
Program Analysis based on Weighted Pushdown

Model Checking

by

Li Xin

submitted to

Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Supervisor: Professor Mizuhito Ogawa

School of Information Science

Japan Advanced Institute of Science and Technology

March, 2007



Abstract

Program analysis can be regarded as model checking of abstract interpretation. This
view enables a systematic way of program analysis with soundness guarantees from ab-
stract interpretation and model checking. Following to this methodology, this thesis 1

is dedicated to exploring interprocedural program analysis based on weighted pushdown
model checking. Weighted pushdown model checking provides a general framework for
program analysis with combining both CFL-reachability and an algebraic description of
dataflow.

Our focus is an interprocedural extension of Bandera-like approach, i.e. program
analysis design and prototype implementation with a model checker as the analysis en-
gine. Our first target is a points-to analysis of an object-oriented programming language,
specifically Java.

A points-to analysis is the basis of interprocedural program analyses and is not a
simple matter. For instance, a dynamically dispatched method depends on the type of
a receiver object. Thus, the call graph construction of method invocations and points-
to analysis are mutually dependent. Another difficulty comes from possibly unbounded
nesting of field access and array structures, and the aliasing need to be cast and proper
abstraction must be chosen for various sources of infinity.

This thesis investigates context/field/flow-sensitive points-to analyses for Java, based
on weighted pushdown model checking. They are characterized by the following orthog-
onal dimensions:

• An exploded supergraph vs an interprocedural control flow graph
An exploded supergraph and interprocedural control flow graph are typical backborn
models for pushdown model checking. The former is an efficient point-wise graph
representation of dataflow, and the analysis based on it is more likely to scale. The
latter is more conventional for program analysis, and surpasses the former in the
automatic removal of invalid call pathes.

• An on-the-fly vs an ahead-of-time call graph construction
A call graph can be constructed in either on-the-fly or ahead-of-time manner. The
former is regarded as a least fixed point computation, i.e., starting with the empty
call graph, a call edge is added if points-to analysis detects its possibility. The latter
is regarded as a greatest fixed point computation, i.e., starting with a redundant call
graph (by collecting syntactically possible all call edges), a call edge is eliminated if
points-to analysis refutes it.

• Parameterized flow-sensitivity and field-sensitivity

1This research is conducted as a program for the “Fostering Talent in Emergent Research Fields” in
Special Coordination Funds for promoting Science and Technology by Ministry of Education, Culture,
Sports, Science and Technology.

i



Furthermore, the relatively unexplored problem of parametrization is explored. Pa-
rameterized flow-sensitivity is naturally obtained in our algorithms by either model
reduction in the analysis based on the exploded supergraph; or by simplifying the
weight space design based on the interprocedural CFG.

A call graph construction, which is essentially a points-to analysis, is the basis of in-
terprocedural program analyses. An example shown in this thesis is an interprocedural
irrelevant code under PER (partial equivalence relation) based abstraction. Interaction
among procedures are captured by variable dependency based on the exploded super-
graph model design. An irrelevant code is more semantical than a dead code, which is
syntactically defined by use/def relation and is essentially intraprocedural.

Most of analyses design above are impletemented within a prototype framework. Sim-
ilar to Bandera-like approach, our analysis works on Jimple, a three-address intermediate
representation for Java with fewer language constructs. Soot is used as a frontend
preprocessing from Java to Jimple, and the weighted PDS library as a back-end model
checking engine. The strategy of using existing tools enable us a relatively fast prototype
development.

Key Words: Program Analysis, Formal Verification, Pushdown Model Checking,
Weighted Pushdown Model Checking, Abstract Interpretation, Points-to analysis, Java

ii



Acknowledgments

iii



Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Program Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Program Analysis = Abstract Interpretation + Model Checking . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Pushdown Model Checking 10

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Linear Time Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Pushdown System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Pushdown Model Checking on Regular Properties . . . . . . . . . . . . . . 15
2.3 Weighted Pushdown Model Checking . . . . . . . . . . . . . . . . . . . . . 16
2.4 Application to Interprocedural Program Analysis . . . . . . . . . . . . . . 22

2.4.1 Why Weighted Pushdown Model Checking . . . . . . . . . . . . . . 22
2.4.2 An Encoding of Programs as Pushdown Systems . . . . . . . . . . . 23

3 Points-to Analysis 26

3.1 Points-to Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Context-sensitive Points-to Analysis based on Exploded Supergraph 33

4.1 Exploded Supergraph Based Model Design . . . . . . . . . . . . . . . . . . 34
4.1.1 An Abstraction of Java Heap Memory . . . . . . . . . . . . . . . . 34
4.1.2 On-the-fly call graph construction . . . . . . . . . . . . . . . . . . . 36
4.1.3 Ahead-of-time call graph construction . . . . . . . . . . . . . . . . . 39

4.2 Parameterized Flow-sensitivity by Model Reduction . . . . . . . . . . . . . 43
4.3 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Jimple Semantics Related to Points-to Analysis . . . . . . . . . . . 46
4.3.2 Prototype Framework and Preliminary Evaluation . . . . . . . . . . 47
4.3.3 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



5 Context-sensitive Points-to Analysis based on Interprocedural CFG 51

5.1 Interprocedural CFG Based Model Construction . . . . . . . . . . . . . . . 52
5.1.1 Abstract Heap Environment Transformers . . . . . . . . . . . . . . 52
5.1.2 On-the-fly Call Graph Construction . . . . . . . . . . . . . . . . . . 54
5.1.3 Ahead-of-time Call Graph Construction . . . . . . . . . . . . . . . 57

5.2 Parameterized Flow-Sensitivity by Weight Simplification . . . . . . . . . . 62
5.3 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Prototype Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Interprocedural Irrelevant Code Elimination 70

6.1 Interprocedural Dead Code Elimination . . . . . . . . . . . . . . . . . . . . 71
6.1.1 LTL Pushdown Model Checking with Simple Valuations . . . . . . 71
6.1.2 Weighted Pushdown Model Checking . . . . . . . . . . . . . . . . . 72

6.2 Interprocedural Irrelevant Code Elimination . . . . . . . . . . . . . . . . . 75
6.2.1 Abstraction from Java programs to Pushdown Systems . . . . . . . 75
6.2.2 PER based Data Abstraction . . . . . . . . . . . . . . . . . . . . . 77

6.3 The Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusions 82

References 84

Publications 89

v



Chapter 1

Introduction

The increasing complexity of software and hardware systems nowadays makes their valida-
tion more challenging. Current practiced methods for system validation are mostly based
on simulation and testing. The fundamental problem for these methods is that they can-
not cover all possible scenarios of system runs. Thus, they cannot find subtle errors of the
system. A promising alternative to system validation is formal verification, of which pop-
ular approaches are theorem proving, model checking, etc. Theorem proving is a deductive
approach capable of verifying infinite state space. But the use of it usually need expertise
and heuristics. In contrast, model checking [1], the so-called “push-button technique”, is
a fully automatic and algorithmic technique for verification on temporal safety of reactive
and concurrent systems. In particular, if model checking once fails, counterexamples are
provided as evidences for the failure and clues for fixing the problem.

There are successful stories of applying finite model checking to verify hardware de-
sign (and some telecommunication protocols) that essentially has a finite state space.
Automatic software validation is not easy because of software’s infinity, i.e. infinite pro-
gram structures, infinite data domains, concurrency, etc. Automatic software validation
demands efforts from program analysis/abstraction to model checking techniques on in-
finite state space. Popular model checkers, such as Spin [6], NuSMV/SMV 1, are model
checkers on finite state space. Recently, some practical model checking algorithms on the
(weighted) pushdown system, the finite-state system with an unbounded stack memory,
have been developed [7, 8] and implemented as tools, such as Moped 2, Weighted PDS
library 3, WPDS++ library 4, etc.

B. Steffen [4] and D. A. Schmidt [5] observed that data flow analysis can be regraded
as model checking of abstract interpretation. This view enables separation of the de-
sign (abstraction) and implementation (back-end model checking) of program analysis.
For prototype implementations, an universal analysis engine is advantageous to clarify
whether an analysis design is correct wrt the language semantics based on abstract inter-
pretation. Following to this methodology, this thesis investigates program analysis based
on weighted pushdown model checking.

1http://www.cs.cmu.edu/ modelcheck/code.htm
2http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
3http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
4http://www.cs.wisc.edu/wpis/wpds++/

1



1.1 Motivations

1.1.1 Model Checking

It is well known that the correctness of programs (total correctness [9]) is ascribed to
termination and partial correctness [10, 11]. theory tells that the termination problem is
undecidable. A. Pnueli first introduces temporal logic to computer science for verifying
concurrent and reactive systems [12], which usually do not terminate. In the 1980s,
model checking, an automatic verification technique on finite-state concurrent systems, is
proposed by E.M. Clarke and E.A. Emerson [13] (independently by J.P. Quielle and J.
Sifakis [14]). By model checking, we usually mean whether a model (historically, Kripke
structure) satisfies some property represented in a temporal logic formula.

Model checking is an algorithmic verification technique by exhaustively searching the
state space of the underlined model. It is attractive for enjoying two advantages: (1) it
is fully automatic; (2) counterexamples are provided once a model checking fails. The
original explicit model checking suffers from the notorious state space explosion prob-
lem. Model checking is enabled to scale by applying Ordered Binary Decision Dia-
grams (OBDD) to represent boolean formulas and Kripke structures, which results in
the so-called symbolic model checking algorithms. Other important techniques such as
partial order reduction further help to reduce the size of the state space. Furthermore,
bounded model checking based on SAT solver, that bounds the length of paths to search
counterexamples, is also effective for finding bugs [15].

The automata theory provides an alternative LTL model checking algorithm. That
is, a system A satisfies a specification S if L(A) ∩ L(S) = ∅, where A and S are
automaton corresponding to the model and specification respectively. Thus, the decid-
ability of a model checking problem is ascribed to the emptiness problem of automaton.
The automata-theoretic approach also enables on-the-fly model checking [18]. Popular
model checkers, such as Spin [6], NuSMV/SMV 5, are model checkers based on finite
automata (i.e. finite state space). Finite model checking is successful in hardware veri-
fication (and some telecommunication protocols) that has a finite state space in nature.
Automatic software validation is not easy, because software is inherently infinite. The
infinities come from infinite program structures (e.g. nested procedure calls, recursions),
infinite data domains (e.g. integers), concurrency, etc. Automatic software validation de-
mands efforts from program analysis/abstraction to model checking techniques on infinite
state space.

The pushdown system (PDS) is one kind of infinite state system which has an un-
bounded stack memory. The automata-theoretic approach works for pushdown model
checking on regular properties, since the intersection of context-free language and regular
language is closed, i.e. still context-free. The practical algorithms for pushdown model
checking have been developed based on the key that regular pushdown stores are closed
under forward and backward reachability [19]. Recently, they are implemented as tools,
such as Moped, Weighted PDS library, WPDS++ library, etc. A relatively thorough
treatment of verification on infinite structures is [20].

Obviously, the correctness of system validation based on model checking depends on
whether a sound and enough precise (complete) abstraction can be made: an under-
approximation may be unsound; whereas an over-approximation may cause false alarms.

5http://www.cs.cmu.edu/ modelcheck/code.htm

2



One novel solution towards this is the counterexample-guided abstraction refinement (CE-
GAR) approach [17], originated with lazy abstraction [16].

1.1.2 Program Analysis

Program analysis 6 [3] provides static approximations on the dynamic behaviors of pro-
grams when they are running on the computer. The key common to all program analysis
is that only safe answers could be provided in order to remain decidable and sound. Orig-
inally, program analysis is one phase of the compilation. The result of program analysis
shows the opportunities of compiler optimization, such as removing the redundant compu-
tations. The optimized object codes excels at either size or run-time efficiency. Nowadays,
apart from compiler optimization, program analysis also plays a crucial role in a lot of
fields such as program understanding, program transformations, software validation, etc.

There are four classic data flow analysis [2], so-called bit-vector analysis: available
expressions analysis, reaching definitions analysis, very busy expressions analysis, and
live variables analysis, etc. For instance, very busy expressions analysis says that:

An expression is very busy at the program point p if along every path from p
the expression is used before any variable in it is redefined.

A basic optimization based on it is code hoisting. That is, the expression is evaluated and
the value is stored for later use. A live variable analysis says that:

A variable x is live at some program point p if there exists a path from p such
that x is used before redefined.

The result of live variable analysis helps dead code elimination.
Traditional data flow analysis is to find fix-point solutions on the flow equations or

constraints, which are data flows facts abstracted from the program statements, in a
forward or backward manner wrt control flows. For instance, the flow equation that
defines the set of very busy expressions at some program point p is

VBE(p) = Used(p) ∪ (notModified(p) ∩
⋂

p′ ∈succ p

VBE(p′))

and a greatest solution is interested in this analysis. For the live variable analysis, the set
of live variables at some program point p is captured as the following flow equation:

LiveVar(p) = Used(p) ∪ (notDefined(p) ∩
⋃

p′ ∈ succ p

LiveVar(p′))

and a least solution is interested. This equation reads that:

a variable is live after p if it is used at p or it is not defined at p and live after
one of the next states p′, where p′ is one of the successor of p.

A well understood general framework for program analysis is based on so-called gen-
kill functions. Typical instantiations are the classic bit-vector analysis. For instance, a
variable is generated if it is used at some point; and killed if it is redefined.

6Throughout this thesis, we only mean static analysis.

3



Another influential analysis framework IFDS (interprocedural, finite, distributive,
subset) is proposed in [38] by applying CFL-reachability to program analysis. CFL-
reachability nicely capture the context-sensitivity, and can date back to [31]. Although
previously there are work on program analysis based on CFL-reachability, they basically
exploit restricted forms of CFL-reachability, such as Dyck language for balanced paren-
theses [35]. Reps provides solutions with general CFL-reachability to program analysis.

Later, it is found that only CFL-rechability is not enough for program analysis, such
as constant propagation. Another framework called IDE (interprocedural distributive
environment) [37] is proposed to solve problems whose data flow facts can be captured
as transformer functions on program states. The analysis such as constant propagation is
shown to be solved. The key of IDE is a graph representation, called exploded supergraph,
of transfer functions. The idea is: control flows are exploded for individual variables; and
edges capture the data flow dependence among variables, labeled with abstract transfer
functions. Our first points-to analysis algorithms explore the exploded supergraph as the
underlined model for model checking.

Program analysis are in general characterized by the following primary dimensions.
There could be more dimensions for different problems. We will discuss more later when
examining points-to analysis in detail.

• intraprocedural (context-insensitive) versus interprocedural (context-sensitive). In-
terprocedural analysis takes into account procedure calls, otherwise it is intraproce-
dural. In an interprocedural case, the analysis results wrt different procedure calls
and returns cannot mix up, i.e context-sensitive; and some difficulties are caused by
aliasing and call-by-reference mechanism.

• forward versus backward. By a forward analysis, we mean the data flow facts at some
point depends on all data flows reaching at it; whereas, for a backward analysis, the
data flow facts at some point depends on all outgoing data flows from it.

• sequential versus concurrent. Concurrency is a crucial feature of advanced pro-
gramming languages in practice.It is shown that a context-sensitive interprocedural
analysis of multi-tasking concurrent programs is undecidable [22]. Approximations
on a context-sensitive program analysis concerning concurrency cannot be avoided.

With the advent of advanced programming languages, new program analysis is de-
manded, such as points-to analysis for C++ and Java, and the elimination of poly-
morphism for ML [21], etc. Since the treatments on languages of imperative style and
functional style are a bit different, we consider object-oriented programming languages
throughout this thesis.

1.1.3 Program Analysis = Abstract Interpretation + Model

Checking

Static analysis on the concrete semantic domain of programs is undoubtedly undecidable,
e.g. the well-known termination problem. Thus, proper approximations are needed to
make an analysis trackable and even practical to reduce the problem size. Abstract
interpretation [24] is a theory on sound approximation of the program semantics. There
are further studies that examine the design of compositional abstract semantic domains.

4



L L

M M

fc

γ

fa ⊒ α ◦ fc ◦ γ

α

Figure 1.1: Abstract Interpretation

A sound abstraction is often characterized by the Galois connection. That is, given two
complete lattice (L,⊑) and (M,⊑) that are related by an abstraction function α : L→ M
and a concretisation function γ : M → L, such that (L, α, γ,M) is a Galois connection
between L and M if and only if

• α and γ are monotone functions; and

• It is satisfied that
γ ◦ α ⊒ λx.x

α ◦ γ ⊑ λx.x

Galois connection ensures that an abstraction is safe although not precise enough (i.e. not
necessarily complete). More specifically, if an error is detected in an abstract semantic
domain, then it is really an error in the concrete semantic domain.

Given a Galois connection (L, α, γ,M), the static analysis can be performed on the
abstract semantic domains of programs. Correspondingly, the original functions on the
concrete domains fc : L → L are “abstracted” as functions on the abstract domains
fa : L→ L. In particular, the analysis is sound if fa ⊒ α ◦ fc ◦ γ, as shown in Figure 1.1.

Originated with B. Steffen, D. A. Schmidt demonstrates that an iterative data flow
analysis is a model checking of a modal logic formula on a program’s abstract interpre-
tation. For instance, the above analysis of very busy expressions can be reformulated
as:

isVBE(e) = νZ. isUsed(e) ∨ [¬isModeified(e)]Z

Where isV BE(e) states a very busy expression e in the propositional µ-calculus of
Kozen [23]. Intuitively, “[a]f” means that a formula f holds in all states reachable by
making a one-step transition labeled with a. Similarly, the live variable analysis can be
reformulated as

isLive(x) = µZ.isUsed(x) ∨ 〈¬isDefined(x)〉Z)

where isLive(x) declares a live variable x in the propositional µ-calculus. Informally,
“〈a〉f” means that a formula f possibly holds in a state reachable by making a one-step
transition labeled with a.

The above observation shows a crucial connection among abstract interpretation, pro-
gram analysis, and model checking, which provides an attractive systematic way to pro-
gram analysis. The design (the front-end abstraction) and the solution (the back-end
model checking) of a static analysis can be separated, with model checking as a general
framework. The correctness of this methodology is correspondingly ensured by abstract
interpretation and the model checking machinery.

As mentioned before, popular model checkers, such as Spin, NuSMV/SMV, are model
checkers on finite state space. Program analysis based on them, such as bandera, is

5



Figure 1.2: Our Methodology

intraprocedural in nature. Recently, the practical (weighted) pushdown model check-
ing algorithms have been developed [7, 8] and implemented as tools, such as Moped 7,
Weighted PDS library 8, WPDS++ library 9, etc., which enables design of real interpro-
cedural context-sensitive program analysis.

1.2 Contributions

Following to the methodology that program analysis = abstract interpretation + model
checking, this thesis is dedicated to interprocedural program analysis based on weighted
pushdown model checking. Java is selected as our analysis target, due to its popularity in
practice and rich semantics that challenges the analysis effort. Our ideas can be applied
to other object-oriented programming languages as well.

Our work is an interprocedural extension of Bandera 10-like approach, i.e. program
analysis design and prototype implementation with a model checker as the analysis engine,
as shown in Figure 1.2. Bandera is a a tool set for automatic analysis generation for Java
programs. It provides model constructions from Java programs to the inputs of several
popular finite model checkers. Our work is to extend this methodology to interprocedural
case based infinite model checking supported with prototype implementation.

More specifically, this thesis aims at exploring the following questions:

• Whether crucial program analysis, as well as design choices traditionally concerned
in the analysis, can be solved as weighted pushdown model checking problems ?

• How the infinite model checking based approach benefits program analysis compared
with traditional ones ?

We take points-to analysis, the most essential program analysis in Java as our first
research target. Points-to analysis for Java is not a simple matter, primary difficulties

7http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
8http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
9http://www.cs.wisc.edu/wpis/wpds++/

10http://bandera.projects.cis.ksu.edu/

6



are: (1) points-to analysis and call graph construction are mutually dependent and quite
equivalent; (2) the aliasing among references need to be cast for a precise analysis when
field access is involved; (3) various infinities exist, such as the unbounded nesting of field
access and array structures.

We propose context/field/flow-sensitive points-to analysis algorithms for Java based
on weighted pushdown model checking. We also show how the above problems are settled
as a model checking problem with proper abstraction. Our analysis is characterized by
the following dimensions, as summarized in Table 1.1.

• An exploded supergraph vs an interprocedural control flow graph based model design
The exploded supergraph and control flow graph are typical models for program
analysis. In our analysis, both of them are explored as the underlined model for
model checking. We show how points-to analysis is formulated within the same
framework by these two different model designs.

The analysis based on exploded supergraph is more likely to scale, due to the ef-
ficient graph representation of transfer functions. However, an on-the-fly analysis
dispatches overwhelming model checking requests. It deserves a try on automati-
cally removing invalid paths from the analysis result. The automatic path removal
is restricted by the exploded supergraph based model design, since each control flow
is exploded for individual variables. In contrast, an interprocedural CFG based ap-
proach provides facility of algorithm constructions. We propose an ahead-of-time
analysis algorithm based on the interprocedural CFG model design, which can be
done in one-run model checking. The choice is a tradeoff among efficiency and design
choices.

• An on-the-fly vs an ahead-of-time algorithm construction
Since call graph construction and points-to analysis are mutually dependent, itera-
tive procedures are inevitable to ensure soundness. There are two ways to solving
this mutual dependency: an on-the-fly manner is to find the least solution, i.e.
starting with the empty call graph, a call edge is added if points-to analysis detects
its possibility; and an ahead-of-time manner is to find the greatest solution, i.e.
starting with an imprecise call graph, a call edge is eliminated if points-to analysis
refutes it. In our analysis, both of these flavors are investigated.

Although an on-the-fly manner is likely to be more precise by empirical studies,
to handle various iterations in the algorithm construction needs delicate cares. In
contrast, an ahead-of-time analysis with automatic path removal and bounded field
tracing shows that, more design efforts on iterative procedures can be handed over
to the back-end model checker.

Our study also shows that an ahead-of-time construction needs to explicitly give a
bound on tracing nesting of field access, whereas an on-the-fly construction auto-
matically bounds it (up to the number of abstract heap location).

• Parametrization
Furthermore, the relatively unexplored problem of parametrization is explored. Pa-
rameterized flow-sensitivity is naturally obtained in our algorithms by model reduc-
tion in the analysis based on the explode supergraph; and by simplifying the weight
space design based on the interprocedural CFG.

7



Exploded Supergraph Interprocedural CFG
On-the-fly Chapter 4.1.2 Chapter 5.1.2

Ahead-of-time Chapter 4.1.3 Chapter 5.1.3
Parameterized Model Reduction Weight Design Simplification
flow-sensitivity (Chapter 4.2) (Chapter 5.2)

Table 1.1: Design Choices Concerning Three Primary Dimensions

• Prototype implementation
Most of combinations, expect for the one with ahead-of-time call graph construction
based on the model design of exploded supergraph , are also supported with imple-
mentations. A prototype framework is presented, which combines soot 11 compiler
as preprocessing to convert Java to Jimple and the Weighted PDS (pushdown sys-
tem) library as the back-end model checking engine.

