � x̂ �̂ x̂ �̂ x̂ �̂ ŷ �̂ ŷ

� 1 � r�1, 3sε1 � ε2

Applying EAI projection, we get the bound of z is r�3, 5s.

3. PAI arithmetic

Using PAI coercion, we get: rx � 1 � 2ε1 and ry � �4 � 2ε2 for ε1, ε2 P r0, 1s.

We have:

rx r� rx� 1 � 8ε1 � r�1, 0srx r� ry� �4 � 8ε1 � 2ε2 � 4r0, 1sε1rz � rx r� rx r� rx r� ry r� ry
� r0, 1s � r0, 4sε1

Applying PAI projection, we get the bound of z is r0, 5s.

In conclusion, PAI returns more precise bound than both AI and EAI do.

4.5 Interval Representations by Floating point Num-

bers

The above intervals are defined by using real numbers. As we known, the computers have

to represent real numbers in finite form. To implement above interval arithmetics in the

computer, we need to ensure that the during the computation, the OREs do not affect the

correctness of the result or the floating point intervals have to bound the real intervals.

As pointed in [61, 62], the interval representations themselves are affected by OREs,

since boundaries and coefficients are represented by floating point numbers. We will

briefly overview how to over approximate CI, AI, and EAI.

For x P R, we define:

• Ó x P Rfl is the round toward �8 of x,

• Ò x P Rfl is the round toward �8 of x, and

Floating point classical interval

For CI, a safe approximation is to truncate down the lower bound and truncate up the

upper bound of an interval.

49

Definition 29 A floating point classical interval of CI x� rl, hs for l, h P R is

Ù x �Ù rl, hs � rÓ l, Ò hs.

The set of floating point classical intervals is denoted by Ù R.

The floating point CI arithmetic is obtained by applying the Ù operator for each

operation � P t�,�,�,�u. For Ù x, Ù y P Ù R, we define Ù x � Ù y �Ù pÙ x � Ù yq.

Note that, since Ó x ¤ x ¤Ò x, x �Ù x, and the extended � gives an over approxima-

tion, i.e., x � y � Ù pÙ x � Ù yq.

This is confirmed by two steps:

• For x, y P R, x �Ù x and y �Ù y. Hence, for � P t�,�,�,�u, px � yq � pÙ x � Ù yq.

• By definition, pÙ x � Ù yq � Ù pÙ x � Ù yq.

Floating point affine interval

For AI, instead of truncating coefficients in an appropriate way, we simply introduce a

new noise symbol.

Definition 30 An Floating point affine interval of AI :x � x0 �
°n

k�1 xkεk P :R is

a formula

Ù :x �Ó x0 �
ņ

k�1

Ó xkεk � Bεn�1

where new noise symbol εn�1 is introduced for REs and B �
°n

k�0pÒ xk� Ó xkq. The set

of floating point extended affine intervals is denoted by Ù :R.

The floating point AI arithmetic is obtained by introducing a new noise symbol for

each operation of AI arithmetic. For example, let Ù :x �Ó x0 �
°n

k�1 Ó xkεk, Ù :y �Ó

y0 �
°n

k�1 Ó ykεk be two floating point AI. The addition is

Ù :x� Ù :y �Ó pÓ x0� Ó y0q �
ņ

k�1

Ó pÓ xk� Ó ykqεk �Bεn�1

where B �
°n

k�1pÒ pÓ xk� Ó ykq� Ó pÓ xk� Ó ykqq.

Floating point extended affine interval

For EAI, we safely approximate CI coefficients by the floating point CI.

Definition 31 A floating point extended affine interval of EAI px � x0 �
°n

k�1 xkεk PpR is

Ù px �Ù x0 �
ņ

k�1

Ù xkεk.

50

The set of floating point extended affine intervals is denoted by Ù pR.

The floating point EAI arithmetic is obtained by replacing each CI at a coefficient by

the floating point CI.

From now on, we will apply floating point CI, floating point AI, and floating point

EAI, instead of CI, AI, and EAI, respectively.

51

Chapter 5

Abstraction for ORE Problem

The abstract value of a variable aims to cover all of its possible values at one program

location. For the ORE problem, the abstract value is a pair of fixed point and roundoff

error ranges. In this chapter, we will show three kinds of abstractions based on CI, AI,

and EAI range representations.

5.1 CI Abstraction for ORE Problem

For estimation of propagations of REs based on CI, we apply CI arithmetic (Definition 22)

to Float64-to-fixed16 ORE arithmetic (Definition 11).

Definition 32 The set Φ of CI abstract numbers is:

Φ � tpfxp, rdfq|fxp, rdf P Ru

CI abstract arithmetic consists of t`, a, b, cu on pairs of CI abstract numbers.

Let pxf , xrq, pyf , yrq P Φ be CI abstract numbers. The CI abstract operators are defined

below:

pxf , xrq ` pyf , yrq�pxf � yf , xr � yr � r�δ�, δ�sq

pxf , xrq a pyf , yrq�pxf � yf , xr � yr � r�δ�, δ�sq

pxf , xrq b pyf , yrq�pxf � yf , xr � yf � xf � yr � xr � yr � r�δ�, δ�sq

pxf , xrq c pyf , yrq�pxf � yf , pxf � xrq � pyf � yrq � xf � yf � r�δ�, δ�sq

where δ�, δ�, δ�, δ� is given in Equation 2.2.

To illustrate how to create CI abstract numbers and compute CI abstract arithmetic,

we consider the following example:

52

Example 24 The CI abstract numbers pxf , xrq, pyf , yrq for variables x, y, respectively,

in Example 3 are #
xf � r�1, 3s

xr � r�2�5, 2�5s#
yf � r�10, 10s

yr � r�2�5, 2�5s

since fp � 5, the REs of x and y are in r�2�fp�1, 2�fp�1s � r�2�5, 2�5s p� r�0.03125, 0.03125sq.

Then, at the line 2 (rst � x � x), prstf , rstrq � pxf , xrq b pxf , xrq is projected as

follows:
rstf � xf � xf

� pr�1, 3s � r�1, 3s

� r�3, 9s

rstr � 2 � xf � xr � xr � xr � δ

� r�0.219726563, 0.219726563s

CI abstract comparison operators

Instead of nondeterministic transitions at a conditional branch, the conditional expres-

sion can often be evaluated by using abstract environment. This is useful in avoiding

unnecessary execution paths. The abstract comparison operators are defined by using

Float-to-Fixed comparison operators as follows:

Replacing pxf , xrq, pyf , yrq in Float-to-fixed ORE comparison operators (Definition 8)

with CI abstract numbers pxf , xrq, pyf , yrq we obtain CI abstract comparison operators:

Definition 33 Let pxf , xrq, pyf , yrq P Φ, let x � pxf � xrq, and let y � pyf � yrq.

ppxf , xrq pyf , yrqq �

$'''&'''%
true if @u P x @v P y.u v ^ @u P xf @v P yf .u v

false if @u P x @v P y.u ¥ v ^ @u P xf @v P yf .u ¥ v

unknown otherwise

ppxf , xrq�pyf , yrqq �

$'''&'''%
true if p@u P xf @v P yf .u � v ^ @u P xr @v P yr.u � vq

false if pxf , xrq pyf , yrq _ pyf , yrq pxf , xrq

unknown otherwise

The following example illustrates how to evaluate CI abstract comparison operator .

Example 25 Use pxf , xrq, and pyf , yrq as in Example 24. pxf , xrq r0, 0s is evaluated

as follows:

53

x�xf � xr

�r�1, 3s � r�2�5, 2�5s

�r�1� 2�5, 3� 2�5s

Since 0 P r�1� 2�5, 3� 2�5s, we can conclude that pxf , xrq 0 is unknown.

5.2 AI Abstract Numbers

For estimation of propagations of REs based on AI, we apply AI arithmetic (Definition 24)

to Float64-to-Fixed16 ORE arithmetic (Definition 11).

Definition 34 The set :Φ of AI abstract numbers is:

:Φ � tpfxp, rdfq|fxp, rdf P :Ru

AI abstract arithmetic consists of t :̀ , :a, :b, :cu on pairs of AI abstract numbers.

Let AI abstract numbers p:xf , :xrq, p:yf , :yrq P :Φ. The AI abstract operators are defined

below:

p:xf , :xrq :̀ p:yf , :yrq�p:xf :� :yf , :xr :� :yr :� δ�εpq

p:xf , :xrq :a p:yf , :yrq�p:xf :� :yf , :xr :� :yr :� δ�εpq

p:xf , :xrq :b p:yf , :yrq �p:xf :�:yf , :xr :�:yf :� :xf :�:yr :� :xr :�:yr :� δ�εpq

p:xf , :xrq :c p:yf , :yrq�p:xf :� :yf , p:xf :� :xrq :� p:yf :� :yrq :� :xf :� :yf :� δ�εpq

whereδ�, δ�, δ�, δ� are given in Equation 2.2 and εp is a new noise symbol.

To illustrate how to create AI abstract numbers and compute AI abstract arithmetic,

we consider following example:

Example 26 The AI abstract numbers p:xf , :xrq, p:yf , :yrq for variables x, y, respectively,

in Example 3 are #
:xf � 1 � 2ε1

:xr � 2�5ε3#
:yf � 10ε2

:yr � 2�5ε4

since fp � 5, the REs of x and y are in r�2�fp�1, 2�fp�1s � r�2�5, 2�5s p� r�0.03125, 0.03125sq.

Then, at the line 2 (rst � x � x), p :rstf , :rstrq � p:xf , :xrq :b p:xf , :xrq is projected as

54

follows:

:rstf � :xf :� :xf

� p1 � 2ε1q :� p1 � 2ε1q

� 1 � 4ε1 � 4ε6

:rstr � 2:�:xf :�:xr :� :xr :�:xr :�δε5

� 0.031250ε5 � 0.062500ε2 � 0.12500ε7 � 0.000976563ε8

where ε5 is introduced for RE of the fixed point multiplication, ε6, ε7, ε8 are introduce for

AI multiplications.

AI Comparison Operators

Replacing pxf , xrq, pyf , yrq in Float-to-fixed ORE comparisons (Definition 8) with AI

abstract numbers p:xf , :xrq, p:yf , :yrq we obtain AI abstract comparison operators:

Definition 35 Let p:xf , :xrq, p:yf , :yrq P :Φ, let xf , xr be AI projections of :xf , :xr, and let

yf , yr be AI projections of :xf , :xr.

pp:xf , :xrq : p:yf , :yrqq � ppxf , xrq pyf , yrqq

pp:xf , :xrq:�p:yf , :yrqq � ppxf , xrq�pyf , yrqq

The following example illustrates how to evaluate AI abstract comparison : .

