
Pushdown Automata and Inclusion Problems

by

NGUYEN VAN TANG

submitted to

Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Supervisor: Professor MIZUHITO OGAWA

School of Information Science

Japan Advanced Institute of Science and Technology

March, 2009

1

Abstract

Pushdown automata naturally model the control flow of sequential computation in

typical programming languages with nested, and potentially recursive, invocations of pro-

gram modules such as procedures and method calls. Consequently, a variety of program

analysis, compiler optimization, and model checking questions can be formulated as de-

cision problems for pushdown automata.

The automata-theoretic approach to verification, advocated by Vardi and Wolper in

1986, connects model checking to the inclusion problem of automata. That is, a system

model A satisfies a specification B if and only if L(A) ⊆ L(B), where A and B are

automata corresponding to the model and specification respectively, and L(A) and L(B)

are the languages recognized by A and B, respectively.

• When A and B are finite automata, the standard methodology for the inclusion

problem is to, compute the complement L(B), take the intersection between L(A)

and L(B), then check for its emptiness, i.e., L(A) ⊆ L(B)⇐⇒ L(A) ∩ L(B) = ∅.

• This also works when A is extended to a pushdown automaton, but fails when B is

extended to a pushdown automaton.

Model checking pushdown models against regular properties (specified by finite au-

tomata or logical characterizations such as LTL) is decidable. This follows from classical

results on pushdown automata: the product of a pushdown automaton and a finite-state

automaton gives a pushdown automaton, and the emptiness of the language of a pushdown

automaton can be checked in polynomial-time. However, unfortunately, the problem of

checking context-free properties of pushdown automata is undecidable in general. This is

because pushdown automata are not closed under intersection and complementation. To

obtain decidability results for inclusion, subclasses of pushdown automata (PDA) such

as superdeterministic pushdown automata and visibly pushdown automata have been

proposed:

1. Superdeterministic Pushdown Automata. Superdeterministic pushdown au-

tomata (SPDA), proposed by Greibach and Friedman in 1980, are a subclass of

deterministic pushdown automata. If the acceptance condition is by final location,

the language inclusion L(A) ⊆ L(B) is decidable for a PDA A and an SPDA B.

2. Visibly Pushdown Automata. Visibly pushdown automata (VPAs), proposed

by Alur and Madhusudan in 2004, are special pushdown automata whose stack

i

operations are driven by the input. The class of VPAs recognizes some non-regular

context-free languages while having the good closure properties and decidability

results as those of finite automata. The inclusion problem for VPAs is EXPTIME-

complete.

The aim of this thesis is to study the inclusion problems for subclasses of pushdown

automata. We make the following main achievements and contributions towards this goal:

• We refine the alternate stacking technique used in Greibach-Friedman’s proof of

the language inclusion problem L(A) ⊆ L(B), where A is a pushdown automaton

and B is a superdeterministic pushdown automaton. In particular, we propose a

product construction of a simulating pushdown automaton, whereas the one given

by the original proof encoded everything as a stack symbol. This construction avoids

the need for the “liveness” condition in the alternate stacking technique, and the

correctness proof becomes simpler.

• Alur and Madhusudan proved that visibly pushdown automata are determinizable.

We give detailed counter examples to show that natural extensions of visibly push-

down automata such as ordered 2-visibly pushdown automata (consequently, 2-visibly

pushdown automata) and visibly stack automata are not determinizable.

• The antichain algorithm limits determinization steps as minimum as possible and

gives a fast decision procedure for the universality problem of finite automata.

We extend the method to visibly pushdown automata with combining P-automata

techniques. Preliminary experiments on randomly generated visibly pushdown au-

tomata show significant improvement compared to the standard automata-theoretic

approach, especially when the universality / the inclusion do not hold.

• We introduce the class of event-clock visibly pushdown automata (ECVPAs) as an

extension of event-clock automata. The class of ECVPAs is, on one hand, enough to

model simple real-time pushdown systems and, on the other hand, determinizable

and closed under boolean operations. We also show that for a timed visibly push-

down automaton (TVPA) A and an ECVPA B, the inclusion problem L(A) ⊆ L(B)

is decidable. This provides an algorithm for checking if a TVPA model satisfy a

context-free real-time specification given as ECVPA.

Key Words: Formal Verification, Model Checking, Pushdown Automata, Visibly

Pushdown Automata, Inclusion Problem, Antichains, Timed Automata, Event-Clock Au-

tomata, Verification of Real-time Systems.

ii

Acknowledgements

This thesis would not have been possible without the guidance, generosity, and good-

will of many people. I feel grateful and indebted to have received all their help.

First of all, I am greatly grateful to Professor Mizuhito Ogawa, my supervisor, for his

guidance, wisdom and support he has provided me throughout my doctoral education.

He always helps me to clarify my research issues, inspires new ideas and enhances my

thinking ability. Without him, this thesis would be impossible. The work presented in

this thesis in effect should be regarded as a result of collaborations with him.

I would like to express my deep gratitude to thank to Professor Takuya Katayama for

giving me a chance to have an interview for this Ph.D. position when I met him for the

first time in Hanoi.

I also would like to sincerely thank the dissertation committee members, who gave

me instructive suggestions and comments in the evaluation of the preliminary version of

the thesis. They are Professor Hiroyuki Seki from NAIST, Professor Kunihiko Hiraishi,

Associate Professor Toshiaki Aoki, and Associate Professor Kazuhiro Ogata from JAIST.

I wish to continue my sincere thanks to my sub-theme supervisor Professor Kunihiko

Hiraishi and Dr. Koichi Kobayashi for conducting me to a very interesting field and

widening my view. The topic of hybrid systems is very likely to be another target of my

future research.

I am very indebted to Professor Dang Van Hung, my master thesis’s supervisor, who

has always been available for me at anytime since I met him for the first time in Hanoi. I

have not met Professor Dang Van Hung without the recommendation of Professor Doan

Van Ban, my supervisor at Hanoi Institute of Information Technology. My special thanks

also go to Professor Ho Tu Bao for his valuable discussions and advices in the daily life.

I would like to express my appreciations to all of them.

During the last three years, especially the last two years of my Ph.D., I had a lot

of useful discussions with Dr. Nao Hirokawa. He also gave me many suggestions and

comments to improve my work. Besides, he helped me a lot in computer’s problems such

as using pdflatex & TikZ/PGF, doing experiments, and my technical presentation. Nao,

thank you very much for your help.

Let me say special thanks to the members of Software Verification Labs, Dr. Li

Guoqiang, Dr. Li Xin, Mrs. Do Ngoc, Mr. Song Lin, and Mr. Dominik Klein for their

valuable discussions and comments.

Last but definitely not least, during my study, I always get the support and encour-

agement from my family and friends. Thank you all.

iii

Funding. This research is supported by the 21st Century COE “Verifiable and Evolv-

able e-Society” of Japan Advanced Institute of Science and Technology, funded by Japanese

Ministry of Education, Culture, Sports, Science and Technology.

This thesis has been prepared according to the new standard version of the LATEX with

the supplemental package TikZ/PGF version 1.10, and compiled with LATEX2ε. This soft-

ware makes the typesetting for scientific report much easier. Our prototype tool has been

implemented in Java 1.5.0/NetBeans IDE 6.0.1.

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Model Checking . 1

1.2 Inclusion Problems and Model Checking 3

1.3 Contributions . 5

2 Pushdown Automata 11

2.1 Definition of Pushdown Automata . 11

2.2 Properties of Pushdown Automata . 13

2.3 Deciding Emptiness of PDAs . 14

2.4 Applications to Pushdown Model Checking 17

3 Superdeterministic Pushdown Automata 18

3.1 Superdeterministic Pushdown Automata 19

3.2 Alternate Stacking Technique . 21

3.2.1 Simulating Pushdown Automata . 21

3.2.2 An Illustrating Example . 25

3.3 Soundness and Completeness . 27

3.3.1 Soundness . 27

3.3.2 Completeness . 28

3.3.3 The Inclusion Problem . 29

3.4 Related Work . 30

4 Visibly Pushdown Automata and Its Extensions 32

4.1 Visibly Pushdown Automata . 33

4.1.1 Definition of Visibly Pushdown Automata 33

4.1.2 Determinization . 35

4.1.3 Closure Properties and Decision Problems 37

4.2 Language Extensions of VPA Are Difficult 38

v

4.2.1 2-Visibly Pushdown Automata . 38

4.2.2 Visibly Stack Automata . 41

4.3 Related Work . 44

5 Checking Universality and Inclusion of Visibly Pushdown Automata 45

5.1 Checking Universality and Inclusion of Finite Automata 47

5.1.1 Standard Methods . 47

5.1.2 Antichain Methods . 48

5.2 Checking Universality and Inclusion of Visibly Pushdown Automata 53

5.2.1 Standard Methods . 54

5.2.2 On-the-fly Methods . 55

5.2.3 Antichain-based Methods . 58

5.3 Implementation and Experiments . 61

5.4 Related Work . 64

6 Timed Extensions of Visibly Pushdown Automata 67

6.1 Event-Clock Visibly Pushdown Automata 69

6.1.1 Event clocks . 69

6.1.2 Event-Clock Visibly Pushdown Automata 70

6.2 Properties of Event-Clock Visibly Pushdown Automata 73

6.2.1 Untimed/Timed Translation between ECVPA and VPA 73

6.2.2 Closure Properties and Inclusion Problem 75

6.3 Related Classes of Timed Pushdown Automata 76

6.3.1 Timed Visibly Pushdown Automata 76

6.3.2 Translation from ECVPA to TVPA 78

6.4 Related Work . 79

7 Conclusion 81

7.1 Summary of Contributions . 81

7.2 Further Research . 82

vi

List of Figures

1.1 Model Checker Structure . 2

2.1 The finite automaton C . 16

2.2 The P-automaton post∗(C) . 16

3.1 Pushdown automaton C . 26

3.2 Superdeterministic pushdown automaton D 26

3.3 The simulating PDA M(C,D, 1) . 27

4.1 VPA M . 34

4.2 VPA M . 37

4.3 Determinized VPA Md . 37

4.4 A nondeterministic 2-VPA accepting L1 41

4.5 A nondeterministic VSA accepting L2 . 43

5.1 Finite automaton A . 48

5.2 Determinization for checking universality of finite automaton A. 49

5.3 Checking universality of finite automaton A via antichains. 52

5.4 Checking Universality of VPA via Standard Method 54

5.5 Checking Universality of VPA via On-the-fly Method 55

5.6 Description of the On-the-fly Method . 56

5.7 Checking Universality of VPA via Antichain-Based Method 58

5.8 Minimization of P-automata . 61

5.9 Description of the Antichain-based Method 62

6.1 Relationships between involved classes of TPDAs 68

6.2 Event-clock valuations of xa and ya for w̄ 70

6.3 Event-clock visibly pushdown automaton M 72

6.4 One clock timed automaton A . 73

6.5 Description of untimed translation . 74

6.6 Description of timed translation . 75

vii

List of Tables

5.1 checking random VPA with r = 3, f = 1 63

5.2 Universality checking for random VPA with 10 states 64

5.3 Universality checking for random VPA with r = 0.6 65

5.4 Checking inclusion with r(q, a) = 2, f = 0.6 66

viii

Chapter 1

Introduction

The class of context-free languages (CFL) plays an important role in several areas

of computer science. Besides its definition using context-free grammars it has various

other characterizations, the most prominent being the one via nondeterministic pushdown

automata. Pushdown automata (PDAs) are finite automata augmented with a pushdown

stack. A PDA can only read the top of the stack and is not allowed to know how tall

it is. It can also add items to the top of the stack, or remove items from the top of

the stack. Although this restriction appears quite severe, PDAs naturally model the

control flow of sequential computation in typical programming languages with nested,

and potentially recursive, invocations of program modules such as procedures and method

calls. Consequently, a variety of program analysis, compiler optimization, and model

checking questions can be formulated as decision problems for PDAs.

It is well known that the class of PDAs does not enjoy good closure properties, e.g.,

it is not closed under complement or intersection, and that several interesting problems

are undecidable, e.g., checking whether a context free language is regular, or whether

it contains all words (universality), or whether a language is contained in another one

(language inclusion) [9, 72]. We must therefore contend ourselves with formalisms of

lesser expressive power but having good decidability results. The aim of this thesis is to

study the inclusion problems for subclasses of PDAs. We first briefly present motivations

of our research from the model checking point of view.

1.1 Model Checking

It has long been known that computer software programs, computer hardware designs,

and computer systems in general exhibit errors. Working programmers may devote more

than half of their time on testing and debugging in order to increase reliability. A great

deal of research effort has been and is devoted to developing improved testing methods.

1

Testing

Traditionally, systems are tested for errors before they are deployed. The behaviour

of the system is checked against a range of possible scenarios to make sure it is correct.

However, testing every possible scenarios is impractical. The designer of the tests, whether

a person or a specially designed program, chooses a selection of important cases. The

effectiveness of this approach relies on the perspicacity of the tester and their knowledge

of both the system and its desired behaviour. Inevitably, not all errors are caught. Testing,

therefore, cannot guarantee that a program is correct.

The most promising approach depends on the fact that programs and more generally

computer systems may be viewed as mathematical objects with the behaviours that is

in principle well-determined. This makes it possible to specify using mathematical logic

what constitutes the intended (correct) behaviours. Then one can try to give a formal

proof or otherwise establish that the program satisfies its specification. This line of study

has been attracted extensively attention over three past decades.

Model Checking

Model checking , proposed in 1980 by E.M. Clarke and E.A. Emerson [20] and J.P.

Quielle and J. Sifakis [59] independently, is an automatic verification technique for finite-

state concurrent systems. The model checking problem is easy to state:

Given a program (system model) A and a correctness specification B, deter-

mine whether or not the behaviour of A satisfies the specification B?.

Model checking provides an automated technique for verifying concurrent finite state

systems that uses an efficient and flexible graph search, to determine whether or not the

ongoing behaviour described by a temporal property holds in the system’s state graph.

The method is algorithmic and efficient because the system is finite state, despite reasoning

about infinite behaviour. If the answer is yes then the system satisfies its specification. If

the answer is no then the system violates its specification; in practice, the model checker

can usually produce a counterexample for debugging purposes (Figure 1.1).

Model Checker
model

temporal
property

yes

error-trace

Figure 1.1: Model Checker Structure

Model checking has a number of advantages compared to other verification techniques

such as automated theorem proving or proof checking. The user of a Model Checker does

2

not need to construct a correctness proof. In principle, all that is necessary is for the

user to enter a description of the circuit or program to be verified and the specification to

be checked and press the “return” key. The checking process is automatic. In practice,

model checking is fast compared to other rigorous methods such as the use of a proof

checker, which may require months of the user’s time working in interactive mode.

Models and specifications are two important components of model checking. Usually,

system models M are described as Kripke structure (i.e, finite state-transition graph

or finite automata) and specifications S are given in temporal logic [56] such as CTL

(computation tree logic) and LTL (linear time logic) formulas. Model checking for finite

state systems has been successfully implemented in automatic tools such as SMV/NuSMV 1

and SPIN 2 leading to efficient applications to hardware verification.

1.2 Inclusion Problems and Model Checking

The automata-theoretic approach to verification, advocated by Vardi and Wolper [75]

in 1986, connects model checking to the inclusion problem of automata. That is, a system

model A satisfies a specification B if and only if (iff) L(A) ⊆ L(B) which is equivalent

to L(A) ∩ L(B) = ∅, where A and B are automaton corresponding to the model and

specification respectively, and L(A) and L(B) are the sets of behaviours recognized by A

and B, respectively. Thus, the decidability of a model checking problem is ascribed to the

inclusion problem of automata. The automata-theoretic approach also enables on-the-

fly model checking [33]. Automata-based methods have been implemented in industrial

automated verification tools such as SPIN [38]. Finite model checking is successful in

hardware verification that has a finite state space in nature.

Pushdown Model Checking

However, finite state verification is not always adequate for analyzing software. Au-

tomatic software validation is not easy, because the state space of software is inherently

infinite. The infinities come from infinite program structures (e.g., nested procedure calls,

recursions), infinite data domains (e.g., integers), concurrency, etc. Automatic software

validation demands efforts from program analysis and abstraction to model checking tech-

niques on infinite state space. One of the simplest kinds of infinite state system that we

can verify are pushdown automata [72, 9]. In these systems, memory is arranged as a

stack of data. The program can only read the top of the stack and is not allowed to know

how tall it is. It can also add items to the top of the stack, or remove items from the top

of the stack. Although this restriction appears quite severe, it is able to model recursive

1http://www.cs.cmu.edu/modelchecker/code.html
2http://www.spinroot.com/

3

procedure calls. Consequently, a variety of program analysis, compiler optimization, and

model checking questions can be formulated as decision problems for pushdown automata.