Given the result of points-to analysis, other program analyses, so-called client appli-
cations, are possible. We further explore an interprocedural irrelevant code elimination
analysis. Compared with dead code elimination, our irrelevant code elimination is more
on a semantical sense. The interaction among procedures is essentially captured by the
variable (both local and global) dependency based on the exploded supergraph, under
PER based abstraction. Our motivation on this work is that dead code elimination is
essentially intraprocedural. Even interprocedural ones are only talking about global vari-
ables. We present encodings of dead code eliminations based on both pushdown and
weighted pushdown model checking.

1.3 Thesis Organization

The rest of the thesis is organized as follows, by making each chapter self-contained to
the best of my abilities.

• Chapter 2 introduces the basic ideas of model checking algorithms on pushdown
systems, including pushdown model checking on regular properties based on simple
valuations, and the key idea of weighted pushdown model checking algorithms. The
motives and application of weighted pushdown model checking to interprocedural
program analysis is presented, as well as possible encodings of programs as pushdown
systems.

• Chapter 3 first introduces points-to analysis for Java and shows the difficulties.
Then, a detailed discussion on the design choices that we concerned in our analysis
is presented. Related work is finally given.

• Chapter 4 presents our first points-to analysis algorithms based on an exploded
supergraph model desgin. Both on-the-fly and ahead-of-time algorithm construction
of the analysis are explored. In particular, parameterized flow-sensitivity is realized
by model reduction. A prototype framework is presented with an explanation on
the implementation aspects. A preliminary evaluation is presented with discussion
on efficiency.

11http://www.sable.mcgill.ca/soot/

8



• Chapter 5 introduces a new points-to analysis algorithms based on an interprocedu-
ral CFG model design. Both on-the-fly and ahead-of-time call graph construction
are also investigated. Especially, the ahead-of-time analysis under such a choice
enables an automatic path removal and field tracing by the machinery of model
checking. The analysis can be performed in one-run model checking. Parameterized
flow-sensitivity is also obtained by simplifying the weight design. An explanation
on the the implementation aspects is presented.

• Chapter 6 explores an interprocedural irrelevant code elimination algorithm based
on weighted pushdown model checking. First, how a dead code elimination analysis
can be solved by both pushdown and weighted pushdown model checking is shown.
The interprocedural flavor is possibly obtained by global variable renaming with
preprocessing. An interprocedural irrelevant code elimination is further presented,
by capturing the interaction among procedures based on the exploded supergraph
construction.

• Chapter 7 concludes the thesis with a presentation of our future plans.

9



Chapter 2

Pushdown Model Checking

Model checking is an algorithmic verification of finite or infinite transition systems, by
exhaustively exploring the state space of systems. Finite model checking is successful
in hardware verification, because hardware has a finite state space in essence. Software
is essentially infinite. To apply model checking to software validation demands infinite
model checking techniques plus expertise on abstraction.

The pushdown system (PDS) is one kind of infinite-state systems. It is a finite tran-
sition system carrying an unbounded stack memory. Other infinite-state systems are like
parameterized systems, Petri Nets, etc. In particular, the verification on parameterized
systems has been extensively studied, such as regular model checking [25]. These afore-
mentioned infinite systems are discrete-time. Infinite systems working on dense time are
such as timed automata, hybrid systems, etc.

PDSs are pushdown automata with different concerns. PDSs are not interested in
the languages accepted but the transition graph generated from running the transition
system. The automata-theoretic approach works for pushdown model checking on regu-
lar properties, since the intersection of context-free languages and regular languages are
closed, i.e. context-free. The study of pushdown model checking algorithms follows to
several approaches. For instance, one approach regards the problem of pushdown model
checking as games on the transition graph of PDSs [27]. Another stream of the study
on pushdown model checking follows to the automata-theoretic approach [26]. The key
of this stream is based on the following observation: regular pushdown stores are closed
under forward and backward reachability. In this thesis, we are interested in the latter.
The pushdown model checking problem on CTL (computation tree logic) and µ-calculus
is known to be DEXPTIME-complete. Whereas pushdown model checking on LTL (linear
time logic) is known to be polynomial.

Pushdown systems are extended to weighted pushdown systems by associating each
pushdown transition with a weight. The weight comes from a bounded idempotent semir-
ing. The model checking problem on weighted pushdown system is generalized reachability
analysis, i.e. reachability analysis between regular pushdown configurations on the tran-
sition graph of PDSs with calculating and satisfying weight constraints. Rather following
to automata-theoretic approach, weighted pushdown model checking is first settled as a
grammar valuation problem by grammar characterization of pushdown transitions [8]. A
more efficient algorithm is also developed by creating an annotated automata [46]. The
introduction of weighted pushdown model checking targets on interprocedural program
analysis.

10



An algebraic view on the analysis of graph problems is not new. For instance, some
general path-finding problems over closed semiring are presented in [29, 30]. However,
the general graph reachability analysis is not applicable for context-sensitive program
analysis. CFL-reachability nicely captures the demands that procedure calls and returns
are correctly paired in the program analysis. Whereas, some program analysis problems
are beyond CFL-reachability, such as constant propagation. Weighted pushdown systems
provide a generalized framework by combining both of these respects.

This chapter is organized as follows:
In Section 2.1, some definitions and terminologies on model checking on pushdown

systems are prepared.
In Section 2.2, the key of an efficient pushdown model checking algorithm on regular

properties is presented, based on simple valuations.
In Section 2.3, model checking algorithms on weighted pushdown systems, an ex-

tension of pushdown systems, are presented. A grammar valuation based algorithm by
reformulation of pushdown transitions as grammar productions is presented first. A more
efficient algorithm is later introduced by annotated automaton construction.

In Section 2.4, we show the application of weighted pushdown model checking to
interprocedural program analysis. The typical encoding of programs as pushdown systems
is also presented.

2.1 Preliminaries

Given a model M and some property in temporal logic formulas L, model checking
answers the question that whether the model satisfies with the property, represented as
M |= L. Here, we are interested in the model checking algorithm when M is a pushdown
system and L is regular properties specified in LTL.

2.1.1 Linear Time Logic

First of all, LTL (linear time logic) is briefly prepared to make our contents are self-
contained (we mean propositional LTL without specific declaration). As a temporal logic,
the underlying time model of LTL is linear, that is, each moment has only one possible
future time evolution.

The LTL formulas are formed from atomic proposition with connectives such as ¬, ∨,
∧, etc. The basic temporal operators of LTL are shown as follows, for some LTL formula
f , p, and q

• Ff reads that f holds eventually on some state.

• Gf reads that f always holds.

• Xf reads that f holds on the next state.

• pUf reads that p always holds until a state on which q holds.

To note that, the until operator U is called the strong until operator. It is weak by loos-
ening that q is allowed not to happen and p essentially always holds on an interminating
run. Among these temporal operators, only X and U are essential. For instance,

Ff ≡ trueUf ; and Gf ≡ ¬F¬f

11



Assume AP is the finite set of atomic propositions of LTL. It is well understood that
properties expressed in LTL are ω−languages over the alphabet 2AP . The historically-
chosen Kripke Structure also directly corresponds to the ω-language. This provides an
alternative, i.e. the automata-theoretic approach, model checking algorithm. The model
checking problem is reduced to checking the emptiness problem of automata.

Example 1 Figure 2.1 illustrates a Büchi automaton that represents the simple liveness
properties in LTL Fq. By liveness property, we mean that “some thing good will eventually
happen”.

Figure 2.1: A Liveness Property in Büchi Automaton

2.1.2 Pushdown System

A pushdown system is a finite transition system with an unbounded stack. Compared
with pushdown automata, pushdown systems concerns the transition graph of the system
rather than languages accepted.

Definition 1 A pushdown system P = (Q,Γ,∆, q0, w0) is a pushdown automata re-
gardless of input, where Q is a finite set of states, Γ is a finite set of stack alphabet,
∆ ⊆ Q× Γ×Q× Γ∗ is a set of transition rules, q0 ∈ Q is the initial state, w0 ∈ Γ∗ is the
initial stack contents, satisfying that ∀γ ∈ Γ, ω ∈ Γ∗, p, q ∈ Q,

if 〈p, γ〉 →֒ 〈q, ω〉, then 〈p, γω′〉 ⇒ 〈q, ωω′〉, ∀ ω′ ∈ Γ∗

where if ((q1, w1), (q2, w2)) ∈ ∆, it is represented by 〈q1, w1〉 →֒ 〈q2, w2〉.
A configuration of P is a pair 〈q, w〉, where q ∈ Q and w ∈ Γ∗. The head of

a configuration 〈p, γω〉 is 〈p, γ〉, where γ ∈ Γ. The head of a pushdown transition
〈q1, w1〉 →֒ 〈q2, w2〉 is 〈q1, w1〉.

A valuation of P is the function ν : AP → 2Q×Γ∗

.

In Definition 1, Q is usually called control locations. The configuration of pushdown
systems is a pair of control locations and stack contents, and a configuration is a state
in the transition graph of pushdown systems. The definition also says that, a pushdown
system make a transition based on the current control location and the topmost stack
symbol; and a modification on the stack can only be done on the top of the stack.

Furthermore, if 〈p, γ〉 →֒ 〈q, ω〉, then for every ω′ ∈ Γ∗, 〈p, γω′〉 is called the immediate
predecessor of 〈q, ωω′〉, and similarly 〈q, ωω′〉 is called the immediate successor of 〈q, ωω′〉.

As a matter of easy representation, it is often restricted that, Let P be a pushdown
system,

for each 〈p, γ〉 →֒ 〈q, ω〉 in P, s.t. |ω| ≤ 2

12



A pushdown system can be simulated by another pushdown system satisfying the above
restriction [28].

The automata-theoretic approach amounts to checking whether the intersection of the
automata wrt LTL properties and transition systems is empty. Therefore, by valuation, we
mean assigning atomic propositions to the states of the transition system. For pushdown
systems, the states are pushdown configurations of the pushdown transition graph. There
are various choices on the way of valuation. Pushdown model checking on arbitrary
valuations is undecidable. However, it remains decidable for some restricted class of
valuations.

A basic choice of valuation is so-called simple valuation, for which only topmost stack
symbol, as well as the current control location, matters for the atomic proposition.

Definition 2 Let P = (Q,Γ,∆, q0, w0) be a pushdown system, and and let AP be a finite
set of atomic proposition. Let label : Q × Γ → AP be a labeling function. A simple
valuation ν : AP → 2Q×Γ∗

is defined as, for each ψ ∈ AP , ν(ψ) = {〈p, γω〉 | ψ ∈
label (p, γ), ω ∈ Γ∗}.

A more general extension to simple valuation is so-called regular valuation, for which
a regular words over the pushdown stack alphabet have been associated to an atomic
proposition wrt some control location. That is, intuitively, an atomic proposition ψ is
valid for a configuration 〈p, ω〉, if and only if the reverse of the stack contents ω is accepted
by some finite automata wrt ψ and p. Pushdown model checking on regular properties
with regular valuations can be applied to problems such as Java stack inspection []. The
model checking algorithm on regular valuation is solved by encoded as a simple valuation
problem. Thus, only model checking algorithm with simple valuation is presented.

Definition 3 Let P = (P,Γ,∆, q0, w0) be a pushdown system, and let AP be a finite set of
atomic proposition. Each pair of (ψ, p) (ψ ∈ AP, p ∈ Q) is associated with a deterministic
finite-state automaton Mp

ψ. A regular valuation ν : AP → 2Q×Γ∗

is defined as, for each

ψ ∈ AP , ν(ψ) = {〈p, ω〉 | ωR ∈ L(Mp
ψ)}.

Following to the automata-theoretic approach, the key of efficient pushdown model
checking algorithm is based on the observation that

The set of regular pushdown configurations is closed under forward and back-
ward reachability.

In order to represent the regular set of pushdown configurations, a so-called P -automaton
is introduced.

Definition 4 Let P = (Q,Γ,∆, q0, w0) be a pushdown system. A P -automaton is an
automaton A = (D,Γ, δ, Q, F ), where D is the finite set of states, δ ⊆ D × Γ × D is a
finite set of transitions, Q is the finite set of initial states, and F is the set of final states.

If (q1, γ, q2) ∈ δ, then it is denoted by q1
γ
→ q2. A pushdown configuration 〈p, ω〉 is

accepted by the P -automaton if there exists some q ∈ F such that p
ω
→ q. In particular,

∀q ∈ D, q
ε
→ q.

The last requirement says that a set of configurations is the immediate predecessor or
successor of itself.

13



Let C be the set of pushdown configurations. Let Pre : 2C → 2C be the function that
computes the predecessors of configurations, such that

pre∗(C) = {c ∈ C | ∃c′ ∈ C, s.t. c⇒∗ c′}

Given a P -automaton A that accepts the set of configurations C, it is straightforward
to construct the automaton Apre∗(C) that accepts pre∗(C). Assume there is a pushdown
transition 〈p, γ〉 →֒ 〈q, ω〉. Thus, if the configuration 〈q, ωω′〉 is accepted by A for some
ω′ ∈ Γ∗, then 〈p, γω′〉 is also accepted by A. The principle is summarized as follows

If 〈p, γ〉 →֒ 〈q, ω〉, and q
ω
→ s in the P -automaton,

then a transition (p, γ, s) is added to the P -automaton

The above procedure proceeds until no more rules can be added. The idea of con-
structing the successors of regular configurations is similar. Please refer to [7] for more
details.

Example 2 A pushdown system P = ({q0, q1, q2}, {w0, w1, w2, w3},∆, q0, w0), the push-
down transitions in ∆ are as follows:

(1) 〈q0, w0〉 →֒ 〈q1, w1w0〉
(2) 〈q1, w1〉 →֒ 〈q2, w2〉
(3) 〈q1, w1〉 →֒ 〈q2, w3〉
(4) 〈q2, w3〉 →֒ 〈q0, ǫ〉
(5) 〈q2, w2〉 →֒ 〈q0, ǫ〉

In Figure 6.3, the left-hand-side illustrates the changes of stack contents wrt pushdown
transitions. These three kinds of transitions (i.e. modifications on the stack) are typical;
and the right-hand-side illustrates the corresponding transition graph of P.

The P -automaton A that accepts the a singleton set of configurations C = {〈q2, w3w0〉}
is shown on the left-hand-side of Figure 2.3 and the automaton that accepts Apre∗(C) is
shown on the right-hand-side.

Figure 2.2: The Transition Graph of P

14



Figure 2.3: The automata accepting regular pushdown configurations C and pre∗(C)

2.2 Pushdown Model Checking on Regular Proper-

ties

We will present pushdown model checking on LTL properties with simple valuations.
With regard to simple valuations, we can construct the product of pushdown systems and
Büchi automata.

Definition 5 Let P = (Q,Γ,∆, q0, w0) be a pushdown system. Let AP be the finite set
of atomic propositions for LTL and ψ is a LTL formula. Let B = (S, 2AP , δ, q0, F ) be a
Büchi automata that accepts ¬ψ. A Büchi pushdown system BP = (D,Γ,∆′, q′0, w0, F

′)
is a product of P and B, satisfying that

• D = Q× S

• (((p1, q1), γ), ((p2, q2), ω)) ∈ ∆′, if

– 〈p1, γ〉 →֒ 〈p2, ω〉 ∈ ∆

– q1
ψ
→ q2 and ψ ⊆ ν(q1, γ)

and (((p1, q1), γ), ((p2, q2), ω)) is represented as 〈(p1, q1), γ〉⇀ 〈(p2, q2), ω〉.

• (p, q) ∈ F ′ if q ∈ F

A head of 〈q, γ〉 of BP is repeated if there exists some ω ∈ Γ∗, such that

• 〈q, γ〉⇀∗ 〈q, γω〉; and

• there exists some configuration 〈q′, υ〉 of BP , where q′ ∈ F ′, υ ∈ Γ∗, such that
〈q, γ〉⇀∗ 〈q′, υ〉⇀+ 〈q, γω〉, represented as 〈q, γ〉⇀∗ 〈q, γω〉.

Given a pushdown system P = (Q,Γ,∆, q0, w0) and a LTL formula ϕ, let B be the
Büchi automata that accepts ¬ϕ. Therefore, the the pushdown model checking problem
P |= ϕ amounts to answering

Whether there is an accepting run in the product BP of P and B that starts
from 〈q0, w0〉 and visits some finite states infinitely often.

15



Figure 2.4: The Head Reachability Graph

Namely, the emptiness problem of Büchi pushdown system. Let R be the set of accepted
heads of BP , define

RΓ∗ = {〈q, γω〉 | 〈q, γ〉 ∈ R, ω ∈ Γ∗}

Then, BP has an accepting run starting from some configuration c if c ∈ pre∗(RΓ∗).
Therefore, the problem is reduced to computing the set of repeated heads. [7] proposes

a more efficient method of computing the repeated heads of the Büchi pushdown system
than [26], by constructing a so-called head reachability graph G = ((D × Γ), {0, 1}, E),
given a Büchi pushdown system BP = (D,Γ,∆′, q′0, w0, F

′). The set of edges E ⊆ (D ×
Γ) × {0, 1} × (D × Γ) is constructed as follows:

If there exists 〈q1, γ1〉 →֒ 〈q2, ω1γ2ω2〉,
(1) if 〈q2, ω1〉 →֒∗ 〈q3, ε〉, then ((q1, γ1), G(q1), (q2, γ2)) ∈ E; and further
(2) if 〈q2, ω1〉 →֒∗

r 〈q3, ε〉, then ((q1, γ1), 1, (q2, γ2)) ∈ E

Where G(q) = 1 if p ∈ F ′, and G(q) = 0 otherwise. Then the set of repeated heads
can be computed:

A head is repeated iff it belongs to a strongly connected component (SCC) of
G, and this SCC has an edge labeled with 1.

Example 3 For simplicity, just abuse the previous pushdown system in Example 2 as a
Büchi pushdown system with {q2} as the final states. Figure 2.4 shows its head reachability
graph.

2.3 Weighted Pushdown Model Checking

A weighted pushdown system extends a pushdown system by associating a weight to each
transition rule. The weights come from a bounded idempotent semiring.

Definition 6 A bounded idempotent semiring is a quintuple S = (D,⊕,⊗, 0, 1),
where a set D, and two binary operations ⊕ and ⊗ on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and ⊕ is idempotent.

2. (D,⊗) is a monoid with 1 as the neutral element.

16



3. ⊗ distributes over ⊕, that is, ∀a, b, c ∈ D, a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and
(a⊕ b) ⊗ c = (a⊗ c) ⊕ (b⊗ c).

4. ∀a ∈ D, a⊗ 0 = 0 ⊗ a = 0.

5. The partial order ⊑ is defined on D: ∀a, b ∈ D, a ⊑ b iff a ⊕ b = a, and there are
no infinite descending chains on D wrt ⊑.

Definition 7 A weighted pushdown system is a triple W = (P, S, f), where P =
(Q,Γ,∆, q0, w0) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent semir-
ing, and f : ∆ → D is a function that assigns a value from D to each rule of P.

Example 4 A weighted pushdown system W = (P, S, f) extends the pushdown system
P in Example 2, where S = (D,⊕,⊗, 0, 1) is a bounded semiring with 1 ⊑ 0, where
D = {true,false}, and true is 1 and false is 0.

The ⊕ and ⊗is defined as:

∀a ∈ D, a⊕ 0 = 0 ⊕ a = a

∀a ∈ D, a⊗ 0 = 0 ⊗ a = 0

∀a ∈ D, a⊗ 1 = 1 ⊗ a = a

And f : ∆ → D is defined as:

(1)〈q0, w0〉 →֒ 〈q1, w1w0〉 true

(2)〈q1, w1〉 →֒ 〈q2, w2〉 true

(3)〈q1, w1〉 →֒ 〈q2, w3〉 false

(4)〈q2, w3〉 →֒ 〈q0, ǫ〉 true

(5)〈q2, w2〉 →֒ 〈q0, ǫ〉 true

The transition graph with weight computation is shown in Figure 2.5.

Definition 8 Given a weighted pushdown system W = (P, S, f), where P = (Q,Γ,∆, q0, w0)
is a pushdown system, and S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring. Assume
σ = [r0, ..., rk] be a sequence of pushdown transition rules, where ri ∈ ∆(0 ≤ i ≤ k), and
val(σ) = f(r0) ⊗ ...⊗ f(rk). Let path(c,c′) be the set of all rule sequences that transform
configurations from c into c′. Let C ⊆ Q × Γ∗ be a set of regular configurations, the
generalized pushdown predecessor problem(GPP) is to find for each c ∈ Q × Γ∗:

δ(c) =
⊕

{val(σ)|σ ∈ path(c, c′), c′ ∈ C}

A witness set of paths w(c) ⊆
⋃

c′∈C such that ⊕σ∈w(c)val(σ) = δ(c).
The generalized pushdown successor (GPS) problem can be similarly defined.

The above definition says that, the ⊗ operation propagates data along each path, and
the ⊕ operator combines pathes by satisfying the ordering ⊑.

In the following of this section, the key idea of an efficient algorithm of solving GPP
problem is presented. Weighed pushdown model checking algorithms are implemented
and provided as libraries. They are Weighted PDS and WPDS++. We will apply the
former to our prototype implementation.

Remark 1 As stated in Section 4.4 in [46], the distributivity of ⊕ can be loosened to
a⊗ (b⊕ c) ⊑ (a⊗ b) ⊕ (a⊗ c) and (a⊕ b) ⊗ c ⊑ (a⊗ c) ⊕ (b⊗ c).

17



Figure 2.5: The Transition Graph of W

The Grammar-based Characterization and Solution

The first algorithm of weighted pushdown model checking is based on a traditional gram-
mar valuation algorithm on the context-free grammar, by characterizing pushdown tran-
sitions as productions of a CFL grammar.

Definition 9 A combined pushdown system PA = (D,Γ,∆′, q0, w0) is a combination of
a pushdown system P = (Q,Γ,∆, q0, w0) and the P -automaton A = (D,Γ, δ, Q, F ) wrt
the set of configurations C, where ∆′ = ∆ ∪ Trans, where

Trans = {〈q1, γ〉 →֒ 〈q2, ε〉 | q1
γ
→ q2 ∈ δ}

A configuration is c accepted by PA if there is a path from c to a configuration 〈q, ε〉,
such that q ∈ F .

Since there is no transitions leading to the initial states in A, whenever a non-initial
state is encountered during the pushdown transitions, only a sequence of pop transitions
are possibly applied and leads to a final state in F . Therefore, given C, and starting from
a pushdown configuration c, the key idea of the solution is:

The transitions of PA can be regarded as two phases: First, PA mimics P ;
once PA reaches a non-initial state in A (i.e. D \Q), PA starts mimicking A
and only pop transitions are possible. If a final state in F is reached finally,
and the stack is empty, then c ∈ pre∗(C).

In view of this, a context-free grammar that characterizes pushdown transitions is
defined. Before presenting it, a concept called pop sequence need to be prepared.