Example 27 Use p:xf , :xrq, and p:yf , :yrq as in Example 26. p:xf , :xrq : 0 is evaluated as

follows:

• xf � r�1, 3s

• xr � r�2�5, 2�5s

Since pxf , xrq 0 is unknown, we can conclude that p:xf , :xrq : 0 is unknown.

5.3 EAI Abstract Numbers

For estimation of propagations of REs based on EAI, we apply EAI arithmetic (Defini-

tion 26) to Float64-to-Fixed16 ORE arithmetic (Definition 11).

Definition 36 The set pΦ of EAI abstract numbers is:

55

pΦ � tpfxp, rdfq|fxp, rdf P pRu
EAI abstract arithmetic consists of t p̀ , pa, pb, pcu on pairs of EAI abstract numbers.

Let EAI abstract numbers ppxf , pxrq, ppyf , pyrq P pΦ. The EAI abstract operators are defined

below:

px̂f , x̂rq ˆ̀ pŷf , ŷrq�px̂f �̂ ŷf , x̂r �̂ ŷr �̂ δ�q

px̂f , x̂rq â pŷf , ŷrq�px̂f �̂ ŷf , x̂r �̂ ŷr �̂ δ�q

px̂f , x̂rq b̂ pŷf , ŷrq�px̂f �̂ ŷf , x̂r �̂ ŷf �̂ x̂f �̂ ŷr �̂ x̂r �̂ ŷr �̂ δ�q

px̂f , x̂rq ĉ pŷf , ŷrq�px̂f �̂ ŷf , px̂f �̂ x̂rq �̂ pŷf �̂ ŷrq �̂ x̂f �̂ ŷf �̂ δ�q

where δ�, δ�, δ�, δ� are given in Equation 2.2.

To illustrate how to create EAI abstract numbers and compute EAI abstract arith-

metic, we consider the following example:

Example 28 The EAI abstract numbers px̂f , x̂rq, pŷf , ŷrq for variables x, y, respectively,

in Example 3 are # pxf � r1, 1s � r2, 2sε1pxr � r2
�5, 2�5sε3# pyf � r0, 0s � r10, 10sε2pyr � r2
�5, 2�5sε4

since fp � 5, the REs of x and y are in r�2�fp�1, 2�fp�1s � r�2�5, 2�5s p� r�0.03125, 0.03125sq

and δ� � 2�6 � 2�11 � 2�43 � 2�6.

Then, at the line 2 (rst � x � x), pyrstf ,yrstrq � ppxf , pxrq pb ppxf , pxrq is projected as

follows:

yrstf � pxf p� pxf

� pr1, 1s � r2, 2sε1q p� pr1, 1s � r2, 2sε1q

� r1, 1s � r0, 8sε1

yrstr � 2�̂pxf �̂x̂r p� pxr�̂pxr�̂δ�

� r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 � r0.059615, 0.065385sε2

EAI abstract comparison operators

Replacing pxf , xrq, pyf , yrq in Float-to-fixed comparison operators (Definition 8) with EAI

abstract numbers px̂f , x̂rq, pŷf , ŷrq, we obtain EAI abstract comparison operators:

Definition 37 Let ppxf , pxrq, ppyf , pyrq P pΦ, let xf , xr be EAI projections of ppxf , pxrq, and

let yf , yr be EAI projections of ppyf , pyrq.

56

pppxf , pxrq p ppyf , pyrqq � ppxf , xrq pyf , yrqq

pppxf , pxrqp�ppyf , pyrqq � ppxf , xrq � pyf , yrqq

The following example illustrates how to evaluate EAI abstract comparison p .

Example 29 Use ppxf , pxrq, and ppyf , pyrq as in Example 28. ppxf , pxrq p 0 is evaluated as

follows:

• xf � r�1, 3s

• xr � r�2�5, 2�5

Since pxf , xrq 0 is unknown, we can conclude that ppxf , pxrq p ppyf , pyrq is unknown.

5.4 Meet Operator

At the meet of two paths in a program, we need to combine the results that are generated

from these paths. The result of the meet must bind all input abstract values. We first

consider how to compute the union of two ranges:

Definition 38 The unions of ranges are:

• CI: rxl, xhsYryl, yhs � rminpxl, ylq, maxpxh, yhqs.

• AI: pu0 �
°n

i�1 uiεiq :Y pv0 �
°n

i�1 viεiq � pu0�v0

2
� |u0�v0|

2
εn�1 �

°n
i�1 tiεiq where

εn�1 P r�1, 1s is a new noise symbol and, for each i,

ti �

$&%ui if |ui| ¡ |vi|,

vi otherwise.

• EAI: pu0 �
°n

i�1 uiεiq pY pv0 �
°n

i�1 viεiq � pu0 Y v0q �
°n

i�1pui Y viqεi.

Then, the result of meet operator is a pair of the union of fixed point ranges and the

union of roundoff error ranges.

Definition 39 The meets in abstract values are:

• CI meet: pxf , xrq \ pyf , yrq � pxf Y yf , xr Y yrq

• AI meet: p:xf , :xrq :\ p:yf , :yrq � p:xf :Y :yf , :xr :Y :yrq

• EAI meet: ppxf , pzrq p\ ppyf , pyrq � ppxf pY pyf , pxr pY pyrq

\ P t\, :\, p\u is extended to ΦK P tΦK, :ΦK, pΦKu by K \pxf , xrq � pxf , xrq\ K� pxf , xrq.

57

5.5 Abstraction for ORE analysis

Abstract domain

For an ORE problem, we abstract a concrete environment as an abstract domain by using

range representations.

Definition 40 Let V ar be the set of all variables of the program. An abstract domain

at a program location is the set of functions AbsEnv � tV ar Ñ Φku, where k � |V ar|

and Φ P tΦ, :Φ, pΦu.
Let e, e1 P AbsEnv, abstract meet operation is defined below:

e\ e1 � λx.epxq \ e1pxq

where \ P t\, :\, p\u.
Abstract environment transformation

For assignment x � E, the abstract value at this location will update the value of x by

valpEq where valpEq is the result of evaluating E by using CI abstract arithmetic (or AI

abstract arithmetic or EAI abstract arithmetic). The abstract semantic is:

λe.e
 x ÞÑ valpEq

Conditional judgment at the abstract level

For condition if pCq then S, the abstract value will not be change. However, it will be

used to evaluate C, called value of C is valpCq. If valpCq � false then S will not be

visited, otherwise (e.i., valpCq P ttrue, unknowu) we assume that C � true, and thus S

will be visited.

58

Chapter 6

ORE Analysis as Weighted Model

Checking Problem

As can be seen in Chapter 3, dataflow analysis can be treated as weighted model checking

and abstraction. In this chapter, we will exploit how this idea of dataflow analysis can

be applied to solve the ORE problems. In particular, using weighted model checking as a

back-end framework, we first design: a weighted transition system for the ORE problem

in Section 6.1 and 6.2. After that, in Section 6.3, we show how the ORE analysis can

be reduced to the weighted model checking problem over the resulting weighted tran-

sition system. Finally, we implement our ORE analysis framework in a prototype tool

called CANA. Details of the implementation and some experimental results are given in

Section 6.4.

6.1 Weighted Domain for the ORE Problem

Weight Design

The standard definition of a weight domain has the base set of weights D � AbsEnv Ñ

AbsEnv. We then define the weight domain for D as follows:

Definition 41 The weight domain (bounded idempotent semiring) S � pD,`,b,0,1q

with

59

D � AbsEnv Ñ AbsEnv,

1 � λx.x,

0 � λx.e0,

w1 ` w2 �

$'''&'''%
λx.w1pxq \ w2pxq if w1, w2 � 0

w1 if w2 � 0

w2 if w1 � 0

w1 b w2 �

$&%w2 � w1 if w1, w2 � 0

0 otherwise

where \ P t\, :\, p\u.
However, this does not satisfy the descending chain condition (boundedness), since

intervals are infinitely many (thus the abstract domain is infinite). To cope with this

problem, we restrict that the target programs have bounded loops only; thus after un-

folding loops, we obtain acyclic transition systems. Further, note that the result of ORE

analysis depends heavily on the input value; we will set a possible range of inputs at the

program entry in advance. In particular, we:

• restrict the models to be acyclic,

• fix an initial abstract environment val0, and

Then, the weights can be generated on-the-fly as in Subsection 3.2.3.

6.2 Weighted Transitions for the ORE Problem

The inputs of our analysis are a subclass of C programs that have bounded loops only.

In preprocessing phase, C programs are transformed into three address codes. Next,

analysis is performed on these three address codes. Basically, the instructions of three

address codes include:

• Assignment: “x � y � z” with � P t�,�, �, {u.

• Conditional instruction: “if x � y then s” where s is an instruction and � P t

, �,¡,¡�,�, ! �u. If the condition px � yq is false, s is not visited; otherwise, s is

visited.

• Control instruction: “return loc”, “goto loc”, “break”, “continue”. Control moves

to the specified location, and the values of variables do not change.

60

instruction weight
”x � y � z” pWi, txo � yi e zi, vo � vi|v P V arztxuuq
(assignment) where e is the corresponding

abstract arithmetic operation of �
“if x � y then s” 0� if xi e yi � false; 1� otherwise,
(Conditional instruction) where e is the corresponding

abstract comparison of �
Control instructions 1�

Table 6.1: Weight function of ORE analysis

• While Loop: “while x � y { body }” with � P t , �,¡,¡�,�, ! �u. body is

repeated as long as the condition px � yq holds. Inside body, “break” will exit from

the loop.

In preprocessing phase, the bounded while loops are unfolded as a sequence of condi-

tional instructions. Thus, the generated transition system is acyclic.

After preprocessing phase, we obtain an acyclic transition system P and the initial

abstract environment I P AbsEnv. The weight function is defined as follows:

Definition 42 For an acyclic transition system P and I P AbsEnv, the weight function

fP,I : ∆ Ñ D�
P,I is given in Table 1.

As a result, we obtain the weighted transition system:

W � pP ,S�
P,I , fP,Iq

The following example describes how to create the weighted transition system for the

program in Example 3.

Example 30 We use EAI representation type.

The CIL codes of the C program in Fig. 1.2 are shown in Fig. 6.1. Let st1, ..., st6 be

its locations.

To distinguish variables at each locations, we will denote a variable v at the location

sti by vpiq. The fixed point value and RE of v are denoted by v̂
piq
f , v̂

piq
r respectively.