Pushdown Model Checking for Regular Properties

The automata-theoretic approach works for pushdown model checking on regular prop-

erties (e.g., written in CTL, LTL), since the intersection of a context-free language and a

regular language is closed, i.e. still context-free. The practical algorithms for pushdown

model checking have been developed based on the key that regular pushdown stack val-

uations are closed under forward and backward reachability [30, 28, 29]. Recently, some

practical model checking algorithms on the pushdown models, the finite-state system with

an unbounded stack memory, have been developed [29, 58] and implemented as tools, such

as Moped 3 and Slam 4.

Pushdown Model Checking for Context-Free Properties

Almost all existing work on model checking considers regular specification formalism

that defines regular set of words. In practice, however, many desired behaviours are

non-regular and cannot be specified by a finite automaton. For example, the properties

that require inspection of the stack or matching of calls and returns are context-free.

More examples of useful non-regular properties are given in [62], where the specification

of unbounded message buffers is considered. Although the general problem of checking

context-free properties of pushdown automata is undecidable, algorithmic solutions have

been proposed for checking some kinds of non-regular properties. In particular, Alur et

al. recently introduced the logic CaRet [6]. CaRet is a linear temporal logic that

can specify some non-regular properties. Pushdown model checking for CaRet logic is

decidable in exponential time [6]. We note that CaRet is less expressive than pushdown

automata. The study of CaRet inspired Alur and Madhusudan [5] to introduce visibly

pushdown automata (VPA). These are pushdown automata where the push or pop actions

on the stack are determined externally be the input alphabet. Such a restriction on the use

of the stack allows VPA to enjoy good closure properties, and the inclusion problem for

VPA is decidable. Therefore, VPAs are relevant to several applications that use context-

free languages such as the model-checking of software programs using their pushdown

models [5, 6, 8]. Recent work has shown promising applications in other contexts: in

modeling semantics of effects in processing XML streams [50, 46], in identifying larger

classes of pushdown specifications that admit decidable problems for infinite games on

pushdown graphs [52], and in VPA-based aspects [55].

3http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
4http://research.microsoft.com/slam/

4

1.3 Contributions

Motivated by pushdown model checking for non-regular context-free properties, the

aim of this thesis is to study the inclusion problems for subclasses of pushdown automata.

We make the following contributions towards this overall goal:

We first present the basic notions and properties of pushdown automata, and P-

automata technique for checking reachability (equivalent to emptiness) of pushdown au-

tomata in Chapter 2.

Superdeterministic Pushdown Automata

Our first contribution, presented in Chapter 3, is an improvement on the alternate

stacking technique used in Greibach-Friedman’s proof of the language inclusion problem

L(A) ⊆ L(B), where A is a pushdown automaton (PDA) and B is a superdeterministic

pushdown automaton (SPDA). An SPDA is a deterministic PDA (DPDA) satisfying:

1. finite delay (i.e., a bounded number of ε-transitions in a row can be applied to any

configuration), and

2. for two configurations sharing the same control state, transitions with the same

symbol lead to configurations sharing the same control state such that the length

change of stacks is the same.

Greibach and Friedman [34] used the alternate stacking technique [74] to show that

the inclusion problem L(A) ⊆ L(B), where A is a PDA and B is an SPDA, is decidable.

The key idea of their proof is to construct a simulating pushdown automaton M such

that L(A) ⊆ L(B) iff L(M) = ∅. However, the original construction encodes everything

as stack symbols (in an intricate way), and thus control states and transition rules of M

could not be given in details. Furthermore, to decide the emptiness of M , one has to

use an auxiliary procedure to check whether a configuration of the PDA A is live (i.e.,

whether a configuration reaches an accepting configuration) or not. These properties of

their simulating PDA M lead to a complicated proof of soundness and completeness for

the decision procedure [34].

To deal with these drawbacks, we propose a product construction of a simulating PDA

M , whereas the one given by the original proof encoded everything as a stack symbol.

This construction avoids the need for the “liveness” condition in the alternate stacking

technique, and the correctness proof becomes simpler.

Language Extensions of VPA Are Difficult

In Chapter 4, we present the notion and properties of visibly pushdown automata. We

also give detailed counter-examples to show that natural extensions of visibly pushdown

5

automata such as ordered 2-visibly pushdown automata (consequently, 2-visibly pushdown

automata) and visibly stack automata are not determinizable.

Visibly pushdown automata [5] are pushdown automata whose stack behaviour (i.e.

whether to execute a push, a pop, or no stack operation) is completely determined by the

input symbol according to a fixed partition of the input alphabet. As shown in [5, 7], this

class of visibly pushdown automata enjoys many good properties similar to those of the

class of regular languages, the main reason for this being that each nondeterministic VPA

can be transformed into an equivalent deterministic one. As each nondeterministic VPA

can be determinized, all problems that concern the accepted language such as universality

and inclusion problems are decidable for VPAs. Visibly pushdown automata have turned

out to be useful in various context, e.g., as specification formalism for verification for

pushdown models [5], and as automaton model for processing XML streams [7, 50, 46].

Visibly pushdown automata with multiple stacks have been considered recently and

independently by Carotenuto et al. [17] and Torre et al. [69]. The purpose of these papers

is to exploit the notion of visibility further to obtain even richer classes of languages while

preserving important closure properties and decidability of verification-related problems

such as emptiness and inclusion. The emptiness problems for these extensions, however,

are undecidable.

To retain the good closure properties, Torre et al. [69] consider a subclass, named

k-MVPAs , of multiple-stack VPAs with restrictions that: an input word can be divided

into at most k phases such that, in every phase, pop actions can occur in at most one

stack. Then, the emptiness problem becomes decidable. Although k-MVPAs are not

determinizable, they are closed under Boolean operations [69].

In [17], the approach to gain decidability and good closure properties is to exclude

simultaneous pop operations by introducing an ordering constraint on stacks. This re-

stricted subclass of multi-stack VPAs is called ordered n-VPAs (n-OVPAs). For instance,

in 2-OVPAs, a pop action on the second stack occurs only after the first stack becomes

empty. Then, the emptiness problem turns out to be decidable in polynomial time. They

also claimed the determinizability of 2-OVPAs (2-VPAs).

In Chapter 4, we first give detailed counter examples to refute the claim of Carotenuto

et al. about the determinizability of 2-OVPAs (consequently, 2-VPAs). Second, we intro-

duce the class of visibly stack automata (VSAs) as an extension of VPAs by combining

ideas of visibility and stack automata [35]. We also give a counter example to show that

VSAs are not determinizable.

Checking Universality and Inclusion of Visibly Pushdown Automata

Our third contribution, presented in Chapter 5, consists of antichain-based algorithms

for checking universality and inclusion of visibly pushdown automata.

6

One of the most important properties is that nondeterministic VPAs can be deter-

minized, and determinization plays a key role in universality and inclusion checking [5].

However, the determinization is much harder to obtain than in the case of finite automata.

In particular, for a nondeterministic VPA with n states, the determinization has a O(2n
2
)

worst case complexity. To check universality for a nondeterministic VPA A over Σ (that

is, to check if L(A) = Σ∗), the classical approach is first to make it complete, determinize

it, and then checks for reachability of nonaccepting states of the determinized VPA. To

check the inclusion problem L(A) ⊆ L(B), the standard approach computes the comple-

ment of B, takes its intersection with A, and then check for emptiness. This is costly as

computing the complement necessitates determinization. This explosion is in some sense

unavoidable, as the universality and language inclusion problem for VPAs are known to

be EXPTIME-complete [5].

During the recent years, a lot of research has been done to implement efficiently

operations like complementation [48, 49] and universality or inclusion checking on non-

deterministic word, Büchi, or tree automata [77, 24, 14]. The solutions in [77, 24, 14] is

so-called antichain technique, an antichain is a finite set of incomparable elements. Its

idea comes from an analysis of the complementation, which consists of two steps (1) the

determinization and (2) the alternation of final states. In a determinization, the subset

construction generates determinized states, each of which is the collection of destination

states of transitions of a word. A (forward) antichain further reduces it to minimal deter-

minized states only. The idea is that, in either the universality or the inclusion checking,

the final step is the emptiness checking, i.e., whether there exists a word reachable to a

rejecting determinized state, regardless of which word is an instance. Although the an-

tichain algorithm does not improve the complexity in theory, it is significant in practice.

For instance, there had been virtually no implementations of complementing a Buchi au-

tomaton (which is O(2n logn)), but one was given by antichains [24] and implemented as

ALASKA [78].

In this Chapter 5, we first apply the standard method to check universality and in-

clusion problems for nondeterministic VPA. The method includes two main steps: deter-

minization and reachability checking for non-accepting configurations. For determiniza-

tion, we use the Alur-Madhusudan’s procedure. For reachability checking, we apply the

symbolic technique P-automata [29, 58] to compute the sets of all reachable configura-

tions of a VPA. We implement this standard approach in a prototype tool written in Java

1.5.0/NetBeans 6.0. We test on randomly generated VPA. However, the performance of

this method is very low. The program stuck with very mall size of input VPAs.

To improve the standard method, we propose and experimentally evaluate new efficient

methods for checking universality and inclusion problems of VPAs: on-the-fly method and

antichain-based method.

7

• On-the-fly method. To improve efficiency, we perform determinization and reach-

ability checking on-the-fly manner. More precisely, we construct determinized VPA

and P-automaton simultaneously. For checking universality of nondeterministic

VPA M , we first create the initial state of the determinized VPA Md and a P-

automaton A to represent the initial configuration. Second, construct new tran-

sitions departing from the initial states, and update the P-automaton A. Then,

using new states and transitions of A (which correspond to pairs of the states and

topmost stack symbols of Md), update the determinized VPA Md, and so on. When

a nonaccepting state is added to A, we can stop and report that M is not universal.

• Antichain-based method. We extend the antichain-based algorithms [77] to vis-

ibly pushdown automata. In particular, as determinization is expensive, we first

construct an algorithm for checking universality by keeping determinization implic-

itly. The main idea is to try to find at least one word not accepted by the VPA.

For this sake, we follow the simultaneous technique as in the on-the-fly method.

Besides, an ordering over transitions of determinized VPA is introduced to perform

a kind of minimal symbolic simulation of the P-automaton to cover all runs neces-

sarily leading to non-accepting states. We also give a new algorithmic solution to

inclusion checking for VPAs. Again, no explicit determinization is performed. To

solve the language-inclusion problem for nondeterministic VPAs, L(A) ⊆ L(B), the

main idea is to find at leat one word w accepted by A but not accepted by B, i.e.,

w ∈ L(A) \ L(B).

To evaluate the proposed algorithms, we have implemented them all in a prototype

tool and tested them in a series of experiments. Although the standard approaches (as

well as ours) have the same worst case complexity, our prototype implementation out-

performs those approaches where determinization is explicit. Preliminary experiments on

randomly generated visibly pushdown automata show a significant improvement of on-

the-fly and antichain-based methods compared to the standard method, especially when

the universality / the inclusion do not hold. For the cases of universal VPAs, our ex-

perimental results show that the antichain-based method is considerably faster than the

standard method.

Timed Extensions of Visibly Pushdown Automata

Our fourth contribution, presented in Chapter 6, is the class of event-clock visibly

pushdown automata (ECVPAs) as an extension of event-clock automata. The class of

ECVPAs is, on one hand, enough to model simple real-time pushdown systems and, on

the other hand, determinizable and closed under boolean operations. We also show that

for a timed visibly pushdown automaton A and an ECVPA B, the inclusion problem

L(A) ⊆ L(B) is decidable.

8

Timed automata (TAs) were introduced by Alur and Dill in [2], and have become

a standard modeling formalism for real-time systems. A timed automaton is a finite

automaton augmented with a finite set of real-valued clocks, in which constraints on the

clocks are used to restrict the behaviors of an automaton. The theory of timed automata

allows the solution of certain verification problems for real-time systems [2, 37, 15], e.g.,

reachability and safety properties. These solutions have been implemented in automatic

tools such as UPPAAL 5.

However, the general verification problems (i.e., language inclusion) for timed au-

tomata is undecidable. Therefore, for the verification purpose, one has to work either

with deterministic specifications or with a restricted class of timed automata which has

the required closure properties. One such restricted case is the class of event-clock au-

tomata (ECAs) [3, 25, 26]. The key feature of these automata is that they have a pair

of implicit clocks associated with each input symbol. The event clocks record the time

elapsed after the last occurrence of the associated symbol, as well as the time that will

elapse before the next occurrence of the associated symbol. When an ECA reads a timed

word, clock valuations depend only on the input word itself rather than on the choice of

nondeterministic transitions. Hence, ECAs are determinizable and closed under Boolean

operations.

During the last years, there has been much extensive research on the inclusion problem

for timed automata [42, 27, 16]. In particular, it was shown that the inclusion problem

L(A) ⊆ L(B), for timed automata A and B, becomes decidable if B has at most one

clock [42]. The key idea of the proof is to encode this inclusion problem as the reachability

problem for well-structured transition systems. However, over infinite timed words, one

clock is enough to make the inclusion problem undecidable [1].

A timed pushdown automaton (TPDA) [13] is a timed automaton augmented with a

pushdown stack. Decision problems for TPDAs such as emptiness is decidable [13]. How-

ever, the inclusion problem for TPDAs is undecidable, since the corresponding problem is

already undecidable for pushdown automata. One, therefore, has to deal with formalism

of less expressive power. One such candidate is the class of visibly pushdown automata

(VPAs, c.f. Chapter 4), in which the stack pushes and pops are determined explicitly

by an input alphabet. VPAs are closed under all Boolean operations, and the inclusion

problem for VPAs is decidable. Motivated by real-time software verification, Emmi and

Majumdar [27] introduced timed visibly pushdown automata (TVPAs) as the timed ex-

tension of VPAs. However, for TVPAs A and B, the inclusion problem L(A) ⊆ L(B) is

undecidable even when B has exactly one clock [27].

In Chapter 6, inspired by the ideas of ECAs [3] and VPAs [5], we introduce the class

of event-clock visibly pushdown automata (ECVPAs). The class of ECVPAs is expressive

5http://www.uppaal.com/

9

enough to specify common context-free real-time properties such as “if p holds when a

procedure is invoked, then the procedure must return within d time units and q must hold

at the return state”. Besides, the class of ECVPAs is closed under all Boolean operations.

Our results are summarized as follows:

1. We show the essence behind the notion of event clocks is that every ECVPA can be

translated into an untimed VPA, which interprets timing constraints symbolically,

and vice-versa. Therefore, the closure properties and the decidability results of

ECVPAs can be reduced to those of VPAs.

2. We use the translation technique to prove that the inclusion problem L(A) ⊆ L(B)

for a TVPA A and an ECVPA B is decidable.

3. We show that class of duration automata (DAs) [65] is a special case of ECVPAs.

Thus, the inclusion problem for DAs is decidable.

Summary

In summary, we have considered the inclusion problems for subclasses of pushdown

automata. The results of this thesis were published in (or, were submitted to) several

papers: superdeterministic pushdown automata [66], languages extensions of visibly push-

down automata [68], antichains for visibly pushdown automata [41], and timed extensions

for visibly pushdown automata [65, 67].

10

Chapter 2

Pushdown Automata

In this chapter we present the basic notions and properties of pushdown automata as

well as the P-automata technique for solving reachability of pushdown automata.

2.1 Definition of Pushdown Automata

Let Σ = {a, b, c, ...} be a finite alphabet. The set Σ∗ denotes all finite words over Σ.

The empty word is denoted by ε. A subset of Σ∗ is called a language. Given a nonempty

word w ∈ Σ∗ we write w = a1a2 · · · an where ai ∈ Σ denotes the i-th symbol of w for all

1 ≤ i ≤ n. Let head(w) denote the first letter of w, i.e., head(w) = a1. The length |w| of

w is n and |ε| = 0. The notation | · | also denotes the cardinality of a set, the absolute

value of an integer, and the size of a pushdown automaton.