Definition 10 Let PA = (Q,Γ,∆, q0, w0) be a combined pushdown system. A pop se-
quence for q ∈ Q, γ ∈ Γ, q′ ∈ Q , denoted by PopSeq(q, γ, q′), is a sequence of transitions
of PA satisfying that

18



• starts with a configuration 〈q, γω〉, where ω ∈ Γ∗; and

• ends with a configuration 〈q′, ω〉; and

• the stack is always of the form ω′ω for some ω′ ∈ Γ∗ except for the last step.

It is not hard to see that: if there exists PopSeq(q, γ, q′) wrt an untouched stack ω, iff
there exists PopSeq(q, γ, q′) wrt the stack ε.

Figure 2.6 depicts the rules for grammar characterization of pushdown transitions,
and the generated grammar is shown in Table 2.1. The left-hand-side gives the pushdown
transition rule of the combined pushdown system, the left-hand-side gives the productions
of the generated grammar.

In particular, the last two extra productions are added. We can see that the set of
pre∗ witnesses for 〈p, γ1γ2...γn〉 is characterized by the complete derivation trees derivable
from the nonterminal Accepted[γ1...γn](p).

Figure 2.6: The Grammar Characterization of Pushdown Transitions

(1) PopSeq(q, γ, q′) → ε 〈q, γ〉 →֒ 〈q′, ε〉
(2) PopSeq(q, γ, q′) → PopSeq(q′′, γ′, q′) 〈q, γ〉 →֒ 〈q′′, γ′〉
(3) PopSeq(q, γ, p) → PopSeq(q′, γ′, p′)PopSeq(p′, γ′′, p) 〈q, γ〉 →֒ 〈q′, γ′γ′′〉
(4) Accepting[γ1...γn](p, q) → PopSeq(p, γ1, q1), ..., P opSeq(qn−1, γn, q)

for p ∈ Q, qi ∈ D (1 ≤ i ≤ n− 1) and q ∈ F
(5) Accepted[γ1...γn](p) → Accetping[γ1...γn](p, q), for p ∈ Q, q ∈ F

Table 2.1: The Grammar Characterization of Pushdown Transitions

Therefore, Given a domain of interest, by associating each grammar production with
a function g on this domain that propagates the “value” of grammar derivations in the

19



backward manner wrt the derivation tree (also as shown in table 2.2), theGPP of weighted
pushdown systems can be solved be a traditional grammar evaluation problem.

(1) PopSeq(q, γ, q′) → g1(ε) r = 〈q, γ〉 →֒ 〈q′, ε〉
g1 = 1 if r ∈ δ else g1 = f(r)

(2) PopSeq(q, γ, q′) → g2(PopSeq(q
′′, γ′, q′)) 〈q, γ〉 →֒ 〈q′′, γ′〉

g2 = λx.f(r) ⊗ x
(3) PopSeq(q, γ, p) → g3(PopSeq(q

′, γ′, p′), P opSeq(p′, γ′′, p)) 〈q, γ〉 →֒ 〈q′, γ′γ′′〉
g3 = λx.λy.f(r) ⊗ x⊗ y

Furthermore,
(4) Accepting[γ1...γn](p, q) → g4(PopSeq(p, γ1, q1), ..., P opSeq(qn−1, γn, q))

for p ∈ Q, qi ∈ D (1 ≤ i ≤ n− 1) and q ∈ F
g4 = λx1...λxn.x1 ⊗ ...⊗ xn

(5) Accepted[γ1...γn](p) → g5(Accetping[γ1...γn](p, q)), for p ∈ Q, q ∈ F
g5 = λx.x

Table 2.2: The Grammar Characterization of Pushdown Transitions

This solution is not efficient because starting with terminals, all possible derivations
(including those not contribute the final result of interest) are explored.

The Annotated Automata-based Soluation

More efficient algorithms are developed by borrowing the idea of computing pre∗(C)
and post∗(C) for pushdown model checking. Fore weighted pushdown model checking, a
weighted version is developed for pre∗(C), given a set C of regular configurations. Initially,
a P -automaton A is constructed wrt C, and each edge in A is labeled with the weight 1.
Edges are added and the labels are updated according to the some rules. Here we provide
a basic sketch of the algorithm construction, helped with figures.

Given a weighted pushdown system W = (P, S, f), where P = (Q,Γ,∆, q0, w0), and
S = (D,⊕,⊗, 0, 1). Given a P -automaton A = (D,Γ, δ, Q, F ) that accepts some set C of
configurations, and there are no transitions into states in P initially. Let getLabel be
the function that keeps the up-to-date mappings between edges and their labeled weights
in A. The algorithm of computing pre∗(C) is an iterative procedure as follows, as well as
explanations.

1. Initialization

• getLabel = λt.0, for t ∈ δ

• workset = ∅

• for all t ∈ δ, getLabel(t) = 1

• for all r = 〈q1, v1〉 →֒ 〈q2, ε〉, δ = δ ∪ {e} and getLabel(e) = f(r), where
e = (q1, v1, q2)

2. Iterative Procedure
For v1, v2, v3 ∈ Γ, q1, q2 ∈ Q, s, s′ ∈ D, if workset 6= ∅, take and remove a
transition t = (q2, v2, s) from workset, if

20



• r = 〈q1, v1〉 →֒ 〈q2, v2〉
if for some w ∈ Γ∗, there exists 〈q2, v2w〉 is accepted by A, then there exists

〈q1, v1w〉
r
→֒ 〈q2, v2w〉 →֒∗ c, for some c ∈ C

Let e = {(q1, v1, s)}, and value = f(r) ⊗ getLable(t) as shown in Figure 2.7.

– if e /∈ δ, δ = δ ∪ {e}; getLable(e) = value, and workset = workset ∪ {e}.

– otherwise, let tmpval = value ⊕ getLable(e). If getLable(e) 6= tmpval,
getLable(e) = value ⊕ getLable(e) and workset = workset ∪ {e}.

To note that, no infinite ascending chain ensures termination.

• If r = 〈q1, v1〉 →֒ 〈q2, v2v3〉
if for some w ∈ Γ∗, there exists 〈q2, v2v3w〉 is accepted by A, then there exists

〈q1, v1w〉
r
→֒ 〈q2, v2v3w〉 →֒∗ c, for some c ∈ C

In this case, e = {(q1, v1, s
′)}, and value = f(r)⊗ getLable(t)⊗ getLable(t′),

as shown in Figure 2.8. The updates on edges and labels are the same with
the first case.

• If r = 〈q1, v1〉 →֒ 〈q2, v2v2〉
if for some w ∈ Γ∗, there exists 〈s′, v3v2w〉 is accepted by A, then there exists

〈q1, v1w〉
r
→֒ 〈s′, v3v2w〉 →֒∗ c, for some c ∈ C

In this case, e = {(q1, v1, s)}, and value = f(r)⊗ getLable(t′) ⊗ getLable(t),
as shown in Figure 2.9. The updates on edges and labels are the same with
the first case.

Figure 2.7: 〈q1, v1〉 →֒ 〈q2, v2〉

Given the automaton A∗
pre constructed above, for each c ∈ P × Γ∗, the value v(c)

is read off from the automaton by accumulating values along each accepted run by ⊗
operator; and all accepted runs are combined by ⊕ operator.

Remark 2 It can be seen from the algorithm that, the associativity of ⊗ operation can
also be loosened, as long as both directions are sound wrt the abstract program semantics.

21



Figure 2.8: 〈q1, v1〉 →֒ 〈q2, v2v3〉

Figure 2.9: 〈q1, v1〉 →֒ 〈s′, v3v2〉

2.4 Application to Interprocedural Program Analy-

sis

2.4.1 Why Weighted Pushdown Model Checking

The model checking based approach provides an attractive systematic way to program
analysis. Pushdown systems, i.e. equivalently context-free languages, naturally model
procedural calls and recursions by remembering the return call sites. Thus, program
analysis based on pushdown model checking is essentially context-sensitive and interpro-
cedural. In contrast, some bound is traditionally placed on the recursion steps such as
k-CFA [42].

Weighted pushdown systems extend pushdown systems with a bounded idempotent
semiring. It enjoys the aforementioned advantages of pushdown systems. Whereas, the
proposal of weighed pushdown model checking aims at solving the traditional meet-over-
all-valid-pathes (MOVP) solution. By valid, it means calls and returns can correctly match
each other along a program path. The MOVP solution propagates data flow analysis along
each path and combine the results of pathes that meets some criterion.

Apart from natural context-sensitivity, weighted pushdown model checking has more
preferable advantages for interprocedural program analysis.

• Pushdown model checking problem is reduced to the emptiness problem of au-
tomata. Whereas, weighted pushdown model checking provides reachability anal-
ysis from the single source to regular target and vice versa. This flexibility allows
pushdown systems to be constructed on-the-fly and consequently the analysis of
partial balanced parentheses. That is, the analysis can go into called procedures
before the procedure call returns.

22



• Due to follow the known-as automata-theoretical approach, Pushdown model check-
ing demands finite domain abstraction. Weighted pushdown model checking loosens
the requirement as no infinite descending chains on the weighted domain. For in-
stance, an interprocedural constant propagation analysis can be done by weighted
pushdown model checking with a possibly infinite domain abstraction[46].

• Model checking based on weighted pushdown systems also provides program analysis
with extra bonus: a witness set is provided by model checking for the analysis result.
Such an “explanation” helps both program analysis and debugging.

When applied to program analysis, the intuition behind ⊗ and ⊕ of weights is:

• A weight intends a function to represent how a property is carried at each step of
program execution.

• f ⊗ g intends the function composition g ◦ f .

• f ⊕ g intends a conservative approximation at the meet of two control flows, such
as a conditional sentence.

• Non-commutativity of ⊗ facilitates modeling a flow-sensitive analysis.

Therefore, a weighted pushdown system computes how properties are carried along each
execution path and how they are combined. Naturally,

• 1 could be interpreted as properties keep unchanged by this transition step;

• 0 could be interpreted as the program execution is interrupted by some error.

Assume a Galois connection (L, α, γ,M) between the concrete domain L and the
abstract domain M , and a monotone function space Fl : L → L. The corresponding
functions Fm : M →M on the abstract domain is defined as

Fm = {fm | fm ⊇ α ◦ fl ◦ γ, fl ∈ Fl}

Fm is a monotone function space, and less precise but conservative approximation can
always be obtained by ⊗ and ⊕ operations. Therefore, although program analysis based
on weighted pushdown model checking works on flow function spaces instead of property
domains, soundness can be naturally preserved, with a systematic abstraction design.

2.4.2 An Encoding of Programs as Pushdown Systems

Abstraction is a fundamental step for program analysis based on model checking. A sound
and enough compact abstraction is expected. The choice of the underlined model also
matters on the problem solving. Control flow graphs (CFG) are probably the simplest
transition systems of the program in terms of procedures. We follow a conventional graph
representation of interprocedural CFGs (also called supergraph in [38]).

Definition 11 An interprocedural control flow graph is defined as Gf = (Nf , Ef), where
Nf is the set of nodes associated with program statements Stmt, and Ef ⊆ Nf ×Nf is the
set of edges.

23



Let StmtOf: Nf → S ∪ {∅} be a function that gets the program statement associated
with a node in an interprocedural CFG. Furthermore, an unique entry node and exit
node are introduced to CFGs of each procedures. A node associated with a procedural
call is represented by three nodes, one for call sites, one for return points, and another
for getting return values if any.

Example 5 As shown in Figure 2.10, a node n with StmtOf(n)= “z = x.f(y)” will be
represented by: call site n1 with StmtOf(n1)= “x.f(y)”; return point n2 with StmtOf(n2)=
∅; n3 with StmtOf(n3)= “z = ret”, where ret is a newly-introduced global variable for
return values.

n0

{x.f(y)} n1 f e

∅ n2

{z = ret} n3 f x

ei∈Ei

et∈Et

ei∈Ei

ec∈Ec

er∈Er

Figure 2.10: Edges in An Interprocedural CFG

In addition to intraprocedural edges Ei, three kinds of edges are added:

• A call edge Ec from the call site in the caller to the entry of the callee.

• A return edge Er back from the callee to the return point in the caller.

• A call to return edge Et from call site to its return point in the caller.

Therefore, Ef = Ei∪Ec∪Er ∪Et. To note that, there is no control flow corresponding to
call to return edge in the real program execution. However, values of local variables keep
unchanged during a procedure call, and can take a short-cut by Et for efficiency when there
are no bothers due to aliasing. There are some “dummy edges” in the interprocedural
CFG after the above modifications, such as the edge of (n0, n1) that leads to the call site.
All variables keep unchanged along the dummy edges.

Although weighted pushdown systems are further extended to extended weighted push-
down systems(EWPDS) [34], we think the the abstraction based on supergraph is enough.
EWPDS excludes the call to return edge in the supergraph abstraction. Instead, a merge
function is proposed to restore the local variables of caller procedures when callee proce-
dures return.

Recall the usual abstractions on programs for finite model checking, the product of
global variables and local variables and program control points(nodes of the CFG) is en-
coded as a state of the finite transition system. For pushdown model checking, a stack
enables simulation of the runtime stack of programs. Based on the interprocedural CFG,
there are various choices of encoding programs as pushdown systems. Just recall usual
program executions based on stack machine, a stack can be exploited for remembering

24



the contexts for each procedural call, i.e. the returned control point and local program
states. Here we follow the convention that all program points are pushed into and popped
up from the stack.

The encoding from Gf = (Nf , Ef ) to P = (Q,Γ,∆, q0, w0) is: Q is a singleton set {·};
Γ = Nf ; w0 is the entry node of Gf ; and ∆ is constructed as follows, ∀e = (ni, nj) ∈ Ef ,

• 〈·, ni〉 →֒ 〈·, nj nk〉 if e ∈ Ec and nk is the return point of ni

• 〈·, ni〉 →֒ 〈·, nj〉 if e ∈ Ei ∪Et

• 〈·, ni〉 →֒ 〈·, ε〉 if e ∈ Er

Beside control flows, a usual encoding on data flows such as in Moped is: global
variables are encoded as control states, and the product of local variables and program
control points is encoded as stack symbols. After all, the problem to be analyzed decides
the encoding choice.

25



Chapter 3

Points-to Analysis

Points-to analysis analyzes the set of dynamically allocated heap objects pointed to by
variables of pointer type, such as pointers in C and reference values (often just refer-
ences [36]) in Java. Points-to analysis is not a simple matter, especially for object-oriented
languages such as Java. For instance, on some occasions, the method to be called for a
method invocation depends on the actual type of the implicit parameter (i.e. the “re-
ceiver” object to which a method call is applied). That is, some method invocations are
dynamically decided by the type information of object variables. It tells that the call
graph generation and points-to analysis are mutually dependent and quite equivalent.

The control flow graph is basically the starting point for the static analysis of im-
perative and object-oriented programming languages. Furthermore, lots of analyses for
Java, such as aliasing analysis, escape analysis, side-effect analysis, and safety downcast
analysis, etc., require precise points-to information. Since points-to analysis is the basis
of most other program analysis, it comes as our first target. This chapter is primarily
dedicated to a brief introduction to points-to analysis for Java, and a discussion on the
design choices that we concerned on the points-to analysis algorithms proposed in the
following chapters.

This chapter is organized as follows: In Section 3.1, a brief introduction to points-to
analysis for Java is given. In Section 3.2, primary difficulties in points-to analysis are
presented. In Section 3.3, a detailed discussion on our design choices of designing the
points-to analysis algorithms are presented. In Section 3.4, related work is given.

3.1 Points-to Analysis

In Java, an object that is allocated on the heap memory is either a class instance or an
array. References are pointers to these objects, and a special null reference that refers to
no object. The purpose of points-to analysis for Java is to analyze the set of allocated
heap objects possibly pointed to by references at runtime. Since objects are pervasive for
an object-oriented programming language, it is not surprising that points-to analysis is
the basis of most program analysis for Java. For easy representation, we use the flowing
example throughout this thesis.

Example 6 Figure 3.1 and 3.2 presents a simple personal management with two Java
classes, Employee and Professor. Class Professor inherits Class Employee, and over-
writes two methods: getSalary() and method(Employee). This example is a variant from
[40], the “dummy” method is introduced to show the taste of points-to analysis.

26



1. class Employee

2. {

3. public Employee(String n, double s)

4. {

5. name = n;

6. salary = s;

7. }

8.

9. public String getName()

10. {

11. return name;

12. }

13.

14. public double getSalary()

15. {

16. return salary;

17. }

18.

19. public Employee method(Employee a)

20. {

21. return a;

22. }

23. private String name;

24. private double Salary;

25. private Employee f;

26. }

Figure 3.1: An Example of Personnel Management (1)

The research of points-to analysis (or reference analysis) for objected-oriented lan-
guages has been going on for more than ten years. Before that, points-to analysis on C
has been extensively investigated. Compared with C/C++, Java has a simpler pointer
syntax, e.g. no explicit dereferencing operator such as “*” and the “&” operator for fetch-
ing the address of variables. For instance, after the following code fragment, the reference
y points to the same heap object with x.

1. Employee x, y;

2. x = new Employee("Ben", 1000);

3. y = x;

A graph representation of points-to relations, such as pointer assignment graph (PAG)[57],
is the basis of most flow-insensitive points-to analysis. For instance, subset-based algo-
rithms [47], or CFL-reachability algorithms [52] are performed on PAG-like graphs. A
PAG represents the flows-to relation, i.e. the inverse of the points-to relation.

Example 7 Figure 3.3 (a) shows an example Java code fragment, and its PAG is pre-
sented in Figure 3.3 (b). In (b), dotted edges show interprocedural points-to relations;
o1, o2, o3, and o4 are abstract heap objects allocated at the allocation sites 1, 2, 3, and 6
respectively.

27



27. class Professor extends Employee

28. {

29. public Employee(String n, double s)

30. {

31. super(n, s);

32. bonus = 0;

33. }

34.

35. public void setBonus(double b)

36. {

37. bonus = b;

38. }

39.

40. public double getSalary()

41. {

42. double base = super.getSalary();

43. return (base + bonus);

44. }

45.

46. public Employee method(Employee a)

47. {

48. return a.f;

49. }

50. private double bonus;

51. }

Figure 3.2: An Example of Personnel Management (2)

In this example, a virtual method call occurs at line 5. Due to polymorphism, the
receiver object of this invocation can be instances of either Class Employee or Class
Professor. For instance, the following assignment is valid. Thus, the exact method to
be called will be postponed at runtime.

Employee x;

x = new Professor("Ben", 2000);

In (b), a conservative result is given. That is, both Employee.method and Professor.method
are considered to be called. A flow-sensitive analysis can figure out that the actual type
of x is o2. Thus, an invalid path to Employee.method from x can be eliminated. Based on
the calling structures resolved, it can be inferred that z points to o3. This example clearly
shows, points-to analysis needs a call graph which represents calling relation among meth-
ods in a program; on the other hand, the call graph construction depends on the results
of points-to analysis.

3.2 Difficulties

As mentioned above, call graph construction and points-to analysis are mutually depen-
dent and quite equivalent. Program analysis for Java becomes difficult due to this inter-

28



public static void main(String[] args)

{

Employee x;

Professor y;

1. x = new Employee("Ben", 2000);

2. y = new Professor("Jean", 5000);

3. y.f = new Employee("Mike", 1000);

4. x = y;

if(true)

{

5. Employee z = x.method(y);

}

else

{

6. x.f = new Employee("Tom", 1000);

7. Employee v = y.method(x);

}

}

o2 o1

y x

b a

v b.f z

o3 y.f x.f o4

2 1

4

7 5 5

5

7 5

3 6

Figure 3.3: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)

dependency. To construct a precise control flow for Java, the primary issue is to handle
dynamic binding. That is, due to parametric polymorphism, an object variable can refer
to objects of multiple actual types. That is, a reference variable can point to heap objects
of its subtype in addition to those of its declared type. Since Java enforces declared type
strategy, which method is to be called in some method invocations is postponed to the
run-time.

To understand the later formalizations and analysis algorithms, a brief explanation on
Java dynamic binding is presented here [40]. Given a method call x.f(arg)

1. First, the compiler checks the declared type DeclaredType of the implicit
parameter x, and collects all methods called f in the class DeclaredType
and all public methods called f in the super-classes of DeclaredType.
These methods are all possible candidates to be called.

2. Then, the compiler checks the types of all parameters, i.e. arg here. If
the compiler cannot find any method with matching parameters or there
are multiple matches. A compiler time error will be reported.

3. After that, if the method is declared as private, static, final, or a con-
structor, it can be determined statically. Otherwise, the method to be
called is dispatched at run-time.

4. A dynamic binding happens at run-time when the actual type ActualType
of the object that x points to is clear. The Java virtual machine will look
for the method f(arg) in the class ActualType. If ActualType does
not redefine this method (namely not directly inherit), the super class of
ActualType will be searched, and so on.

Besides, other difficulties of points-to analysis come from:

29



• The number of nestings of array structures, of method invocations, and of field
access can be unbounded.
For instance, the components of an array can again be arrays, the field access can
be in the form of “x.f1.f2...fn” syntactically.

• The number of heap objects allocated can be unbound.
For instance, a heap allocation is within a while loop, or a method containing a
heap allocation is recursively called from different contexts.

• Due to aliasing, fields could be changed dynamically and implicitly.
For instance, consider a program fragment

y = o1;

y.f = o2;

x = y;

x.f = o3;

After this fragment, y.f points to o3 (not o2) by the side effect of x.f = o3. Such
side effect is caused by the aliasing of x = y.

3.3 Design Choices

Our aim is to propose context-sensitive points-to analysis algorithms in the framework
of weighted pushdown systems. First of all, pushdown systems provide us with handy
context-sensitivity in two respects:

• Method calls and returns are guaranteed to be correctly paired;

• Calling contexts are naturally represented as regular pushdown stores. That is, no
bound is placed on the depths of recursions and nested calls.

Under such a choice, three are still primary dimensions to be examined on both model
construction and algorithm design.

• An exploded supergraph [37, 38] based model construction vs An interprocedural
CFG based model design
These are two typical choices of underlying models for program analysis. An ex-
ploded supergraph represents dataflow among variables as a graph [37, 38]. This
enables us a compact model encoding as a weighted pushdown system with a mod-
erate loss of precision. The control flow graph based model construction is conven-
tional and straightforward, but the analysis on data flow facts need to be captured
by the weight space design, which may result in relatively heavy weight space in the
weighted pushdown system.

• On-the-fly vs Ahead-of-time call graph construction
To solve the mutual dependence between points-to analysis and call graph genera-
tion, there are basically two approaches.

30



– By on-the-fly call graph construction, we mean that call edges are resolved
once possible, when points-to analysis proceeds. Thus, on-the-fly call graph
construction computes the least solutions, i.e., starting with the empty call
graph, a call edge is added if points-to analysis detects its possibility.

This essentially requires repeated applications of model checking on partial
models. Note that this procedure must be continued until stabilized; otherwise,
soundness will not be guaranteed. (Section 4.1.2, Section 5.1.2.)