The transition system is P � pP, ∆q, where P � tst1, st2..., st6u, ∆ is shown in

Fig. 6.2 and f is defined in Table 6.2.

The initial abstract environment Winit at st1 is generated from initial range values of

variables (given in the topmost comments in Fig. 1.2), in that:$&%xpinitq � pr1, 1s � r2, 2sε1, r2
�5, 2�5sε3q

ypinitq � pr10, 10sε2, r2
�5, 2�5sε4q

61

maintest{

st1. if (x > 0) {

st2. rst = x * x;}

else {

st3. rst = 3 * x;}

st4. rst -= y;

st5. return (rst);

st6. }

Figure 6.1: CIL code for Example 3

st1

st2 st3

st4

if

(x>0) if not(x>0)

rst

= x*x rst

=3*x

rst

=rst-y

st6

st5
return

rst

Figure 6.2: CFG of three address codes in Fig. 6.1

62

transition weight
(st0,st1) pWinit, Winitq
(st1,st2) if ppxp¡0q � falseq 0� else 1�

(st1,st3) if notppxp¡0q � falseq 0� else 1�

(st2,st4) pWi, trsto � xi pb xi,
vo � vi| v P V arztrstuuq

(st3,st4) pWi, trsto � 3 pb xi,
vo � vi| v P V arztrstuuq

(st4,st5) pWi, trsto � rsti pa yi,
vo � vi| v P V arztrstuuq

(st5,st6) 1�

Table 6.2: Weight function for a CIL code in Example 30

Then, the resulting weighted transition system is W � pP ,S�
P,Winit

, fq.

Since the abstraction is an over approximation, we conclude soundness of ORE anal-

ysis.

Theorem 3 For a C (CIL) program with bounded loops only, ORE analysis is sound.

6.3 ORE Analysis

The ORE analysis problem will be solved as weighted model checking on acyclic models

by the following steps (Fig. 6.3).

1. As preprocessing, translate a C program into CIL (three address code language).

Then, each loop are unfolded and each array is replaced with a set of variables (as

many as its length). We obtain an acyclic program without arrays.

2. Generate weighted transition system, which is a control flow graph with an associ-

ated ORE arithmetics operation corresponding to a CIL instruction. ORE arith-

metics is prepared for three types (CI, AI, EAI).

3. Apply weighted model checking. During model checking, weights are generated by

an on-the-fly manner from given initial ranges of input parameters.

The following example illustrates how to analyze ORE of a C program.

Example 31 The input ranges of x and y (in Example 3) are represented by

pxf � r1, 1s � r2, 2sε1 and pxr � r2
�5, 2�5sε3,pyf � r0, 0s � r10, 10sε2 and pyr � r2
�5, 2�5sε4.

63

C program
int

main () {
fixed x; int

n; int

i;
rst

= x; i = 0;
while (i <= n) {

…

ORE report
OE may occur for x
RE of x lies within [0,0.0012]
…

(v_inf

, v_ine

) ∈ EAI×EAI

(v_outf

, v_outr

) ∈ EAI×EAI

1

2

3

5 4
T F

…

Transition system + Weight function

3 address codes
int

main {
fixed x; int

n; int

i;
rst

= x; i = 0;
if (i <= n) {

…

C front-end

abstract

Model checker

ORE + Interval
arithmetics

Weighted PDS library

CIL library Weighted model checking

Figure 6.3: ORE analysis as weighted model checking

Since fp � 4, the initial REs of x and y lie in r�2�5, 2�5s.

At line (1), since the initial range of x is r�1, 3s, CANA cannot decide px ¡ 0q.

Therefore, it traces both line (2) and line (3), and later merges their results before line

(4).

At lines (2) and (3), the REs of rst are computed by b̂.

xrst p2qr � r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 � r0.059615, 0.065385sε3xrst p3qr � 3 �̂ x̂r � r0.093750, 0.093750sε3

They are merged as:

xrst p2,3q

r � r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 � pr0.059615, 0.065385sY

r0.093750, 0.093750sqε3

� r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 � r0.059615, 0.093750sε3

64

At line (4), we obtain the RE of rst by â:

xrst p4qr � r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 � r0.059615, 0.09375sε3 �

r�0.031250,�0.031250sε4

The RE pr of rst (i.e., xrst p5qr) coincides with xrst p4qr , and is bounded by r�0.279341, 0.279341s.

We denote pr � r0 �
4̧

i�1

riεi

and refer to the coefficient CI of εi (in xrst p4qr) by ri.

Note that, during this analysis, over approximations occur at the conditional branch

(line (1)) with Y and the multiplication (line (2)) with pδ � r�0.031250, 0.031250s.

The above example shows that the over approximations will occur at (1) nonlinear

operations; (2) undecided conditional branch. In case the conditional branch is decided,

analysis will not over approximate it. The following example shows a case in that analysis

will not over approximate the conditional branch.

Example 32 In Example 31, if we reduce the initial range of xf to r1, 3s, the condition

x ¡ 0 is decided to be true at line (1), and CANA ensures that st3 will not be executed.

Then, at line (4), by substraction â,

pr�r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 � r0.059615, 0.065385sε3

� r�0.031250, � 0.031250sε4

Hence, RE of rst is bounded by r � r�0.250976, 0.250976s by replacing each εi with

r�1, 1s in r̂.

This result is more precise than that in Example 31.

6.4 Implementation and Experiments

CANA Implementation

We have implemented our analysis framework in a tool C ANAlyzer (CANA). CANA uses

two libraries as back-end engines: CIL library 1 and WPDS library 2.

• CIL (C Intermediate Language) is a high-level representation along with tools that

permit source-to-source transformation of C programs. CIL is used to generate three

address codes, information about variables, and CFG of C program.

1http://hal.cs.berkeley.edu/cil/
2http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

65

CANA system

CIL library

WPDS library

Roundoff

and
overflow errors

C program and
initial ranges of vars

Collect data

Create Fun f

WDomain

Var

& Fun Info

WPDS

Create PDS

CFGStm

InfoRange arithmetics

Expression library

Figure 6.4: CANA system

• WPDS (Weighted Pushdown System) is a library, which provides functions to the

sets of forward- or backward- reachable configurations in a weighted pushdown sys-

tem. Since we exclude procedure calls and unbounded loops at the moment, we

adopt WPDS only for weighted finite state (and acyclic) transition systems (i.e.,

weighted pushdown system with empty stack).

The inputs of CANA are a subclass of ANSI C programs and initial ranges of vari-

ables. The outputs of CANA are roundoff error ranges of variables at each point of the

program, and warning about overflow errors (if they occur). CANA has six main modules

(Figure 7.4) as follows:

1. Collect data module generates information required for analysis, including: state-

ment information (Stm Info), (2) variable and function information (Var and Func

Info), and (3) CFG of C program.

2. Range arithmetics module includes three types of range arithmetics: CI arithmetic,

AI arithmetic, and EAI arithmetic.

66

3. Evaluate exps module evaluates the abstract values of expressions based on types

of range arithmetics.

4. Create PDS module generates transition system from control flow graph of C pro-

gram.

5. Create Fun f module assigns a weight to each transition.

6. WDomain module includes two operations: b and `.

Preliminary Experiment

We have implemented in CANA three types of range representations: CI, AI, and EAI

(on PC with Intel(R) Xeon(TM) CPU 3.60GHz, 3.37Gb of memory). CANA can analyze

programs that have nested loops 64� 64.

Compare analysis by EAI with analysis by other intervals, general test, and

Fixed-point toolbox (Matlab)

In order to compare the efficiency of EAI arithmetic to CI, and AI arithmetics, we analyzed

source codes of five examples:

1. P2: program in Figure 1.2

2. P5: program that calculates the polynomial of degree 5 (1�x�3x2�2x3�x4�5x5)

3. Sine:program that calculates the sine function by Taylor expansion up to degree 21

4. subMpeg: a fragment taken from the mpeg4 decoder reference algorithm, consist-

ing of an bounded loop

5. rump: program that calculates the Rump function (p333.75 � a2qb6 � a2p11a2b2 �

121b4 � 2q � 5.5b8 � a
2b

)

We fix the fraction part fp � 8 and do experiments for several input ranges. Figure

6.5 shows results of analyzing the program P2. The Method column shows methods of

checking ORE, including:

• General test: execute general test over 8000 test cases (we divide the input domain

into equilateral meshes and select one test case from each mesh).

• Matlab test: execute test over 8000 random test cases using Matlab’s fixed point

toolbox 3

• CI-CANA: analyze by CANA using CI arithmetic

• AI-CANA: analyze by CANA using AI arithmetic

3http://www.mathworks.com/products/fixed/

67

Method Input ranges Time(s)
([-1,1],[-10,0]) ([-1,1],[0,10]) ([1,3],[-10,0]) ([1,3],[0,10])

Test 0.00510 0.005201 0.00582 0.00625 0.026
Matlab test 0.01519 0.01528 0.02845 0.02821 1.831
CI-CANA 0.02735 0.02735 0.03126 0.03126 0.129
AI-CANA 0.02735 0.02735 0.03126 0.03126 0.130
EAI-CANA 0.02733 0.02733 0.03126 0.03126 0.130P2, f = 8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

([-1,1],[-10,0]) ([-1,1],[0,10]) ([1,3],[-10,0]) ([1,3],[0,10])

(x,y) ranges

er
ro

r r
an

ge

General test
Matlab test
CI-CANA
AI-CANA
EAI-CANA

Figure 6.5: The analysis result of P2(x)

• EAI-CANA: analyze by CANA using EAI arithmetic

The Input ranges columns are the width of RE ranges which are estimated by each

method. The Time column shows the average executing time for each case.

Our experiments show that:

• EAI is more precise than CI and is comparable to AI. We get similar results for

program P5 (Figure 6.6) program Sine (Figure 6.7), program subMpeg (Figure 6.8),

and program rump (Figure 6.9).

• The gaps between over approximations (by CANA) and under approximations (by

general test and testing based on Fixed-point toolbox, Matlab) are large for pro-

grams sin, rump, and are small for others programs.

Note that if we increase the values of input ranges of rump(e.g., a � 77617, b � 33096),

an overflow warning may be display.