Definition 2.1. A pushdown automaton (PDA) A over an alphabet Σ is a tuple A =

(Q,Σ,Γ, Z0,∆, q0, F), where

1. Q = {p, q, r, ...} is a finite set of control states,

2. Γ = {X, Y, Z, ...} is a finite set of stack symbols such that Q ∩ Γ = ∅,

3. Z0 ∈ Γ is the initial stack symbol (sometimes, we use ⊥ for initial symbol instead

of Z0),

4. ∆ is a finite set of transition rules of the form (p,X)
a−→ (q, α) where p, q ∈ Q,

a ∈ Σ∪ {ε}, X ∈ Γ, and α ∈ Γ∗, and ε /∈ Σ (empty input word) is a special symbol,

5. q0 is the initial control state, and

6. F ⊆ Q is a set of final control states.

For a rule (p,X)
a−→ (q, α) ∈ ∆, we call (p,X) the mode of the rule with input a; if

a = ε, this is an ε-rule. We say that a rule (p,X)
a−→ (q, α) is a push, internal , or pop rule

if |α| = 2,1, or 0, respectively. For a given mode (p,X), we define:

11

• if no rule is defined for (p,X) in Q× Γ, (p,X) is a blocking mode.

• if no ε-rule is defined for mode (p,X) and (p,X) is not a blocking mode, we call it

a reading mode.

Definition 2.2. We consider two subcases of PDAs:

• A PDA is called real-time (RPDA) if (p,X)
a−→ (q, α) ∈ ∆ implies a 6= ε.

• A PDA is called deterministic (DPDA) if for every p ∈ Q, X ∈ Γ and a ∈ Σ ∪ {ε}
we have: (1) |{(q, α) | (p,X)

a−→ (q, α)}| ≤ 1, and (2) if (p,X)
ε−→ (q, α) and

(p,X)
a−→ (q′, α′) then a = ε.

Definition 2.3. Let us denote St = Γ∗. The set Q × St is the set of configura-

tions of a PDA. A pair (p,Xβ) ∈ Q × St is a configuration with mode (p,X), written

mode((p,Xβ)) = (p,X) (the rightmost symbol is the top-of-stack symbol). For a con-

figuration c = (p, y), the control state of c is state(c) = p, and the stack height of c is

|c| = |y|.

The transition relation between configurations is defined by:

1. (p,X)
a−→ (q, α) ∈ ∆, then (p,Xβ)

a−→ (q, αβ) for any β ∈ Γ∗, and we call it one-step

computation.

2. A transition (p,Xβ)
ε−→ (q, αβ) is an ε-transition.

3. c1
u−→ c2 and c2

v−→ c3, we write c1
uv−→ c3 and call it a computation from c1 to c3 on

the input uv.

4. For any configuration c, we write c
τ−→ c, and we call it a zero-step computation,

where τa = aτ = a for all a ∈ Σ.

5. A sequence c1
a1−→ c2 · · ·

an−→ cn+1 of one-step computations is an n-step computation.

6. If we have an n-step computation c1
a1−→ c2

a2−→ c3 · · ·
an−→ cn+1 with |c1| ≤ |ci|,

1 ≤ i ≤ n+ 1, we write c1 ↑ (a1 · · · an)cn+1. This is a stacking computation.

Definition 2.4. The configuration (q0, Z0) is the initial configuration. For a configuration

c, c is accessible if (q0, Z0)
w−→ c for some w ∈ Σ∗. The configuration c is live if c

w−→ (q, ε)

for some q ∈ F and some w ∈ Σ∗.

12

Definition 2.5. A PDA A is of delay d if, whenever there is a sequence of one-step

computations: c1
ε−→ c2

ε−→ c3 · · ·
ε−→ cn, then n−1 ≤ d (i.e., at most d ε-rules in a row can

be applied to any configuration). A PDA A is d finite delay if it is of delay d for some

d ≥ 0. It is easy to see that if a PDA is of delay 0, then it is real-time.

Definition 2.6. We consider PDAs accepting by a final state and an empty stack. A

language accepted from a configuration c is L(c) = {w ∈ Σ∗ | c w−→ (q, ε), q ∈ F}. The

language accepted by a PDA A is L(A) = L((q0, Z0)).

Definition 2.7. The PDAs M1 and M2 are equivalent, denoted as M1 ≡ M2, if they

accept the same language, i.e., L(M1) = L(M2). Configurations c1 in M1 and c2 in M2

are equivalent, denoted as c1 ≡ c2, if L(c1) = L(c2).

Definition 2.8. A finite automaton is a PDA that only has internal transitions, i.e., the

stack can be ignored. In other words, a finite automaton can be treated as PDA without

the stack.

2.2 Properties of Pushdown Automata

Unlike finite automata, PDAs do not enjoy good closure properties and decidability

results. This is because product construction fails for PDA, and further, the class of PDA

cannot be determinized. The following theorems recall basic properties, which can be

found at any textbook of automata theory (e.g., see [72]) of PDA.

Theorem 2.1 ([72]). The emptiness problem for PDAs is decidable in polynomial time.

Theorem 2.2 ([72]). The class of PDA is closed under union, but not closed under inter-

section and complementation. Moreover, the inclusion problem for PDA is undecidable.

However, when the specification are finite automata, the next theorem holds:

Theorem 2.3 ([72]). The inclusion problem L(A) ⊆ L(B), where A is a PDA and B is

FA, is decidable.

For the purpose of our work, it is convenient to use a normal form of pushdown

automata.

Definition 2.9. A pushdown automaton A = (Q,Σ,Γ, Z0,∆, q0, F) is normalized if

1. for all p ∈ Q and X ∈ Γ, (p,X) is not a blocking mode,

2. for all p ∈ Q, all rules in δ of the form (p,X)
a−→ (q, α) either satisfy a ∈ Σ or all

of them satisfy a = ε, but not both,

13

3. every rule in δ is of the form (p,X)
a−→ (q, ε), (p,X)

a−→ (q,X), or (p,X)
a−→ (q, Y X)

where a ∈ Σ ∪ {ε}.

States which admit only ε-rules (see property (2)), are called ε-states . The next lemma

enables us to convert an arbitrary PDA into an equivalent normalized PDA.

Lemma 2.4 ([45]). For every PDA (DPDA) there is a normalized PDA (DPDA) that

recognizes the same language.

Proof. Given a PDA A, we construct PDAs A1, A2, A3 recognizing the same language

as A such that A1 satisfies (3), A2 satisfies (3) and (2), A3 satisfies (3), (2), and (1),

respectively. In what follows, the components of the automata A1, A2 and A3 will be

indexed accordingly, i.e., for example the set of control states of A1 will be denoted by

Q1, the set of rules of A2 will be denoted by δ2 etc.

For A1, we first use the standard construction that yields an automaton A′ equivalent

to A but in which every rule (p,X)
a−→ (q, α) satisfies |α| ≤ 2. Then, we construct A1 as

described in Lemma 10.2 of [72]; A1 has Q1 = Q′ × Γ as the set of states and is defined

to satisfy the property that (p,Xα)
w−→ (q, Y β) holds iff (p,X)α

w−→ (q, Y)β does. It also

follows from the lemma that if A is deterministic, then so is A1 (actually, the lemma is

stated for DPDA, but the construction works in general).

The PDA A2 is the final result of the following procedure: For every pair of rules of

A1 of the form (p,X)
a−→ (q, α) and (p, Y)

ε−→ (r, β) such that a ∈ Σ, add a state pX not

in Q2 and new rules (p,X)
ε−→ (pX , X) and (pX , X)

a−→ (q, α) to A1 and remove the rule

(p,X)
a−→ (q, α) from δ1. Clearly, A2 satisfies (2) and, since A1 satisfies (3) so does A2.

Observe that if A1 is deterministic then A2 is also deterministic.

The PDA A3 is obtained by adding to A2 a dead state d, the rules (d,X)
a−→ (d,X)

for every X ∈ Γ and a ∈ Σ, a rule (p,X)
a−→ (d,X) for every non-ε-state p ∈ Q2 and every

X ∈ Γ and a ∈ Σ whenever (p,X)
a−→ (q, α) is not already in δ2 for some q and a, and, a

rule (p,X)
ε−→ (d,X) for every ε-state p ∈ Q2.

2.3 Deciding Emptiness of PDAs

The classical solution to the emptiness problem of PDAs is based on Pumping Lemma

(e.g., see [72]). It however is difficult to implement this method in practice, and thus there

are no implementation based on this approach. Recently, Finkel et al. [30] and Esparza et

al. [28, 29] have introduced an efficient symbolic method to check the emptiness of PDAs.

The key of their technique is to use a finite automaton so-called P-automaton to encode

infinite sets of configurations of a pushdown automaton. Thus, checking emptiness is

reduced to the problem of computing forward (backward) reachability based on the PDA

14

and P-automaton. This method has been implemented in the efficient automatic tool

Moped. In the following, we briefly recall P-automata technique.

Given a pushdown automaton P = (P,Σ,Γ,⊥,∆, s0,F), a P-automaton is used in

order to represent sets of configurations C of P . A P-automaton uses Γ as the input

alphabet, and P as set of initial states (we consider automata with possibly many initial

states). Formally,

Definition 2.10 ([28, 58]). A P-automaton is a finite automaton A = (Q,Γ, δ, P, F)

where Q is the finite set of states, δ ⊆ Q× Γ×Q is the set of transitions, P is the set of

initial states and F ⊆ Q is the set of final states. A P-automaton accepts or recognizes a

configuration (p, w) if p
w−→ q, for some p ∈ P , q ∈ F . The set of configurations recognized

by P-automaton A is denoted by Conf(A). A set of configurations of P is regular if it is

recognized by some P-automaton.

For a PDA P = (Q,Σ,Γ,⊥,∆, s0,F) and the set of configurations C, let A be a

P-automaton representing C. The P-automaton Apost∗ representing the set of configu-

rations reachable from C (Post∗(C)) is constructed as follows: We compute Post∗(C)

as a language accepted by a P-automaton Apost∗ with ε-moves. We denote the relation

q(
ε−→)∗· γ−→ ·(ε−→)∗ · p by =⇒γ. Apost∗ is obtained from A in two stages:

• For each pair (q′, γ′) such that P contains at least one rule of the form (q, γ) →
(q′, γ′γ′′), add a new state p(q′,γ′).

• Add new transitions to A according to the following saturation rules:

1. If (q, γ)
a−→ (q′, ε) ∈ ∆ and q =⇒γ p in the current automaton, add a transition

(q′, ε, p).

2. If (q, γ)
a−→ (q′, γ′) ∈ ∆ and q =⇒γ p in the current automaton, add a transition

(q′, γ′, p).

3. If (q, γ)
a−→ (q′, γ′γ′′) ∈ ∆ and q =⇒γ p in the current automaton, first add

(q′, γ′, p(q′,γ′)), and then add (p(q′,γ′), γ
′′, p).

Example 2.1. Let us illustrate the definition of P-automata by an example. Consider

the PDA with control locations P = {q0, q1, q2} and ∆ = {r1, r2, r3, r4}, where:

• r1 = (q0, γ0)
a−→ (q1, γ1γ0), r2 = (q1, γ1)

a−→ (q2, γ2γ0)

• r3 = (q2, γ2)
b−→ (q0, γ1), r4 = (q0, γ1)

b−→ (q0, ε).

15

q0 s1 s2
γ0 γ0

Figure 2.1: The finite automaton C

q0 s1 s2

q1

q2

m1

m2

γ0

ε, γ1

γ0

γ1

γ2

γ0

γ0

γ0

Figure 2.2: The P-automaton post∗(C)

Let A be the automaton that accepts the set of configurations C = {(q0, γ0γ0)}, shown

in Figure 2.1.

Then, the automaton shown in Figure 2.2 is the result of the algorithm and accepts

post∗({(q0, γ0γ0)}). The result is achieved by the following steps:

1. First, we add the new states: r1 = (q0, γ0)→ (q1, γ1γ0) leads to p(q1,γ1) (denoted by

m1) and r2 = (q1, γ1)→ (q2, γ2γ0) to p(q2,γ2) (denoted by m2).

2. Since q0
γ0−→ s1 matches the left-hand side of rule r1, the first transitions we add are

(q1, γ1, p(q2,γ2)) and (p(q1,γ1), γ0, s1).

3. The first of these new transitions together with rule r2 gives rise to two more tran-

sitions: (q2, γ2, p(q2,γ2)) and (p(q2,γ2), γ0, p(q1,γ1)).

4. Because of (q2, γ2, p(q2,γ2)) and r3 the next step is to add (q0, γ1, p(q2,γ2)).

5. This in turn, together with r4 leads to the ε-edge from q0 to p(q2,γ2).

6. We now have q0
γ0−→

∗
p(q1,γ1) and can apply rule r1 once more. Because (q1, γ1, p(q1,γ1))

has been added before, we just add (p(q1,γ1), γ0, p(q1,γ1)).

7. No unprocessed matches remain, so the procedure terminates.

Remark 2.1. It is easy to note that the emptiness problem of PDA P is a subcase of the

problem computing configurations reachable from the initial configuration of P .

16

2.4 Applications to Pushdown Model Checking

Pushdown automata naturally model the control flow of sequential computation in

typical programming languages with nested, and potentially recursive, invocations of pro-

gram modules such as procedures and method calls. Consequently, a variety of program

analysis, compiler optimization, and model checking questions can be formulated as de-

cision problems for pushdown automata. For instance, in contemporary software model

checking tools, to verify whether a program P (written in C, for instance) satisfies a reg-

ular correctness requirement ϕ (written in linear temporal logic, for instance), the verifier

first abstracts the program into a pushdown model P a with finite-state control, compiles

the negation of the specification into a finite-state automaton A¬ϕ that accepts all com-

putations that violate ϕ and algorithmically checks that the intersection of the languages

of P a and A¬ϕ is empty. Namely, the following equalities hold:

P |= ϕ⇐⇒ L(P a) ⊆ L(Aϕ)⇐⇒ L(P a) ∩ L(A¬ϕ) = ∅

The automata-theoretic approach works for pushdown model checking on regular prop-

erties, since the intersection of context-free languages and regular languages are closed, i.e.

context-free. The pushdown model checking problem on CTL (computation tree logic) is

known to be DEXPTIME-complete. Whereas pushdown model checking on LTL (linear

time logic) is known to be polynomial. The problem of checking regular requirements of

pushdown models has been extensively studied in recent years [31, 28, 29]. Tools imple-

menting pushdown model-checking (e.g. Moped) are an essential back-end component of

high-profile software model checkers such as Slam 1.

However, when the specification is extended to context-free properties, the model

checking problem becomes undecidable. Alur et al. recently introduced the logic CaRet [6].

CaRet is a linear temporal logic that can specify non-regular properties. Pushdown

model checking for CaRet logic is decidable in exponential time [6]. We note that

CaRet is less expressive than pushdown automata. The study of CaRet inspired Alur

and Madhusudan [5] to introduce visibly pushdown automata (VPA). In this thesis, we are

interested in the inclusion problems for subclasses of pushdown automata such as visibly

pushdown automata and superdeterministic pushdown automata, which we will present

in details in the following chapters.

1http://research.microsoft.com/slam/

17

Chapter 3

Superdeterministic Pushdown

Automata

Recent interest in model checking makes us recall inclusion problems. Typically, the

automata theoretic explanation of model checking on finite transition systems is the de-

cidability of the inclusion problem L(A) ⊆ L(B) among finite automata, where A and

B describe a model and a specification, respectively. The standard methodology for the

inclusion problem is to, (1) take the complement L(B), (2) take the intersection between

L(A) and L(B), and (3) check its emptiness. This also works when A is extended to a

pushdown automaton (PDA), but fails when B is extended to a pushdown automaton. To

our knowledge, for decidable inclusion with a general pushdown automaton A, the largest

class of B is the superdeterministic pushdown automata (SPDAs), proposed by Greibach

and Friedman [34]. An SPDA is a DPDA satisfying:

1. finite delay (i.e., a bounded number of ε-transitions in a row can be applied to any

configuration), and

2. for two configurations sharing the same control state, transitions with the same

symbol lead to configurations sharing the same control state such that the length

change of stacks is the same.

In [34], the authors used the alternate stacking technique [74] to show that the inclusion

problem L(A) ⊆ L(B), where A is a PDA and B is an SPDA, is decidable. The key idea

of the original proof [34] is to construct a simulating pushdown automaton M such that

L(A) ⊆ L(B) iff L(M) = ∅. However, the original construction encodes everything as

stack symbols (in an intricate way), and thus control states and transition rules of M

could not be given in details. Furthermore, to decide the emptiness of M , one has to

use an auxiliary procedure to check whether a configuration of the PDA A is live (i.e.,

whether a configuration reaches an accepting configuration) or not. These properties of

their simulating PDA M lead to a complicated proof of soundness and completeness for

the decision procedure [34].