– By ahead-of-time call graph construction, we mean that an approximated call
graph is computed in advance; and the result of points-to analysis on it further
refines the set of call edges. This procedure proceeds until the results stabilize.
Thus, ahead-of-time call graph construction computes the greatest solutions,
i.e., starting with an imprecise call graph (e.g. generated by a syntactical
analysis only), a call edge is eliminated if points-to analysis refutes it.

This would also require repeated applications of model checking on models,
but how many times one repeats is up to the choice of trade-off between preci-
sion and efficiency, because soundness is guaranteed by nature. (Section 4.1.3,
Section 5.1.3)

Based on empirical studies, the on-the-fly manner is regarded to be more precise
than the ahead-of-time manner, except more iterations are usually needed.

Apart from the above primary dimensions, we also have choices of flow sensitivity and
field sensitivity.

• flow-sensitive vs flow-insensitive
A flow-sensitive analysis takes into account the execution order of program codes;
otherwise, the analysis is flow-insensitive. Flow sensitivity is a rather design choice
under the tradeoff between precision and efficiency. One smart idea is combining
SSA (Static Single Assignment) and complete flow insensitivity [43]; this reduces
each method to a single control point with the cost of larger number of variables.

We do not take this approach; instead the scope management of variables lies in the
weight design. We also design how to introduce parameterized field insensitivity:
the model reduction (Section 4.2) and the weight simplification (Section 5.2).

• field-sensitive vs field-insensitive
Field-sensitivity mainly talks about how instance fields are abstracted in the points-
to analysis. A field-sensitive analysis distinguishes the instance fields of objects and
traces field access to get precise points-to information. The issue of field sensitivity
is rather on an abstraction level. Since field access in Java can unboundedly nest,
we need to give a bound to it, similarly to an abstraction on arrays.

A taxonomy of dimensions in points-to analyses for objected-oriented programming
languages are presented in [39]. There are still some dimensions we have not mentioned,
such as object representation, reference representation, and directionality.

Since theses concerned design choices are independent of the use of model checking
framework, their effect on the analysis design will not be explored. The choices on them
is rather a tradeoff among efficiency and precision. Our abstraction strategy on them is
as precise as possible.

31



3.4 Related Work

Over the last decade, points-to analysis is an active research field due to its crucial role
in program analysis and compiler optimizations.

One of the pioneer work in this field is Andersen’s points-to analysis [47] for C. It
is a subset-based, flow-insensitive analysis implemented via constraint solving, such that
object allocations and pointer assignments are described by subset constraints, such as
x = y ⇒ pta(y) ⊆ pta(x). The scalability of Andersen’s analysis has been greatly
improved by more efficient constraint solvers [48, 49]. Andersen’s analysis was introduced
into Java by using annotated constraints[50].

Reps presents a points-to analysis algorithm for C [38], by formulating pointer as-
signments as productions of context-free grammars. Borrowing this view, Andersen’s
analysis is further formulated as a CFL-reachability problem for Java [51]. The key in-
sight is that the field access in Java is formulated as a balanced-parentheses problem. A
refined context-sensitive points-to analysis is proposed later by excluding invalid paths
with CFL-reachability[52] also. The demand-driven strategy makes this analysis scale.

A scalable context-sensitive points-to analysis for Java is presented in [54]. Programs,
as well as analyses, are abstracted and encoded as the set of rules in logic programming.
Their context-sensitivity is obtained by cloning a method for each calling context, by
regarding loops as equivalent classes. The analysis under such a construction should be
out of control. However, the implementation based on BDD makes the analysis scale.

Spark is an influencing framework for experimenting with points-to analysis for Java.
It supports both equality and subset-based analysis; provides various algorithms for call
graph construction, e.g., CHA[55], RTA[56], and on-the-fly algorithm; enables variations
on field-sensitivity, etc. The BDD-based implementation of the subset-based algorithm
further improves the efficiency of operations on points-to sets[58]. It is the testbed for
many points-to analysis for Java. Our analysis also borrow its facility for generating call
graph in an ahead-of-time analysis.

Apart from CFL-reachability based context-sensitivity, Milanova et. al [44] explore
another approach to context-sensitivity based on so-called object-sensitivity. The key is
a method call is distinguished by a sequence of distinct receiver objects, rather than call
strings. However, similar to call strings based approach, the sequence of receiver objects
can be unbounded. Some bound is placed similar to the occasion of k-CFA.

A recent empirical study on the effect of context-sensitivity is presented [45], which
evaluate the precision of subset-based points-to analysis with an eye on various abstrac-
tions wrt context-sensitivity. Their study shows that object-sensitivity based analysis
is likely to perform better than the call strings based and the BDD-based context-
sensitive [58] analysis. In particular, it shows that a context-sensitive analysis is crucial
due to the rich cycles in Java call graphs.

Barbara [39] also gives a taxonomy of dimensions that concerned in the points-to
analysis over nearly a decade.

32



Chapter 4

Context-sensitive Points-to Analysis

based on Exploded Supergraph

Since points-to analysis is the basis of interprocedural program analysis for Java, it comes
as our first analysis target. This chapter, as well as the next chapter 5, is dedicated to
designing context-sensitive points-to analysis algorithms for Java based on weighted push-
down model checking, following to the methodology that Program analysis is abstraction
plus model checking. We aim at exploring the following questions:

• Whether a crucial and tough program analysis like points-to analysis can be solved
based on model checking ?

• Points-to analysis is an extensively-explored topic. Whether the primary design
choices concerned in the traditional approaches can be solved as model checking
problems ?

• How the model checking based approach benefits points-to analysis compared with
traditional ones ?

First of all, pushdown systems provides us with handy context-sensitivity. To solve the
mutual dependency among call graph construction and points-to analysis, both on-the-fly
and ahead-of-time analysis are investigated. Both an exploded supergraph [37, 38] based
(Chapter 4) and an interprocedural control flow graph based (Chapter 5) approaches are
explored and compared. Our study shows the CFG based model design provides facilities
for the algorithm construction.

For other difficulties from various infinity (Section 3.2), our tentative solutions are:

• An array is abstracted to a single heap allocation, (i.e., difference among indices in
an array are ignored, but difference among the arrays are distinguished);

• A bound is set on field nesting in the ahead-of-time call graph constructions. That
is, access to a nested field beyond the bound will be treated as access to any heap
allocation;

• The context-insensitive heap abstraction is adopted, i.e. an abstract heap object is
associated with its allocation site.

• To handle aliasing and delicate Java semantics, an abstraction obeying to Java
operational semantics is carefully designed (Section 4.1.2 and 5.1.1).

33



Flow-sensitivity is a choice on the tradeoff among precision and efficiency. We explore
a relatively unexplored topic of parametrization. In our algorithms, parameterized flow-
sensitivity can be naturally obtained by either model reduction (Section 4.2) or simplifying
the weight space design (Section 5.2).

This chapter is organized as follows:
In Section 4.1.1, an abstraction on Java heap memory by exactly following to Java

semantics is given. In Section 4.1.2, a context/field/flow-sensitive points-to analysis algo-
rithm is proposed, based on the exploded supergraph model design and on-the-fly algo-
rithm construction. In section 4.1.3, another context/field/flow-sensitive points-to analy-
sis algorithm is proposed, based on the exploded supergraph model design and ahead-of-
time algorithm construction.

In Section 4.2, we further investigate the relatively unexplored parametrization prob-
lem. By applying model reduction, parameterized flow-sensitivity is naturally obtained
on the algorithms proposed in Section 4.1.

In Section 4.3, a prototype implementation is proposed, and some preliminary eval-
uation is given. The algorithms and implementation aspects of our analysis are also
presented and discussed finally.

4.1 Exploded Supergraph Based Model Design

In this section, we propose context-sensitive points-to analysis algorithms based on an
exploded supergraph model design. Call graph generation (i.e. model construction for
model checking) and points-to analysis (i.e. model checking) are mutually dependent.
Both the on-the-fly (Section 4.1.2) and ahead-of-time (Section 4.1.3) model construction
are investigated.

4.1.1 An Abstraction of Java Heap Memory

A heap object in Java is either a class instance or an array. These objects are allocated in
the heap memory. Each heap object has a corresponding type and allocation site, which
can be decided syntactically.

Definition 12 Let V be a set of abstract reference variables and O be a set of abstract
heap objects respectively. A transitive and reflexive points-to relation is defined as 7→:
V × (V ∪ O).

Let F be a set of field names and L be a set of local variables. An instance field is
referred in the form of l.f(l ∈ L, { ∈ F) syntactically.

Definition 13 Let C be a set of program calling contexts and P be the powerset operator,
a context-sensitive points-to analysis is defined as pta : V × C → P(O).

Definition 14 A field sensitive analysis abstracts an instance field l.f as pairs of {(o, f) | o ∈
pta(l, context), context ∈ C}. A field-based (resp. field-insensitive) analysis ignores the
first component (resp. the second component).

Definition 15 A pointer assignment graph Ga = (Na, Ea) is a graph where Na = V ∪ O
and Ea = = 7→−1.

34



Let O be a set of run-time objects allocated in the heap memory. Let T be a finite set
of types (class names) of heap objects. Let Loc be a finite set of memory allocation sites in
the program. Let ητ : O → T and ηι : O → Loc be functions that get the corresponding
type and allocation site of a heap object respectively.

Definition 16 Let Vl be the set of local variables, let Vs be the set of static fields.The set
of abstract reference variables is RefVar = Vl ∪ Vs ∪ {argk, this, ret | k ∈ N}, and the
set of reference fields RefField = O ×F+. Let Vref = RefVar ∪ RefField.

Vref defines the concrete kinds of references that we are interested in during the follow-
ing analysis. By reference fields, we mean fields of reference type. O×F+ represents the
set of reference fields (that could be nested) with a precise field-sensitive abstraction. The
new variables ret and argk(k ∈ N) are introduced to model return values and parameters
passed in a method invocation respectively. Another new variable this is introduced to
model the keyword this in Java. For instance, it may denote a reference to the object
which an instance method call was applied to.

Definition 17 Let O ⊆ T × L ∪ {⋄,⊤} be a set of abstract heap objects, where ⋄
represents null reference that can also serve to represent uninitialized, ⊤ represents a
“generic” heap object whose type and allocation site can be any. An abstraction on O is
defined as α : O → O, such that

∀o ∈ O , α(o) = (ητ (o), ηι(o))

In particular, it is required that

∀(τi, ιi), (τj, ιj) ∈ O, ιi = ιj ⇒ τi = τj

The above abstraction says, the same heap memory allocation site in the program
results in an unique abstract heap object. At the current stage, we approximate an array
with a single array element to be a representative.

Let type : O → T be the function that gets the type of an abstract object. Let any

be the corresponding type of ⊤, and none be the corresponding type of null reference, i.e.

any = type(⊤)

none = type(⋄)

Program analyses based on weighted pushdown model checking examine transfer func-
tions on the data domain of programs. For points-to analysis, our focus is transfer func-
tions on heap environments. As will be seen in Chapter 5, a weight space is delicately
designed based on transfer functions on abstract heap environments.

In this section, a model construction based on the exploded supergraph is proposed.
By exploding the heap environment separately for each reference variable, a weight space
is designed based on the changes of data flows. Thus the data domain of interest is a
powerset construction on heap objects as follows.

Definition 18 A Galois connection (P(O), α,P(O), γ) is defined between the two com-
plete lattices (P(O),⊆) and (P(O),⊆) with α : P(O) → P(O) and γ : P(O) → P(O)
such that

α(∅) = γ(∅) = ∅

∀so 6= ∅ ⊆ O , α(so) = {α̃(o) | o ∈ so}

∀sc 6= ∅ ⊆ O, γ(sc) = {o ∈ O | α̃(o) ∈ sc}

35



Table 4.1: A Point-wise Representation of Pointer Assignments

4.1.2 On-the-fly call graph construction

A straightforward approach to points-to analysis is a reachability analysis on data (i.e.
references) flows. For efficiency, a variation of “exploded supergraph”[38], named a flow-
sensitive flows-to graph, is used as the underlined model for model checking. The exploded
supergraph represents data flows by the explicit product of control flows.

The key of the exploded supergraph construction is a point-wise representation of
transfer functions on the data flow “facts” of interest [38]. Table 4.1 shows such a basic
point-wise representation of pointer assignments in our case, with the assumption that an
abstract heap object o1 is associated with the allocation in the case (2), and the x points
to o1 for the case (3). Λ could be interpreted as a heap environment that allocates new
heap objects.

Let A[[·]] : Stmt → P( ) be the abstraction function on program statements Stmt, as
defined in Table 4.2, where context ∈ C is the program calling context wrt the analysis
point. As is shown in Table 4.2, a points-to analysis is performed for a field-sensitive
abstraction whenever a field access is encountered. Labeled functions show the changes
of data flow wrt references on the ends of the edge.

Definition 19 Let Gf = (Nf , Ef) be an interprocedural CFG. Let Np = ({Λ}∪VO)×N{,
let Lp = {λx.x}∪{λx.o | o ∈ O}, and Ep = Np×Lp×Np. A flow-sensitive flows-to graph
Gp = (Np, Ep, Lp) is constructed as follows.

36



Table 4.2: A[[·]] : Stmt → P( )
Jimple Syntax Flows-to Relation
x = new T() {x 7→ o}−1, where o ∈ O is a fresh abstract heap object and

type(o) = T
x = newarray T() {x 7→ o}−1, where o ∈ O is a fresh abstract heap object and

type(o) = T
x = null {x 7→ ⋄}−1

x = y {x 7→ y}−1

x = y.f {x 7→ o.f | o ∈ pta(y, context)}−1

y.f = x {o.f 7→ x | o ∈ pta(y, context)}−1

return x {ret 7→ v}−1, where x is a reference variable
x.f(m1, ..., ml, ml+1, ..., mn) {arg1 7→ m1, ..., argl 7→ ml, this 7→ x}−1,

where mi(1 ≤ i ≤ l) are reference variables,
mj(l + 1 ≤ j ≤ n) are variables of primitive type

f(m1, ..., ml, ml+1, ..., mn) {arg1 7→ m1, ..., argl 7→ ml, }−1,
where mi(1 ≤ i ≤ l) are reference variables,

mj(l + 1 ≤ j ≤ n) are variables of primitive type
z = ret {z 7→ ret}−1

x := @this: T {x 7→ this}−1

x := @parameterk : T {x 7→ argk}
−1

Ep =
⋃

ef∈Ef
Ep,ef

, where for each ef = (n1, n2) ∈ Ef

Ep,ef
=































































































































{((v, n1), λx.x, (v, n2)) | v ∈ StableSet ∪ {Λ}} if ef ∈ Ei

∪ {((v1, n1), λx.x, (v2, n2)) | (v1, v2) ∈ FlowsTo, v1 ∈ VO}

∪ {((Λ, n1), λx.o, (v, n2)) | (o, v) ∈ FlowsTo, o ∈ O}

where FlowsTo = A[[StmtOf(n2)]]

StableSet = VO − {v | (v′, v) ∈ FlowsTo}

{((v, n1), λx.x, (v, n2)) | v ∈ Vl} if ef ∈ Et

{((v, n1), λx.x, (v, n2)) | v ∈ Vref \ Vl} if ef ∈ Ec

∪ {((v, n1), λx.x, (v
′, n2)) | (v, v′) ∈ FlowsTo}

where FlowsTo = A[[StmtOf(n1)]]

{((v, n1), λx.x, (v, n2)) | v ∈ Vref \ Vl} if ef ∈ Er

{((v, n1), λx.x, (v, n2)) | v ∈ Vref} if ef is dummy

Based on the on-the-fly call graph construction, Gp is also constructed on-the-fly
whenever one edge in Gf is known. For efficiency, only the set of reference variables,
which appear in the program up to this point, contributes to the construction of Gp. The
edge of (v1, λx.x, v2) intends that, points-to sets of v2 are the same with that of v1; and
the edge of (Λ, λx.c, v) intends that v points to c.

37



n0 {Λ}

n1 {Λ x}

n2 {Λ y x}

n3 {Λ o2.f y x}

n4 {Λ o2.f y x}

n5 {Λ o2.f y x} m0 {Λ o2.f a x}

n6 {Λ o2.f y x ret} m1 {Λ o2.f ret a x}

n7 {Λ o2.f y x ret z}

λx.o1

λx.o2

λx.o3

n0 ∅

n1 {1}

n2 {2}

n3 {3}

n4 {4}

n5 {x.m(y)}

n6 ∅

n7 {z = ret}

Figure 4.1: (a) Part of the Gp w.r.t (b) (b) One Run in Gf of Figure 1 (a)

Example 8 Figure 4.1 shows part of the Gp of the example in Figure 3.3 (a). It cor-
responds to one possible run of the program along line numbers of 1-2-3-4-5. Dotted
edges are used to stress the interprocedural flows-to relations. Abstract reference variables
enclosed by {} belong to one node of Gf , within which there are no transitions inside.
For simplicity, edges without labels in the figure are labeled with λx.x. By a pushdown
reachability analysis on Gp, we know z points to o3.

Let S = P(O), define

D1 = {λx.s | s ∈ S} and D2 = {λx.x ∪ s | s ∈ S}

Therefore λx.∅ ∈ D1 and λx.x = λx.x ∪ ∅ ∈ D2. D1 intends that some reference variable
points to some set of abstract heap objects. D2 intends that an abstract reference variable
may keep unchanged along one path and be changed along another.

Definition 20 The composition of d1, d2 ∈ (D1 ∪ D2) is defined by the standard η-
expansion as follows:

d2 ◦ d1 =η λx. d2 ◦ d1x = λx. d2(d1(x))

Definition 21 A bounded idempotent semiring S = (D,⊕,⊗, 0, 1) is defined as

• The weight space D = D1 ∪D2

• 1 is defined as λx.x

• 0 is defined as λx.∅

38



Weighted PDS Gp

control states {Λ} ∪ Vref
stack alphabet Nf

pushdown transitions Ep
weight space D

Table 4.3: The Encoding of Weighted PDS from Gp

• The ⊗ operator is defined as

d1 ⊗ d2 = d2 ◦ d1 for d1, d2 ∈ D \ {0}

• The ⊕ operator equals set union ∪, defined as

d1 ⊕ d2 = λx.s1 ∪ s2 for d1 = λx.s1, d2 = λx.s2 ∈ D1

d1 ⊕ d2 = λx.x ∪ s1 ∪ s2 for d1 = λx.s1 ∈ D1, d2 = λx.x ∪ s2 ∈ D2

d1 ⊕ d2 = λx.x ∪ s1 ∪ s2 for d1 = λx.x ∪ s1, d2 = λx.x ∪ s2 ∈ D2

Hitherto, points-to analysis can be solved as the pushdown reachability analysis on
Gp. A weighted PDS is encoded from Gp as shown in Table 4.3.

4.1.3 Ahead-of-time call graph construction

For the points-to analysis based on an on-the-fly call graph construction, there are two
occasions on which model checking need to be dispatched:

• Virtual method call resolutions; and

• A precise abstraction on fields (i.e. field-sensitivity with handling on aliasing).

As will be seen in Section 4.3.2, the number of model checking requests during an on-
the-fly analysis is overwhelming, which affects the efficiency a lot. To avoid such frequent
model checking requests, an alternative is a points-to analysis algorithm based on an
ahead-of-time call graph construction.

Provided with the machinery of weighted pushdown model checking, we expect

• Some invalid paths (i.e. pushdown transitions or control flows) could be eliminated
within the points-to analysis (i.e. model checking) procedure;

• Fields could also be analyzed during points-to analysis with proper treatment on
aliasing,

rather than judge the path removal and clarify the aliasing with extra efforts, by frequently
interrupting the points-to analysis. Unfortunately, the features of exploded supergraph
prohibits such preferable analysis, in that

• The effect of an edge removal in an exploded supergraph is limited to the data
flow of specific variables. i.e., only the approximated call edge wrt the method
receivers (i.e. implicit parameters of an instance invocation) can be removed. The
data flow wrt other variables rather than method receivers can not be prevented
from reaching the destination state.

39



• When the field sensitivity is concerned, an exploded supergraph wrt a field access
x.f can be constructed only after aliasing on x is clarified.

In view of this, our choice is a two-phase analysis, which is a compromise between
design choices (i.e. efforts on possibly reducing cost) and precision. The first step is
a points-to analysis with the approximation that each field points to any abstract heap
allocations, i.e., x.f = ⊤. That is, the field access is ignored for a while. Our effort
is dedicated to exploring the possibility of automatic path removal. In Chapter 5, we
will present a new analysis algorithm with treatments on both invalid path removal and
aliasing, enabled by an interprocedural CFG based model design. The second step is an
exclusive analysis on fields with 1-depth nesting.

The key of automatic path removal is:

A call edge will be removed if no edges reaching this invocation site possibly
satisfy the type constraints on the receiver object that it declares.

This idea is formalized by extending the data flow facts with type constraints on the
receiver objects required by a virtual call edge. Initially, the type constraint on a virtual
call edge is a singleton set; and no type constraints are placed on other kinds of edges. We
will extend weights in Definition 21 by pairing a set of type constraints. Type constraints
intend the expected type of the receiver object for a virtual method invocation. An invalid
path is excluded from the analysis result when the current data flow facts conflicting with
the type constraints.

Definition 22 For t, t′ ∈ T \ {any, none}, t′ conflicts with t if and only if

• t′ 6= t, and

• either t′ does not inherit from t, or t′ inherits from t but t′ redefines the method to
be invoked.

Otherwise, we say t′ satisfies with t. Furthermore,

• t satisfies with any, for each t in T ;

• none conflicts with t, for each t in T .

Definition 22 defines the relation among types. Definition 23 defines the function
that returns the set of objects currently known to satisfy with type constraints. Corre-
spondingly, Definition 24 defines the function that returns the new weight function after
filtering unsatisfied objects.

Definition 23 Define a function Filter : (D1∪D2)×P(T ) → P(O), such that for each
d ∈ (D1 ∪D2), c ∈ P(T ),

Filter(d, c) = {o ∈ body(d) | ∃t ∈ c, t′ = type(o), s.t. t′satisfies with t}

where body(d) = s for d = λx.s ∈ D1 and d = λx.x ∪ s ∈ D2.

40



Definition 24 Define a function FilteredReceiver : (D1∪D2)××P(T ) → (D∞∪D∈),
for each d ∈ (D1 ∪D2), c ∈ P(T ),

FilteredReceiver(d, c) =

{

λx.s if d ∈ D1

λx.x ∪ s if d ∈ D2

where s = Filter(d, c).

Definition 25 defines the function that returns the set of type constraints that have
already known to be satisfied by the current data flow facts. In contrast, Definition 26
defines the function that returns the set of type constraints that have already known not to
satisfied by the current data flow facts. In particular, if d ∈ D2, both KnownNotSatisfy(d, c)
and KnownSatisfy(d, c) are pending, because there exist other data flows reaching d.