68

Method Input ranges Time(s)
[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]

Test 0.01909 0.03000 0.03891 0.06159 0.026
Matlab test 0.01675 0.02527 0.03171 0.05794 1.389
CI-CANA 0.04373 0.05990 0.09172 0.14885 0.129
AI-CANA 0.03770 0.04060 0.06179 0.10447 0.130
EAI-CANA 0.03232 0.03560 0.05763 0.10046 0.130

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]
x range

er
ro

r r
an

ge

General test

Matlab test

CI-CANA

AI-CANA

EAI-CANA

Figure 6.6: The analysis result of P5(x)

69

Method Input ranges Time(s)
[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]

Test 0.00647 0.0108 0.01049 0.01021 0.028
Matlab test 0.00510 0.00763 0.00747 0.00977 1.325
CI-CANA 0.02040 0.02080 0.021390 0.02220 0.140
AI-CANA 0.02035 0.02040 0.02029 0.01998 0.145
EAI-CANA 0.01759 0.01760 0.01749 0.01719 0.144sin(x), f = 8

0

0.005

0.01

0.015

0.02

0.025

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]

x range

er
ro

r r
an

ge

General test

Matlab test

CI-CANA

AI-CANA

EAI-CANA

Figure 6.7: The analysis result of Sin(x)

Method Input ranges Time(s)
[0,30] [30,60] [60,90] [90,120]

Test 1.36309 1.36310 1.36309 1.363086 0.031
Matlab test 1.40570 1.40601 1.40597 1.40575 17.662
CI-CANA 1.73766 1.7377 1.73766 1.73766 0.137
AI-CANA 1.63453 1.6345 1.63453 1.63453 0.142
EAI-CANA 1.63453 1.6345 1.63453 1.63453 0.145

a part of mpeg decoder, f = 8

0

0.5

1

1.5

2

[0,30] [30,60] [60,90] [90,120]

x range

er
ro

r r
an

ge

General test
Matlab test
CI-CANA
AI-CANA
EAI-CANA

Figure 6.8: The analysis result of subMpeg(exps)

70

Method Input ranges Time(s)
([0,0.5],[1,1.5]) ([0.5,1],[1,1.5]) ([0,0.5],[1.5,2]) ([0.5,1],[1.5,2])

Test 58.5123 58.1851 238.364 238.9436 0.023
Matlab test 65.5852 66.3911 293.8237 287.6041 2.169
EAI-CANA 94.6044 100.2262 367.6221 379.861053 0.145rump f = 8

0
50

100
150
200
250
300
350
400

([0,0.5],[1,1.5]) ([0.5,1],[1,1.5]) ([0,0.5],[1.5,2]) ([0.5,1],[1.5,2])

(x,y) ranges

er
ro

r r
an

ge

General test

Matlab test

EAI-CANA

Figure 6.9: The analysis result of rump

Analyzing multiple variables functions by CANA

To consider the effective of CANA, we also do experiment over complex function (i.e., 10

variables, degree P r7, 10s), including:

• P7: program that calculates function degree 7 (10.14a1a2a3 � 11.1a2a3 � 0.5a1a4 �

0.5a3
1a4a5a6a8 � a6a

2
7 � 5.1a7a9 � a1a8 � 8.2a9 � a10)

• P8: program that calculates function degree 8 (0.3a6
1a2a3�a2a3a4�a2a4a5�a2

1a7a9�

1.9a3 � a1a6 � a7 � a8 � a9 � a10)

• P9: program that calculates function degree 9 (0.1a7
1a2a4� 7.1a1a2a4� 8.5a2a4a5�

4.1a2a5 � 9.5a1a3 � 4a3 � a2
6 � 7a7 � 8a8 � 9a9 � 10a10)

• P10: program that calculates function degree 10 (a2
1a2�1.1a1a2�3.1a2a3�0.1a7

1a4a5a6�

a4a6a7 � a2
1a7 � 0.1a8 � 0.2pa9 � a10)

We compare analysis by EAI with both analysis by standard interval CI as well as

under approximation by random testing. Since, the number of variables are large, to get

precise testing result, we may need a big number of test cases. For this reason, we perform

testing for two cases: 8000 test cases and 80.000.000 test cases.

Figure 6.10 shows the experimental results of the above 4 programs (P7, P8, P9, and

P10 columns) with fixed point format (sign, 5,10), and input ranges r0, 1s10. Method

column shows method of checking OREs, including:

• Random test 1: execute test over 8000 random test cases

71

Method P7 P8 P9 P10 Time(s)
Random test 1 0.025851 0.007635 0.038379 0.009711 1
Random test 2 0.037302 0.012215 0.047672 0.014344 150
CI-CANA 0.120768 0.032932 0.112921 0.040071 1
EAI-CANA 0.097232 0.030732 0.096658 0.036410 1fp = 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P7 P8 P9 P10

Program

er
ro

r r
an

ge

Random test 1

Random test 2

CI-CANA

EAI-CANA

Figure 6.10: The analysis result of 10-variable functions of degree ¥ 7

• Random test 2: execute test over 80.000.000 random test cases

• CI-CANA: analyze by CANA using CI interval

• EAI-CANA: analyze by CANA using EAI interval

The experiments show that EAI is more precise than CI. Moreover, for complex func-

tion, the gaps between over approximations (CANA) and under approximations (test) are

large.

72

Chapter 7

Detecting REs based on

Counterexample-guided Narrowing

Static analysis is useful in proving safety properties of ORE problem. But it requires

over approximation in both propagating REs and control flows like conditional branches.

Hence, it may return spurious counterexamples. Fortunately, in our setting, the floating

to fixed point conversion, we can compute the exact RE, whereas there are in general no

ways to compute exact real numbers. Though testing can return exact REs, it cannot

cover all possible inputs. If we are lucky, witness of large REs would be eventually found,

yet most of them may be missed. Another challenging problem is how to reduce the

number of test cases if the input domain is large and the input parameters are many.

A popular approach to deal with spurious counterexamples is counterexample-guided

abstraction refinement (CEGAR) [8]. Inspired by CEGAR, we combine testing and RE

analysis.

This chapter proposes an approach for detecting REs of C programs, which combines

static analysis and testing, and make them refine each other. We call this combination

counterexample-guided narrowing. First, we apply an overflow and roundoff errors analysis

from our previous work [51] which returns an over approximation of REs as an Extended

affine interval (EAI). Fortunately, an EAI represents the relations between the input value

and the RE of the output. These relations can be used to clarify: variables are irrelevant

to REs of the results, variables affect the REs the most, and the ranges of inputs are

most likely to cause the maximum RE. These observations effectively narrow the focus

of test data generation. Second, in case testing does not find a witness of RE violation,

the analysis may over approximate too much. Further, the narrower the input ranges

are, the more precise the analysis result will be. Therefore, with a “divide and conquer”

refinement strategy, we can check the most suspicious part first.

Throughout the chapter, we focus only on roundoff errors. We assume that ORE

analyzer (CANA) does not detect any overflow errors. The rest of this chapter is organized

73

as follows. Section 7.1 presents the overview of the counterexample-guided narrowing

approach. Section 7.2 introduces techniques to improve test data generation. Section 7.3

propose a technique to improve analysis phase by narrowing input domain based on

“divide and conquer” technique. Section 7.4 describes CANAT implementation and reports

experiments.

7.1 Counterexample-guided Narrowing Approach

7.1.1 Observation on RE Analysis

The inputs of an RE analysis consist of

• a C program (with m-input variables) to be analyzed (base b � 2),

• a fixed point format psp, ip, fpq,

• an RE threshold θp¡ 0q, and

• a pair of a fixed point range rli, his and an RE range rlm�i, hm�is with �2�fp�1

lm�i ¤ hm�i 2�fp�1 for each i-th input variable.

We will fix the last three elements as an environment of the RE analysis. We call the

Cartesian product D � rl1, h1s � � � � � rl2m, h2ms an input domain.

Throughout the RE analysis, all ranges are represented as EAIs with 2m noise symbols

(where εi and εm�i correspond to noise symbols of the fixed point part and the RE of

values of the i-th input variable). Thus, we coerce input CIs to EAIs by EAI coercion. In

the context of the RE analysis, we denote:

Input domain D � rl1, h1s � � � � � rl2m, h2ms is pv̂1, . . . , v̂2mq with v̂i � p
li�hi

2
q � phi�li

2
qεi.

As notational convention, the analysis result is denoted by an EAI:

pr � r0 �
°2m

i�1 riεi

The analysis result r̂ shows extra information about the effects of inputs on r̂, since

EAI coercions of input ranges and r̂ share common noise symbols. If violations are found

(i.e., EAI projection of r̂ exceeds r�θ, θs), we need to check whether they are spurious

by testing. Fortunately, we have useful observations below, which will optimize test data

generation and testing.

• RE bound for each test case: Assume that the valuation of noise symbols for

the test case t � pt1, . . . , t2mq is pλ1, . . . , λ2mq, i.e.,

λi �

$&%0 if li � hi

2ti�pli�hiq
phi�liq

otherwise

Then, the RE for the input t is bounded by the valuation of r̂ with pλ1, . . . , λ2mq.

74

• Irrelevant noise symbol: If the coefficient of a noise symbol εk is rk � r0, 0s, the

noise symbol εk will not affect the RE of result.

• Sensitivity of noise symbols: If |rk| ¤ |rh|, the noise symbol εk affects r̂ more

than εh.

The following example will demonstrate how they affect the testing phases:

Example 33 In the analysis result of Example 31:

• For the test case t � pxf , yf , xr, yrq � p1, 5, 0, 0q, the valuation of noise symbols is

pε1, ε2, ε3, ε4q � p0, 0.5, 0, 0q. The RE bound of t is

r�0.031250, 0.031250s � r�0.26, 0.26s

Therefore, t is not a counterexample.

• Since r2 � r0, 0s, ε2 is an irrelevant noise symbol. Hence, v2 (or fixed point part of

y) does not affect RE of rst.

• We have |r1| � 0.123091 � maxt|r1|, . . . , |r4|u, thus ε1 is the most sensitive noise

symbol. Hence, v1 (or fixed point part of x) affect the RE of rst the most.

The analysis result is helpful to optimize test phase, includes:

• Pre-evaluate test case: if RE bound of a test case t lies in the RE threshold

bound, we need not execute test for t.

• Reduce input ranges: which reduces segments in each input range if correspond-

ing REs are subsumed. Especially, for an irrelevant noise symbol.

• Choice of the number of ticks, which takes more ticks in the input ranges of

more sensitive noise symbols.

7.1.2 Counterexample-guided Narrowing Approach

Our approach are broken down into the following steps. First, we apply an overflow and

roundoff errors analysis from our previous work [51] which returns an over approximation

of REs as an Extended affine interval (EAI). Fortunately, an EAI represents the relations

between the input value and the RE of the output. These relations can be used to clarify:

variables are irrelevant to REs of the results, variables affect the REs the most, and the

ranges of inputs are most likely to cause the maximum RE. These observations effectively

narrow the focus of test data generation.