18

In this chapter, we refine the alternate stacking technique [74] used in Greibach-

Friedman’s proof [34]. Basically, there are three main steps in the proof of the decid-

ability of the inclusion problem L(A) ⊆ L(B), where A is a PDA and B is an SPDA.

First, establishing Key lemma (Lemma 3.3 [34]) to find a bounded number k that is used

for alternate stacking. Second, constructing a simulating PDA M by using the alternate

stacking technique (Section 3.2). Third, based on the construction of M in the second

step, proving soundness and completeness of the construction L(A) ⊆ L(B) iff L(M) = ∅
(Section 3.3). Our refinement contributes to the last two steps. In particular, we give a

more direct product construction of the simulating PDA M , which is different from the

one given by the original proof, where everything is encoded as a stack symbol. This con-

struction avoids the need for the “liveness” condition, and the correctness proof becomes

simpler.

3.1 Superdeterministic Pushdown Automata

Superdeterministic pushdown automata (SPDAs) were first introduced by Greibach

and Friedman [34]. In this section, we briefly recall the standard notion and key properties

of SPDAs. Readers are referred to the original paper [34] for more details.

Definition 3.1. A PDA A = (Q,Σ,Γ, Z0,∆, q, F) is superdeterministic if it satisfies the

following conditions.

1. A is deterministic and of finite delay,

2. for all accessible configurations in reading mode c1, c2, c
′
1, c

′
2 and w ∈ Σ∗, if both of

the following are satisfied:

• state(c1) = state(c2),

• c1
w−→ c′1 and c2

w−→ c′2,

then, state(c′1) = state(c′2) and |c1| − |c′1| = |c2| − |c′2|.

Remark 3.1. In [34], Greibach and Friedman considered the blocking condition on PDAs

(middle, pp.677): “Unlike Valiant, we do not allow the pda to operate with empty stack

(no rules (q, ε, a, p, y)). This avoids some complications in notation but does not affect the

classes of languages involved because we allow endmarkers”. In particular, the blocking

condition is not an essential restriction if we use two special symbols # (start-maker) and

$ (end-marker), where # pushes a special stack symbol, and $ pops it. This assumption

was used to prove Key lemma (Lemma 2). More precisely, it was used to show the claim

(middle, pp.684 [34]) that: “Hidden in many of our arguments is the following consequence

19

of determinism and acceptance by empty store. Suppose L(c1) ⊆ L(c̄1) with c̄1 (but not

necessarily c1) a configuration in a deterministic pda, c1
w→ c2, and c̄1

w→ c̄2. Then

L(c2) ⊆ L(c̄2)”.

Definition 3.2. A language L is superdeterministic if there is an SPDA M such that

either L = L(M) or L$ = L(M) for an end-marker $.

Note that the language {anbn | n ≥ 0} is superdeterministic. However, according to

Condition 2 in Definition 3.1, the language L = {anbm | m ≥ n} is not accepted by

any SPDA (pp.678 [34]). Suppose on the contrary that there is an SPDA A accepting

L. While reading a, A pushes a symbol, and while reading b, A pops the same symbol.

Thus, for instance, after reading a5 and a10, A will be in two configurations, c1 and c2,

such that state(c1) = state(c2). Now concatenating b10, A will lead to configurations c′1
(for a5b10) and c′2 (for a10b10), respectively. However, |c′1| − |c1| = 0 − 5 6= |c′2| − |c2| =
0 − 10. This violates the definition of SDPAs. Moreover, as shown in [34], the class

of superdeterministic languages (languages accepted by SPDAs) contains the generalized

parenthesis languages , which is a superclass of both parenthesis languages [43] and Dyck

sets .

Remark 3.2. It is undecidable whether a given context-free language is superdetermin-

istic. However, it is decidable whether a given PDA M is an SPDA (pp.678 [34]): “It

is decidable whether a dpda M is finite delay (using the decidability of emptiness and

finiteness for context-free grammars and the standard construction of grammars from

machines), and if M is of finite delay, an upper bound d on the delay can be computed

from a description of M . Knowing that M is of delay d, it can be determined whether or

not M is superdeterministic by examining only computations c
a−→ c′ for a symbol a with c

and c′ in reading mode. Since it is decidable for q in Q, y in Γ∗ whether there is a u in Γ∗

with (q, uy) accessible, it is decidable whether a dpda is superdeterministic. It is not known

if it is decidable whether a deterministic context-free language is superdeterministic, just

as it is not known whether it is decidable whether a deterministic context-free language is

finite-turn or one-counter [74]. Standard arguments show that it is undecidable whether

an arbitrary context-free language is superdeterministic”.

A PDA is called one-increasing if the stack height increases by at most one per move.

As is well known, each PDA can be transformed into an equivalent one-increasing PDA.

Lemma 3.1 (Key Lemma 3.3 [34]). Let A be a normalized PDA, and B be a one-increasing

SPDA of delay d. Let c1 be a configuration in A and c′1 be an accessible configuration in

B with L(c1) ⊆ L(c′1). Suppose we have in A a computation c1 ↑ (w)c2, with c2 live, and

in B a computation c′1
w−→ c′2. Then,

20

1. |c′1| − |c′2| ≤ k,

2. and if |c1| = |c2| then |c′2| − |c′1| ≤ k, where

• k = (d+ 1)(k1 + 1)n(m+ 1)2k2 + 2d,

• k1 = n+ 3, k2 = 1 + 2n2m2(n2 + 4),

• n = |QA|+ |QB|, m = |ΓA|+ |ΓB|.

Based on this property, in the next section, we show that the inclusion problem L(A) ⊆
L(B) is decidable for a PDA A and an SPDA B.

3.2 Alternate Stacking Technique

The alternate stacking technique, proposed by Valiant [74], involves a simulation of

two PDAs A and B using a single stack machine M whose stack contents u1v1 · · ·utvt
encode the stack u1 · · ·ut of A and v1 · · · vt of B; the machine M uses ui to simulate one

step of A and vr for one step of B. In the general case, the simulating machine M is not a

PDA. Alternate stacking “succeeds” when the stacks can be interwoven in such a way that

M can be implemented as a PDA. Valiant [74] showed that if A and B are nonsingular

DPDAs 1 and L(A) = L(B), then the interweaving can indeed be done so that a uniform

bound can be placed on the length of segments ui and vi so long as the configurations of

A and B are live. Then the PDA M can be built so that if the stack segments exceed the

bound, M accepts, knowing that L(A) 6= L(B). Hence L(A) = L(B) iff L(M) = ∅.

3.2.1 Simulating Pushdown Automata

In this subsection, we construct a simulating PDA M such that M will search for

possible members of L(A) \ L(B). In principle, similar to [34], the key is to use the

alternate stacking technique to construct M . In our approach, however, the control

states, stack symbols, and transition rules of M are defined in the form of pairs of states,

stack content, and transition rules of two PDAs, respectively.

We assume that A = (QA,Σ,ΓA, ZA,∆A, q
0
A, FA) is a normalized PDA, and B =

(QB,Σ,ΓB, ZB,∆B, q
0
B, FB) is a normalized SPDA of delay d with an assumption that

0 /∈ QB.

1. Let $1 and $2 be fresh symbols to mark the bottom of the stack of A and B,

respectively.

1 A DPDA M is nonsingular if and only if there exists m ≥ 0 such that for any two accessible
configurations (q, ww′) and (q′, w′) where |w| > m, if L((q, ww′)) = L((q′, w′)) then L((q′, w′)) = ∅.

21

2. Let f : Γ∗B ∪ Γ∗B$∗2 → Γ∗B be a function such that f(y) = f(y$∗2) = y for all y ∈ Γ∗B.

3. Let r > 0 be an integer and let us take 2r as the segment bound for simulating the

stack content of B.

4. Denote Γ′B = {[y], [y$2] | y ∈ Γ∗B, 0 ≤ |y| ≤ 2r}.

A simulating PDA M = M(A,B, r) can be constructed for any choice of r, and

the next theorem, Theorem 3.4, will show that if the bound r is appropriately selected

(r = k + 1, where k was computed from A and B as in Theorem 3.1), then we can

conclude that L(A) ⊆ L(B) iff L(M(A,B, k + 1)) = ∅. Formally, the simulating PDA

M = M(A,B, r) is constructed as follows:

Definition 3.3. A simulating PDA of two PDAs A and B is a tuple M = M(A,B, r) =

〈QM ,Σ,ΓM , ZM ,∆M , p
0
M , FM〉, where:

• QM = {p0
M} ∪ (QA×QB)∪ (QA×{0})∪ (QA×QB × Γ′B) is the set of finite states,

• p0
M is the initial state,

• FM = (FA × (QB\FB)) ∪ (FA × {0}),

• ΓM = (ΓA ∪ {$1})× Γ′B, ZM = ($1, [$2]),

• The transition relation ∆M ⊆ QM × ΓM × Σ× (QM × Γ∗M) is defined as follows:

Case I: Simulating an internal-transition of A with a transition of B:

1. 〈(p1, p2), (X, [Zv])〉 2 a−→ 〈(p′1, p′2), (X, [yv])〉 if: (p1, X)
a−→ (p′1, X) ∈ ∆A, (p2, Z)

a−→
(p′2, y) ∈ ∆B, yv 6= ε, and |f(yv)| ≤ 2r.

2. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, 0), (X, [yv])〉 if: (p1, X)

a−→ (p′1, X) ∈ ∆A, (p2, Z)
a−→

(p′2, y) ∈ ∆B, and yv = ε or |f(yv)| = 2r + 1.

3. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, 0), (X, [Zv])〉 if: (p1, X)

a−→ (p′1, X) ∈ ∆A and (p2, Z)

has no rules with input a

4. 〈(p1, 0), (X, [v])〉 a−→ 〈(p′1, 0), (X, [v])〉 for all [v] ∈ Γ′B if (p1, X)
a−→ (p′1, X) ∈ ∆A.

5. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p′1, p2), (X, [Zv])〉 if: (p1, X)

ε−→ (p′1, X) ∈ ∆A, and (p2, Z)

has no ε-rules.

6. 〈(p1, p2), (X, [$2])〉
a−→ 〈(p′1, 0), (X, [$2])〉 if (p1, X)

a−→ (p′1, X) ∈ ∆A

Case II: Simulating a push-transition of A with a transition of B.

2For readability, we use 〈., .〉 to denote a configuration of the simulating PDA M .

22

1. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, p′2), (X ′, [yv])(X, [$2])〉 if: (p1, X)

a−→ (p′1, XX
′) ∈ ∆A,

(p2, Z)
a−→ (p′2, y) ∈ ∆B, and head(yv) = $2, |f(yv)| ≤ r.

2. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, p′2), (X, [ε])(X ′, [yv])〉 if: (p1, X)

a−→ (p′1, X
′X) ∈ ∆A,

(p2, Z)
a−→ (p′2, y) ∈ ∆B, and head(yv) 6= $2, |f(yv)| ≤ r

3. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, p′2), (X ′, [v′′])(X, [v′])〉 if: (p1, X)

a−→ (p′1, X
′X) ∈ ∆A,

(p2, Z)
a−→ (p′2, y) ∈ ∆B, r < |f(yv)| ≤ 2r, yv = v′′v′, and |v′′| = r.

4. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, p′2), (X ′, [v′′])(X, [v′])〉 if: (p1, X)

a−→ (p′1, X
′X) ∈ ∆A,

(p2, Z)
a−→ (p′2, y) ∈ ∆B, |f(yv)| = 2r + 1, yv = v′′v′, and |v′′| = r + 1.

5. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, 0), (X ′, [Zv])(X, [ε])〉 if: (p1, X)

a−→ (p′1, X
′X) ∈ ∆A,

and (p2, Z) has no rules with input a.

6. 〈(p1, 0), (X, [v])〉 a−→ 〈(p′1, 0), (X ′, [v])(X, [v])〉 for all [v] ∈ Γ′B if: (p1, X)
a−→ (p′1, X

′X) ∈
∆A.

7. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p′1, p2), (X

′, [Zv])(X, [$2])〉 if: (p1, X)
ε−→ (p′1, X

′X) ∈ ∆A,

head(Zv) = $2, |f(Zv)| ≤ r, and (p2, Z) has no ε-rules.

8. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p′1, p2), (X

′, [Zv])(X, [ε])〉 if: (p1, X)
ε−→ (p′1, X

′X) ∈ ∆A,

head(Zv) 6= $2, |f(Zv)| ≤ r, and (p2, Z) has no ε-rules.

9. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p′1, p2), (X

′, [v”])(X, [v′])〉 if: (p1, X)
ε−→ (p′1, X

′X) ∈ ∆A,

r < |f(Zv)| ≤ 2r, Zv = v′′v′, |v′′| = r, and (p2, Z) has no ε-rules.

10. 〈(p1, p2), (X, [$2])〉
a−→ 〈(p′1, 0), (X, [$2])(X

′, [$2])〉 if: (p1, X)
a−→ (p′1, X

′X) ∈ ∆A.

Case III: Simulating a pop-transition of A with a transition of B:

1. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, p′2, [yf(v)]), ε〉, and 〈(p′1, p′2, [f(yv)]), (X ′, [v′])〉 ε−→

〈(p′1, p′2), (X ′, [f(yv′)v])〉 if: (p1, X)
a−→ (p′1, ε) ∈ ∆A, (p2, Z)

a−→ (p′2, y) ∈ ∆B, and

|f(f(yv′)v)| ≤ 2r.

2. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, p′2, [f(yv)]), ε〉, and 〈(p′1, p′2, [f(yv)]), (X ′, [v′])〉 ε−→

〈(p′1, 0), (X ′, [ε])〉 if: (p1, X)
a−→ (p′1, ε) ∈ ∆A, (p2, Z)

a−→ (p′2, y) ∈ ∆B, and yv′v = ε

or |f(f(yv′)v)| ≥ 2r + 1.

3. 〈(p1, p2), (X, [Zv])〉
a−→ 〈(p′1, 0), ε〉 if: (p1, X)

a−→ (p′1, ε) ∈ ∆A, and (p2, Z) has no

rules with input a.

4. 〈(p1, 0), (X, [v])〉 a−→ 〈(p′1, 0), ε〉 for all [v] ∈ Γ′B if (p1, X)
a−→ (p′1, ε) ∈ ∆A

23

5. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p′1, p2, [f(Zv)]), ε〉, and 〈(p′1, p2, [f(Zv)]), (X ′, [v′])〉 ε−→

〈(p′1, p2), (X
′, [f(Zv)v′])〉 if: (p1, X)

ε−→ (p′1, ε) ∈ ∆A, Zv = $2, and (p2, Z) has no

ε-rules.

6. 〈(p1, p2), (X, [$2])〉
a−→ 〈(p′1, 0), ε〉 if: (p1, X)

a−→ (p′1, ε) ∈ ∆A.

Case IV: When stack of A is empty.

1. 〈(p1, p2), ($1, [Zv])〉
ε−→ 〈(p1, p

′
2), ($1, [yv])〉 if (p2, Z)

ε−→ (p′2, y) ∈ ∆B.

2. 〈(p1, p2), ($1, [Zv])〉
ε−→ 〈(p1, 0), ε〉 if: (p2, Z)

a−→ (p′2, y) ∈ ∆B with a 6= ε, or (p2, Z)

is blocked.

Case V: When configurations of A are in the reading modes, while states of B have

ε-transitions.

1. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p1, p

′
2), (X, [yv])〉 if: (p1, X) is in the reading mode, (p2, Z)

ε−→
(p′2, y) ∈ ∆B, and |f(yv)| ≤ 2r.

2. 〈(p1, p2), (X, [Zv])〉
ε−→ 〈(p1, 0), (X, [ε])〉 if: (p1, X) is in the reading mode, (p2, Z)

ε−→
(p′2, y) ∈ ∆B, and |f(yv)| ≥ 2r + 1.

Case VI: The starting transition: 〈p0
M , ($1, [$2])〉

ε−→ 〈(q0
A, q

0
B), (ZA, [ZB$2])($1, [$2])〉.

Before defining configurations of M , let us briefly explain the intuition behind its

transition rules.

• Rules I(2), III(2), and V(2) are called stacking-fail transitions. Taking a stacking-

fail transition, M changes its control to states in the set QA × {0}. After entering

this set QA × {0} of states, M continues simulating transitions of A only by using

rules I(4), II(6), or III(4).

• Rules I(3), II(5), and III(3) are used when B is blocked where reading an input. In

this cases, M changes its control state to the set QA × {0}. After entering a state

in QA × {0}, M only simulates transitions of A by using I(4), II(6), or III(4).