Definition 25 Define a function KnownSatisfy : (D1 ∪D2) ×P(T ) → P(T ), such that
for each d ∈ (D1 ∪D2), c ∈ P(T ),

KnownSatisfy(d, c) =

{

∅ if d ∈ D2

S if d ∈ D1

where
S = {t ∈ c | ∃o ∈ body(d), t′ = type(o), s.t. t′satisfies with t}

Definition 26 Define a function KnownNotSatisfy : (D1 ∪D2) × P(T ) → P(T ), such
that for each d ∈ (D1 ∪D2), c ∈ P(T ),

KnownNotSatisfy(d, c) =

{

∅ if d ∈ D2

c \ KnownSatisfy(d, c) if d ∈ D1

Definition 27 Define ∪t : P(T ) × P(T ) → P(T ) such that for each T1, T2 ⊆ T ,

T1 ∪t T2 =
⋃

t1∈T1,t2∈T2

{t1 ⊔t t2}

where

t1 ⊔t t2 =

{

t1 if t1 satisfies with t2

{t1} ∪ {t2} otherwise

Definition 28 presents a new weight space with automatic path removal. The weight
domain in Definition 21 is extended by pairing a set of expected types of receiver objects.
The initial exploded supergraph on VO\(O×F+) is constructed by Definition 19, provided
with a pre-computed call graph based on CHA (Class Hierarchy Analysis) [55]. Compared
with Table 4.2, the only difference of abstraction on the program (i.e. CFG) is, provided
with an approximated call graph,

• The weight function of an approximated virtual call edge is paired with a singleton
set that consists of the assumed type of the receiver object.

• The weight function of other kinds of edges is paired with a singleton set {any}.

41



Definition 28 We borrow the notation from Definition 21. A bounded idempotent semir-
ing Sa = (Da,⊕a,⊗a, 0a, 1a) is defined as

• The weight space Da = D × C, and C = P (T ).

• 1 is defined as (λx.x, {any})

• 0 is defined as (λx.∅, ∅}).

• The ⊗a operator is defined for (d1, c1), (d2, c2) ∈ Da \ {0a,1a},

(d1, c1) ⊗a (d2, c2) =











0a if Filter(d1, c2) = ∅

and d1 ∈ D1

(FilterReceiver(d1, c2) ⊗ d2, c) otherwise

where c = c1 ∪t c2 \ (KnownSatisfy(d1, c2) ∪ KnownNotSatisfy(d1, c2)).

• The ⊕a operator is defined for (d1, c1), (d2, c2) ∈ Da,

(d1, c1) ⊕a (d2, c2) = (d1 ⊕ d2, c1 ∪ c2)

The definition of ⊕a operator says:

• If d1 ∈ D1, and there is no receiver object that satisfies the type constraints in c2,
the result will be 0a, i.e. an invalid control flow.

• Otherwise, some valid control flows may happen by removing

– The set of objects reaching d1 that have been known not to satisfy any type
constraint in c2;

– The set of type constraints from c2 that have been known to be satisfied with
some object reaching d1;

– The set of type constraints from c2 that have been know not to be satisfied
with any object reaching d1;

Example 9 Figure 4.2 provides an example to illustrate how the algorithm in Defini-
tion 28 works. It is assumed that there is a virtual method call at the node n2 as:

Employee x;

......

n2: x.getName();

Two possible types of method receivers are approximated in the present call graph:
the class Professor shown as e3 and the class CarMaker shown as e4. Reminds that,
the class Professor inherits Employee, but there are no inheritance relations among
Student, CarMaker, Pofessor and Employee.

Therefore, when excluding the dotted edge e0 for a while, only the control flow “n1 →e1

n2 →e3 n3” is valid. The proposed algorithm in Definition 28 works as follows:

42



e0 : {λx.x, {any}}
e1 : {λx.o1, {any}}, and

type(o1) = Professor

e2 : {λx.o2, {any}}, and
type(o2) = Student

e3 : {λx.x, {Employee}}
e4 : {λx.x, {CarMaker}}

Figure 4.2: An Example for the Ahead-of-time Points-to Analysis

e1 ⊗a e3 = {λx.o1, {any}}
e1 ⊗a e4 = 0a
(e1 ⊕a e2) ⊗a e3 = {λx.o1, {any}}
(e1 ⊕a e2) ⊗a e4 = 0a

If e0 is included, the flows “n1 →e0 n2 →e3 n3” and “n1 →e0 n2 →e4 n3” may be valid,
it then works as:

(e0 ⊕a e2) ⊗a e4 = {λx.x, {CarMarker}}
(e0 ⊕a e1) ⊗a e3 = {λx.x ∪ o1, {Employee}}

After one time points-to analysis(model checking), the initial call graph is refined
according to points-to information. Then another turn of points-to analysis is performed
based on the newly-refined call graph. The analysis is an iterative procedure to find a
greatest fixed point. Therefore, it is only a choice on the trade-off between precision and
efficiency to stop this iterative procedure. Whereas, for an analysis based on an on-the-
fly call graph construction, the iterative procedure can not be stopped until stabilized for
soundness.

The second step is an exclusive points-to analysis concerning fields (we focus on the
field sensitivity at most depth 1), based on the points-to information obtained in phase
1. The underlined mode is an exploded supergraph on O ∪ O × F and working on
the algorithm in Definition 21. The problem of aliasing is cast in the first step, and we
naturally obtain SSA on O ∪ O × F .

4.2 Parameterized Flow-sensitivity by Model Reduc-

tion

Hitherto, we have presented two context/field-sensitive points-to analysis algorithms based
on an exploded supergraph model design. A flow-sensitive points-to analysis is precise
but heavy. In this section, a parameterized flow-sensitivity, under the tradeoff between
precision and efficiency, is shown to be naturally obtained by shrinking an underlying
interprocedural CFG Gf before an exploded supergraph is constructed (in Algorithm
19).

After shrinking, a node in Gf is possibly associated with a set of program statements;
and the size of the resulted exploded supergraph is reduced. Example 10 shows how a
model reduction is applied to the running example.

43



n′
0 {Λ}

n′
1 {Λ x y o2.f}

n′
1 {Λ x y o2.f} m′

0 {Λ a o2.f ret x}

n′
2 {Λ x y o2.f ret z}

(1)

(2)
(3)

(4)

n′
0 ∅

n′
1 {1,2,3,4}

n′
2 {x.m(y)}

n′
3 {z = ret}

Figure 4.3: (a) Part of the Gp wrt (b) (b) Figure 4.1 (b) after Shrinking

Example 10 Figure 4.3 (b) shows the run in Figure 4.1 (b) after shrinking; and Figure
4.3 (a) shows the part of exploded supergraph Gp wrt the run in (b), where labels are
omitted for simplicity. some representative pushdown transition rules wrt Figure 4.3 (a)
are as follows:

〈Λ, n′
0〉 →֒ 〈x, n′

1〉 (1)
〈y, n′

1〉 →֒ 〈x, n′
1〉 (2)

〈y, n′
1〉 →֒ 〈a,m′

0n
′
2〉 (3)

〈ret, n′
1〉 →֒ 〈ret, ε〉 (4)

To note that, there are transitions inside one node of the interprocudural CFG after
shrinking. These transitions inside one node are analyzed in a flow-insensitive manner.
That is, except the first entry statement, others are analyzed regardless of their execution
orders. Correspondingly, the pushdown stack keeps unchanged for such a transition rule
inside nodes enclosed by {}.

For soundness, the shrinking is not arbitrary. Usually, it is required that each node has
an unique entry statement after shrinking. Flow-sensitivity is parameterized by variations
on shrinking strategies. For instance,

• A moderate shrinking strategy in our analysis is

– The entry points of programs start new nodes.

– A procedure call starts a new node.

– Any target of branches starts a new node.

• An extreme shrinking strategy is that all nodes in a method are grouped into a single
node, which results in a complete flow-insensitive analysis. The interprocedural CFG
Gf is equivalent to the call graph in this case.

Figure 4.4 compares the precision of points-to analysis with various shrinking strategies.
Due to the mutual dependency among call graph construction and points-to analysis,

iterative procedures cannot be avoided in the analysis design to guarantee soundness.
In the on-the-fly analysis, a points-to analysis (model checking) request is dispatched

44



b

b

b b

b b

b

z 7→ o1

z 7→ o2 z 7→ o3

x 7→ z y 7→ o4

z 7→ o5 x 7→ y

Shrinking x z y
no {o2, o4} {o3, o5} {o4}

moderate {o2, o4, o5} {o2, o3, o5} {o4}
extreme {o1, o2, o3, o4, o5} {o1, o2, o3, o5} {o4}

Figure 4.4: A Comparison on the Precision of Variations on Flow-Sensitivity

whenever a virtual method call need to be resolved or a field access is encountered. Itera-
tions are needed when there are model checking dispatched from some looping structures.
Detailed discussions and algorithms will be given in Section 4.3.

For a flow-insensitive analysis, soundness becomes simpler: each strongly connected
component (SCC) in a PAG (that does not across procedures) is collapsed as a single
node. That is, variables in one SCC have the same points-to sets. To note that, this
threatens the precision of the analysis when many method invocations are just inside the
SCCs [45]. The situation is a bit more complicated for a flow-sensitive analysis. There
are two kinds of iterations to be considered,

• Global iterations: SCCs in the call graph, i.e. nested procedural calls and recursions.

• Local iterations : SCCs inside each procedures, i.e. looping structures of programs.

The way of handling local iterations and global iterations are rather tradeoff between
designs and efficiency.

Parameterized flow-sensitivity provides an analysis design with flexibility, but some
cares need to be paid on the iteration procedures, especially for the on-the-fly analysis.
There are two primary issues to be noticed:

• irreducible SCCs vs reducible SCCs
Some SCC might be irreducible [59], that is intuitively, there are jumps into the
middles of loops. So there are more than one node that is the target of branches.
By the aforementioned moderate shrinking, it is easily to be seen that irreducible
SCCs are broken into multiple shrunk nodes after shirking. However, reducible
SCCs could be kept inside one shrunk node, as shown in Figure 4.5 (a) and (b).
Design of iterative procedures on these SCCs need cares.

• choices on field-sensitivity
Based on an exploded supergraph model design, the aliasing among references need
to be settled before each field-sensitive abstraction is applied. Parameterized flow-
sensitivity demands some cares on field processing, as illustrated in Example ??.
An easy solution is to further require that each field access starts a new node or
each new node only consists of a single field access statement. For the latter, the
statement involved field access is analyzed finally when processing a new node.

Example 11 Figure 4.6 illustrates an occasion on which the processing order matters
when field access is involved. It becomes more problematic when aliasing is involved. In

45



Figure 4.5: (a) Shrinking on Reducible SCCs (b) Shrinking on Irreducible SCCs

this example, x and y are aliased at line 2; and after line 5, z may point to the o1.f or
o2.f or o. In particular, more iterative processing is needed when the loop shown in dotted
edges exists.

Figure 4.6: The Effect of Shrinking on Handling Field Access

4.3 Prototype Implementation

We tentatively test the on-the-fly points-to analysis algorithm based on the exploded
supergraph model design. In this section, the prototype framework used is presented and
some preliminary evaluation is given.

4.3.1 Jimple Semantics Related to Points-to Analysis

Our implementation use soot, which is a Java optimization/compilation framework [41],
as the frontend preprocessor. More specifically, our analyzer is implemented as a new
phase in the soot compiler.

soot provides four intermediate representations that are suitable for analyzing and
transforming Java bytecode. Our analysis works on Jimple that is a typed three-address
intermediate representation of Java. Jimple has a small set of language constructs keeping
Java semantics, which makes program analyses and optimization easier. For instance,
there is no such a nesting of fields as “x.f1...fn” syntactically; and an instance invocation
can be only dispatched on object variables like x.f(...).

46



We are interested in the part of Java semantics that relates to points-to analysis. For
simplicity, some advanced language features, such as reflection, exception, native methods,
etc., are excluded at the first stage. These topics will be discussed in Chapter ??. Table
4.4 shows the language model that we work on, which is part of the Jimple syntax that
relates to points-to analysis.

Table 4.4: Jimple Syntax Related to Points-to Analysis

(Variables) Variable ::= Local | Reference
Reference ::= Field

| Local.Field
| Local[Imm]

Imm ::= Local | Constant
Constant ::= NullConstant | StringConstant

(Statements) Stmt ::= AssignStmt | IdentityStmt
| InvokeStmt | ReturnStmt

AssignStmt ::= Variable = Expr;
IdentityStmt ::= Local := @this: RefType;

| Local := @parametern: RefType;
InvokeStmt ::= InvokeExpr;
ReturnStmt ::= return | return Imm;

(Expressions) Expr ::= new RefType
| newarray (Type)[Imm]
| newmultiarray (Type)[Imm0]...[Immn]
| InvokeExpr
| CastExpr
| Reference
| Imm

CastExpr ::= (RefType) Variable
InvokeExpr ::= NonStaticInvokeExpr | StaticInvokeExpr

NonStaticInvokeExpr ::= VirtualInvoke Local.m(Imm0, ..., Immn)
| InterfaceInvoke Local.m(Imm0, ..., Immn)
| SpecialInvoke Local.m(Imm0, ..., Immn)

StaticInvokeExpr ::= StaticInvoke m(Imm0, ..., Immn)

4.3.2 Prototype Framework and Preliminary Evaluation

We use the prototype framework in Figure 6.6 to implement points-to analysis algorithms
presented in this chapter. There are generally three phases:

• In phase 1, the soot [41] compiler is explored as the frontend for preprocessing from
Java programs to Jimple codes. Jimple is a three-address intermediate representa-
tion for Java with smaller language constructs. soot also provides facilities of call

47



Figure 4.7: A Prototype Framework for Points-to Analysis

graph generation and points-to analysis based on various well-known algorithms,
and we will apply the most imprecise analysis (Class Hierarchy Analysis) [55] to
produce a preliminary call graph for the ahead-of-time call graph construction in
Chapter 5.

• In phase 2, the model abstraction translates Jimple codes to the underlying model (i.e.
weighted pushdown systems) for model checking. For abstraction, it takes around
3000 lines of Java codes for the on-the-fly exploded supergraph based model design
(Section 4.1.2).

• In phase 3, Weighted PDS library is explored as the back-end model checking engine,
which calls an implementation of semiring designs. The semiring package is 1000
lines in C for the on-the-fly exploded supergraph based model design.

Preliminary Evaluation

Our tentative experiments, except a part (about 3000 lines of Jimple codes) of an open
source Java program jetty, are restricted to small examples. Only the flow insensitive
points-to analysis on an on-the-fly exploded supergraph based model design (Section 4.1.2)
can analyze it in reasonable time.

The total time for call graph generation takes 632.23secs (the average of three tests),
which resolves nearly 40% of virtual calls. 97.99% (619.57secs) of the execution time
is devoted to incremental model generation with 1173 times model checking requests
involved. All above experiments are performed on a 1.4GHz Pentium 4 processor with 1
GB memory, running RedHat Linux 2.4.20.

48



The first obstacle could be the time complexity of solving the GPR problem [46].
Our choice was context/flow/field sensitive points-to analysis, and this would be quite
inevitable. The time complexity specific to our cases is Θ(|C|2 · |∆| · s), where s is the
cardinality of the weight space. C is the cardinality of Np for the exploded supergraph
based model design, and can be ignored for the CFG based model design.

The current dominant factor seems I/O between modules. In our current implementa-
tion, the weighted PDS library and the bounded idempotent semiring module is in C, while
soot and the translator module is in Java. For the above example, 75.5% (468 secs) of
incremental model generation (619.57secs) is devoted to just file-based I/O between these
modules. This situation also prevents data structures and internal program states from
sharing, so that a weighted pushdown system is constructed from scratch for each model
checking request. It is one of the primary bottlenecks of current implementations. By
diagnosis, the weighted PDS library runs quite fast. An incremental model construction
grows to with 100,000 to 200,000 transition rules, and each cycle runs in seconds to less
than a minute.

Currently, native methods, libraries, static initializers, are all ignored. Concurrent
behavior, such as threads, is also out of scope (treated as sequential executions currently).
Further approximation is needed to cover concurrent behavior, since pushdown model
checking with more than two stacks is undecidable.

4.3.3 Implementation Aspects

Algorithms wrt on-the-fly points-to analysis is usually complicated, because of delicate
iterative procedures. So usually they will not be given. In this section, our strategy for
presenting the algorithms is: a basic skeleton will be presented and key points of details
will be discussed.

Algorithm 1 shows one basic skeleton of processing a method without shrinking, which
is the first step for both algorithms presented (i.e. either on-the-fly or ahead-of-time). Our
choice is to handle local iterations on-the-fly induced by SCCs.

From line 1 to line 4 is the basic preprocessing part. For efficiency, a list L of CFG
nodes of the method in a topological order is constructed, by regarding each SCC as one
node; and an extra entry node is introduced to the CFG G. Then, Starting with the first
entry node, all nodes in L are processed sequentially as follows, for any node v in L

• If v has no successors in G, edges are established among v and the exist node, as
shown by line 10 to line 13.

• If v has successors in G, edges are established among v and each successor (line
15 to line 16). If the successor is a SCC, then edges induced by this SCC will be
established (line 18 to line 23). If there are model checking requests dispatched
during this processing, these dispatching nodes will be analyzed iteratively (line 24
to line 28).

On-the-fly and ahead-of-time manner primarily differ in the method of processStmt.
If there is a viral call invoked on this point (as well as field access), the former will dispatch
a model checking request, and the latter will refer to the approximated call graph.

49



More attention need to be paid on the on-the-fly algorithm. Reminds that, the gener-
alized pushdown predecessor problem computes data flows facts along all pathes leading
from some point to another set of points (i.e. regular pushdown stores) in the pushdown
computation tree. To make use of this facility, the starting and ending point need to be
specified each time a model checking request is dispatched. That is, the returned points
for invocations need to be remembered.

As mentioned above, there are local iterations within procedures and global iterations
among procedures to be concerned. Fortunately, the regular property of pushdown con-
figurations reduces the number of iterations, with no sacrifice on soundness. Assume a
model checking is dispatched when processing some node v in L, all possible calling con-
texts to v are simply represented as (Σ)∗v, where Σ is the current set of return points of
the program.

50



Chapter 5

Context-sensitive Points-to Analysis

based on Interprocedural CFG

Chapter 4 presents points-to analysis algorithms based on an exploded supergraph model
design. By algorithm design and preliminary evaluation, we found that

• Model checking requests dispatched during the on-the-fly analysis are overwhelming,
which influences a lot on the efficiency;

• Whereas the ahead-of-time analysis expected with automatic path removal and field
tracing are restricted by the exploded supergraph based model design.

• An on-the-fly analysis design is annoyed by the delicate treatment on iterative pro-
cedures.

Therefore, this Chapter is dedicated to exploring points-to analysis based on an in-
terprocedural control flow graph (CFG) model design. Under such a choice, the flavor
of both on-the-fly and ahead-of-time call graph construction will also be investigated. In
particular, we expect the following features that could be realized in the ahead-of-time
analysis:

• Invalid pathes in the approximated call graph are removed automatically by model
checking. More specifically, invalid control flows are excluded from the analysis
result by the model checking engine.

• A precise analysis on fields (i.e. field-sensitive abstraction), as well as the problem
of aliasing, are properly solved as part of the model checking procedure, rather than
clarified with extra efforts by frequent interrupts.

• Hopefully, points-to analysis, as well as all the above, can be done with one-time
model checking.

By examining various context-sensitive points-to analysis algorithms, our study shows
that:

• Only ahead-of-time call graph construction based on a control flow graph can avoid
repeated applications of model checking.

51



• An ahead-of-time construction needs to explicitly give a bound on tracing nesting
of field access, whereas an on-the-fly construction automatically bounds it (up to
the number of abstract heap location).

This Chapter is organized as follows:
In Section 5.1.1, a delicate abstraction design of transfer functions on heap environ-

ments is presented, by exactly following to Java semantics. In Section 5.1.2, a context/field/flow-
sensitive points-to analysis algorithm is proposed, based on the interprocedural CFG
model design and on-the-fly call graph construction. In Section 5.1.3, another context/field/flow-
sensitive points-to analysis algorithm is proposed, based on the interprocedural CFG
model design and ahead-of-time call graph construction.

In Section 5.2, we also further investigate the relatively unexplored parametrization
problem. Compared with parameterized flow-sensitivity by applying model reduction, it
is shown that parameterized flow-sensitivity can be naturally obtained by simplifying the
weight design.

In Section 5.3, the implementation aspects are presented, by characterizing weight
functions as ordered sets.

5.1 Interprocedural CFG Based Model Construction

In this section, we propose context-sensitive points-to analysis algorithms based on the
interprocedural CFG model design. Both the on-the-fly 5.1.2 and ahead-of-time 5.1.3
model construction are investigated.

5.1.1 Abstract Heap Environment Transformers

This chapter will share the same abstraction on the heap objects and references, which
are the basic components of the points-to relation. For reminding, it is again presented
here in Definition 29

Definition 29 let O be the set of abstract heap objects, and let F be the set of field
names. Let Vl be the set of local variables, let Vs be the set of static fields. The set of
abstract reference variables is RefVar = Vl ∪ Vs ∪ {argk, this, ret | k ∈ N}, and the set
of reference fields RefField = O ×F+. Let Vref = RefVar ∪ RefField.

Points-to analysis algorithms in this chapter work on the weight space that consists
of transfer functions on heap environments.

Definition 30 The set of abstract heap environments is defined as

Henv = {henv | henv : Vref → O}

Thus, the points-to information is regarded as an abstract heap environment hV ∈
Henv such that [v1 7→ hV(v1), ..., vn 7→ hV(vn)], where V = {vi | 1 ≤ i ≤ n}. A field
reference x.f is “evaluated” as h(h(x).f), i.e. a field-sensitive abstraction, where h ∈ Henv.

Definition 31 Let v ∈ RefVar, f ∈ F , o ∈ O and henv ∈ Henv. F is the set of abstract
heap environment transformers, given by ExpFun in Table 5.1.

52



Table 5.1: Syntax of Expressions of Abstract Heap Environment Transformers

ExpFun ::= λhenv. ExpHenv
ExpHenv ::= henv

| ExpHenv • ExpMap
ExpMap ::= [v 7→ o]

| [v1 7→ Expt, ..., vn 7→ Expt]
| [Expf 7→ Expt]

Expf ::= Expt.f
Expt ::= o

| henv(v)
| henv(Expt.f)

The meaning of • is shown by rewriting rules in Definition 32. The intuition of
henv • henv′ is the union of henv and henv′ except that mapping in henv are overridden
by those that have the same arguments in henv′. For instance,

henv • [x 7→ o1, y 7→ o2, x 7→ o3](x) = o3

where henv ∈ Henv.