Second, in case testing does not find a witness of RE violation, the analysis may over

approximate too much. Further, the narrower the input ranges are, the more precise the

analysis result will be. Therefore, with a “divide and conquer” refinement strategy, we

can check the most suspicious part first.

75

7.2 Refining Test Data Generation

Test Data Generation

For an input domain D � rl1, h1s�� � ��rl2m, h2ms, a basic strategy of test data generation

is to divide the input domain into meshes and select one test case from each mesh.

Definition 43 For an interval rl, hs and k ¥ 1,

• the k-random ticks are c1, � � � , ck, and

• the k-periodic ticks are tc, c�∆, � � � , c� pk � 1q∆u,

where ∆ � h�l
k

, and c P rl, l �∆s, c1, � � � , ck P rl, hs are randomly generated.

Remark 8 The ki-random ticks and the ki-periodic ticks are used for random testing and

counterexample-guided narrowing, respectively. For periodic ticks, the offset c is randomly

chosen to avoid overlaps in refinement loops.

Example 34 Let us consider the C program as Fig. 1.2.

• For xf P r�1, 3s, let k1 � 10, then ∆1 � p3� p�1qq{10 � 0.4. Let c1 � �0.8, we got

the set of ticks Xf � t�0.8, � 0.4, �, 3.8u

• For xr P r�2�5, 2�5s, let k2 � 10, then ∆2 � p2�5 � p�2�5qq{10 � 0.00625. Let

c2 � �0.03, we got the set of ticks Xr � t�0.03, � 0.02375, �, 0.0265u

• For yf P r�10, 10s, let k3 � 10, then ∆3 � p10 � p�10qq{10 � 2. Let c3 � �9, we

got the set of ticks Yf � t�9, � 7, �, 9u

• For yr P r�2�5, 2�5s, let k4 � 10, then ∆4 � p2�5 � p�2�5qq{10 � 0.00625. Let

c4 � �0.028, we got the set of ticks Yr � t�0.028, � 0.02175, �, 0.0285u

Hence, the set of test data is T � Xf � Yf � Xr � Yr. E.g., For test case t1 �

p�0.8,�9,�0.03,�0.028q, the input of fixed point program is px, yq � p�0.8,�9q; the

input of floating point program is px, yq � p�0.83,�9.028q.

For an input domain D � rl1, h1s � � � � � rl2m, h2ms, all combinations of ki-ticks of

rli, his for i ¤ 2m are the set of test data. Then, we execute a program in two ways: with

floating point arithmetic and fixed point arithmetic. The difference between them is a

true RE. However, the number of test data grows with the power of the 2m-th degree.

76

7.2.1 Range Reduction

For two ranges rl1, h1s, rl2, h2s, we denote rl1, h1s ¤ rl2, h2s if u ¤ v for each u P rl1, h1s

and v P rl2, h2s (i.e., h1 ¤ l2). Reducing input range is executed based on the observation

as the following lemma.

Lemma 2 Assume 0 R ru, vs. Then,

• r�v,�us ¤ ru, vsr�u
v
, u

v
s ¤ ru, vs if 0 u ¤ v

• ru, vs ¤ ru, vsr� v
u
, v

u
s ¤ r�v, us if u ¤ v 0

This lemma means that if 0 R rui, vis � ri we can ignore test data with corresponding

noise symbol εi in r�ui

vi
, ui

vi
s (resp. r� vi

ui
, vi

ui
s) for 0 ui ¤ vi (resp. ui ¤ vi 0). The

reason for this is that the true REs for test data with εi in r�ui

vi
, ui

vi
s (resp. r� vi

ui
, vi

ui
s)

are bounded by the valuations when a noise symbol εi is either 1 or �1 whatever a true

coefficient has a value in rui, vis.

In a special case ui � vi � 0, a valuation of εi does not matter. Thus, only a valuation

with 0 is considered.

From observations above we reduce the input domain D to two input domains Dmax

(which contain an input that causes the maximum RE) and Dmin (which contain an input

that causes the minimum RE) without loosing opportunities to find test cases that cause

violation of REs.

Definition 44 For an input domain

D �

p l1�h1

2
� h1�l1

2
ε1q � � � � � p

l2m�h2m

2
� h2m�l2m

2
ε2mq and the analysis result

pr � ru0, v0s �
2m̧

i�1

rui, visεi,

the subdomain Dmax of D is

p
l1 � h1

2
�

h1 � l1
2

ε1q � � � � � p
l2m � h2m

2
�

h2m � l2m

2
ε2mq

where

εi �

$'''''&'''''%
r |ui|
|vi|

, 1s if 0 ui ¤ vi

r�1,� |vi|
|ui|
s if ui ¤ vi 0

r0, 0s if ui � vi � 0

r�1, 1s otherwise

and the subdomain Dmin is

p
l1 � h1

2
�

h1 � l1
2

ε1q � � � � � p
l2m � h2m

2
�

h2m � l2m

2
ε2mq

77

where

εi �

$'''''&'''''%
r�1,� |ui|

|vi|
s if 0 ui ¤ vi

r |vi|
|ui|

, 1s if ui ¤ vi 0

r0, 0s if ui � vi � 0

r�1, 1s otherwise

An EAI pr � r0 �
°2m

i�1 riεi is maximum (resp. minimum) if each of elements r0 and

riεi is maximized (resp. minimized). Thus the maximal (resp. minimal) RE will occur

among valuations of εi in ru{v, 1s (resp. r�1,�u{vs) if 0 u ¤ v, and in r�1,�v{us

(resp. rv{u, 1s) if u ¤ v 0. Therefore, from Lemma 2, we obtain the next theorem.

Theorem 4 If there exists a counterexample in D, then there exists a counterexample in

Dmax YDmin.

Example 35 By observation of analysis result r̂ in Example 31, we can find Dmax of the

input domain D is

pr1, 1s � r2, 2sε1q � pr10, 10sε2q � pr2
�5, 2�5sε3q � pr2

�5, 2�5sε4q

with ε1 � r�1, 1s, ε2 � r0, 0s, ε3 � r0.63589, 1s, and ε4 � r�1,�1s. Hence, Dmax is

projected to

r�1, 3s � r0, 0s � r0.019872, 0.03125s � r�0.03125,�0.03125s.

Hence, we can conclude that the input with yf � 0 and yr � �0.03125 will cause the

maximum RE.

7.2.2 More Ticks for more Sensitive Noise Symbols

We need a strategy to setting ticks for each initial ranges in input domain. A bad strategy

of setting ticks will create several test cases which cause similar REs and all of them lie

within RE threshold bound. Testing over these test cases are not needed.

Analysis result r̂ shows the effects of noise symbols to the REs. A larger coefficient of

a noise symbol causes stronger effect on the RE of the result. For example, the variable

corresponding to dominant noise symbol will strongly affect REs, in other words, the

changing of this variable causes the changing of RE the most. Therefore, setting more

ticks on the initial range of this variables can lead the test cases to various REs. Based

on this observation, our basic idea is, in input domains Dmin, Dmax, the initial range of

variables which are predicated strongly affect REs will be set more ticks than other initial

ranges. The strategy of setting number of ticks is then depending on coefficients of noise

symbols in analysis result as follows:

78

Definition 45 Let r̂ � r0 �
°2m

i�0 εi be analysis result of input domain D1 � ru1, v1s �

� � � � ru2m, v2ms.

For σ ¡ 0, a tick frequency ti (wrt σ) for the input interval rui, vis is

ti �

$&%r|
2�ri|

σ
s if ui vi

1 if ui � vi

Here, rxs denotes the round up of x.

Example 36 For r̂ in Example 31 and Dmax in Example 35, the tick frequency t1, t2, t3,

and t4 wrt σ � 0.01 (of ε1, ε2, ε3, and ε4, respectively) are,

t1�r
2�0.123091

0.01
s � 25

t2�1

t3�r
2�0.09375

0.01
s � 19

t4�1

Thus, the number of test cases is 25� 1� 19� 1 � 475, and the RE found by testing 475

test cases is 0.219720.

7.3 Refinement of Analysis by Narrowing Input Do-

mains

An analysis may report spurious counterexamples. Fortunately, our RE analysis becomes

more precise if an input domain becomes narrower. There are two reasons that make

input domain decomposition reduces the over approximations:

• a smaller input domain is more likely to be deterministic on conditional branches,

and

• a smaller input domain is more likely makes EAI arithmetic more precise.

Our “divide and conquer” strategy has two phases:

• Reduce an input domain D to Dmax and Dmin (Definition 44)

• Divide the input ranges (in Dmax and Dmin) of the most sensitive noise symbol εk

into two ranges.

Definition 46 Let Dmax � rl1, h1s � . . . � rl2m, h2ms be an input domain and εk be the

most sensitive noise symbol. Then:

• D1
max � Dmax|vk�rlk,

lk�hk
2

s

79

• D2
max � Dmax|vk�r

lk�hk
2

,hks

where vk is the k-th element of D1
max (D2

max).

For Dmin, we also have a similar partition strategy.

The next round of the RE analysis will be performed for input domains D1
max and

D2
max. Our early experience shows that often one of analysis results of D1

max and D2
max

lie in the RE threshold bound. Thus this simple strategy becomes quite effective.

Example 37 From Example 33, the most sensitive noise symbol is ε1.

Form Example 35, the new input domain Dmax is

r�1, 3s � r0, 0s � r0.019872, 0.03125s � r�0.03125,�0.03125s

and ε1 is the most sensitive symbol (Example 33).

Hence, we will divide the initial range of v1 (r�1, 3s) into two new subranges r�1, 1s

and r1, 3s and we get:

D1
max�Dmax|v1�r�1,1s

�r�1, 1s � r0, 0s � r0.019872, 0.03125s � r�0.03125,�0.03125s

D2
max�Dmax|v1�r1,3s

�r1, 3s � r0, 0s � r0.019872, 0.03125s � r�0.03125,�0.03125s

RE analyses on two domains D1
max and D2

max report that:

• the REs of all input in D1
max lie in r�0.22, 0.22s

• the REs of all input in D2
max lie in r�0.25, 0.25s

Hence, we can conclude the REs of all input in Dmax lie in RE threshold bound

r�0.26, 0.26s.

Similarly, we get the REs of all input in Dmin also lie in the RE threshold bound, and

we can conclude the program satisfies ORE requirement. Note that, before decomposition,

it was r�0.28, 0.28s (Example 31), which exceeds the RE threshold bound (Fig. 7.1). If

we reduce RE threshold bound θ in 0.219720 θ 0.22, both D1
max and D2

max are not

enough. In such a case, we will investigate subdomain which has larger RE found testing

first in the later rounds.