• Rules II(1), II(2), II(3), and II(4) are used to simulate a push-transition of A with

a transition of B, which has the same label.

• Rules III(1), III(2) are used to simulate a pop-transition of A.

• Rules IV(1) and IV(2) are used when the stack of A is empty; in this case, M

simulates ε-transitions of B using a zero-step computation of A. Recall that B is

finite delay of d, and thus rules IV(1) and IV(2) can be applied at most d times in

a sequence.

24

• Rules I(5), II(7)(8)(9), and III(5) are used to simulate an ε-transition of A with a

non-ε transition of B.

• Rules I(6), II(8), and III(6) are used to simulate a non-ε transition of A when B’s

stack is empty (i.e., when B is blocked).

Definition 3.4 (Configuration). For a simulating PDA M , we define:

• A configuration of M is of the form c = 〈s, (Xt, [vt]) · · · (X1, [v1])($1, [$2])〉, where s

∈ QM and (Xi, [vi]) ∈ ΓM for 1 ≤ i ≤ t.

• The configuration c is accepting if c = 〈s, ε〉, s ∈ FM .

• For a given configuration c = 〈s, (Xt, [vt]) · · · ($1, [$2])〉, we say that c encodes c1 =

(p1, Xt...X1) of A and c2 = (p2, f(vt)...f(v1)) of B, with t levels.

Note that f(vt)...f(v1) ∈ Γ∗B, and M can determine whether the stack of B is empty

by examining if vt = $2, i.e., |c2| = 0 iff vt = $2. This is because, based on the transition

rules II(1) and II(7), if vt = $2 then vi = $2 for all 1 ≤ i ≤ t (for these rules, we need to

check if head(yv) = $2).

Remark 3.3. There are three main steps in the proof of the decidability of the inclu-

sion problem L(A) ⊆ L(B), where A is a PDA and B is an SPDA. First, establish the

Key lemma to find a bounded number k that is used for alternate stacking. Second, con-

struct a simulating PDA M by using the alternate stacking technique. Third, based on

the construction of M in the second step, prove the soundness and completeness of the

construction L(A) ⊆ L(B) iff L(M) = ∅. Our refinement contributes to the last two steps.

In particular, in the original proof [34], the liveness condition is stated in the construction

case II (pp. 693 [34]) and it is used for searching words that are accepted by the PDA A,

but rejected by the SPDA B. In our encoding, control states, stack symbols, and transition

rules M are defined in the form of pairs of states, stack content, and transition rules of

two PDAs A and B, respectively. Thus, we do not need to use the “liveness” condition,

because such violation of the inclusion is represented by transition rules in our product

construction of M . As we will see in Section 4, a proof of “liveness” is not needed and

the whole correctness proof for the decision procedure becomes simpler.

3.2.2 An Illustrating Example

This subsection provides an example to illustrate our construction of the simulating

pushdown automata. In the following figures, for simplicity, we describe control states of

each PDA as nodes of a graph. We adopt the following conventions to represent edges:

for a transition rule (p,X)
a−→ (q, y), we label the edge from p to q as a,X → y.

25

s0start s1 s2
b, Z → ε

a, ZC → ZZC

a, Z → ZZ

b, Z → ε

c, ZC → ε

c, ε→ ε

Figure 3.1: Pushdown automaton C

q0start q1 q2 q3
b, ZD → Z ′ZD

a, ZD → ZD b, Z ′ → Z ′Z ′

c, Z ′ → ε

c, Z ′ → ε

c, ZD → ε

Figure 3.2: Superdeterministic pushdown automaton D

Example 3.1. Consider two PDAs C and D over the input alphabet Σ = {a, b, c}, where

D is an SPDA. The PDA C = ({s0, s1, s2},Σ, {Z,ZC}, ZC ,∆C , {s0}, {s2}), where ∆C is

defined as:

• (s0, ZC)
a−→ (s0, ZZC), (s0, Z)

a−→ (s0, ZZ), (s0, Z)
b−→ (s1, ε)

• (s1, Z)
b−→ (s1, ε), (s1, ZC)

c−→ (s1, ZC), (s1, ZC)
c−→ (s2, ε)

The SPDA D = ({q0, q1, q2, q3},Σ, {Z ′, ZD}, ZD,∆D, {q0}, {q3}), where ∆D is defined:

• (q0, ZD)
a−→ (q0, ZD), (q0, ZD)

b−→ (q1, Z
′ZD), (q1, Z

′)
b−→ (q1, Z

′Z ′)

• (q1, Z
′)

c−→ (q2, ε), (q2, Z
′)

c−→ (q2, ε), (q2, ZD)
ε−→ (q3, ε)

It is easy to see that the languages L(C) = {anbncm | n ≥ 1,m ≥ 1} and L(D) = {ambncn |
m ≥ 0, n ≥ 1}.

The simulating pushdown automaton M = M(C,D, 1) is illustrated in Figure 3.3.

In this case, r = 1, it is sufficient to consider stack symbols of the forms (X, [v]) with

|v| ≤ 2. For simplicity, in the figure, we abbreviate the states and labels of the transitions.

In particular, the states are:

p0
M , p1

M = (s0, q0), p2
M = (s1, q1, [Z

′ZD]), p3
M = (s1, 0), p4

M = (s2, 0).

The labels in edges of this PDA are given in detail as follows:

• α1 ≡ ε, ($1, [$2])→ (ZC , [ZD$2])($1, [$2])

26

p0
Mstart p1

M p2
M p3

M p4
M

α1

α2, α3

α4 α5, α6, α7

α8, α9

α10

Figure 3.3: The simulating PDA M(C,D, 1)

• α2 ≡ a, (ZC , [ZD$2])→ (Z, [ZD$2])(ZC , [$2])

• α3 ≡ a, (Z, [ZD$2])→ (Z, [ZD$2])(Z, [$2])

• α4 ≡ b, (Z, [ZD$2])→ ε

• α5 ≡ ε, (Z, [ZD$2])→ (Z, [ε])

• α6 ≡ ε, (Z, [$2])→ (Z, [ε])

• α7 ≡ ε, (ZC , [$2])→ (ZC , [ε])

• α8 ≡ b, (Z, [v])→ ε

• α9 ≡ c, (ZC , [v])→ (ZC , [v])

• α10 ≡ c, (ZC , [v])→ ε.

The language of M is L(M(C,D, 1)) = {anbncm | n ≥ 1,m ≥ 1}.

3.3 Soundness and Completeness

In this section, we show that the construction presented in the preceding section is

sound and complete, i.e., L(A) ⊆ L(B) if and only if L(M(A,B, k + 1)) = ∅, where k

was computed from A and B as in Lemma 3.1.

3.3.1 Soundness

Lemma 3.2. L(A) * L(B) implies L(M(A,B, r)) 6= ∅ for all r ≥ 1.

Proof. Let w ∈ L(A)\L(B). It is sufficient to show that w ∈ L(M). Denote cin as

the initial configuration of M . Recall that A is normalized (by Lemma 2.4), there is

a computation of A on every word. By the definition of transitions of M , there is a

computation of M on w. There are three cases:

1. There are no computations of B on w, or there is a computation of B on w but after

reading w, the stack ofB is nonempty. By transitions ofM , we have cin
w−→ 〈(p, 0), ε〉.

Since w ∈ L(A), (p, 0) ∈ FA × {0}. Thus, w ∈ L(M).

27

2. There is a computation of B on w leading to a configuration (q, ε), where q /∈ FB.

Because A accepts w, there is a computation of M on w leading to a configuration

〈(p, q), ε〉, (p, q) ∈ FA × (QB \ FB). Thus, w ∈ L(M).

3. Where simulating w, the stacking fails. In this case, we have cin
w−→ 〈(p, 0), ε〉,

p ∈ FA.

3.3.2 Completeness

Lemma 3.3. Let k be the number computed in Lemma 3.1. L(M(A,B, k + 1)) 6= ∅
implies L(A) 6⊆ L(B).

Proof. Let w ∈ L(M(A,B, k+ 1)). There is an accepting computation of M(A,B, k+ 1)

on w. We consider two cases of accepting configurations of M .

Case 1. If cin
w−→ 〈(p, q), ε〉 where (p, q) ∈ FA × (QB \ FB). In this case, there is a

computation of B on w leading to the configuration (q, ε). Because q /∈ FB, we obtain

w /∈ L(B). On the other hand, on reading w, A leads to the accepting configuration (p, ε),

i.e., w ∈ L(A). Thus, w ∈ L(A) \ L(B).

Case 2. If cin
w−→ 〈(p, 0), ε〉 where p ∈ FA. Consider two subcases. First, if B is

blocked at some point on reading w. In this case, there is not a computation of B on

w, i.e., w /∈ L(B). On the other hand, on reading w, A leads to the configuration (p, ε),

p ∈ FA. Hence w ∈ L(A). Since B is deterministic, we have w ∈ L(A) \ L(B). The

proof is completed. Second, if stacking fails at some point on simulating w. In this case,

to prove L(A) * L(B), we assume on the contrary that L(A) ⊆ L(B). We will show

a contradiction. Since the stacking fails on reading w, we suppose that w = w1w2 such

that, after reading w1 the first time, stacking fail occurs and M is in the control (p1, 0)

with the stack content (Xt, [vt])(Xt−1, [vt−1]) · · · (X1, [v1])($1, [$2]). Whereas after reading

w1, A is in the configuration c2 = (p1, Xt...X1) (c2 is live) and B is in the configuration

c′2 = (p2, f(vtvt−1...v1)). There are two subcases which lead to the stacking failure: either

[vt] = [ε] or |f(vt)| ≥ 2r + 1.

• If [vt] = [ε]: we have t ≥ 2 and f(vt...v1) 6= ε (because, if t = 1 then [vt] must be [$2],

and if f(vt...v1) = ε then the stack of B is empty and [vt] = [$2]). Since f(vt...v1) 6= ε

there is at least one f(vi) 6= ε. Select the “nearest” vj such that f(vj) 6= ε and

f(vi) = ε for j + 1 ≤ i ≤ t. Consider the time when the level j + 1 of the stack is

opened. Since f(vj) 6= ε, this means that the rule II(3) or II(4) was used, and the

“new” top segment at that time was v′j+1 with |v′j+1| = r or |v′j+1| = r+1. Since that

time, M has not read below level j+1. Thus, we have w1 = w′w′′, and after reading

28

w′, M is in the configuration 〈(p′1, p′2), (X ′
j+1, [v

′
j+1])(Xj, [vj]) · · · ($1, [$2])〉 encoding

the configurations c1 = (p′1, X
′
j+1Xj...X1) of A, and c′1 = (p′2, f(v′j+1vj...v1)) of B

such that: c0
w′
−→ c1 and c′0

w′
−→ c′1 (c0 and c′0 are the initial configurations of A and

B, respectively). Because L(A) ⊆ L(B) (by assumption) and B is deterministic,

L(c1) ⊆ L(c′1). On the other hand, we have c1 ↑ (w′′)c2 and c′1
w′′
−→ c′2. Note that

these conditions satisfy assumptions of the Key lemma (Lemma 3.1). However, we

have |c′1| − |c′2| = |v′j+1| ≥ r = k + 1 > k. This contradicts Lemma 3.1. Hence, the

assumption L(A) ⊆ L(B) is wrong. Thus, L(A) * L(B).

• If |f(vt)| ≥ 2r + 1: Consider the time when the level t − 1 of the stack is opened.

At that point, one of rules II(1), II(2), II(3), or II(4) was used and the “new”

top segment was v′t−1 with |v′t−1| ≤ r + 1. Since that time, M has not read be-

low level t − 1. Thus, we have w1 = w′w′′, and after reading w′, M is in the

configuration 〈(p′1, p′2), (X ′
t−1, [v

′
t−1]) · · · ($1, [$2])〉 encoding the configurations c1 =

(p′1, X
′
t−1Xt−2...X1) of A, and c′1 = (p′2, f(v′t−1vt−2...v1)) of B such that: c0

w′
−→ c1

and c′0
w′
−→ c′1. Because L(A) ⊆ L(B) (by assumption) and B is deterministic,

L(c1) ⊆ L(c′1). In addition, we have c1 ↑ (w′′)c2 and c′1
w′′
−→ c′2. Note that these

conditions satisfy assumptions of Lemma 3.1. Now, we can compute:{
|c1| − |c2| = |Xt−1| − |X ′

t−1| = 1− 1 = 0

|c′2| − |c′1| = |vt| − |v′t−1| ≥ k + 1 > k.

This contradicts Lemma 3.1. Hence L(A) * L(B).

In both cases, we have, if L(M(A,B, k + 1)) 6= ∅, then L(A) * L(B). The lemma is

proved.

From Lemmas 3.2 and 3.3, we obtain:

Lemma 3.4. L(A) ⊆ L(B) if and only if L(M(A,B, k + 1)) = ∅.

3.3.3 The Inclusion Problem

Let A = (Q,Σ,Γ, Z0,∆, q0, F) be a PDA. The size |A| of a PDA A is defined as

|Q| + |Σ| + |Γ| + {|pXqα| | (p,X)
a−→ (q, α) ∈ ∆}. We obtain the same complexity class

as that of the original construction.

Theorem 3.5. The inclusion problem L(A) ⊆ L(B), where A is a PDA and B is an

SPDA, is decidable. Furthermore, the decision procedure has time complexity bounded by

22p(h)
, where p(h) is a polynomial time in the size of both automata, h = |A|+ |B|.

29

Proof. The decidability follows from Lemma 3.4. We now approximate the size of M .

Recall that the emptiness problem can be decided in O(n3) for any PDA of size n. The

stack of M is bounded by |ΓA| · |ΓB|2k+2, where k is the number given in Lemma 3.1.

The maximum number of control states of M is |QA| · |QB| · |ΓB|2k+1. The number of

transitions ofM is bounded by |QA|2·|QB|2·|Σ|·|ΓA|3·|ΓB|6k+6. Recall that s = |QA|+|QB|,
g = |ΓA|+ |ΓB|. The size of M is bounded by |M | ≤ s4g6k+6. Lemma 3.1 expresses that

k = (d+ 1)(s+ 4)g(g+ 1)2(1+2s2g2(s2+4)) + 2d, where d is the delay of B. Define h = s+ g,

and we see that k ≤ hc1h
c2 , for some constants c1 and c2. Thus, for some constant c3,

the size of M is bounded by hc3h
c1hc2

. Thus, the time complexity of the construction is

bounded by 22p(h)
for a polynomial p(h).

3.4 Related Work

It is known that the class of PDAs is not closed under intersection and complemen-

tation. Thus, decision problems like inclusion and equivalence are undecidable for PDAs.

This situation only slightly improves when considering the subclass of DPDAs (see [9, 72]

for an overview). Especially, the equivalence problem is decidable for DPDAs. Despite

intensive work throughout the late 1960s and 1970s, this problem remained unsolved un-

til 1997 when Sénizergues announced a positive solution [61]. However, the notation of

pushdown configurations seem not rich enough to sustain a proof. Deeper algebraic struc-

ture needs to exposed. Stirling [63] proposed another proof for this problem based on a

mixture of techniques developed in concurrency theory and language theory.

SPDAs were proposed by S. Greibach and E. Friedman in [34, 32]. It is shown that

the acceptance condition of SPDAs does strictly affect decision problems. More precisely,

for SPDAs accepting by final control state, the inclusion problem is undecidable [32]. If

we consider SPDAs accepting by a final state and an empty stack, it is shown that the

language inclusion problem L(A) ⊆ L(B) is decidable for A is an arbitrary PDA, and

B is an SPDA [34]. As far as we know, the class of SPDAs is the largest class which

enjoys decidability for this inclusion problem. The main results of the inclusion problem

L(A) ⊆ L(B), in which A is an arbitrary PDA and B is an SPDA, can be summarized as

follows:

• This inclusion problem is undecidable if B accepting by the final state [32].

• This inclusion problem is decidable if B accepting by the final state and the empty

stack [34].

Some works related to the inclusion problem of context-free languages have been pub-

lished recently by Y. Minamide and A. Tozawa [54, 70]. In [54], Minamide and Tozawa

30

developed two algorithms for deciding the inclusion L(G1) ⊆ L(G2) where G1 is a context-

free grammar and G2 is either an XML-grammar or a regular hedge grammar . Tozawa

and Minamide [70] proved further that these algorithms for XML-grammars and regu-

lar hedge grammars are PTIME and 2EXPTIME, respectively. These algorithms were

incorporated into the PHP string analyzer and validated several publicly available PHP

programs against XHTML DTD. The languages of XML-grammars or regular hedge gram-

mars are subclasses of generalized parenthesis languages. On the other hand, the class of

languages of SPDAs contains the class of generalized parenthesis languages [34]. Thus,

SPDAs are more expressive than XML-grammars and regular hedge grammars.