Definition 32 Let henv ∈ ExpHenv, o ∈ O, v, vi ∈ Vref , expf ∈ Expf, expt, expti ∈
Expt for 1 ≤ i ≤ n.

henv • [v1 7→ o](v) =

{

o if v = v1

henv(v) otherwise

henv • [v1 7→ expt1, ..., vn 7→ exptn](v) =











expti if v = vi(1 ≤ i ≤ n)

and ∀1 ≤ j ≤ n, vj = v, s.t. j ≤ i

henv(v) otherwise

henv • [expf 7→ expt](v) =

{

expt if v = expf

henv(v) otherwise

Definition 33 The composition of abstract heap environment transformers is defined as
follows, for exph1, exph2 ∈ ExpHenv,

(λhenv. exph2) ◦ (λhenv. exph1) = λh. exph2[henv := exph1[henv := h]]

The intuition of this definition is the standard η-expansion, shown as follows,

(λhenv. exph2) ◦ (λhenv. exph1) =η λh. (λhenv. exph2(λhenv. exph1h))
=β λh. exph2[henv := exph1[henv := h]]

Definition 34 A bounded idempotent semiring Sc = (Dc,⊕c,⊗c, 0c, 1c) is defined as

• The weight space is Dc = P(F)

53



• 0c = ∅

• 1c = {λhenv.henv}

• The ⊗c operator is defined as ∀w1, w2 ∈ Dc,

w1 ⊗c w2 = {func2 ◦ func1 | func1 ∈ w1, func2 ∈ w2}

• The ⊕c operator is defined as ∀w1, w2 ∈ Dc,

w1 ⊕c w2 = w1 ∪ w2

The ⊗ operation in Definition 34 is the reverse of function composition. Thus, the
associativity of ⊗ can be easily checked. The analysis result is a set of abstract heap
environment transformers. Each transformer corresponds to changes on heap environment
along a possible program run. The final points-to information can be obtained by applying
these transformers to the initial abstract heap environment of the program. A generalized
definition of evaluation is provided in Definition 35.

Definition 35 Let v ∈ RefVar, o ∈ O, w ∈ F∗, and henv ∈ Henv. The evaluation of
v.w, o.w by henv is defined as

eval(henv, v.w) =

{

henv(v) if w = ǫ

(henv ... henv(v).f1) ... fn) if w = f1 · · · fn ∈ F∗

eval(henv, o.w) =

{

o if w = ǫ

(henv ... (henv(o.f1)) ... fn) if w = f1 · · · fn ∈ F∗

The algorithm in Definition 34 provides the basic points-to analysis algorithm based
on weighted pushdown model checking. By abuse of terminology, the machinery we have
created till now actually defines a kind of language that is about to work on the pushdown
system. However, what we are interested is the static analysis with it. Obviously, it is
demanded by Definition 34 that F need to be finite. It can be seen from Definition
5.1 that F can be infinite due to the field nesting, such as o.f0...fn, where o ∈ O and
fi (0 ≤ in) ∈ F . The set of abstract heap objects is finite, for that each allocation site is
associated with an unique abstract heap object (Definition 17 in Chapter 4).

In the following section, we will present points-to analysis algorithms with call graph
constructed in both on-the-fly and ahead-of-time manner. The decidability of the analysis
is either ensured immediately by the algorithm itself (in Section 5.1.2) or by placing a
bound on the field nesting (in Section 5.1.3).

5.1.2 On-the-fly Call Graph Construction

By the on-the-fly analysis, we mean that the call graph is constructed on-the-fly when the
points-to analysis proceeds. Based on the interprocedural CFG model design, an on-the-
fly points-to analysis can be performed similarly to that in section 4.1.2. Reminds that,
for the on-the-fly points-to analysis based on the exploded supergraph model design,
to perform field-sensitive abstraction and clarify aliasing also dispatch model checking
requests during the points-to analysis.

54



Based on the interprocudural CFG model design, we have more choices on analyzing
fields, e.g. a field-sensitive abstraction could be solved by encoded as part of the weight
design. Since this choice will be explored in the next section anyway, our choice here is
to clarify aliasing and the field-sensitive abstraction on-the-fly as well.

Table 5.2 shows how a weight function, i.e. a transformer on abstract heap envi-
ronments, is assigned to each Jimple statement with abstraction. Except the last two
statements that are Jimple-specific, Java shares the same syntax and semantics. In Ta-
ble 5.2, the abstraction of x = new T() is {λhenv.henv • [x 7→ o]}. Note that this o is
unique for this statement at some allocation site (i.e. line number) in the program, even
if it is executed in a looping structure. This abstraction keeps an abstract heap objects
finite, i.e., at most the number of program lines.

As is shown in Table 5.2, whenever a virtual method invocation (resp. a field access) is
encountered during the analysis, model checking is dispatched to resolve possible call edges
(resp. perform a field-sensitive abstraction). For instance, one of the weight functions
associated with the field read access “x = y.f” is

λhenv.henv • [x 7→ henv(o.f)]

where o ∈ pta(y, context), and context ∈ C is the program calling context wrt this
analysis point. That is, a points-to analysis (i.e. weighted pushdown model checking) is
performed on y, when this statement is encountered. The possible aliasing on x is also
casted correspondingly.

Example 12 shows how the same example in Example 7 in Chapter 4 is solved by the
on-the-fly points-to analysis based on the interprocedural CFG model design.

Example 12 Figure 5.1 shows part of the underlined model for model checking that cor-
responds to one possible run with program line numbers of 1-2-3-4-5. Each edge is assigned
with a weight according to Table 5.2.

First, when the field access y.f = o3 is encountered at line 3. A model checking is
dispatched on the node n2, such that

e1 ⊗ e2 = λhenv.henv • [x 7→ o1] • [y 7→ o2]

By Definition 35 and 32,
eval(e1 ⊗ e1, y) = o2

Thus,y.f is abstracted as o2.f .
With an on-the-fly analysis, virtual method calls are resolved on-the-fly when points-

to analysis proceeds. Reminds that there is a virtual method call at node n5. Thus a
model checking is dispatched on it. The resulted abstract heap transformer reaching n5 is
computed as follows:

weight = e1 ⊗c e2 ⊗c e3 ⊗c e4 ⊗c e5
= λhenv.henv • [x 7→ o1] • [y 7→ o2] • [o2.f 7→ o3]•

[x 7→ henv • [x 7→ o1] • [y 7→ o2] • [o2.f 7→ o3](y)]
= λhenv.henv • [x 7→ o1] • [y 7→ o2] • [o2.f 7→ o3] • [x 7→ o2]

eval(weight, x) = o2

It is known that x points to o2 after evaluation. Thus, only method from Class
Professor is invoked. And similarly, we know that z points to o3 at the node n7.

55



Table 5.2: Jimple Syntax and Abstraction Related to Points-to Analyses
Jimple Syntax Abstraction
x = new T() {λhenv.henv • [x 7→ o]}
x = null {λhenv.henv • [x 7→ ⋄]}
x = y {λhenv.henv • [x 7→ henv(y)]}
x = y.f {λhenv.henv • [x 7→ henv(o.f)] | o ∈ pta(y, context)},

where context ∈ C is the calling context.
y.f = x {λhenv.henv • [o.f 7→ henv(x)] | o ∈ pta(y, context)}

where context ∈ C is the calling context.
return x {λhenv.henv • [ret 7→ henv(x)]},

when x is a reference variable.
x.f(m1, ..., ml, ml+1, ...mn) {λhenv.henv • [arg1 7→ henv(m1), ..., argl 7→ henv(ml),

this 7→ henv(x)]},
where mi(1 ≤ i ≤ l) ∈ RefVar and

mj(l ≤ j ≤ n) are variables of primitive type
a call edge is generated for each receive class in

{t | t = type(o), o ∈ pta(y, context)},
for the calling context context ∈ C.

f(m1, ..., ml, ml+1, ...mn) {λhenv.henv • [arg1 7→ henv(m1), ..., argl 7→ henv(ml)]},
where mi(1 ≤ i ≤ l) ∈ RefVar and

mj(l ≤ j ≤ n) are variables of primitive type
a call edge is generated by syntactical analysis.

z = ret {λhenv.henv • [z 7→ henv(ret)]}
x := @this: T {λhenv.henv • [x 7→ henv(this)]}
x := @parameterk : T {λhenv.henv • [x 7→ henv(argk)]}

n0

n1 Employee.m0

n2

n3

n4

n5 Professor.m0

n6 Professor.m1

n7 Professor.m2

e1: λhenv.henv•[x 7→o1]

e2: λhenv.henv•[y 7→o2]

e3: λhenv.henv•[o2.f 7→o3]

e4: λhenv.henv•[x 7→henv(y)]

e5: λhenv.henv

e11: λhenv.henv•[z 7→henv(ret)]

e8: λhenv.henv•[b7→henv(arg)]

e9: λhenv.henv•[ret 7→o2.f ]

e7: λhenv.henv•[arg 7→henv(y)]

e6: λhenv.henv•[this 7→henv(x)]

e10: λhenv.henv

Figure 5.1: Part of the Underlined Model for Model Checking of Example 7

56



5.1.3 Ahead-of-time Call Graph Construction

This section presents a points-to analysis algorithm based on an ahead-of-time call graph
construction. The algorithm starts with an imprecise call graph (which could be gener-
ated by syntactical analysis only) and infeasible call paths are eliminated during model
checking. Compared with the analysis based on an on-the-fly call graph construction, this
algorithm is characterized by:

• Field sensitivity is explicitly modeled as part of the weight design, whereas it is
settled by model checking in the on-the-fly algorithm.

• The ahead-of-time algorithm calls model checking once on a larger call graph,
whereas the on-the-fly algorithm calls it frequently on smaller call graphs.

• The ahead-of-time algorithm computes the greatest fixed point (wrt set inclusion),
whereas the on-the-fly algorithm computes the least fixed point.

These features are supported by:

• Transfer functions (i.e. the weight space) are restricted to k-bounded field access.
In contrast, it is settled by the on-the-fly analysis in Section 5.1.2 of itself.

• Weights are extended with type constraints, i.e., if the abstract heap environment
transformer reaching the current analysis point conflicts with type constraints, such
a path will be eliminated.

Bound the field nesting

Example 13 shows that the field nesting during the analysis can be unbound.

Example 13 The analysis on a sequence of Java statements works as follows.

l1 : x = y.f ;

l2 : z = x.g;

Let w1 and w2 be the corresponding weight functions for l1 and l2 respectively, then
w1 ⊗ w2 = w2 ◦ w1

= λhenv.henv • [x 7→ henv(henv(y).f)] • [z 7→ henv(henv(henv(y).f).g)]
where
w1 = λhenv.henv • [x 7→ henv(henv(y).f)]
w1 = λhenv.henv • [z 7→ henv(henv(x).g)]

This example tells that field nestings can be unbound such as

henv(henv(x).g) = henv(henv(henv(y).f).g)

which makes the set of variables Vref (namely the set of abstract heap transfers F) infinite.
Therefore, a bound k is placed on tracking fields, such that for each henv ∈ Henv,

henv(eval(henv, v.w).f) =

{

eval(henv, v.w′) if |w| + 1 ≤ k and w′ = w · f

⊤ otherwise

57



Table 5.3: Modified Abstraction for Ahead-of-time Construction
x = y.f {λhenv.henv • [x 7→ henv(henv(y).f)]}
y.f = x {λhenv.henv • [henv(y).f 7→ henv(x)]}
x.f(m1, ..., ml, ml+1, ...mn) {λhenv.henv • [arg1 7→ henv(m1), ..., argl 7→ henv(ml),

this 7→ henv(x)]},
where mi(1 ≤ i ≤ l) ∈ RefVar,

mj(l ≤ j ≤ n) are variables of primitive type.

That is, the evaluation on a field nesting more than k depth returns any possible heap
object ⊤(Definition 16).

The corresponding changes on the weight design is in Definition 33. The way that
the field nesting is bounded as shown above is applied during the composition of abstract
heap environment transformers. For later use, we name the (weight) function composition
with a bound on field nesting as “ ◦̄ ”.

Compared with the on-the-fly analysis, the difference of the abstraction on Jimple
statements is shown in Table 5.3.

Automatic invalid path removal

For points-to analysis in the head-of-time manner, we start with analysis on an impre-
cise call graph, and gradually eliminate infeasible paths based on the current analysis
result. More specifically, after one-time run of points-to analysis (i.e. model checking),
an approximated call edge could be removed when the type of the approximated receiver
object for this call edge conflicts with the expected type of this call edge. This procedure
proceeds until a greatest solution is found.

Since model checking provides a ready-made facility for the fixed-point calculation,
we would like to explore whether we can make full use of it. As shown from the points-to
analysis in Chapter 4, it is annoying to handle various kinds of iteration demands. In
particular, the situation becomes more complicated for a field-sensitive points-to analysis
based on an on-the-fly call graph construction. For example, both local iterations within
procedures and global iterations across procedures need to be concerned.

To keep a clear mind on the design choices of iterative procedures is arduous. There-
fore, it is desired that such a job could be handed over to the back-end model checking
engine. Hopefully, we expect points-to analysis with an eye on soundness can be performed
in the one-time run weighted pushdown model checking.

In Section 4.1.3, automatic path removal is restricted by the exploded supergraph
based model design, because data flow facts associated with one edge are exploded. Thus,
the data flow wrt other references rather than the receiver object cannot be prohibited.
The problem has been investigated more or less anyway by putting field access aside,
which provides enough insights for the further analysis design. The points-to analysis
based on an interprocedural CFG model design makes a real automatic path removal be
in place.

Based on the interprocedural CFG, the solution for automatic path removal shares
the same key idea:

A call edge will be removed if no edges reaching this invocation site possibly
satisfy the type constraints on the receiver object that it declares.

58



Table 5.4: Modified Abstraction with Type Constraints
x.f(m1, ..., ml, ml+1, ...mn) (λhenv.henv • [arg1 7→ henv(m1), ..., argl 7→ henv(ml),

this 7→ henv(x)], {(x, ǫ, t)}),
where mi(1 ≤ i ≤ l) are reference variables,

mj(l ≤ j ≤ n) are variables of primitive type,
and this method invocation occurs when the type of
the object pointed to by x satisfies with t.

This idea comes true by introducing path constraints into the weight space design.
The weight space Sc in Definition 34 is extended by pairing a set of path constraints
PathCons, such that

PathCons ⊆ V × T

where V = RefField ∪ RefVar ×F∗.
Sometime (v, w, t) ∈ c is denoted by (v.w, t) as a matter of convenience. By a path con-

straint (v.w, t) ∈ c, we mean that a call edge demands the actual type of eval(henv, v.w)
to satisfy with t.

Table 5.4 shows the changes of the abstraction on Jimple statements, by pairing path
constraints with previous weight function. That is, the virtual call edge is labeled with a
singleton set that consists of the expected type declares by this call edge. An empty set ∅
is assigned to other translations in the interprecedural CFG as the initial type constraints.

We show the primary concerns in the design of automatic path removal by the following
example.

Example 14 Figure 5.1.3 presents an Java code example, and Figure 5.1.3 the corre-
sponding weights for each statement on the right-hand-side. We assume that the approxi-
mated call graph is constructed by CHA. The abstract heap objects o1, o2, o3 are associated
with line 1, 3, and 5 respectively.

As shown in Figure 5.1.3, there are three virtual invocations at line 2, 4 and 7 re-
spectively. By CHA, there are invalid paths wrt these invocations in the call graph. For
simplicity, it is only shown for line 2. Two possible call edges are provided by the call
graph, i.e. e2

1 and e2
2, and we know the latter is an invalid path.

• Judgement on invalid transitions is by path constraints
Considering e1 ⊗e e2

2 (from line 1 to line 2), assume the abstract heap environment
reaching line 1 is henv ∈ Henv, by Definition 35 and 32,

eval(e1(henv), x) = o1

and type(o1) = Employee conflicts to the expected type Professor on x in the path
constraints wrt the method getBonus.

• Known satisfied constraints are not handed over backwards
Considering e3⊗e e4, the path constraint of e4 is satisfied with the heap environment
after passing line 3. To note that, before line 3, x still points to o1.

Since e1 ⊗e (e3 ⊗e e4) results in a valid transition, the result of e3 ⊗e e4 should not
contain the already satisfied constraints in e4.

59



public static void main(String[] args)

{

Employee x;

Professor y;

Employee z;

1. x = new Employee(‘‘Tom’’, 1000);

2. x.getBonus();

3. x = new Professor(‘‘Jean’’, 5000);

4. x.getBonus();

5. y = new Professor(‘‘Ben’’, 5000);

6. z = y;

7. z.getBonus();

}

Figure 5.2: An Example to Shown the Key Designs of Automatic Path Removal

• Aliasing among variables are captured by tracing references in the path constraints

Considering e6 ⊗e e7, for henv ∈ Henv,

eval(e6(henv), z) = henv(y)

So the judgement on this transition is pending; and we know the type judgement on
z depends on the type of y. It is of course because z and y are aliased at line 6. To
note that, before line 6, z probably does not point to an object whose type satisfies
with this transition. To capture the effect of aliasing, the result of e6 ⊗e e7 should
declares the new constraint as {y, ǫ, Professor}.

The the points-to analysis algorithm (i.e. weight space design primarily) is to capture
the insights revealed by Example 14.

Lemma 1 Let v ∈ RefVar ∪ O and w ∈ F∗. Let τ = λhenv. henv • Map1 • ... •
Mapn ∈ F be an abstract heap environment transformer. There uniquely exists a pair of
v′ ∈ RefVar ∪ O and w′ ∈ F∗ such that eval(τ(henv), v.w) = eval(henv, v′.w′) for each
henv ∈ Henv. We denote such v′.w′ by τ−1(v.w).

Lemma 1 is proved by induction on n, where n is the length of a sequence of Map1• ... •
Mapn. For instance, let

τ = λhenv.henv • [x 7→ o1] • [y 7→ henv(z)] • [z 7→ henv(henv(t).f)] • [henv(z).f 7→ o2]

Then

60



e1 : {λhenv.henv • [x 7→ o1], ∅}

e2
1 : {λhenv.henv, {(x, ǫ, Employee)}

e2
2 : {λhenv.henv, {(x, ǫ, Professor)}

e3 : {λhenv.henv • [x 7→ o2], ∅}

e4 : {λhenv.henv, {(x, ǫ, Professor)}

e5 : {λhenv.henv • [y 7→ o3], ∅}

e6 : {λhenv.henv • [z 7→ henv(y)], ∅}

e7 : {λhenv.henv, {(z, ǫ, Professor)}

Figure 5.3: Weights wrt the Statements in Figure 5.1.3

τ−1(x.ǫ) = o1 τ−1(y.ǫ) = z
τ−1(z.ǫ) = t.f τ−1(z.f) = o2

Definition 36 Let c ⊆ (O∪Vl)×F∗×P (T )∪{error} be a path constraint and func ∈ F.
τ = func, For (v, w, t) ∈ c,

func−1({(v, w, t)}) =















































error if o = τ−1(v.w) ∈ O and
type(o) conflicts with t

φ if o = τ−1(v.w) ∈ O and
type(o) satisfies with t

{(v′, w′, t)} if v′.w′ = τ−1(v.w) 6∈ O
{(o′, w′, t)} if o′.w′ = τ−1(v.w) 6∈ O

and

func−1(c) =







error if there exits (v, w, t) ∈ c
s.t. func−1({(v, w, t)}) = error

∪(v,w,t)∈c func
−1({(v, w, t)}) otherwise

Definition 36 captures the aforementioned primary concerns.

• The first case means that the current abstract heap environment does not satisfy
with the path constraints on v.w.

• The second case means that a known satisfied constraint will not contribute to the
result of combining these transitions.

• The last two cases say that, the judgement on path constraints is pending, and the
effect of aliasing is traced by the new path constraints.

61



Definition 37 We borrow notations from Definition 34. Se = (De,⊕e,⊗e, 0e, 1e), where

• De = P(D) where D = {(f, c) | f ∈ F, ⊆ V × T }

• 0e = ∅

• 1e = {λhenv.henv, ∅)}

• The ⊗e operator is defined as ∀w1, w2 ∈ De

w1 ⊗e w2 = {(func1, c1) ⊙ (func2, c2) | (func1, c1) ∈ w1, (func2, c2) ∈ w2}

where

(func1, c1)⊙(func2, c2) =

{

0e if func−1
1 (c2) = error

(func2 ◦̄ func1, c1 ∪ func−1
1 (c2)) otherwise

• The ⊕e operator is defined as ∀w1, w2 ∈ De

w1 ⊕e w2 = w1 ∪ w2

5.2 Parameterized Flow-Sensitivity by Weight Sim-

plification

In this section, we show how to obtain parameterized flow-sensitivity by simplifying the
weight design, rather than by model reduction (Section 4.2). The call-by-value Java
semantics (Table 5.2) tells that, for a pointer assignment, the state of the reference variable
on the left-hand side is changed by the right-hand side. Since flow-sensitivity concerns
the execution order of program codes, such an “override” operation is precisely captured
by a flow-sensitive analysis and compromised more or less in a flow-insensitive context.
Parameterized flow-sensitivity is enabled based on the following dimensions.

1. whether “override” operations as mentioned above are ignored.

2. whether the ordering of function application is kept among a sequence of program
codes.

3. whether analyses along various control flows are distinguished.

Those dimensions are reflected on choices of the weight space design as follows.

Definition 38 The set of abstract heap set environment is

Henv∗ = {henv∗ | henv∗ : V → P(O)}

By reinterpreting • as ∪ for the abstract heap environment transformers from F (Definition
5.1) and based on the domain Henv∗, “override” operations are approximated. A moderate
flow-sensitive analysis (named choice 1) can be obtained.

62



b

b

b b

b b

b

z 7→ o1

z 7→ o2 z 7→ o3

x 7→ z y 7→ o4

z 7→ o5 x 7→ y

Choices x z y
choice 0 {o2} {o5} {o4} or

{o4} {o3} {o4}
choice 1 {o1, o2} {o1, o2, o5} {o4} or

{o4} {o1, o3} {o4}
choice 2 {o1, o2, o5} {o1, o2, o5} {o4} or

{o4} {o1, o3} {o4}
choice 3 {o1, o2, o4, o5} {o1, o2, o3, o5} {o4}
choice 4 {o1, o2, o3, o4, o5} {o1, o2, o3, o5} {o4}

Figure 5.4: A Comparison on the Precision of Variations on Flow-Sensitivity

Definition 39 Let F∗ be the new set of abstract heap environment transformers. Define
a function ⊲⊳: F∗ × F∗ → F∗, such that ∀henv∗ ∈ Henv∗

f1 ⊲⊳ f2 = λhenv∗.(f1 ◦ f2(henv
∗) + f2 ◦ f1(henv

∗))

By ⊲⊳, the ordering of function application among two functions from F∗ is loosened.
A further flow-insensitive analysis (named choice 2) is obtained, by redefining the ⊗
operation in choice 1 as

w1 ⊗ w2 = {f1 ⊲⊳ f2 | f1 ∈ w1, f2 ∈ w2}

The analysis in Definition 34 is based on the powerset construction. That is, ⊕ keeps all
possibilities along each control flow. A thorough flow-sensitive analysis do not distinguish
various control flows (paths in CFGs). A straight forward way towards this is to combine
the analysis results of different paths, rather than a powerset construction for ⊕, defined
as follows(named choice 3).