Combining Analysis and Testing Algorithm

Algorithm 7.3 shows the algorithm combining the analysis and testing. Function analyzepPfl, Dq

analyzes the program Pfl with input domain D, and return the over approximate RE in

80

-0.26 0.260 rstr

-0.26 0.260 rstr

-0.26 0.260
rstr

Not safe!

Safe!

1
maxD

2
maxD

maxD

Figure 7.1: Effects of decomposition of Dmax to D1
max, D2

max

EAI form r̂. Function reduceMaxpr̂, Dq reduce domain D to Dmax. Function reduceMinpr̂, Dq

reduce domain D to Dmin. Function gentestpD, r̂q generate a set of test cases T of domain

D using analysis result r̂. Function testpPfl, Pfx, tq executes both two programs Pfl, Pfx

with test case t and return the difference between result of these two program, called set

of test results DR. Function devidepD, r̂q divides domain D into two new subdomains

D1, D2 based on analysis result r̂.

7.4 Implementation and Experiments

CANAT Implementation

A counterexample-guided narrowing framework is implemented as a prototype tool CANAT

(C ANAlyzer and Tester). An input of CANAT is a C program with nested loops (e.g.,

64 � 64) and arrays with a fixed length (e.g., 64) without procedure calls or pointer

manipulations, which typically appears in DSP decoders reference algorithms.

Fig. 7.2 shows the construction of CANAT. CANAT uses three external tools:

• CIL library 1 as a preprocessor,

• Weighted PDS library 2 as a backend weighted model checking engine, and

• CANA [51] as an RE analyzer.

CANAT has 4 main modules as follows:

1http://hal.cs.berkeley.edu/cil/
2http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

81

Input: Pfl, Pfx, initial ranges of variables, RE threshold θ
Output: Return “safe” or counterexample or unknown

Initial list of subdomains LD � rDs, a set of test data T � H, a set of RE DR � H;
while lengthpLDq 10 do

pop one element D from LD;
r̂ � analyzepPfl, Dq;
if pr̂ � r�θ, θsq then

continue ;
end
Dmax = reduceMaxpr̂, Dq;
Dmin=reduceMinpr̂, Dq;
push Dmin into LD; rmax � maxt|testpPfl, Pfx, tq||t P T u;
Let tmax P T such that rmax � testpPfl, Pfx, tmaxq ;
if prmax ¡ θq then

return counterexample tmax;
end
tD1, D2u � dividepDmax, r̂q;
if tmax P D1 then

push D2 into LD;
push D1 into LD;

else
push D1 into LD;
push D2 into LD;

end

end
return unknown;

Algorithm 1: Combining analysis and testing

82

CIL lib

RE analyzer

Decompose
domain

Generate test

RE Tester

Counterexamples

C program,
Fixed point format,
Initial ranges, and
RE threshold θ

Analysis phase Testing phase

Pflt

and
input domain

The best
test case

Test data

Su
bd

om
ain

ch
oic

e

Safe

EAI lib

WPDS lib

Convert Fxp

Pflt

and Pfxp

Reduce range

Figure 7.2: CANAT system

1. Reduce range module clarify: (1) the subdomains of input domain that contain

maximum (or minimum) REs, (2) the choice of ticks for testing generation.

2. Decompose domain module divides the reduced domain (e.g., Dmax,Dmin) into two

subdomains.

3. Generate Test module generates set of test data T based on information obtained

from Reduce range module.

4. RE Tester module automatically generates two programs corresponding to input

C program, one uses fixed point arithmetic, while the other uses floating point

arithmetic. Then, these two programs are executed with the set of test data T . The

testing REs are the differences between the results of these two programs.

Preliminary Experiments

Compare CANAT with single analysis CANA and random test

Table 7.1 shows the results of checking 4 programs (on PC with Intel(R) Xeon(TM)CPU

3.60GHz, 3.37Gb of memory). The first column in Table 7.1 shows the names of 4 pro-

grams, with the following 40 settings for each program.

83

Input CANA and Random test CANAT
program CANA Rnd test Time(s) %Checked Analysis Test Time(s) %Checked
P2 15 11 7 65.00% 20 18 13 95.00%
P5 9 15 14 60.00% 12 19 24 77.50%
Sine 19 7 37 65.00% 21 8 81 72.50%
subMpeg 11 11 65 55.00% 11 19 121 75.00%
rump 11 11 65 55.00% 11 19 121 75.00%

Table 7.1: Compare CANAT with CANA and random test

1. P2 (Example 3): The initial range r�1, 3s � r�10, 10s, fp P t7, 8, 9, 10u, and θ P

t0.001� 0.002i | 0 ¤ i ¤ 9u.

2. P5 (1 � x � 3x2 � 2x3 � x4 � 5x5): The initial range r0, 1s, fp P t7, 8, 9, 10u, and

θ P t0.001� 0.01i | 0 ¤ i ¤ 9u.

3. Sine (by Taylor expansion up to degree 21): The initial range r0, 1s, fp P t7, 8, 9, 10u,

and θ P t0.001� 0.005i | 0 ¤ i ¤ 9u.

4. subMpeg (a fragment taken from the mpeg4 decoder reference algorithm, con-

sisting of an bounded loop): The initial range r0, 30s, fp P t7, 8, 9, 10u, and θ P

t0.001� 0.05i | 0 ¤ i ¤ 9u.

Table 7.1 compares experimental results among

• ORE analysis (CANA) followed by random testing (Random test) with 200 in-

stances, and

• counterexample-guided narrowing by repeating ORE analysis (Analysis) and test-

ing (Test) 10 times. Each test executes 20 instances.

Both try 40 settings (i.e., different numbers of digits in fixed point numbers, different

RE thresholds) for each program. For fair comparison, we make the total numbers of

test cases to be the same for each setting; Random test generates 200 test cases, and

(CANAT test) generates 20 test cases for each refinement loop, which is repeated 10

times.

The second column, CANA, and the sixth column, Analysis, show the number of

programs proved to be safe by CANA and CANAT, respectively. The third column, Rnd

test, and the seventh column, Test, show the numbers of programs in which counterex-

amples are found by random testing and CANAT, respectively. The forth and the eighth

columns show the running time, and the fifth and the ninth columns show the percents of

programs that are shown either to be safe or to have counterexamples.

Although the experiment remains a toy, it shows clear improvement of testing and anal-

ysis. Furthermore, the experimental result shows the improvement by counterexample-

guided narrowing approach in CANAT, compared to applying an analysis (CANA) or

testing alone.

84

Input Matlab CANAT
program Checked Time (s) %Checked Checked Time(s) %Checked
P2 11 7 65.00% 38 13 95.00%
P5 19 2 47.50% 31 24 77.50%
Sine 5 4 20.00% 29 81 72.50%
subMpeg 23 81 57.70% 30 121 75.00%

Table 7.2: Compare CANAT with Matlab test

Compare CANAT with Fixed-point Toolbox in Matlab 3

Table 7.2 shows the comparison between CANAT and testing by using Fixed-point toolbox

in Matlab, in that the number of test case is 8000.

For the input programs and the setting as in experimental Table 7.1. The second

column and the fifth column show the number of programs can be checked by Matlab

testing and CANAT, respectively. The third column and the sixth column show the

running time, and the fourth and the seventh columns show the percents of programs that

are shown either to be safe or to have counterexamples.

The experimental result shows that CANAT can check more program than testing by

Matlab. The reason is CANAT returns both under approximation result (by testing) and

over approximation (by analysis with EAI) while testing by Matlab only return under

approximation.

Checking multiple variables functions by CANAT

To consider how CANAT can reduce the gap between over approximation (CANA) and

under approximation (testing), we check the complex functions from Figure 6.10. In Table

7.3, the second column, CANA, and the fifth column, Analysis, show the ranges of RE

founds by CANA and CANAT, respectively. The third column, Rnd test, and the sixth

column, Test, show the ranges of REs found by random testing and CANAT, respectively.

The forth and the seventh columns show the gap between analysis and testing by CANA-

random-test and CANAT, respectively, and eighth column, %Reduced shows the ratio

of the gap between CANAT analysis and CANAT testing to the gap between CANA

analysis and random testing.

The experimental result shows that CANAT reduces the gap between over approxi-

mation and under approximation.

3http://www.mathworks.com/products/fixed/

85

Input CANA and Random test CANAT %Reduced
program CANA Rnd test Gap Analysis Test Gap
P7 0.097232 0.019011 0.078221 0.092208 0.023741 0.068467 87.53
P8 0.030732 0.006724 0.024008 0.028368 0.010272 0.018096 75.37
P9 0.096658 0.014919 0.081739 0.091188 0.029174 0.062014 75.87
P10 0.03641 0.007888 0.028522 0.034258 0.012113 0.022145 77.64

Table 7.3: Checking result of 10-variable functions of degree ¥ 7

86

Chapter 8

Related Work

The ORE analysis has been attracted extensive attention of research in the numerical

analysis recently. Several different approaches has been proposed to deal with the problem

of roundoff and overflow problems. In this chapter, we give a survey of recent related works

on the topics of ORE analysis.

The ORE problems are one of the central issues in the numerical analysis [17, 22].

There are lots of works on mathematical reasoning to estimate OREs [21, 22], and there

is a well-known methodology for the precise addition of floating numbers, which cancels

the effect of REs [33]. It is extended to the precise multiplication [53], and recently verified

numerical computation is evolving.

Our focus is more on static detections of OREs of programs, and we omit huge refer-

ences of these areas, which are beyond scope of the thesis.

Range representations of real numbers

Due to REs, we need to evaluate values of real numbers by some representation of ranges.

They are classically classified into:

• Interval, which is the Cartesian product of one dimensional intervals [2, 47].

• Octagon, which is surrounded by either vertical, horizontal, or diagonal lines [46].

• Polyhedra, which is represented as the conjunction of linear inequalities [10]. Re-

cently, its refinement SubPolyhedra was proposed [36] by reducing deduction rules

among linear inequalities, yet preserving expressiveness.

We are more focus on intervals, and we call a range described by a pair of the lowest

and the highest value by a classical interval (CI). CI is generalized to allow swapping of

boundaries [23].

87

By introducing noise symbols, which preserve dependency of uncertainty, Affine in-

terval (AI) has been proposed [61, 62]. Later, we will see how AI is applied as over

approximation for ORE analyses.

Extended Affine interval (EAI) has proposed for under approximation, based on the

mean value theorem and Kaucher arithmetic [27]. EAI replaces real coefficients of AI

with CI coefficients. We apply this idea for over approximation of ORE analysis.