31

Chapter 4

Visibly Pushdown Automata and Its

Extensions

Visibly pushdown automata [5] are pushdown automata whose stack behavior (i.e.

whether to execute a push, a pop, or no stack operation) is completely determined by the

input symbol according to a fixed partition of the input alphabet. As shown in [5, 7], this

class of visibly pushdown automata enjoys many good properties similar to those of the

class of regular languages, the main reason for this being that each nondeterministic VPA

can be transformed into an equivalent deterministic one. As each nondeterministic VPA

can be determinized, all problems that concern the accepted language such as universality

and inclusion problems are decidable for VPAs. Visibly pushdown automata have turned

out to be useful in various context, e.g., as specification formalism for verification for

pushdown models [5], and as automaton model for processing XML streams [7, 50, 46].

Visibly pushdown automata with multiple stacks have been considered recently and

independently by Carotenuto et al. [17] and Torre et al. [69]. The purpose of these papers

is to exploit the notion of visibility further to obtain even richer classes of languages while

preserving important closure properties and decidability of verification-related problems

such as emptiness and inclusion. The emptiness problems for these extensions, however,

are undecidable.

To retain the nice closure properties, Torre et al. [69] consider a subclass, named

k-MVPAs , of multiple-stack VPAs with restrictions that: an input word can be divided

into at most k phases such that, in every phase, pop actions can occur in at most one

stack. Then, the emptiness problem becomes decidable. Although k-MVPAs are not

determinizable, they are closed under Boolean operations [69].

In [17], the approach to gain decidability and nice closure properties is to exclude

simultaneous pop operations by introducing an ordering constraint on stacks. This re-

stricted subclass of multi-stack VPAs is called ordered n-VPAs (n-OVPAs). For instance,

in 2-OVPAs, a pop action on the second stack occurs only after the first stack becomes

32

empty. Then, the emptiness problem turns out to be decidable in polynomial time. They

also claimed determinizability of 2-OVPAs (2-VPAs).

Here we show that the determinization for extensions of VPAs are difficult:

1. First, we show a detailed counter example to refute the claim about the determiniz-

ability of 2-OVPAs (consequently, 2-VPAs).

2. Second, we introduce the class of visibly stack automata (VSAs) as an extension

of VPAs by combining ideas of visibility and stack automata [35]. We also give a

counter example to show that VSAs are not determinizable.

4.1 Visibly Pushdown Automata

4.1.1 Definition of Visibly Pushdown Automata

We borrow most of terminology and definitions from [5, 7]. Let Σ be the finite input

alphabet, and let Σ = Σc∪Σr∪Σi be a partition of Σ. The intuition behind the partition

is: Σc is the finite set of call (push) symbols, Σr is the finite set of return (pop) symbols,

and Σi is the finite set of internal symbols.

Definition 4.1. A visibly pushdown automaton (VPA) M over Σ is a tuple (Q,Q0,Γ,∆, F)

where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final

states, Γ is a finite stack alphabet with a special symbol ⊥ (representing the bottom-of-

stack), and ∆ = ∆c∪∆r∪∆i is the transition function, where ∆c : Q×Σc → Q×(Γ\{⊥}),
∆r : Q× Σr × Γ→ Q, and ∆i : Q× Σi → Q.

If ∆c(q, c) = (q′, γ), where c ∈ Σc and γ 6= ⊥, there is a push-transition from q on

input c where on reading c, γ is pushed onto the stack and the control changes from state

q to q′; we denote such a transition by q
c/+γ−−−→ q′. Similarly, if ∆r(q, r, γ) = q′, there is a

pop-transition from q on input r where γ is read from the top of the stack and popped (if

the top of the stack is ⊥, then it is read but not popped), and the control changes from q

to q′; we denote such a transition q
r/−γ−−−→ q′. If ∆i(q, i) = q′, there is an internal-transition

from q on input i where on reading i, the state changes from q to q′; we denote such a

transition by q
i−→ q′. Note that there are no stack operations on internal transitions.

We write St for the set of stacks {w⊥ | w ∈ (Γ \ {⊥})∗}. A configuration is a pair

(q, σ) of q ∈ Q and σ ∈ St . The transition function of a VPA can be used to define how

the configuration of the machine changes in a single step: we say (q, σ)
a−→ (q′, σ′) if one

of the following conditions holds:

• If a ∈ Σc then there exists γ ∈ Γ such that q
a/+γ−−−→ q′ and σ′ = γ · σ

33

1 2

34

a/ + A

b/−A
b/−B

b/−A
b/−B

a/ + B

Figure 4.1: VPA M

• If a ∈ Σr, then there exists γ ∈ Γ such that q
a/−γ−−−→ q′ and either σ = γ ·σ′, or γ = ⊥

and σ = σ′ = ⊥

• If a ∈ Σi, then q
a−→ q′ and σ = σ′.

Remark 4.1. In a VPA, it is worth to note that a call (push) transition is insensitive to

the top of the stack, and a return (pop) transition is allowed even when the stack is empty

(i.e., the top of the stack is the bottom ⊥). The former requirement is to ensure that a

well-matched word (Definition 4.3) is stable under concatenation (for determinization),

and the latter requirement is needed for completion (i.e., each input symbol at each state

has a transition).

A ((q0, w0)-)run on a word u = a1 · · · an is a sequence of configurations (q0, w0)
a1→

(q1, w1) · · ·
an→ (qn, wn), and is denoted by (q0, w0)

u→ (qn, wn). A word u is accepted by

M if there is a run (q0, w0)
u→ (qn, wn) with q0 ∈ Q0, w0 =⊥, and qn ∈ QF . The language

L(M) is the set of words accepted by M . The language L ⊆ Σ∗ is a visibly pushdown

language (VPL) if there exists a VPA M with L = L(M).

Example 4.1. Consider the VPA M in Figure 4.2, where a is a push and b is a pop. It

is easy to see that M recognizes the context-free language L(M) = {anbn | n ≥ 1} with

Σc = {a} and Σr = {b}.

Remark 4.2. The class of VPL is a super class of parenthesis languages and Dyck

languages. On the other hand, let consider the language L′ = {anban | n ≥ 1}. This

language can be recognized by a deterministic PDA N in which while reading the input

symbol a, N may push into or pop from the stack. However, this language L′ cannot be

accepted by any VPA. Therefore, the class of VPL is a proper subclass of deterministic

context-free languages.

Definition 4.2. A VPA M is deterministic if |Q0| = 1 and for every q ∈ Q:

34

• for every a ∈ Σi, there is at most one transition of the kind q
a−→ q′ ∈ ∆i,

• for every a ∈ Σc, there is at most one transition of the form q
a/+γ−−−→ q′ ∈ ∆c, and

• for every a ∈ Σr, γ ∈ Γ, there is at most one transition of the form q
a/−γ−−−→ q′ ∈ ∆r.

Remark 4.3. A VPA is height deterministic [45], i.e., the height of the stack is uniquely

determined by an input word. Further, since the partition Σ = Σc ∪ Σr ∪ Σi is universal

on VPAs, for an input word u, they are synchronous, i.e., they have the same height of

the stack at the destination of each run of u.

4.1.2 Determinization

This section presents an alternative proof for determinizability of VPA based on con-

gruence relations.

Definition 4.3. Let u ∈ Σ∗.

• u is return-matched, if for each prefix u′ of u, the number of return symbols (Σr)

in u′ is at most the number of call symbols (Σc) in u′.

• u is call-matched, if for each suffix u′ of u, the number of call symbols (Σc) in u′ is

at most the number of return symbols (Σr) in u′.

• u is well-matched if u is return-matched and call-matched.

The set of all call-, return-, or well-matched words is denoted by MC (Σ), MR(Σ), or

WM (Σ) respectively.

Lemma 4.1. For each u ∈ Σ∗, there exists a unique decomposition u = vc1v1 · · · cnvn
with v ∈ MC (Σ), ci ∈ Σc, and vi ∈ WM (Σ) for all 1 ≤ i ≤ k. This decomposition is

called well-matched decomposition. When n ≥ 1, the string vn is called the well-matched

suffix of u and is denoted by wms(u).

Definition 4.4. Let L ⊆ Σ∗. We define the relations ≈L on WM (Σ), ≡L on Σ∗, and ∼L0
on MC (Σ) as follows:

• u1 ≈L u2 if vu1v
′ ∈ L⇔ vu2v

′ ∈ L for each v, v′ ∈ Σ∗.

• u1 ≡L u2 if u1v ∈ L⇔ u2v ∈ L for each v ∈ MR(Σ).

• u1 ∼L0 u2 if u1v ∈ L⇔ u2v ∈ L for each v ∈ Σ∗.

Let ≈ be a congruence on WM (Σ), ≡ a right congruence on Σ∗, and ∼0 a right congruence

on MC (Σ). We say that (≈,≡,∼0) is compatible with L if they are refinements of the

corresponding (right) congruence relations.

35

Theorem 4.2 ([7, Theorems 1 and 2]). A language L over the alphabet Σ is a VPL if

and only if,

• ≈L is a finite congruence on WM (Σ),

• ≡L is a finite right congruence on Σ∗, and

• ∼L0 is a finite right congruence on MC (Σ).

The following definition is a slightly refined version of determinization in[5, Theorem 2].

Definition 4.5. Let M = (Q,Q0,Γ,∆, F) be a VPA, and (≈,≡,∼0) a tuple compatible

with L. Suppose void is a fresh symbol. Let u = vc1v1 · · · cnvn with v ∈ MC (Σ), ci ∈ Σc,

and vi ∈WM (Σ) be the well-matched decomposition of u ∈ Σ∗. We define

JuK =

(void, [u]∼0) if n = 0

([vn]≈, [u]≡) if n > 0

The determinization Md = (Qd, Qd
0,Γ

d,∆d, F d) of M is defined as the VPA such that

Qd
0 = {JεK}, Qd

0 ∪∆d(Qd) ⊆ Qd, Γd = Qd ∪ {⊥}, F d = {JuK ∈ Qd | u ∈ L(M)}, and for

every u ∈ Qd, a, a′ ∈ Σc, b ∈ Σr, c ∈ Σi, and u′ ∈ Σ∗:

JuK c−→ JucK ∈ ∆d JuK
a/+JuaK−−−−→ JuaK ∈ ∆d

JuK
b/−⊥−−−→ JubK ∈ ∆d if n = 0 JuK

b/−Ju′a′K−−−−−→ Ju′a′vnbK ∈ ∆d if n > 0

where vc1v1 · · · cnvn is the well-matched decomposition of u.

Note that the original stack alphabet of M is ignored, and during transitions, the last

element (before ⊥) in the stack remains in {(void, [u]≡ | u ∈ MC (Σ)}, and void does not

appear elsewhere in the stack. Based on the construction in Definition 4.5, we have:

Theorem 4.3 ([5, Theorem 2]). Let M be a VPA. The VPA Md is actually deterministic

and L(M) = L(Md). Moreover, if M has n states, one can construct Md with at most

O(2n
2
) states and with stack alphabet of size O(2n

2
).

Remark 4.4. In the determinization, our version is smaller than the original one.

Example 4.2. Consider the VPA M in Figure 4.2 where Σc = {a},Σr = {b},Σi = {c}.
Md is depicted as in Figure 4.3.

We introduce a practical candidate for (≈,≡,∼0) that is obtained from the definition

of VPA.

Definition 4.6. For u ∈ Σ∗,

36

1 2
b/⊥, b/−A, c

a/ + A

a/ + A, b/⊥, c b/−A, c

Figure 4.2: VPA M

JeK JaK

JbK

JabK

JacK JacbK

JabbK JabbaK

JabbacK

a/JaK

b/⊥

b/JaK

a/JabK

c a/JaKa/JaK

b/⊥

b/JaK

a/JaK b/⊥c

a/JabbK

b/JaK

ca/JaKb/JaK

c a/JabbaK c c, b/⊥ a/JabbaaK

b/⊥,c c c

Figure 4.3: Determinized VPA Md

• δ⊥(u) denotes the set of q ∈ Q satisfying that there exist q′ ∈ Q0 and w ∈ StΓ with

(q′,⊥)
u→ (q, w). δ⊥(u) is called reachables (of u).

• ∆(u) denotes the set of (q, q′) ∈ Q×Q′ satisfying that there exist w,w′ ∈ StΓ with

(q, w)
u→ (q′, w′). When u ∈WM (Σ), ∆(u) is called summaries (of u).

Definition 4.7. Let M = (Q,Q0,Γ,∆, F) be a VPA. We define relations ≈M , ≡M , ∼M0
as follows.

• For u1, u2 ∈WM (Σ), u1 ≈M u2 if q
u1→ q′ ⇔ q

u2→ q′ for each q, q′ ∈ Q.

• For u1, u2 ∈ Σ∗, u1 ≡M u2 if δ⊥(u1) = δ⊥(u2).

• For u1, u2 ∈ MC (Σ), u1 ∼M0 u2 if δ⊥(u1) = δ⊥(u2).

Lemma 4.4. (≈M ,≡M ,∼M0) is compatible with L(M).

Note that ∼M0 coincides with ≡M on MC (Σ)

4.1.3 Closure Properties and Decision Problems

Recall that PDAs are closed under union, but not under intersection and complemen-

tation. VPAs are however closed under all these operations.

37

Theorem 4.5 ([5, Theorem 1]). The class of VPAs is closed under union, intersection,

and complementation.

Turning to the decidability of decision problems for VPAs, observe that since a VPA

is a PDA, emptiness is decidable in time O(n3) where n = |Q| + |∆| is the size of the

VPA. Recall that the universality problem for VPAs is to check whether a given VPA M

accepts all strings in Σ∗. The inclusion problem is to find whether, given two VPAs M1

and M2, L(M1) ⊆ L(M2). Though both are undecidable for PDAs, they are decidable for

VPAs:

Theorem 4.6 ([5, Theorem 3]). The universality problem and the inclusion problem for

VPAs are EXPTIME-complete.

4.2 Language Extensions of VPA Are Difficult

4.2.1 2-Visibly Pushdown Automata

We give a brief description of 2-visibly pushdown automata. Readers are referred

to [17] for more details.

Definition 4.8 ([17]). A 2-pushdown alphabet is a pair of pushdown alphabets Σ =

〈Σ0
,Σ

1〉, where Σ
0

= Σ0
c ∪Σ0

r ∪Σ0
i and Σ

1
= Σ1

c ∪Σ1
r ∪Σ1

i are possibly different partitions

of the same input alphabet Σ. The intuition behind a 2-pushdown alphabet is explained as

follows:

1. Σ
0

and Σ
1

drive the actions over the first stack and over the second stack, respec-

tively.

2. Symbols in Σ belonging to push, pop or internal actions of both Σ
0
and Σ

1
are simply

denoted by Σc,Σr, and Σi, respectively.

3. The input symbols that drive a push action on the first (resp., second) stack and a pop

on the second (resp., first) stack are called synchronized communication symbols,

and are formally denoted as Σs1 = Σ0
c ∩ Σ1

r (resp., Σs0 = Σ0
r ∩ Σ1

c).

4. Let Σci (resp., Σri) denote the set of push (resp., pop) symbols for the stack i and

internal for the other stack, with i = 0, 1.

Definition 4.9 ([17]). A (nondeterministic) 2-visibly pushdown automaton (2-VPA) on

finite words over a 2-pushdown alphabet Σ is a tuple M = 〈Q,Q0,Γ,⊥, δ, Qf〉, where

1. Q, Q0, and Qf are finite sets of states, initial states, and final states, respectively.

38

2. Γ is a finite set of stack symbols, ⊥/∈ Γ is the stack bottom symbol (with Γ⊥ used to

denote Γ ∪ {⊥}).

3. δ is the transition relations defined as the union of the following sets, for i ∈ {0, 1}:

• δci ⊆ (Q× Σci ×Q× Γ), δri ⊆ (Q× Σri × Γ⊥ ×Q)

• δc ⊆ (Q× Σc ×Q× Γ× Γ), δr ⊆ (Q× Σr × Γ⊥ × Γ⊥ ×Q),

• δsi
⊆ (Q× Σsi

× Γ⊥ ×Q× Γ), δi ⊆ Q× Σi ×Q.