Definition 40 A bounded idempotent semiring S∗
c = (D∗

c ,⊕
∗
c ,⊗

∗
c , 0

∗
c , 1

∗
c) is

• The weight space is D∗
c = F∗

• 0∗c = zero

• 1∗c = λhenv∗.henv∗

• ∀w1, w2 ∈ D∗
c \ {zero}, w1 ⊗∗

c w2 = w1 ⊲⊳ w2

∀w ∈ D∗
c , zero⊗∗

c w = w ⊗∗
c zero = zero

• ∀w1, w2 ∈ D∗
c \ {zero}, w1 ⊕∗

c w2 = λhenv∗.w1(henv
∗) ∪ w2(henv

∗)
∀w ∈ D∗

c , zero⊕∗
c w = w ⊕∗

c zero = w

An almost flow-insensitive analysis can be obtained (named choice 4), if ⊕ is further
considered as

∀w1, w2 ∈ D∗
c \ {zero}, w1 ⊕ w2 = w1 ⊲⊳ w2

A comparison on the precision of variations on flow-sensitivity based on different
choices is shown in Table 5.4, where choice 0 is the original flow-sensitive analysis pre-
sented in section 5.1.3.

63



5.3 Prototype Implementation

5.3.1 Prototype Framework

We use the basically same prototype framework to implement points-to analysis algo-
rithms presented in this chapter, as shown in 5.5. There are generally three phases:

Figure 5.5: A Prototype Framework for Points-to Analysis

• In phase 1, the soot [41] compiler is explored as the frontend for preprocessing
from Java programs to Jimple codes.

• In phase 2, the model abstraction part translates Jimple codes to weighted pushdown
systems. it takes around 1000 lines of Java codes for the CFG based model designs
for either on-the-fly (Section 5.1.2) or ahead-of-time construction (Section 5.1.3).

• In phase 3, Weighted PDS library is explored as the back-end model checking engine,
which calls an implementation of semiring designs. for the CFG based model design,
it takes around 1400 lines of C codes for on-the-fly construction and 2400 lines for
the ahead-of-time construction.

Our implementation strategy is to apply the existing ready-made tools. Unfortunately,
as shown in Chapter 4.3.2, our evaluation is restricted by the interaction among soot

compiler and the backend model checker. Concurrently, our current implementation only
works on small examples. When the existing tools are ready for a proper evaluation, we
think, there are much rooms to improve it in the future.

64



Furthermore, the weighted domain easily grows exponentially. For instance, the weight
space in the ahead-of-time analysis (Section 5.1.3) is quite heavy. Whereas, weight opera-
tions in the algorithms presented here are naturally characterized as set operations (Sec-
tion 5.3.2). We suppose there will be promising improvement by applying efficient data
structures to the implementation, such as BDD.

5.3.2 Implementation Aspects

Previously, we present points-to analysis algorithms based on CFG-based model design,
in which transformers on the abstract heap environment are formulated as the weighted
domain. These static analysis are implemented with weight elements characterized as
ordered sets, i.e. the ordered set of points-to relation L = PointsTo∗, where PointsTo is
defined as

PointsTo : V × (V ∪O)

and V = RefField ∪ (RefVar×F∗). We will still use 7→ to denote the points-to relation
PointsTo. Let len : L → N be the function that returns the length of a ordered set. For
l ∈ L, l(i) ∈ l (1 ≤ i ≤ len(i)) denotes the ith element of the ordered set l. For simplicity,
we sometime use [(vf1, vt1)...(vfn, vtn)] to denote the ordered set when no confusion exists.

For efficiency on time and space, it is further required that ∀ l ∈ L,

∀ (vf1, vt1), (vf2, vt2) ∈ l, vt1 = vt2 if vf1 = vf2

It reads that: each reference variable can possibly have an unique target heap object
anytime along one run of the program.

In Section 5.1.1, we give the abstraction on Java language model wrt references by
exactly following the Java semantic. The key of the implementation is:

The evaluation of some reference on the abstract heap environment is
captured as computing backward transitive closure on the set relation.

Example 15 By backward, we mean the ordering of the set (i.e. flow-sensitivity) matters.
For instance, the sequence of statements

x = o1;

y = x;

x = o2;

results in the points-to sets of {x 7→ o2, y 7→ o1}, which can be interpreted as

{x 7→ o1} ⊗ {y 7→ x}
{x′ 7→o1}⊗{y 7→x′,x 7→x′}

================ {y 7→ o1, x 7→ o1}

{y 7→ x} ⊗ {x 7→ o2}
{y′ 7→x′′}⊗{x 7→o2,y 7→y′}

================ {x 7→ o2, y 7→ x}

Variables with primes (’) attached to denotes those from the previous states.

Definition 41 Define a function BoundedCat : V × F∗ → V ∪ {void}, such that for
ν.ω ∈ V, γ ∈ F∗,

BoundedCat(v1, v2) =











void if v1 = void

void if |ω · γ| > k

ν.ω · γ else

65



In Definition 41, a new variable void is first introduced. void is a special reference
that points to objects of all possible types. Thus, it has the most general type and exactly
corresponds to ⊤. The introduction of void is not abrupt. This idea is also important
in real programming languages, such as the Object class type in Java and the void *

pointer type in C.
Figure 5.6 gives the iterative algorithm for computing the backward transitive closure.

It can be regarded as the corresponding implementation for Definition 35. The situation
is a bit complicated when field access is involved.

Example 16 This example intends to show the concerns behind the the algorithm design
in Figure 5.6.

0. x = o1; (x, o1)

1. x.f = o2; (x.f, o2)

2. x = o3; (x, o3)

3. y = x.f; (y, x.f)

By examining the above Java code sequence, (x.f, o2) ⊗ (x, o3) results in w =
{(x.f, o2), (x, o3)} by implementation, and the analysis of w ⊗ (y, x.f) brings
questions that whether the result of analysis is {(y, o2)}.

The answer is no. By x.f after line 2, we mean the current field f of o3 rather
than o1 that x previously pointed to. Therefore, the analysis results in {(y, o3.f)} by
implementation.

This simple example tells that the computation of transitive closure by such a “sub-
stitution” should be performed incrementally, with the growth of the field nestings. It
also exactly corresponds to the previous formulation of the analysis based on the function
application.

Definition 42 A bounded idempotent semiring Sc = (Dc,⊕c,⊗c, 0c, 1c) is defined as

• Dc = P(D), where D = L ∪ {id} \ ∅

• 0c = ∅

• 1c = {id}, where id = λx.x

• ∀w1, w2 ∈ Dc, w1 ⊗c w2 = {l1 ⊙c l2 | l1 ∈ w1, l2 ∈ w2}, such that

l1 ⊙c l2 =

{

l1 (resp. l2) if l2 = id (resp. l1 = id)

cat(f5(l1, l2), l2) o.w.

where l2 = f4(f3(f2(l1, l2)))

66



BackwardTrans(v, l)
Input: v ∈ V, l ∈ L

Output: tmpv, the current evaluation on v wrt l

1. k = 1
2. while(k ≤ len(v))
3. begin

4. subv1 = SubString(v, 1, k)
5. subv2 = SubString(v, k + 1, |v|)
6. if (∃(subv1, v

′) ∈ l)
7. begin

8. tmpv = BoundedCat(v′, subv2)
9. if (tmpv == void)
10. begin

11. return tmpv
12. end

13. end

14. else

15. begin

16. return tmpv
17. end

18. k = k + 1
19. end

Figure 5.6: The Algorithm of Computing Backward Transitive Closure

67



f2(l1, l2) = [ (eval(v), eval(h)) ]
where for (v, h) ∈ l2,

eval(v) =

{

v if v ∈ RefV ar ∪ {void}

BackwardTrans(v, l1) otherwise

eval(h) =

{

h if h ∈ O ∪ {void}

BackwardTrans(h, l1) otherwise

f3(l) = [ l(i) = (v, h), 1 ≤ i ≤ len(l) | ∀i < j ≤ len(l), not ∃h′ ∈ V ∪ O, s.t. l(j) = (v, h′) ]

f4 = [ (v, ĥ) | ∀1 ≤ i ≤ len(l), l(i) = (v, h), ĥ =

{

h′ if ∃j < i, l(j) = (v′, h′), s.t. v′ = h

h o.w.
]

f5(l1, l2) = [ (v1, h1) ∈ l1 | ∀(v2, h2) ∈ l2, s.t. v1 6= v2 ]

cat : L∗ × L∗ → L∗ is a function that concatenates two ordered lists into one.

• ∀w1, w2 ∈ S , w1 ⊕c w2 = w1 ∪ w2

Note 1. f5 overwrites the previous state of references by the next step points-to facts,
which intend to ensure that a reference only possibly points to some unique heap object
for among each run. But for this purpose, only f5 is not enough, because this will be
broken when the aliasing among references is known later (see Example 17). That is why
f3 and f4 introduced.

Note 2. However, f3 and f4 are optimal. The choice on them is rather tradeoff among
the efficiency and precision (instead of soundness). If f3 and f4 are omitted from the
algorithm, the only difference is that a further step is needed to get the points-to facts
after weighted pushdown model checking ends. The job is exactly what • says in Definition
32, also shown in Example 17.

Example 17 The following two Java code sequences respectively show the typical occa-
sions, on which the aliasing matters the way of analysis.

1. x = y; (x, y)
2. x.f = o1; (x.f, o1)
3. y.f = o2; (y.f, o2)

1. x = y; (x, y)
2. y.f = o1; (y.f, o2)
3. z = x.f; (z, x.f)

The problem occurs when analyzing the program backwards, thus the aliasing among x
and y is known later after the analysis passing 2 and 3. For the first case, [(y.f, o1), (y.f, o2)]
happens, and for the second one, [(x.f, o1), (z, x.f)] happens. By handling these occasions
earlier by f3 and f4, some space is saved and some analysis time is cost.

For automatic path removal, path constraints is also implemented by characterized as
set operations, defined as

C ⊆ V × T

The algorithm design for implementing the semiring is given in Definition 43.

68



Definition 43 S in Definition 34 is extended to be Se = (De,⊕e,⊗e, 0e, 1e), where

• De = P(D), where D = {(d, c) | d ∈ D, c ∈ C }

• 1e = {(id, ∅)}

• 0e = ∅

• ∀w1, w2 ∈ De, w1 ⊗e w2 = {d1 ⊙e d2 | d1 ∈ w1,d2 ∈ w2}, such that ∀d1 =
(d1, c1),d2 = (d2, c2) ∈ D,d1 ⊙e d2 =

{

0e if 2 ∝ d1

(d1 ⊙c d2, c1 ⊎ 2) o.w.

where c1 ⊎ 2 = c1 ∪ f8(2 \ c, d1), and c = f7(2, d1).2 = {(v̂, t) | (v, t) ∈ c2, s.t. v̂ =

{

v if v ∈ RefVar ∪ {void}

BackwardTrans(v, d1) otherwise

and v̂ 6= void}

∀c ∈ C , d ∈ D,

f7(c, d) = {(v, t) ∈ c | ∃(v, o) ∈ d, t′ = type(o), s.t. t′ ⋊ t or ∃(v,⊤) ∈ d}

f8(c, d) = {(ṽ, t) | ∀(v, t) ∈ c, ṽ =

{

v′ if ∃(v, v′) ∈ d, v′ ∈ V

v o.w.
}

• ∝: C × D → {true, false} is introduced as an judgement relation. That is, ∀d ∈
D , c ∈ C , c ∝ d iff ∃(v, t) ∈ c, and (v, o) ∈ d, such that t′ ⋉ t, where t′ = type(o).

• ⋉ : T × T → {true, false} defines a relation among classes.
∀t, t′ ∈ T , t′ ⋉ t iff

r1. t′ 6= t

r2. a) t′ does not inherit from t; or

b) t′ inherits from t, but t′ redefines the method to be invoked.

• ⋊ is defined as the reverse of ⋉. That is,

∀t, t′ ∈ T , t′ ⋊ t iff t′ ⋉ t = false

• ∀w1, w2 ∈ De, w1 ⊕e w2 = w1 ∪ w2.

69



Chapter 6

Interprocedural Irrelevant Code

Elimination

Classic data flow analysis play a crucial role in program analysis and are always stating
point for new methodologies. The crucial connection among program analysis, model
checking, and abstract interpretation is revealed based on the study of bit-vector analy-
sis. This chapter is dedicated to exploring an interprocedural irrelevant code elimination
analysis, under PER (partial equivalence relation) based abstraction. The irrelevant code
analysis originates from dead code analysis, but more on a semantical sense. Our primary
motives are:

• The bit-vector analysis is traditionally intraprocedural, as well as those based on
finite model checking engines. Whereas, even based on infinite model checking such
as pushdown model checking, the analysis only talks about global variables.

• As previously explored, weighted pushdown model checking provides a general
framework for interprocedural data flow analysis. We would like to explore the dif-
ference between pushdown and weighted pushdown model checking from the study
of a classic data flow analysis.

The conventional approach to dead code elimination is based on live variable analy-
sis (Section 1.1.2). Thus, a line of program code is dead if

• this code is an assignment statement; and

• the variable that is assigned by this code is not live after this line.

Based on model checking, a dead code detection usually takes the used-and-defined
approach [32]. That is, some variable x of interest is evaluated with predicates “Usedx”
and “Definedx”. Whether the transition system violates the property of “ !Usedx W

Definedx ” (W is weak until) is model checked for all possible transition sequences.
Based on the conventional gen/kill functions, an example for live variable analysis is

given in WPDS++ library. The weighted domain is defined as D = {λS.S \KillSet(i) ∪
GenSet(i) | i ∈ N}, where S is the finite set of variable alphabet, and N is labels of all
the program statements. A dead code elimination can be done based on the result.

However, these analysis or case studies are either intraprocedural, or partially inter-
procedural, since interactions among procedures are not captured by their constructions.
Thus, these approaches are suitable for analyzing global variables in essence.

70



In this chapter, we will explore how pushdown and weighted pushdown model checking
works on dead code elimination, following to the used-and-defined approach. Then, an
interprocedural irrelevant code elimination is proposed based weighted pushdown model
checking, under PER based abstraction.

This Chapter is organized as follows:
In Section 6.1, solutions for an interprecedural dead code elimination are presented

by both pushdown and weighted pushdown model checking. Under such a choice, the
“interprecedural” flavor is obtained by explicit scope management on variables, such as
global renaming, in the abstraction phase. These analysis are partial interprocedural,
because the interaction among procedures are not captured.

In Section 6.2, we propose an interprocedural irrelevant code elimination based on
weighted pushdown model checking, under PER based abstraction. The underlying model
for model checking is the exploded supergraph. The interaction among procedures are
captured with taking into account parameter passing and return values.

We also implement the algorithm in Section 6.2 within a prototype framework, pre-
sented in Section 6.3. Our implementation exploits soot as Java preprocessing and the
Weighted PDS library as the back-end model checking engine. The call graph generation
and pointer-to analysis facilities are borrowed from soot to handle virtual method calls
and the aliasing among references.

6.1 Interprocedural Dead Code Elimination

Throughout this chapter, we will use Example 18 as a running example. Compared with
points-to analysis, we limit our focus on data type of Boolean and Integers only.

Example 18 Figure 6.1 and 6.2 present Java programs with three classes: Example,
Call, and CallSuper. The class Call inherits the class CallSuper and redefines the
call method for calculating the factorial of some integer a, with a dead parameter b.

In class Example, there is a virtual call at line 13. The method call from class Call

should be invoked at runtime.
There is also a method example in the class Example, in which both line 21 and line

22 are irrelevant codes.

In this section, following the used-and-defined approach, we explore how to perform an
interprocedural dead code elimination by both pushdown model checking and weighted
pushdown model checking. Let the set of atomic propositions be

AP = {Defx, Usex}

where x is any variable.

6.1.1 LTL Pushdown Model Checking with Simple Valuations

Based on pushdown model checking, the problem is straightforward by following the
automata-theoretic approach. Recall that, by pushdown model checking on properties in
LTL with simple valuations, the assignment of atomic propositions only depends on the
control location and the topmost stack symbol.

A straightforward way of encoding programs into pushdown systems is:

71



1. class CallSuper

2. {

3. public int call(int a, int b)

4. {

5. int c;

6. if(a <= 0)

7. c = 1;

8. else

9. c = a * call(b-1, a-1)

10. return c;

11. }

12. }

1. class Call extends CallSuper

2. {

3. public int call(int a, int b)

4. {

5. int c;

6. if(a == 0)

7. c = 1;

8. else

9. c = a * call(a-1, b-1)

10. return c;

11. }

12. }

Figure 6.1: Factorial Calculation in Java

• the set of control states is a singleton set {·};

• the set of stack alphabet is the product of (either global or local) variables and
program points, i.e. line numbers.

• the transition set is constructed from the control flow graph by rules presented in
Chapter 2.

• the initial stack content is the program’s entry point.

Obviously, it is demanded that the domain of variables is abstracted to be finite; and
also global variables can be encoded as part of the control locations.

Example 19 By examining the method example in Figure 6.2, its pushdown transitions
are as follows, and the corresponding transition graph is in Figure 6.3.

〈·, (x = 1, y = 0, l21)〉 →֒ 〈·, (x = 1, y = 2, l22)〉
〈·, (x = 1, y = 2, l22)〉 →֒ 〈·, (x = 3, y = 2, l23)〉
〈·, (x = 3, y = 2, l23)〉 →֒ 〈·, (x = 3, y = 6, l24)〉
〈·, (x = 3, y = 6, l24)〉 →֒ 〈·, ε〉

By examining labeling of atomic propositions wrt x in Figure 6.3, The used-and-defined
approach will conclude that x is always live, i.e. no dead code wrt x. By examining y
the same way, y is not used between two definition at line 22 and line 24. The used-and-
defined approach will conclude that l22 is a dead code.

However, we can find x is also dead after removing line 22. But The used-and-defined
approach cannot detects this propagation directly.

6.1.2 Weighted Pushdown Model Checking

Since weighted pushdown model checking does not follow the automata-theoretic ap-
proach, the judgement on dead codes need to be captured by the weight space design. As
will be seen in Chapter 7, we will discuss the relation between pushdown model checking
on regular languages and weighted pushdown model checking.

72



1. class Example

2. {

3. public static int f;

4.

5. public static void main(String[] args)

6. {

7. int y = 0;

8. int x = 4;

9. f = 5;

10. Call c = new Call();

11. CallSuper cs = new CallSuper();

12. cs = c;

13. y = cs.call(f, x);

14. System.out.println(y);

15. }

16.

17. public static void example()

18. {

19. int x;

20. int y;

21. x = 1;

22. y = x + 1;

23. x = 3;

24. y = x + 3;

25. }

26. }

Figure 6.2: An Example on Factorial Calculation

A variable is dead if it is not used among some two definitions on it. By exactly
capturing this idea, the algorithm for dead code detection based on weighted pushdown
model checking is designed.

Definition 44 A bounded idempotent semiring S = (D,⊗,⊕, 0, 1) is defined as:

1. Weighted domain D is defined as

D = {λx.x, λx.Usev, λx.Defv,dead, zero | x ∈ L}

with the ordering that

dead ⊑ λx.Defv ⊑ λx.x ⊑ λx.Usev ⊑ zero

where zero is naturally interpreted as that the program execution is interrupted by
an error, and the control flow is prevented. The newly-introduced element dead

represents dead code is found along some control flow.

2. 1 is defined as id = λx.x

3. 0 is defined as zero

73



〈·, (x = 1, y = 0, l21)〉 Defx true

〈·, (x = 1, y = 2, l22)〉 Usex Defy

〈·, (x = 3, y = 2, l23)〉 Defx true

〈·, (x = 3, y = 6, l24)〉 Usex Defy

〈·, ε〉 true true

Figure 6.3: The Transition Graph of method as Pushdown Systems

4. The ⊗ operator composes the effects by transfer functions along one path. The
operation ⊗ on D is defined as

∀d ∈ D, zero⊗ d = d⊗ zero = zero

∀d ∈ D, λx.x⊗ d = d⊗ λx.x = d

∀d ∈ D \ {zero}, d⊗ dead = dead ⊗ d = dead

λx.Defv ⊗ λx.Usev = λx.Usev

λx.Usev ⊗ λx.Defv = λx.Defv

λx.Usev ⊗ λx.Usev = λx.Usev

λx.Defv ⊗ λx.Defv = dead

5. The ⊕ operator combines effects on the property domain by transfer functions from
different branches. The operation ⊕ on D is defined as

∀d ∈ D, zero⊕ d = d⊕ zero = d

∀d ∈ D, dead ⊕ d = d⊕ dead = dead

∀d ∈ D, λx.Defv ⊕ d = d⊕ λx.Defv = λx.Defv

λx.Usev ⊕ λx.Usev = λx.Usev

λx.x⊕ λx.x = λx.x

λx.Usev ⊕ λx.x = λx.x⊕ λx.Usev = λx.x

By the weight design in Definition 44, the dead code detection works as follows:

These exists dead codes if the result of weighted pushdown model checking
is dead, and the paths that dead codes are involved in are provided as the
witness set.

74



Due to follow the used-and-defined approach, the above solution also cannot detect x is
dead at line 21 until line 22 is removed.

By looking at the solutions in Section 6.1.1 and 6.1.2, it is easy to see that whether
the analysis is interprocedural or intraprocedural is independent of the algorithms. The
interprocedural flavor can be thus obtained by renaming variables with preprocessing in
the abstraction phase.

However, such an analysis is also not fully interprocedural, because the interaction
among procedures are still not captured. For example, when variables are passed as
parameters to some procedures, these variables are basically considered as “Used”, re-
gardless of its effect on the result of computation. Thus, these solutions are more fitted
to an interprocedual dead code elimination analysis concerning only global variables.

6.2 Interprocedural Irrelevant Code Elimination

In this section, we explore an interprocedural irrelevant code elimination analysis. Com-
pared with dead code detection, it concerns more on a semantical sense. The basic intent
behind is straightforward: a line of code is dead as long as its removal does not affect
the final result of interest. Instead of used-and-defined approach, We apply PER-based
abstraction [33] as a forward abstract intepretation [24]. This approach naturally detects
transitivity of dead codes. For instance, this solution directly detects line 21 in the Figure
6.2 is a dead code. While the used-and-defined based approach cannot detect it unless
line 22 is removed.

6.2.1 Abstraction from Java programs to Pushdown Systems

Before abstraction, control flow graphs (CFG) are first prepared for each procedure. How-
ever, it is not easy to get a precise interprcedural control flow graph (or supergraph) for
Java, due to polymorphism and dynamic binding of virtual method calls, as thoroughly
explored in the previous chapters. At the first stage, we make use of the results of call
graph generated by soot under the help of points-to analysis. Call graph is a set of
resolved call edges among procedures.

Example 20 In Figure 6.2 of Example 18, reference variable cs may point to instances
of either class CallSuper or Call. At the virtual call site of line 13, cs will invoke the
method call from the class Call instead of its declared type class CallSuper.

Figure 6.4 shows part of the supergraph of the Java program in Example 18. Compared
with CFGs from intraprocedural cases, three more kinds of edges are added (Section 2.4.2).
Local variables in the calling procedure keep unchanged and can take a short-cut over the
call-to-return edge.