Numerical Constraint Solvers

Recently, several tools have been developed as variations of SMT to solve non-linear

numerical constrains. For instance,

• iSAT [16], which evaluates non-linear operations to interval constraints by over

approximation.

• minismt [64], which covers specific irrationals, such as rational numbers and roots of

small integers. They are symbolically represented and its bounded search is encoded

as CNF.

• a tool for Simulink/Stateflow models [30], which applied a variation of polyhedra,

called the bounded vertex representation for under approximation.

Ganai and Ivancic [18] introduced a new method to face with decision problems in-

volving non-linear constraints on bounded integers. Each nonlinear operation is encoded

into a Boolean combination of linear arithmetic constraints based on CORDIC algorithm.

Then, the linearized formula will be input of a DPLL-style Interval Search Engine that

explores various combination of interval bounds using a SMT solver.

To solve an interval constraint, they divide the input ranges to smaller ranges, which

is similar to ours. Adding to the difference of target domains (i.e., bounded integers

and floating/fixed point numbers), the differences are, (1) we use EAI instead of CI, (2)

combination with testing, and (3) weighted model checking instead of (SMT) solver.

To solve dataflow equations over infinite domains, such as numerical constraints (mostly

on integers), several algorithms are proposed in the context of weighted pushdown model

checking [25, 20, 37, 48].

The library Apron of numerical abstract domains is also freely available [29].

ORE analysis

For a static analysis, we need a concrete semantics. We obey the semantics of propagation

of OREs to [39].

There are three kinds of OREs, caused by:

88

• real numbers to floating point numbers conversion,

• real numbers to fixed point numbers conversion, and

• floating point numbers to fixed point numbers conversion.

ORE analysis are mainly investigated for the first and the third.

For the real numbers to floating point numbers conversion, ORE analysis adapt

AI [26, 40] (which introduced widening operators to handle loops), except that the octagon

abstract domain is used in [45].

They are implemented and showed experimental results. FLUCTUAT is presented

in [26] and [45] showed a case study on an embedded avionics software. The technique of

[40] is further applied on TMS320 C3X assembler programs [41].

These ORE analyses are over approximation, and easily cause false positives. An ORE

analysis with under approximation is proposed based on the mean value theorem and

Kaucher arithmetic [27], to sandwich OREs from both sides. However, strictly speaking,

this under approximation is for real number variables rather than floating point number

variables.

The floating point numbers to fixed point numbers conversion typically appears in

hard-wired algorithms and/or embedded systems. Apart from difficulties in hardware

encoding difficulties [3, 5, 31, 32, 44, 58, 59], there are strong demand to solve ORE

problems.

For the floating point numbers to fixed point numbers conversion, Fang, et.al. [13,

14, 15] proposed an ORE analysis based on AI, intended for DSP applications. We are

facing on the same problem, but with different intervals, EAI. In our implementation, we

adapted a sophisticated weighted model checking, whereas they adapt direct bit-vector

encoding. For scalability, they also applied probabilistic reduction of the search space.

Thanks to the problem nature, we can examine OREs by testing, since we can compute

both floating point numbers and fixed point numbers. [63] showed a such testing tool.

We further combined an ORE analysis and testing by a counter example guided nar-

rowing approach, which refines the focus of testing and avoid spurious counterexamples

in an early stage.

Refining analyses and testing

As general setting of static estimation, recently the refinement loop of analyses and testing

is extensively investigated.

Counterexample Guided Abstraction-refinement (CEGAR) [8] is widely applied method-

ology, in which the initial abstract model typically nondeterministic control structures for

89

conditional branches. When (possible spurious) counter examples are found, symbolic

techniques refine the model by hooking more deterministic behavior.

Proofs from Tests [4] presented an algorithm DASH to check if a program satisfies

a safety property. It uses only test generation, and it refines and maintains a sound

program abstraction as a consequence of failed test generation operations. This enables

us a light-weight refinement loop with neither any extra theorem prover calls nor any

global may-alias information.

Our methodology of counter example guided narrowing tries to refine the focus of

testing based on ORE analysis results. Fortunately, by the nature of EAI, ORE analysis

results tell us which input parameter is dominant for REs. By using this information, we

can effectively focus on the most problematic point.

90

Chapter 9

Conclusions

Motivated by automatically detecting OREs of hardware systems, this thesis proposes a

novel interval-valued approach for representing and reasoning about OREs. We concen-

trate on the overflow and roundoff errors between floating point arithmetic and fixed point

arithmetic, which are frequently troublesome in DSP decoders when a reference algorithm

with floating point numbers is converted to a hard-wired logic with fixed point numbers.

It contributes several techniques for improving interval computations, automatically esti-

mating OREs with high precision. This chapter reviews the main contributions, and then

discusses about future research.

9.1 Summary of the Thesis

First of all, our contributions are summarized as follows:

• In Chapter 4, two new range representations were propose, named extended affine

interval (EAI) and positive-noise affine interval (PAI). EAI is extended from AI by

assigning for each noise symbol a CI coefficient. By this representation, EAI has two

main advantages over current range representations (CI and AI). First, EAI is more

precise than CI because EAI can store information about sources of uncertainty as

noise symbol, whereas CI cannot. Second, EAI forms are more compact than AI

forms. This is because EAI arithmetic does not introduce new noise symbols, while

AI arithmetic does. PAI is another way to extend AI in that the noise symbols are

set to lie in r0, 1s (instead of r�1, 1s). Thus, PAI nonlinear operations are designed

to reduce over approximation (compare to AI and EAI).

• In Chapter 6, the ORE analysis is treat as a weighted model checking problem.

In that, range representations (i.e., CI, AI, and EAI) are used in the abstraction

of OREs. To avoid widening (which often leads to large over approximation), we

restrict to a subclass C program which have only bounded loops. The model of the

program becomes acyclic model by unfolding loops. Thus, the weigh domain can

91

be generated by an on-the-fly manner and satisfies the descending chain condition.

Based on this approach, a static analysis tool CANA for overflow and roundoff error

analysis of subclass C programs was implemented. Although our experiments were

performed on small examples, the result is encouraging that EAI is more precise

than CI and is comparable to AI.

• In Chapter 7, we proposed an approach for finding both under-approximation and

over approximation of RE ranges. In particular, the under-approximation is com-

puted by testing method and over approximation is computed by analysis method.

Further, static analysis and testing are combined, to make them refine each other

(called counterexample-guided narrowing). The refinement loop (i.e., testing + anal-

ysis) is repeated to refined both testing phase and analysis phase. Thus, the result

will be more precise than either testing or static analysis alone. Note that, this ap-

proach can not be applied for detecting REs between real number and floating point

numbers (or fixed point numbers) because there is no way to automatically test real

algorithm exactly. Using the proposed approach, a prototype tool named CANAT,

is implemented based on CANA. We would like to emphasize that, although our ex-

periments are still small, the results are encouraging and show potential usefulness

in practice.

9.2 Future Work

For future work, we plan to consider the following issues: For future works, one obstacle is

the scalability of CANA and CANAT. We are optimistic since DSP algorithms (e.g., digital

video compression [54]) are often compositional. They typically consist of sequences of

computations with fixed-length arrays and bounded loops. Therefore, we can divide the

algorithm to small fragments and check each separately.

Second, widening operator design. Currently, we did not introduce widening operators,

but first focus on precision of ORE detection. (For instance, the widening operator [26]

leads to inevitably lose precision a lot.) Its drawback is that the class of target programs

has strong limitation, though it seems enough for the core part of DSP encoders/decoders.

We are also interested in an automatic correction of a program to improve with less

OREs. For instance, in [43], there are several techniques to automatically improve nu-

merical precision, such as:

• swapping the order of arithmetic operations,

• explicit shifting of the order of magnitude, and

• symbolic executions.

92

Our ORE analyzer, CANA, can generate the information about range values of fixed-

point numbers and their RE at each point of the program. There information is helpful

information to automatic source code correction.

93

Bibliography

[1] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.

Addison-Wesley (1986)

[2] Alefeld, G. and Herzberger, J.: Introduction to Interval Computations. Academic

Press, N.Y. (1983)

[3] Banerjee, P., Bagchi, D., Haldar, M., Nayak, A., Kim, V., and Uribe, R.: Automatic

Conversion of floating-point MATLAB Programs into fixed-point FPGA Based Hard-

ware Design. In Proc. of the 11th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, pp. 263, IEEE Computer Society (2003)

[4] Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S.D., Thakur,

A.V.: Proofs from Tests. In IEEE Transactions on Software Engineering: Special

Issue on the ISSTA 2008 Best Papers, IEEE Computer Society (2008)

[5] Belanovic, P. and Rupp, M.: Automated Floating-Point to Fixed-Point Conversion

with the Fixify Environment. In Proc. of the 16th IEEE International Workshop on

Rapid System Prototyping, pp. 172 - 178, IEEE Computer Society (2007)

[6] Brown, C. W., Davenport, J. H.: The complexity of quantifier elimination and cylin-

drical algebraic decomposition. In Proc. of the 2007 International Symposium on

Symbolic and algebraic computation, pp. 54 - 60, ACM (2007)

[7] Clarke, E. Grumberg, O., and Peled, D. A.: Model checking. MIT Press, L.D. (1999)

[8] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.: Counterexample-guided

abstraction refinement. In Proc. of the 12th International Conference on Computer

Aided Verification , pp. 154-169, Springer-Verlag (2000)

[9] Cousot, P. and Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proc. of the

4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

pp. 238-252, ACM (1977)

94

[10] Cousot, P. and Halbwachs, N.: Automatic discovery of linear restraints among vari-

ables of a program. In Proc. of the 5th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp.84-96, ACM (1978)

[11] Dijkstra, E.W.: A discipline of programming. Series in Automatic Computation.

Prentice Hall (1976)

[12] Emerson, E. A.: Temporal and modal logic. Handbook of Theoretical Computer

Science, MIT (1990)

[13] Fang, C.F., Rutenbar, R.A., and Chen, T.: Fast, accurate static analyis for fixed-

point finite precision effects in DSP designs. In Proc. of the International Conference

on Computer Aided Design, pp. 275-282, IEEE Computer Society (2003)

[14] Fang, C.F.: Probabilistic Interval-Valued Computation: Representing and Reasoning

about Uncertainty in DSP and VLSI Design. Ph. D. Diserration, Depterment of

Electrical and Computer Engineering, Carnegie Mellon University (2005)

[15] Fang, C.F., Rutenbar, R.A., Püschel, M. and Chen, T.: Toward efficient static anal-

ysis of finite-precision effects in DSP applications via Affine arithmetic modeling. In

Proc. of Design Automation Conference, pp. 496-501, ACM Press (2003)

[16] Franzle, M., Herde, C., Teige, T., Ratschan, S., and Schubert, T.: Efficient solving

of large non-linear arithmetic constraint systems with complex boolean structure.