A configuration of a 2-VPA M is a triple (q, σ0, σ1) where q ∈ Q and σ0, σ1 ∈
Γ∗.{⊥}. For an input word w = a1 · · · ak ∈ Σ∗, a run of M on w is a sequence

ρ = (q0, σ
0
0, σ

1
0) · · · (qk, σ0

k, σ
1
k) where q0 ∈ Q0, σ

0
0 = σ1

0 =⊥, and for all i ∈ {0, · · · k − 1},
there are j, j′ ∈ {0, 1}, j 6= j′, such that one of the following conditions holds:

• [Push]: (qi, ai, qi+1, γ) ∈ δcj , then σji+1 = γσji and σj
′

i+1 = σj
′

i .

• [2Push]: (qi, ai, qi+1, γ, γ
′) ∈ δc, then σji+1 = γσji and σj

′

i+1 = γ′σj
′

i .

• [Pop]: (qi, ai, γ, qi+1) ∈ δrj , then either γ = σji = σji+1 =⊥, or γ 6=⊥ and σji = γσji+1.

In both cases σj
′

i+1 = σj
′

i .

• [2Pop]: (qi, ai, γ0, γ1, qi+1) ∈ δr, then, for j ∈ {0, 1}, either γj = σji = σji+1 =⊥, or

γj 6=⊥ and σji = σji+1.γj.

• [Internal]: (qi, ai, qi+1) ∈ δi then σji+1 = σji .

• [Sync]: (qi, ai, γ, qi+1, γ̄) ∈ δsj
then either γ = σji = σji+1 =⊥, or γ 6=⊥ and

σji = γσji+1. In both cases σj
′

i+1 = γ̄σj
′

i .

Definition 4.10. A run ρ is accepting if it ends in a final state. A word w is accepting

if there is an accepting run ρ of M on w. The language accepted by M , denoted by L(M),

is the set of all words accepted by M . Let 2-VPL denote the set of languages recognized

by 2-VPAs.

Remark 4.5. As in the VPA case, 2-VPA input symbols are partitioned in subclasses,

each of them triggers a transition belonging to a specific class, i.e., push/pop/local tran-

sition, which also selects the operating stacks, the first or the second or both. More-

over, visibility in 2-VPA affects the transfer of information from one stack to the other.

Therefore, 2-VPA becomes strictly more expressive than VPA and they also accept some

context-sensitive languages (for instance, {anbncn | n ≥ 1} [17]) that are not context-free.

Unfortunately, this extension does not preserve decidability of the emptiness problem as

it can be proved by a reduction from the halting problem over two counter machines

(see [17] for details).

39

Remark 4.6. The class 2−V PL is a proper subclass of context-sensitive languages (CSL).

However, this class 2 − V PL is incomparable with the class of context-free languages

(CFL), i.e., 2− V PL * CFL and CFL * 2− V PL. In particular, the non-context-free

language {anbncn | n ≥ 1} [17] can be accepted by a 2-VPA. On the other hand, the

context-free language {anban | n ≥ 1} cannot be accepted by any 2-VPA because the

symbol a here is used for two kinds of operations: push and pop.

Theorem 4.7 ([17, Theorem 2]). The emptiness problem for 2-VPAs is undecidable.

In automata-theoretic approach, decidability of the emptiness problem is crucial.

Thus, the following restriction on 2-VPA was used to retain the decidability of the empti-

ness problem.

Definition 4.11. An ordered 2-VPA (2-OVPA) M is a 2-VPA in which a pop action on

the second stack can occur only if the first stack is empty.

Theorem 4.8 ([17, Corollary 1]). Given a 2-OVPA M , deciding whether L(M) 6= ∅ is

solvable in O(n3), where n is the number of states in M .

Definition 4.12. A 2-VPA (resp., 2-OVPA) M is deterministic if |Q0| = 1, and for

every q ∈ Q, a ∈ Σ, and γr, γ
′
r ∈ Γ⊥, there is at most one transition of the form (q, a, q′),

(q, a, q′, γ), (q, a, q′, γ, γ′), (q, a, γr, γ
′
r, q

′), or (q, a, γr, q
′, γ′) belonging to δ.

Now we are ready to discuss the main question of this section: How about the de-

terminizability of 2-VPA?. In [17], the author showed that the class of 2-VPA (and

2-OVPA) is determinizable ([17, Theorem 6]). Their technique is to extend the deter-

minization procedure of Alur and Madhusudan [5] for the cases of 2-VPAs and 2-OVPAs.

In the following, we show a detailed counter example to refute their proof. This example is

inspired from the example in [69]. Indeed, as Counter Example 1 shows, the determiniza-

tion procedure in [17] does not properly work for 2-VPAs (2-OVPAs). The reason for

failure is that actions on 2 stacks may interleave each other. Thus, two sets of “summary

edges” do not correctly maintain reachable states.

Counter-example 1. Let Σ be a 2-pushdown alphabet in which: Σ0
c = {a}, Σ0

r =

{c, d, u}, Σ0
i = ∅, Σ1

c = {b}, Σ1
r = {x, y, v}, Σ1

i = ∅.
Consider a nondeterministic 2-VPA M = 〈Q,Q0,Γ,⊥, δ, Qf〉, with Q = {q1, · · · , q10},

Q0 = {q1}, Qf = {q10}, and Γ = {A,B}. The 2-VPA M is depicted in Figure 4.4.

Moreover, it is easy to note that M is a 2-OVPA.

We describe states of M as nodes of a graph. We adopt the following conventions to

represent edges: for instance, a push into the first stack (qi, a, qj, A) is labeled as a/+0A,

a pop from the second stack (qi, x, B, qj) is labeled as x/−1 B. Note that, M accepts the

language L1 = {(ab)icjdi−juxjyi−jv | i ≥ 1, 1 ≤ j ≤ i}.

40

q1start q2 q6 q7 q10

q3 q4 q5 q8 q9

a/+0 A

a/+0 B

b/+1 A

b/+1 B

a/+0 B

c/−0 B

c/−0 B

d/−0 A
u/⊥0

d/−0 A

u/⊥0

x/−1 B

x/−1 B

y/−1 A

v/⊥1

v/⊥1

y/−1 A

Figure 4.4: A nondeterministic 2-VPA accepting L1

We prove that M cannot be determinized. Assume that M ′ is a deterministic 2-VPA

accepting L1. Suppose that after reading (ab)i, M ′ is in a state, say s, with the same

contents on two stacks. Select i larger than the number of states of M ′, and assume

that s
ctdi−t

−−−→ st for 0 ≤ t ≤ i. Thus, there are some j and k (0 ≤ j < k ≤ i) such

that sj ≡ sk. On reading ctdi−t, M ′ pops symbols only from the first stack. Thus, M ′

reaches the same configuration on (ab)icjdi−ju and on (ab)ickdi−ku. By appending the

word xjyi−jv, w = (ab)icjdi−juxjyi−jv and w′ = (ab)ickdi−kuxjyi−jv lead M ′ to the same

configuration. Since L(M ′) = L1, M
′ accepts w and rejects w′. This is a contradiction.

4.2.2 Visibly Stack Automata

A visibly input alphabet is a finite set of input symbols Σ = Σc∪Σr∪Σi∪Σu∪Σd that

comprises five disjoint finite alphabets, where Σc, Σr, Σi, Σu, and Σd are finite sets of

push, pop, internal , up, and down actions, respectively. We formally define visibly stack

automata as follows:

Definition 4.13. A visibly stack automaton (VSA) on finite words over Σ is a tuple

M = 〈Q,Q0,Γ, ↑,⊥,>, δ, Qf〉, where

1. Q, Q0, and Qf are finite sets of states, initial states, and final states, respectively.

2. Γ is a finite stack alphabet.

3. ↑, ⊥, and > are special symbols not in Γ (where ↑ is the stack reading head, ⊥ is the

bottom-of-stack symbol, and > is the top-of-stack symbol). Denote Γ⊥ = Γ ∪ {⊥}
and Γ⊥> = Γ ∪ {⊥,>}.

41

4. δ = δc ∪ δr ∪ δi ∪ δu ∪ δd is the transition relation:

• δc ⊆ Q× Σc ×Q× Γ are push-transitions

• δr ⊆ Q× Σr × Γ⊥ ×Q are pop-transitions

• δi ⊆ Q× Σi ×Q are internal-transitions

• δd ⊆ Q× Σd × Γ⊥> ×Q are down-transitions

• δu ⊆ Q× Σu × Γ⊥> ×Q are up-transitions

A stack is a nonempty finite sequence over Γ ∪ {↑} starting at the bottom-of-stack

symbol ⊥, and containing exactly one occurrence of the symbol ↑. More formally, the set

of all possible stacks is St = >Γ∗ ↑ Γ∗.{⊥}∪ ↑ >Γ∗.{⊥}.

A configuration of M is a pair c = (q, σ) where q ∈ Q, and σ ∈ St. For a word

α = a1 · · · ak ∈ Σ∗, a run of M on α is a sequence of configurations ρ = (q0, σ0) · · · (qk, σk),
where each q0 ∈ Q0, σ0 = > ↑ ⊥, and for every 1 ≤ i ≤ k, one of the following conditions

holds:

• [Push]: If ai is a push action, then σi−1 = > ↑ γu ⊥, and for some γ′ ∈ Γ:

(qi−1, ai, qi, γ
′) ∈ δc and σi = > ↑ γ′γu ⊥.

• [Pop]: If ai is a pop action, then for some γ ∈ Γ′: σi−1 = > ↑ γu ⊥, (qi−1, ai, γ, qi) ∈
δr and σi = > ↑ u ⊥.

• [Internal]: If ai is an internal action, then (qi−1, ai, qi) ∈ δi and σi = σi−1.

• [Down]: If ai is a down action and σi−1 = >u2γ
′ ↑ γu1 ⊥, then (qi−1, ai, γ, qi) ∈ δd

and σi = >u2γ
′γ ↑ u1 ⊥.

• [Up]: If ai is an up action and σi−1 = >u2γ ↑ u1 ⊥, then (qi−1, ai, γ, qi) ∈ δu and

σi = >u2 ↑ γu1 ⊥.

A run ρ = (q0, σ0) · · · (qk, σk) is accepting if the last state is a final state. A word

α ∈ Σ∗ is accepted by a VSA M if there is an accepting run of M on α. The language

of M , L(M), is the set of words accepted by M . A language of finite words L ⊆ Σ∗ is a

visibly stack language if there is a VSA M over Σ such that L(M) = L.

Definition 4.14. A visibly stack automaton M = 〈Q,Σ, Q0,Γ, ↑,⊥,>, δ, Qf〉 is said to

be deterministic if |Q0| = 1 and |{(q, a, q′) ∈ δi} ∪ {(q, a, q′, γ′) ∈ δc} ∪ {(q, a, γ, q′) ∈
δr} ∪ {(q, a, γ, q′) ∈ δu} ∪ {(q, a, γ, q′) ∈ δd}| ≤ 1, for every q ∈ Q and a ∈ Σ.

Since the emptiness problem for stack automata is decidable [39], the next corollary

holds.

42

Corollary 4.9. The emptiness problem for VSAs is decidable.

Based on visibility, the class of VSAs is closed under union and intersection. However,

as Counter Example 2 shows, determinization of VSAs fails.

s0start s2 s4 s6 s7

s1 s3 s5

a/+ A

a/+B

d,A ↓

a/+B

c,B ↓

x,⊥ ↑

d,A ↓

c, B ↓

d,A ↓

y,⊥ ↑

x,A ↑

y,B ↑

u,A ↑

y,B ↑

u,B ↑

v,> ↓

Figure 4.5: A nondeterministic VSA accepting L2

Counter-example 2. Let a be a push. Let c, d, v be downs, and x, y, u be ups. We show

that no deterministic VSA can recognize the language L2 = {aicjdi−jxi−jyjuv | 0 ≤ j ≤ i}.
The VSA N in Figure 4.5 accepts L2. On reading a, N pushes A onto the stack, and

nondeterministically switches to a state s1 where N pushes B onto the stack. Intuitively,

this switch corresponds to the guess of what j is. On going down, N checks that the

number of “c”s corresponds to the number of “B”s in the stack, and then N starts reading

d and checks that the number of “d”s is equal to the number of “A”s. Then, from the

bottom of the stack, the stack head goes up checking that the number of “x”s is i− j, and

the number of “y”s is j.

We prove that N cannot be determinized. Assume that N ′ is a deterministic VSA

accepting L2. Suppose that after reading ai, N ′ is in a state, say s. Select i larger than

the number of states of N ′, and assume that s
ctdi−t

−−−→ st for 0 ≤ t ≤ i. Thus, there are some

j and k (0 ≤ j < k ≤ i) such that sj ≡ sk. N
′ reaches the same configuration on aicjdi−j

and on aickdi−k. By appending the word xi−jyjuv, the words w = aicjdi−jxi−jyjuv and

w′ = aickdi−kxi−jyjuv lead N ′ to the same configuration. Since L(N ′) = L2, N
′ accepts

w and rejects w′. This is a contradiction.

43

4.3 Related Work

The most related work is a recent paper of Nowotka and Srba [45] on height-deterministic

pushdown automata. A PDA is height-deterministic if the stack height is determined solely

by the input word; more precisely, a PDA M is height-deterministic if all runs of M on

input w ∈ Σ∗ lead to configurations of the same stack height. Two height-deterministic

PDAs M and N are synchronized if their stack heights coincide after reading the same

input words. Given two height-deterministic PDAs M and N , the inclusion problem

L(M) ⊆ L(N) is decidable only if M and N are synchronized.

In [18], Caucal introduced an extension of Alur and Madhusudan’s visibly pushdown

languages, and proved that it forms a Boolean algebra. Caucal’s class is defined with the

help of a notion of synchronization. In particular, he introduced the synchronization of

a pushdown automaton by a sequential transducer associating an integer to each input

word. The visibly pushdown automata are the automata synchronized by a one-state

transducer whose output labels are -1, 0, 1. For each transducer, one can decide whether

a pushdown automaton is synchronized. The pushdown automata synchronized by a

given transducer accept languages which form an effective Boolean algebra containing the

regular languages and included in the deterministic real-time context-free languages.

This chapter refuted the claim about the determinizability of 2-OVPAs (2-VPAs). In

addition, we have introduced the class of visibly stack automata (VSAs) and showed that

this class of automata is not determinizable. Note that each 2-OVPA (resp., VSA) univer-

sally rejects certain words because of violation of the definition. For instance, a3b3xycdyd

(resp., a3cd2a5), under the partition in Counter Example 1 (resp. Counter Example 2),

is such a word. This means that 2-OVPAs (resp., VSAs) cannot be complemented. We,

however, do not know whether the inclusion problems for 2-OVPAs (resp., VSAs)) are

decidable or not, but we conjecture that they are not decidable.

44

Chapter 5

Checking Universality and Inclusion

of Visibly Pushdown Automata

One of the most important properties of VPAs is that nondeterministic VPAs can be

determinized, and determinization plays a key role in universality and inclusion check-

ing [5]. However, the determinization is much harder to obtain than in the case of finite

automata. In particular, for a nondeterministic VPA with n states, the determinization

has a O(2n
2
) worst case complexity. To check universality for a nondeterministic VPA A

over Σ (that is, to check if L(A) = Σ∗), the classical approach is first to make it complete,

determinize it, and then checks for reachability of nonaccepting states of the determinized

VPA. To check the inclusion problem L(A) ⊆ L(B), the standard approach computes the

complement of B, takes its intersection with A, and then check for emptiness. This is

costly as computing the complement necessitates determinization. This explosion is in

some sense unavoidable, as the universality and language inclusion problem for VPAs are

known to be EXPTIME-complete [5].

During the recent years, a lot of research has been done to implement efficiently

operations like complementation [48, 49] and universality or inclusion checking on non-

deterministic word, Büchi, or tree automata [77, 24, 14]. The solutions in [77, 24, 14] is

so-called antichain technique; an antichain is a finite set of incomparable elements. Its

idea comes from an analysis of the complementation, which consists of two steps (1) the

determinization and (2) the alternation of final states. In a determinization, the subset

construction generates determinized states, each of which is the collection of destination

states of transitions of a word. A (forward) antichain further reduces it to minimal deter-

minized states only. The idea is that, in either the universality or the inclusion checking,

the final step is the emptiness checking, i.e., whether there exists a word reachable to a

rejecting determinized state, regardless of which word is an instance. Although the an-

tichain algorithm does not improve the complexity in theory, it is significant in practice.

For instance, there had been virtually no implementations of complementing a Buchi au-

45

tomaton (which is O(2n logn)), but one was given by antichains [24] and implemented as

ALASKA [78].