In an interprocedural case, a problem is how to abstract interactions among pro-
cedures through parameter passings and return values. We use an abstract parameter
passing mechanism to handle these interactions, by introducing two extra kinds of global
variables for procedure parameters and return values respectively. In particular, variables
for procedure parameters are characterized by their positions declared in the procedure
apart from names.

75



This approach is shown in Figure 6.4 with regard to Example 18, in which only the
static class member f is “global”. To depict the interactions among procedures, two
extra kinds of global variables are introduced: the integer parameter variables call arg0,
call arg1 for the method call and the integer return variable r int . The introduction of
parameter and return variables correctly depict the localness of local variables. Whenever
a procedure is invoked, the corresponding procedure variables are assigned if they exist.
Whenever a procedure invocation returns with some non-void value, the global return
variable with coincident type is assigned. Local variables within one procedure are always
unseen to others.

Each edge in the supergraph is labelled with a transfer function on program states.
i.e. usually a set of mappings from program variables to some abstract data domain. In
Figure 6.4 (b), top could be understood as non-exist values and used for later generation
of the exploded supergraph. Please refer to [37] for formal definitions. Some treatments
on transfer functions need to be mentioned here:

• When a procedure is invoked (call edge), all local variables in the caller procedure
are assigned to top.

• When an invoked procedure returns(return edge), all local variables in the callee
procedure are assigned to top.

• All global variables are assigned to top along call to return edge.

Although Java takes call-by-value mechanism, the state of an object can still be im-
plicitly changed due to aliasing. To further identify the aliasing among object reference
variables, pointer-to analysis in soot is borrowed for simplicity.

To capture the dependency among variables, we exploit the exploded supergraph as the
underlined model. An edge in the supergraph is exploded into a set of edges with every
variables as ends. Table 6.1 shows the basic point-wise representation of the language
syntax that we work on, i.e. the way of how each edge is exploded. In this analysis, our
target is primitive types of Java, i.e. Numbers and Boolean values.

In Table 6.1, a, b are constant, x, y are variables of Numbers or Boolean, and op

denotes an binary arithmetic operator. To note that, whether x is dead or not depends
on both y and z for the third case. In particular, a variable is assigned to top will not
contribute to the exploded supergraph.

Provided with an exploded supergraph G of the program to be analyzed, the encoding
of the pushdown system for our running example is:

• All program variables (global variables and local variables) are encoded as the set
of control states.

• Program control points are encoded as stack symbols.

• Each edge in G is encoded as a pushdown rule according to the following cases:

– 〈q, wi〉 →֒ 〈q′, wk wj〉
A call edge from node wi to wk with wj as return point.

– 〈q, wi〉 →֒ 〈q′, wj〉
An intraprocedural edge from node wi to wj.

– 〈q, wi〉 →֒ 〈q′, ε〉
A return edge from exit node wi to corresponding return points.

76



Table 6.1: A Point-wise Representation of Pointer Assignments

6.2.2 PER based Data Abstraction

A partial equivalence relation R on a set S is a transitive and symmetric relation S × S.
If R is reflexive, it is an equivalence relation. Our abstract data domain L is a 2 point
domain based on PER [33]1, defined as

L = {any, id}, with the ordering any ⊃ id

With the original domain as integer Z, the concretisation γ of L is defined as

γ any = {(x, y) | x, y ∈ Z}

γ id = {(x, x) | x ∈ Z}

Where any is interpreted as anything, and id is interpreted as values being fixed. It is
easy to see that

∀l ∈ L, γ l is a PER

A finite set of transfer functions F : L → L is defined as:

F = {λx.x, λx.any, λx.id | x ∈ L}

Let f0 = λx.any, f1 = λx.x, and f2 = λx.id, it is obvious that

∀x ∈ L, f0 x ⊃ f1 x and f1 x ⊃ f2 x

We define an ordering ⊏ on F as the reverse of ⊃ as

λx.any ⊏ λx.x ⊏ λx.id

1[11] uses a 3 point abstract domain {any,id,bot}. Since our focus is on “irrelevance” not on “strict-
ness”, bot is left out.

77



Figure 6.4: A supergraph with abstract parameter-passing

The intention for the interprocedural dead code analysis under this data abstraction
is: if a variable is assigned to be any at some line of code, and the result is still id, then
this line of code is considered as dead.

The abstract interpretation p′ of a primitive operation p is derived as p′(l1) = l2 where
l2 ∈ L is the least PER that inculdes {p(x) | x ∈ l1} for each l1 ∈ L. Then, the result
is computed by the least fixed point computation under the oredering ⊑, which will be
performed by weighted pushdown model checking.

Definition 45 With L as the abstract data domain, a bounded idempotent semiring S =
(D,⊗,⊕, 0, 1) is defined as:

1. Weighted domain D is defined as

D = {λx.x, λx.any, λx.id, zero | x ∈ L}

with the ordering that

λx.any ⊑ λx.x ⊑ λx.id ⊑ zero

78



where zero is naturally interpreted as that the program execution is interrupted by
an error.

2. 1 is defined as id = λx.x

3. 0 is defined as zero

4. The ⊗ operator composes the effects by transfer functions along one path. The
operation ⊗ on D is defined as

∀d ∈ D, zero⊗ d = d⊗ zero = zero

∀d ∈ D, λx.x⊗ d = d⊗ λx.x = d

λx.any ⊗ λx.id = λx.id

λx.any ⊗ λx.any = λx.any

λx.id ⊗ λx.any = λx.any

λx.id ⊗ λx.id = λx.id

5. The ⊕ operator combines effects on the property domain by transfer functions from
different branches. The operation ⊕ on D is defined as

∀d ∈ D, zero⊕ d = d⊕ zero = d

∀d ∈ D, λx.any ⊕ d = d⊕ λx.any = λx.any

λx.id ⊕ λx.id = λx.id

λx.x⊕ λx.x = λx.x

λx.id ⊕ λx.x = λx.x⊕ λx.id = λx.x

Distributivity of ⊗ over ⊕ is easily checked.

With the bounded idempotent semiring in Definition 45, a typical way of interproce-
dural dead code detection works as follows:

select some line of code and assign the weight of its transition associated to
be λx.any, this line of code is dead if the weight of the result is either λx.x,
or λx.id.

The soundness of this analysis is guaranteed by the facts that:

• the construction of PER-based forward abstract interpretation, and

• the conservative approximation of the definition of ⊕.

Example 21 By examining the method example in Figure 6.2, the corresponding under-
lined model, i.e. the exploded supergraph, is in Figure 6.5, where labels of λx.x are omitted
for simplicity. Some typical pushdown transitions are as follows,

〈Λ, n0〉 →֒ 〈x, n1〉 λx.id
〈x, n0〉 →֒ 〈y, n1〉 λx.x

79



{Λ} n0

{Λ x} n1

{Λ x y} n2

{Λ x y} n3

{Λ x y} n4

λx.id

λx.id

Figure 6.5: The Exploded Supergraph for Example

When line 21 is assigned to λx.any, the data flow facts reaching 〈x, n4〉 is still λx.id.
We know line 21 is dead.

This solution only shows the key step of an interprecedural dead code elimination.
The analysis is of course inefficient by trying lines of codes one after another. How to
collects hints for selecting codes with preprocessing or analysis is needed. We intend to
show how a real interprocedural dead code elimination works.

6.3 The Prototype Implementation

Our prototype is implemented as shown in Figure 6.6. It is developed with soot for Java
preprocessing and the WPDS library as the back-end model checking engine. Jimple, a
typed stackless 3-address intermediate representation, is the analysis target. To make use
of the existing tools enables us a rapid prototyping for our analysis design. The analysis
procedure is illustrated with Example 18. There are three phases:

• In phase 1, Java programs are translated into Jimple with soot. Some sample
result is shown in (b).

• In phase 2, abstraction is performed. This phase is implemented as 1500 lines of
Java code. To construct the interprocedural control flow graph of the program, the
call graph, i.e. a set of possible call edges among procedures generated by soot, is
borrowed. As shown in (c), the virtual method call in Example 18 is resolved and
the corresponding call edge is given. The pointer-to analysis module in soot also
helps to handle the aliasing among object references when performing abstractions
on variables of interest.

The output of abstraction, i.e. the exploded supergraph as the underlined model
for the later model checking, as shown graphically 2 in Figure 6.7.

• In phase 3, model checking is performed on the generated model by phase 2. A
bounded idempotent semiring, specific to the analysis of interest, is designed (Sec-
tion 4.2) and implemented based on the weighted PDS library beforehand.

2This graphical drawing is part of our implementation. It is automatically generated for debugging
purpose.

80



Figure 6.6: A Prototype Framework

Example_void_main_java_lang_String

Example_Int_call_Int_Int

Figure 6.7: An exploded Interprocedural Control Flow Graph

81



Chapter 7

Conclusions

This thesis is dedicated to interprocedural program analysis based on weighted pushdown
model checking, following to the crucial view that program analysis can be regarded as
model checking of abstract interpretation. This approach provides program analysis with
soundness guarantees by the machinery of abstract interpretation and model checking.

Our work is an interprocedural extension to Bandera-like approach. Bandera is a tool
set for automatic generation of program analysis based on several popular finite model
checkers. Thus, program analysis generated by it is essentially intraprocedural. We extend
this methodology to interprocedural program analysis based on infinite model checking
on pushdown systems, supported with prototype implementation.

We take points-to analysis, the basis of interprocedural program analysis for Java as
our first target. Points-to analysis for Java is not easy. First of all, it is quite equivalent
to call graph generation. The dynamically dispatched method depends on the actual type
of receiver object. On the contrary, interprocedural points-to analysis expects a precise
call graph information. Besides, the analysis on fields need to handle the aliasing among
references. It is not easy in an interprocedural case. Although Java takes call-by-value
mechanism, the state of objects still can be changed implicitly by passing references to
other procedures. Other problems come from various infinities, such as the unbounded
nesting of array, field access, method invocations, etc. Our work shows how such a crucial
analysis can be naturally settled as a weighted pushdown model checking problem.

We present context/field/flow-sensitive points-to analysis algorithms for Java, with
exploring primary choices on model design and algorithm construction. They are orthog-
onally two dimensional: an on-the-fly vs an ahead-of-time algorithm construction, an
exploded supergraph vs an interprocedural control flow graph based model design. These
primary design choices traditionally concerned in program analysis are also shown to be
nicely formulated.

Our study shows that an on-the-fly analysis dispatches overwhelming model checking
requests. It deserves a try on automatically removing invalid paths from the analysis
result. Whereas, automatic path removal is restricted by the exploded supergraph con-
struction, since each control flow is exploded. In contrast, based on the interprocedural
CFG model design, we propose an ahead-of-time points-to analysis algorithm which can
be done in one-run model checking.

From the attempts on automatic path removal and bounded field tracing (i.e. cast
aliasing automatically), we show that more design efforts can be handed over to the
back-end model checking engine. Although iterative analysis is basically inevitable for

82



soundness, even for a model checking based approach, model checker can be exploited
as a ready-made fix-point calculator. To note that, the ahead-of-time construction needs
to explicitly give a bound on tracing the nesting of field access; and it is automatically
bounded by an on-the-fly algorithm construction.

Furthermore, the relatively unexplored problem of parametrization is explored. Pa-
rameterized flow-sensitivity is naturally obtained in our algorithms based on either model
reduction or simplifying the weight design.

From the preliminary evaluations, we feel that a complete context/field/flow-sensitive
choices of the analysis will not scale regardless of implementations. Probably, flow-
insensitive points-to analysis on SSA [43] would be a realistic solution.

Dead code elimination is intraprocedural in essence. For instance, variables passed
as arguments to procedures are directly considered to be used. Even based on infinite
model checking, a dead code elimination analysis is rather talking about global variables.
We present dead code elimination encoded as both pushdown and weighted pushdown
model checking problems. Our interprocedural irrelevant code elimination analysis goes
a step further and is more on a semantical sense. The interaction among procedures is
essentially captured by the variable dependency based on the exploded supergraph, under
PER based abstraction.

Future Directions

After a thorough study on program analysis based on weighted pushdown model checking,
a natural question is about the expressive power of weighted pushdown systems. We
think weighted pushdown model checking is more powerful than regular pushdown model
checking. One possible encoding could be that equivalence classes of ω-languages is taken
as the weight space and concatenation is taken as ⊗. The difficulty is, the semiring
based formulation is inherently restricted from representing properties that depends on
pathes rather on states. More theoretical study on systematic derivation of a bounded
idempotent semiring from an abstraction is demanding. That is, what kind of abstractions
can be encoded into weighted pushdown systems by keeping sound property need to be
further examined.

Based on the same weight design, an on-the-fly points-to analysis would be more pre-
cise than an ahead-of-time points-to analysis. This appears in the field-sensitive analysis,
especially when a model design is based on an exploded supergraph. For field insensitive
points-to analyses based on a control flow graph, it is an interesting theoretical question
whether an ahead-of-time points-to analysis is equally precise as an on-the-fly analysis.

Currently, we work on the model checking based analysis and verification of sequential
programs. Whereas modern programming languages are characterized by concurrent be-
haviors. Since the model checking problem on pushdown systems with more than 1 stack
becomes undecidable, abstractions cannot be avoided. For instance, a context-bounded
concurrent pushdown model checking algorithm is presented in [62] by restricting the num-
ber of contexts switches among processes. [60] presents an assume-guarantee approach
plus a counterexample guided abstraction for model checking on concurrency. The key is
only one thread is examined once, with assumption on the environment about how threads
may interfere. Another approach is back to the emptiness problem for the intersection of
languages by applying upper approximations on the context-free languages [61]. How to
cover concurrency will be our next topic.

83



Bibliography

[1] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, MIT,1999.

[2] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[3] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis, Springer, 1999.

[4] B. Steffen. Data Flow Analysis as Model Checking. In TACS ’91, LNCS 526, pages
346–365. Springer, 1991.

[5] D.A. Schmidt. Data ow analysis is model checking of abstract interpretation. In
Proceedings of the Twenty Fifth Annual Symposium on Principles of Programming
Languages, pages 38-48. ACM Press, 1998.

[6] The Model Checker Spin, IEEE Trans. on Software Engineering, Vol. 23, No. 5, May
1997, pp. 279-295.

[7] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model
checking pushdown systems. In E. Allen Emerson and A. Prasad Sistla, editors,
Proceedings of CAV 2000, volume 1855 of Lecture Notes in Computer Science, pages
232 C 247. Springer, July 2000.

[8] S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization prob-
lems. In Proceedings of the 16th IEEE Computer Security Foundations Workshop
(CSFW), pages 202 C 218. IEEE Computer Society, June 2003.

[9] Manna, Z. and Pnueli, A. Axiomatic approach to total correctness of programs. Acta
lnformatica 3 (1974), 243-263.

[10] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz (ed.): Mathematical
aspects of computer science. Proc. Symposia in Applied Mathematics 19. Providence
(R.I.): Amer. Math. Soc. 1967, p. 19 C 32.

[11] C.A.R. Hoare. An axiomatic basis of computer programming. Comm. ACM 12, 576
C 580, 583 (1969).

[12] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Sym-
posium Foundations of Computer Science (FOCS 1977), pages 46-57, 1977.

[13] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons for branching time temporal logic. In Logic of Programs: Workshop, Yorktown
Heights, NY, May 1981 Lecture Notes in Computer Science, volume 131. Springer-
Verlag, 1981.

84



[14] J.P. Quielle, and J. Sifkis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the 5th International Symposium on Programming. Lecture
Notes in Computer Science 137, Springer Verlag, New York, 1981, pp. 337-350.

[15] A. Biere, A. Cimatti, E. M. Clarke and Y. Zhu. Symbolic Model Checking without
BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, Lecture Notes in Computer Science Vol.
1579.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. Proceedings
of the 29th Annual Symposium on Principles of Programming Languages (POPL),
ACM Press, 2002, pp. 58-70.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking. JACM 50(5): 752-794 (2003).

[18] R. Gerth, D. Peled, M. Y. Vardi and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proceedings of 15th International Symposium on
Protocol Specification, Testing, and Verification (PSTV’95), pages 3-18. Chapman &
Hall, 1995.

[19] A. Bouajjani, J. Esparza, A. Finkel, et al. An efficient automata approach to some
problems on context-free grammars. Information Processing Letters archive Volume
74, Issue 5-6 (June 2000).

[20] J. A. Bergstra, A. Ponse, and S. A. Smolka, Editors. Handbook of Process Algebra.
Elsevier, 2001.

[21] R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis.
In the 22th ACM Symposium on Principles of Programming Languages (POPL’95),
pages 130 C 141, San Francisco, 1995.

[22] G. Ramalingam. Context sensitive synchronization sensitive analysis is undecidable.
ACM Trans. on Programming Languages and Systems, 22:416 C 430, 2000.

[23] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science
Volume 27, Issue 3, 1983, Pages 333-354.

[24] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In the 4th ACM
Symposium on Principles of Programming Languages (POPL’77), pages 238-252, Los
Angeles, 1977.

[25] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, E. Shahar. Symbolic model checking with
rich assertional languages. In the 9th International Conference on Computer Aided
Verification (CAV’97), Lecture Notes in Computer Science, pages 424-435, 1997.

[26] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In the 8th International Conference on Concurrency
Theory (CONCUR’97), volume 1243 of Lecture Notes in Computer Science, pages
135-150. Springer-Verlag, 1997.

85



[27] games and pushdown processes

[28] S. Schwoon. Model-checking pushdown systems. PhD thesis, Technische Universität
München, 2002.

[29] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1997.

[30] K. Mehlhorn . Graph algorithms and NP-completeness. EATCS Monographs On
Theoretical Computer Science; Vol. 2, Springer-Verlag, 1984.

[31] M. Yannakakis. Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems (PODS’90).

[32] Lacey, D., Jones, N. D., Wyk, E. V. and Frederiksen, C. C., Proving correctness of
compiler optimizations by temporal logic, Proc. 29th ACM Symposium on Principles
of Programming Languages, Symposium on Principles of Programming Languages,
pp. 283–294, 2002.

[33] Hunt, S., PERs Generalize Projections for Strictness Analysis (Extended Abstract),
Functional Programming: Proc. 1990 Glasgow Workshop, pp. 114–125 (1991),
Springer-Verlag.

[34] Lal, A., Balakrishnan, G., and Reps, T., Extended weighted pushdown systems. In
Proc. Computer-Aided Verification, 2005.

[35] D. Callahan. The program summary graph and flow-sensitive interprocedual data
flow analysis. In the Proceedings of the ACM SIGPLAN 1988 conference on Pro-
gramming Language design and Implementation, Pages:47-56, 1988.

[36] J. Gosling, B. Joy, G. Steele, G. Bracha. The Javatm Language Specification (Third
Edition), 2005.

[37] Sagiv, M., Reps, T., and Horwitz, S., Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science 167 (1996), 131–
170.

[38] T. Reps. Program analysis via graph reachability. Information and Software Tech-
nology, 40(11-12):701 C 726, November/December 1998.

[39] B. G. Ryder. Dimensions of precision in reference analysis of object-oriented program-
ming languages. In the International Conference on Compiler Construction (CC’03),
pages 126-137, 2003.

[40] C. S. Horstmann, G. Cornell. Core Javatm 2 Volume I and II - Fundamentals, Seventh
Edition. Prentice Hall PTR, August, 2004.

[41] R. Vallee, Phong, C. Etienne, G. Laurie, H. Patrick, and L. Vijay: Soot - a Java byte-
code optimization framework, Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research 1999 (CASCON ’99), Ontario, Canada,
November 1999.

86



[42] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991. CMU-CS-91-145.

[43] R. Hasti and S. Horwitz. Using static single assignment form to improve flow-
insensitive pointer analysis. In SIGPLAN 98 Conference on Programming Language
Design and Implementation, pages 97-105, June 1998.

[44] A. Milanova, A. Rountev, and B. Ryder. Parameterized object-sensitivity for points-
to and side-effect analyses for Java. In the International Symposium on Software
Testing and Analysis, pages 1 C 11, 2002.

[45] O. Lhoták and L. Hendren. In the 15th International Conference on Compiler Con-
struction (CC 2006). LNCS volume 3923, Pages 47-64, 2006.

[46] Reps, T., Schwoon, S., Jha, S., and Melski, D., Weighted pushdown systems and their
application to interprocedural dataflow analysis. Science of Computer Programming,
58(1 C 2):206–263, October 2005.

[47] L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, University of Copenhagen, DIKU, 1994.

[48] M. Fändrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in in-
clusion constraint graphs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI),Montreal, Canada, June 1998.

[49] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A million lines
of C code in a second. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Snowbird, Utah, June 2001.

[50] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using an-
notated constraints. In Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), Tampa Bay, Florida, October 2001.

[51] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-driven points-to analysis
for Java. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2005.

[52] Manu Sridharan and Ras Bodik. Refinement-Based Context-Sensitive Points-To
Analysis for Java. UCB/EECS-2006-31, EECS Department, University of Califor-
nia, Berkeley.

[53] M. F ahndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis using
instantiation constraints. In Proceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation(PLDI), pages 253 C 263, June 2000.

[54] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias anal-
ysis using binary decision diagrams. Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation(PLDI), 2004.

[55] Dean, J., Grove, D., and Chambers, C. Optimization of object-oriented programs us-
ing static class hierarchy analysis. In Proceedings of the Ninth European Conference
on Object-Oriented Programming (ECOOP’95) (Aarhus, Denmark, Aug. 1995), W.
Olthoff, Ed., Springer-Verlag, pp. 77-101.

87



[56] Bacon, D. F. Fast and Effective Optimization of Statically Typed Object-Oriented
Languages. PhD thesis, Computer Science Division, University of California, Berke-
ley, Dec. 1997. Report No. UCB/CSD-98-1017.

[57] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In Proceedings
of the 12th International Conference on Compiler Construction (CC), pages 153-169,
April 2003.

[58] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), San Diego, CA, June 2003.

[59] M.S. Hecht, J.D.Ullman. Flow graph reduibility. SIAM J. Computing 1-2, 1972.

[60] T.A. Henzinger, R. Jhala, R. Majumdar, S. Qadeer. Thread-modular Abstrac-
tion Refinement. In the 15th Internatial Conference on Computer-Aided Verifica-
tion (CAV03).

[61] A. Bouajjani, J. Esparza, T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. In the 30th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL03), New Orleans, Louisisana, January,
2003.

[62] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
the Proceedings of the 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS05), 2005.

88



Publications

[1] Li Xin, Mizuhito Ogawa. A Lightweight Mutual Authentication based on Proxy
Certificate Trust List. Computer Software, Vol.22, No.2, pp.85-89, 2005.

[2] Li Xin, Mizuhito Ogawa. A Lightweight Mutual Authentication based on Proxy
Certificate Trust List. The 5th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT’04), Springer LNCS3320, pp.424-
440, 2004.

[3] Li Xin, Mizuhito Ogawa. Interprocedural Program Analysis for Java based on
Weighted Pushdown Model Checking. The 5th International Workshop on Auto-
mated Verification of Infinite-State Systems (AVIS’06).

89