In Journal on Satisfiability, Boolean Modeling and Computation, Vol 1, pp. 209-236

(2007)

[17] Friedman, M. and Kandel, A.: Fundementals of Computer numerical analysis. CRG

Press (1994)

[18] Ganai, M.K and Ivancic, F.: Efficient Decision Procedure for Bounded Integer Non-

linear Operations using SMT(LIA), In Proc. of Haifa Verification Conference 2008,

LNCS, vol.5394, pp.68-83, Springer (2009)

[19] Ganai, M. and Gupta, A.: Completeness in SMT-based BMC for Software Programs.

In Proc. of the International Conference of Design, Automation and Test in Europe,

pp. 831-836, ACM (2008)

[20] Gawlitza, T. and Seidl, H.: Precise Fixpoint Computation Through Strategy Itera-

tion. In Proc. of the European Symposium on Programming 2007,LNCS, vol. 4421,

pp. 300315, Springer (2007)

[21] Giraud, L., Langou, J., Rozloznik, M., and Eshof, J.V.D.: Rounding error analysis

of the classical Gram-Schmidt orthogonalization process. Numerische Mathematik,

v.101 n.1, pp.87-100 (2005)

95

[22] Goldberg, D.: What every computer scientist should know about floating-point arith-

metic. ACM Computing Surveys , pp.5-48, ACM (1991)

[23] Goldsztejn, A., Daney, D., Rueher, M., and Taillibert, P.: Modal intervals revisited:

a mean-value extension to generalized intervals, In Proc. of the 1st International

Workshop on Quantification in Constraint Programming (2005)

[24] Goodwin,D. W.: Interprocedural dataflow analysis in an executable optimizer. In

Proc. of the Conference on Programming Language Design and Implementation, pp.

122 - 133, ACM (1997)

[25] Gopan, D.: Numeric program analysis techniques with applications to array analysis

and library summarization. Ph. D Thesis, University of Wisconsin-Madison (2007)

[26] Goubault, E. and Putot, S.: Static analysis of numerical algorithms. In Proc. of the

13th International Static Analysis Symposium, pp. 18-34, Springer-Verlag (2006)

[27] Goubault, E. and Putot, S.: Under-approximations of computations in real num-

bers based on generalized affine arithmetic. In Proc. of the 14th International Static

Analysis Symposium, pp. 137-152, Springer-Verlag (2007)

[28] 754-2008 IEEE Standard for Floating-Point Arithmetic at:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4610935. Accessed Febru-

ary 2010.

[29] Jeannet, B., and Miné, A.: Apron: A library of numerical abstract domains for

static analysis. In Proc. of the 21st International Conference on Computer Aided

Verification, LNCS, vol.5643, pp. 661-667, Springer-Verlag (2009)

[30] Kanade, A., Alur, R., Ivanc, F., Ramesh, S., Sankaranarayanan, S., and Shashidhar,

K.C.: Generating and Analyzing Symbolic Traces of Simulink/Stateflow Models. In

Proc. of the 21st International Conference on Computer Aided Verification, LNCS,

vol.5643, pp. 430-445, Springer-Verlag (2009)

[31] Keding, H., Hurtgen, F., Willems, M., and Coors, M.: Transformation of Floating-

Point into fixed-point Algorithms by Interpolation Applying a Statistical Approach.

In Proc. of the 9th International Conference on Signal Processing Applications and

Technology, pp. 270-276, ACM (1998)

[32] Kim, S., Kum, K., and Sung, W.: Fixed-point optimization utility for C and C++

based digital signal processing programs. In IEEE Transactions on Circuits and Sys-

tems II, vol. 45, no.11, pp. 1455-1464, IEEE Computer Society (1998)

[33] Knuth, D.E.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.

AddisonWesley (2002)

96

[34] Lacey, D.: Program Transformation using Temporal Logic Specifications. PhD thesis,

Oxford University Computing Laboratory (2003)

[35] Lacey, D., Jones, N.D., Wyk, E.V., and Frederiksen, C.C.: Proving correctness of

compiler optimizations by temporal logic. POPL, pp.283-294, ACM (2002)

[36] Laviron, V. and Logozzo, F.: SubPolyhedra: A (more) scalable approach to infer

linear inequalities. Proc. of the 10th International Conference on Verification, Model

Checking, and Abstract Interpretation, LNCS, vol. 5403, pp. 229-244, Springer-Verlag

(2009)

[37] Leroux, J. and Sutre, G.: Accelerated data-flow analysis. In Proc. of the 14th Inter-

national Static Analysis Symposium, LNCS, vol. 4634, pp. 184199, Springer (2007)

[38] Loh, E. and Walster, G.W.: Rump’s example revisited. Realiable Computing, vol.8

(3), pp.245-248 (2002)

[39] Martel, M.: Semantics of roundoff error propagation in finite precision calculations.

In Higher-Order and Symbolic Computation, v19(1), pp.7-30, Springer Netherlands

(2006)

[40] Martel, M.: Static analysis of the numerical stability of loops. In Proc. of the 9th

International Static Analysis Symposium, LNCS, vol. 2477, pp. 133-150, Springer-

Verlag (2002)

[41] Martel, M.: Validation of assembler programs for DSPs: A static analyzer. In Proc.

of ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, pp. 8-13, ACM Press (2004)

[42] Martel, M.: Semantics-Based Transformation of Arithmetic Expressions. In Proc.

of the 14th International Static Analysis Symposium, LNCS, vol.4634 pp.298-314,

Springer-Verlag (2007)

[43] Martel, M.: Program transformation for numerical precision. In Proc. of ACM SIG-

PLAN Workshop on Partial Evaluation and Program Manipulation 2009 pp. 101-109,

ACM Press (2009)

[44] Menard, D., Chillet, D., Charot, F., and Sentieys, O.: Automatic floating-point to

fixed-point conversion for DSP code generation. In Proc. of the 2002 international

conference on Compilers, architecture, and synthesis for embedded systems, pp. 270-

276, ACM (2002)

[45] Mine, A.: Relational abstract domains for the detection of floating-point run-time

errors. In Proc. of the European Symposium on Programming (ESOP 2004), Vol.

2986, pp. 317, Springer (2004)

97

[46] Mine, A.: The octagon abstract domain. Higher-Order and Symbolic Computation,

Vol.19 (1), pp.31-100, 2006.

[47] Moore, R.E.: Interval Analysis. Prentice-Hall (1966)

[48] Mller-Olm, M. and Seidl, H.: Precise interprocedural analysis through linear algebra.

In Proc. of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pp. 330-341, ACM (2004)

[49] Necula, G.C., McPeak, S., Rahul, S.P., and Weimer, W.: CIL: Intermediate Language

and Tools for Analysis and Transformation of C Programs. In Proc. of the 11th

International Conference on Compiler Construction, pp. 213-228, Springer-Verlag

(2002)

[50] Nielson, F., Nielson, H. R., Hankin, C.: Principles of program analysis. Springer

(1998)

[51] Ngoc, D.T.B. and Ogawa, M.: Roundoff and Overflow Error Analysis via Model

Checking. In Proc. of the 7th International Conference on Software Engineering and

Formal Methods, pp.105-114, IEEE Computer Society (2009)

[52] Ngoc, D.T.B. and Ogawa, M.: Checking Roundoff Errors based on Counterexample-

Guided Narrowing. In Proc. of the 25th IEEE/ACM International Conference on

Automated Software Engineering, to appear as a short paper (2010)

[53] Ogita, T., Rump, S.M., and Oishi, S.: Accurate sum and dot product. SIAM Sci.

Comp, vol.26 (6), pp.1955-1988 (2005)

[54] Peter, S.: Digital Video Compression. mcgraw-Hill (2004)

[55] Reps, T., Schwoon, S., Jha, S., and Melski D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. In Proc. of the 10th International

Static Analysis Symposium, pp. 189-213, Springer-Verlag (2003)

[56] Sagiv, M., Reps, T., and Horwitz, S.: Precise interprocedural dataflow analysis with

applications to constant propagation. In Theoretical Computer Science, v.167 n.1-2,

p.131-170 (1996)

[57] Schmidt, D.A. and Steffen, B.: Program analysis as model checking of abstract

interpretations. In Proc. of the 5th International Conference on Static Analysis Sym-

posium, pp. 351-380, Springe-Verlag (1998)

[58] Shi, C. and Brodersen, R.W.: An automated floating-point to fixed-point conversion

methodology. In Proc. IEEE International Conference on Acoust., Speech, and Signal

Processing, Vol. 2, pp. 529-532 (2003)

98

[59] Shi, C.: Floating-point to Fixed-point Conversion. Ph. D. Thesis, University of Cal-

ifornia - Berkeley (2004)

[60] Steffen, B.: Data Flow Analysis as Model Checking. In Proc. of the International

Conference on Theoretical Aspects of Computer Software, p.346-365, Springer-Verlag

(1991)

[61] Stolfi, J.: Self-Validated Numerical Methods and Applications. Ph. D. Dissertation,

Computer Science Department, Stanford University (1997)

[62] Stolfi, J. and Figueiredo, L.H. de: An introduction to affine arithmetic. In Tendencias

em Matematica Aplicada e Computacional, Vol.3(4), pp. 297-312 (2003)

[63] Wijaya, S. and Cantoni, A.: A Java Simulation Tool for Fixed-Point System Design.

In Proc. of the 2nd International Conference on Simulation Tools and Techniques,

pp. 1-10, ACM (2009)

[64] Zankl, H. and Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic.

In Proc. of the 16th International Conference on Logic for Programming, Artificial

Intelligence, and Reasoning, to appear (2010).

99

Publications

[1] Ngoc, D. T. B. and Ogawa, M.: Overflow and Roundoff Error Analysis via Model

Checking. In Proc. of the 7th International Conference on Software Engineering

and Formal Methods, pp.105-114, IEEE Computer Society (2009)

[2] Ngoc, D. T. B. and Ogawa, M.: Checking Roundoff Errors based on Counterexample-

Guided Narrowing. The 25th IEEE/ACM International Conference on Automated

Software Engineering(to appear as a short paper)

[3] Ngoc, D. T. B. and Ogawa, M.: Checking Overflow and Roundoff Errors via

Dataflow Analysis and Testing. Selectively invited from SEFM 2009 in the special

issue of International Journal of System Modeling and Software. Springer Verlag

2010 (submitted)

100