In this chapter, we first apply the standard method to check universality and inclusion

problems for nondeterministic VPA. The method includes two main steps: determiniza-

tion and reachability checking for non-accepting configurations. For determinization, we

use the Alur-Madhusudan’s procedure. For reachability checking, we apply the sym-

bolic technique P-automata [29, 58] to compute the sets of all reachable configurations

of a VPA. We implement this standard approach in a prototype tool written in Java

1.5.0/NetBeans 6.0. We test on randomly generated VPA. However, the performance of

this method is very low. The program stuck with very mall size of input VPAs.

To improve the standard method, we propose and experimentally evaluate new efficient

methods for checking universality and inclusion problems of VPAs: on-the-fly method and

antichain-based method.

• On-the-fly method. To improve efficiency, we perform determinization and reach-

ability checking on-the-fly manner. More precisely, we construct determinized VPA

and P-automaton simultaneously. For checking universality of nondeterministic

VPA M , we first create the initial state of the determinized VPA Md and a P-

automaton A to represent the initial configuration. Second, construct new tran-

sitions departing from the initial states, and update the P-automaton A. Then,

using new states and transitions of A (which correspond to pairs of the states and

topmost stack symbols of Md), update the determinized VPA Md, and so on. When

a nonaccepting state is added to A, we can stop and report that M is not universal.

• Antichain-based method. We extend the antichain-based algorithms [77] to vis-

ibly pushdown automata. In particular, as determinization is expensive, we first

construct an algorithm for checking universality by keeping determinization implic-

itly. The main idea is to try to find at least one word not accepted by the VPA.

For this sake, we follow the simultaneous technique as in the on-the-fly method.

Besides, an ordering over transitions of determinized VPA is introduced to perform

a kind of minimal symbolic simulation of the P-automaton to cover all runs neces-

sarily leading to non-accepting states. We also give a new algorithmic solution to

inclusion checking for VPAs. Again, no explicit determinization is performed. To

solve the language-inclusion problem for nondeterministic VPAs, L(A) ⊆ L(B), the

main idea is to find at leat one word w accepted by A but not accepted by B, i.e.,

w ∈ L(A) \ L(B).

To evaluate the proposed algorithms, we have implemented them all in a prototype

tool and tested them in a series of experiments. Although the standard approaches (as

46

well as ours) have the same worst case complexity, our prototype implementation out-

performs those approaches where determinization is explicit. Preliminary experiments on

randomly generated visibly pushdown automata show a significant improvement of on-

the-fly and antichain-based methods compared to the standard method, especially when

the universality / the inclusion do not hold. For the cases of universal VPAs, our ex-

perimental results show that the antichain-based method is considerably faster than the

standard method.

5.1 Checking Universality and Inclusion of Finite Au-

tomata

In this section we present algorithms to check universality and inclusion for finite

automata. In particular, we first briefly discuss the standard algorithms before entering

to the antichain-based algorithms that were proposed recently by Wulf et al. [77].

5.1.1 Standard Methods

Definition 5.1. A (nondeterministic) finite automaton (NFA) over a finite alphabet Σ

is a tuple A = (Q,Σ,∆,

Q0, F), where Q is a set of finite states, ∆ ⊆ Q× Σ×Q is a set of transitions, Q0 ⊆ Q

is a set of initial states, and F is a set of final states.

For (q, a, q′) ∈ ∆, we denote it by q
a−→ q′. The finite automaton A is said to be

deterministic if |Q0| = 1, and for all q ∈ Q and a ∈ Σ, there is at most one transition

(q, a, q′) ∈ ∆. For U ⊆ Q, we denote ∆(U) = {q′ | q ∈ U, a ∈ Σ, (q, a, q′) ∈ ∆}.

For a word u = a1a2 · · · an ∈ Σ∗ and q ∈ Q, a (q-)run of A over w is a sequence

q = q0
a1−→ q1

a2−→ q2 · · · qn−1
an−→ qn = q′, and denoted by q

u−→ q′. The word w is accepted

by A if u has a run q
u−→ q′ such that q ∈ Q0 and q′ ∈ F . Let L(A) denote the set of words

accepted by A. Without loss of generality, we avoid ε transitions by substituting them

with multiple initial states and nondeterminism. For instance, Figure 5.1 is an example

of non-deterministic finite automata.

Theorem 5.1 ([72]). Every NFA A can be determinized. Furthermore, if A has n states,

then one can construct a deterministic FA B with at most 2n states such that L(B) =

L(A). This technique is called subset construction.

Solving universality problem using standard method The universality problem

asks, given a NFA A over the alphabet Σ, if the language of A contains all finite words over

Σ, that is, if L(A) = Σ∗. This problem is fundamental in automata theory, and several

important problems in verification reduce polynomial time to this problem. The standard

47

1 2

3

4

5

6

7

8
b

a

b

a, ba

a, b

b

a, b

a, b

b

a

a

a a, b

Figure 5.1: Finite automaton A

algorithm for universality of finite automata is to first determinize the automaton using

the subset construction, and then check for the reachability of a set containing only non-

accepting states. The subset construction may construct a deterministic automaton that

is exponentially larger than the original automaton.

Example 5.1. Let us consider the NFAA given in Figure 5.1 whereQ = {1, 2, 3, 4, 5, 6, 7, 8}
and F = {1, 2, 3, 4, 5, 8}. The standard method to check universality of A is illustrated in

Figure 5.2.

Solving inclusion problem using standard method Let A = (QA,Σ,∆A, Q
0
A, FA)

and B = (QB,Σ,∆B, Q
0
B, FB) be two NFAs. We want to check whether L(A) ⊆ L(B).

The standard approach computes the complement of B, takes its intersection with A, and

checks for emptiness. It means that L(A) ⊆ L(B) ⇐⇒ L(A) ∩ L(B) = ∅. This costly

as computing the complement necessitates determinization. Here we show how to check

inclusion without explicit determinization.

5.1.2 Antichain Methods

In [77], it was shown that explicit determinization via the subset construction can be

avoided when solving universality for finite automata. To avoid the subset construction,

they proposed the notion of antichains as above, and constructed monotone function on

the lattice of the defined antichains. Then, checking universality can be done via forward

or backward manners. For forward manner, the least fixed point the defined monotone

function is enough to find counterexample words if the finite automaton is not universal.

Similarly, for backward manner, the greatest fixed point of the defined monotone function

is enough for checking universality. It has shown that the backward algorithm and the

forward algorithm are equivalent [77]. In this section, we only present the forward manner

to solve universality and inclusion problems for finite automata. Readers are referred

to [77] for more details of backward manner.

48

{1}

{1, 3}

{1, 3, 5}

{1, 3, 5, 7, 8}

{2}

{2, 5}

{2, 5, 7}

{5}

{4, 5}

{4, 5, 7}

{5, 7, 8}

{6, 7}

{7}

{7, 8}

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 5.2: Determinization for checking universality of finite automaton A.

We now briefly recall the notion of antichains that were proposed in [77] for solving

universality of finite automata. Let Q be a finite set (in [77], Q is a set of states of some

finite automaton).

Definition 5.2. An antichain over Q is a set p ⊆ 2Q such that ∀s, s′ ∈ p : s * s′ and

s′ * s. Intuitively, p is a set of pairwise incomparable subsets of Q.

Let L be the set of antichains over Q. Based on the subset-inclusion relation, we define

the partial orders over L as follows:

Definition 5.3. For two antichains p, p′ ∈ L, let p v p′ iff ∀s′ ∈ p′ · ∃s ∈ p : s ⊆ s′.

Given a set p ⊆ 2Q (not necessarily an antichain), a set s ∈ p is maximal in p iff

∀s′ ∈ p : s * s′. Similarly, s ∈ p is minimal in p iff ∀s′ ∈ p : s′ * s. Denote dpe (resp.

bpc) for the set of maximal (resp. minimal) elements of p. We are now ready to define

the operations over a set of antichains.

Definition 5.4. Given two antichains p, p′ ∈ L, the v-lub (least upper bound) is the

antichain p t p′ = b{s ∪ s′ | s ∈ p ∧ s′ ∈ p′}c and the v-glb (greatest lower bound) is the

antichain p u p′ = b{s | s ∈ p ∨ s ∈ p′c.

49

Recall that a partially ordered set (L,v) is a lattice if for every two elements p, p′ ∈ L
both the least upper bound and the greatest lower bound of {p, p′} exist. A lattice is

complete if for every subset P ⊆ L both the least upper bound and the greatest lower

bound of P exist. Based on this definition, the next lemma holds:

Lemma 5.2. The partial orders v yields a complete lattice on the set L of antichains:

Latt = 〈L,v,
⊔
,u, ∅, {Q}〉.

The above lattice was used to solve universality for finite automata via forward algo-

rithms. We are going to describe this technique in detail as below:

Using the lattice of antichains to solve universality Given a nondeterministic

finite automaton A = (Q,Σ,∆, Q0, F), we define the following monotone function on the

lattice L of antichains over Q. For an antichain p ∈ L, let

Post(p) = b{s′ | ∃s ∈ p · ∃a ∈ Σ : s′ = postAa (s)}c
where postAa (s) = {l′ ∈ Q | ∃l ∈ s : (l, a, l′) ∈ ∆}.

So, a set s′ of states belongs to the antichain Post(p) iff it is minimal and there exists

a state set s and a symbol a ∈ Σ such that s′ = postAa (s). It is important to note that

this Post function is monotone on the lattice of antichains Latt. The computation of Post

can be seen as a step of implicit determinization for a NFA. This monotone function can

be used to solve the universality problem for nondeterministic finite automata. We start

with some detail definitions.

Definition 5.5. For a antichain p ∈ L, we define Post0(p) = p and for all i > 0, Posti(p) =

Post(Posti−1(p)) u p.

Intuitively, Posti(p) contains the v-smallest elements s ∈ 2Q into which the NFA can

nondeterministically get after processing words of length up to i starting from the states

in the second component of the elements of p. Using only the minimal elements is enough

as we just need to know whether there is a word on which the given NFA runs exclusively

into non-final states. This makes universality checking easier than the standard approach

that used explicit determinization.

Note that Post1(p) = Post(Post0(p)) u p v p = Post0(p). Moreover, for i > 0, if

Posti(p) v Posti−1(p), then due to the monotonicity of Post, Post(Posti(p)) v Post(Posti−1(p)),

Post(Posti(p)) u p v Post(Posti−1(p)) u p, and thus Posti+1(p) v Posti(p). Altogether, we

obtain:

Lemma 5.3. ∀p ∈ L · ∀i ≥ 0 : Posti+1(p) v Posti(p).

50

Since we work on a finite lattice, by Tarski’s fixed point theorem, this implies that for

all p there exists a number fi (abbreviation for fixed point index) such that Postfi(p) =

Postfi+1(p). We let Post∗(p) = Postfi(p).

Let p0 = {Q0} be the initial antichain. Now, we explain the main difference between

the antichain approach and the standard approach. Intuitively, Post∗(p0) can be seen as

a subset of states of the determinized FA. The computation of Post∗(p0) can be seen as

doing determinization implicit. The computation of this least fixed point can be used to

check universality for NFA. This is formalized in the next theorem.

Theorem 5.4 ([77, Theorems 3]). An NFA A = (Q,Σ,∆, Q0, F) is not universal iff

∃s ∈ Post∗(p0) such that s ∩ F = ∅.

The algorithm that consists in computing the least fixed point Post∗(p0) from Theo-

rem 5.4 is called the forward antichain algorithm. The computation is similar to the subset

construction used in the forward determinization of A, with the essential difference that

it maintains only sets of states that are minimal in the subset-inclusion order.

Remark 5.1. When the automaton is not universal, then Post∗(p0) is not fully computed,

because we stop the computation as soon as one of the sets in Post∗(p0) does not intersect

with F .

Algorithm 1: The antichain algorithm for universality

Data: A NFA A = (Q,Σ, Q0,∆, F).

Result: universality of A

begin1

p0 ←− {Q0};2

p←− p0;3

if ∃s ∈ p : s ∩ F = ∅ then4

return False;5

WorkList←− Post(p) u p;6

while (p 6= WorkList) do7

p←− WorkList;8

if ∃s ∈ p : s ∩ F = ∅ then9

return False;10

WorkList←− Post(p) u p;11

return True;12

end13

51

{1}

{1, 3}

{1, 3, 5}

{1, 3, 5, 7, 8}

{2}

{2, 5}

{2, 5, 7}

{5}

{4, 5}

{4, 5, 7}

{5, 7, 8}

{6, 7}

{7}

{7, 8}

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 5.3: Checking universality of finite automaton A via antichains.

Example 5.2. Let us describe this antichain method by checking universality for the

NFA A in Figure 5.1. We first have: p0 = {{1}}, then

• Post1(p0) = Post(p0)) u p0 = {{1}, {2}, {1, 3}} u {{1}} = b{{1}, {2}, {1, 3}}c =

{{1}, {2}}

• Post2(p0) = Post(Post1(p0)) u p0 = {{1}, {2}, {1, 3}, {5}, {4, 5}} u {{1}}
= b{{1}, {2}, {1, 3}, {5}, {4, 5}}c = {{1}, {2}, {5}}

• Post3(p0) = Post(Post2(p0)) u p0 = {{1}, {2}, {1, 3}, {5}, {7, 8}, {7}} u {{1}}
= b{{1}, {2}, {1, 3}, {5}, {7, 8}, {7}}c = {{1}, {2}, {5}, {7}}

Since {7} ∈ Post3(p0) and {7}∩ {1, 2, 3, 4, 5, 8} = ∅, we obtain that the NFA A is not

universal. The computation of Post3(p0) is illustrated in Figure 5.3.

Remark 5.2. There are three main advantages of the antichain method over the standard

one as follows. First, the new antichain algorithm keep determinization implicit. Second,

the antichain algorithm try to find at least a word not accepted by the automaton and

52

computes only what is necessary to establish the existence of such a word. Third, an-

tichains of state sets allow us to store only minimal (or, maximal for backward manner)

subsets of states for which we know a finite automaton is universal or not.

Using the lattice of antichains to solve inclusion Let A = (QA,Σ,∆A, Q
0
A, FA)

and B = (QB,Σ,∆B, Q
0
B, FB) be two NFAs. We want to check whether L(A) ⊆ L(B).

The standard approach computes the complement of B, takes its intersection with A,

and checks for emptiness. This costly as computing the complement necessitates deter-

minization. Here we show how to check inclusion without explicit determinization. The

language inclusion for finite automata can be checked using an antichain algorithm based

on a slightly richer lattice. An antichain over QA × 2QB is a set p ∈ 2QA×2QB such that

for all (l1, s1), (l2, s2) ∈ p with l1 = l2 and s1 6= s2, we have neither s1 ⊆ s2 nor s2 ⊆ s1.

Given a set p2QA×2QB , an element l, s) ∈ q is minimal iff for every s′ with s′ ⊂ s, we have

(l, s′) /∈ p. We denote by bpc the set of minimal elements of p.

Definition 5.6. Given two antichains p and p′, we define:

• p vl p′ iff ∀(l, s′) ∈ p′ · ∃(l, s) ∈ p : s ⊆ s′,

• p tl p′ = b{(l, s ∪ s′) | (l, s) ∈ p ∧ (l, s′) ∈ p′}c,

• p ul p′ = b{l, s) | (l, s) ∈ p ∨ (l, s) ∈ p′}c,

Let IPostl(p) = b{(l′, s′) | ∃a ∈ Σ · ∃(l, s) ∈ p : (l, a, l′) ∈ ∆A ∧ postBa (s) = s′}c. Let

p0 = Q0
A × {Q0

B} be the initial antichain. Similar to the case for universality checking,

the next theorem holds:

Theorem 5.5. Let A and B be two two finite automata. Then, L(A) * L(B) iff there

exists p = (l, s) ∈ IPost∗(p0) such that: l ∈ FA ∧ s ⊆ (QB \ FB).

5.2 Checking Universality and Inclusion of Visibly

Pushdown Automata

Since the set of configurations or a VPA is infinite, we cannot directly apply the

antichain method to compute the least fixed point as for the finite automata case. This is

because the computation of the least fixed point for an infinite lattice will not terminate.

In this section, we propose new two methods (on-the-fly and antichain-based) to solve

the universality and inclusion problems for visibly pushdown automata. We first briefly

recall the standard method in the next subsection.

53

5.2.1 Standard Methods

Solving universality problem using standard method The universality problem

asks, given a nondeterministic VPA A over the alphabet Σ, if the language of A contains

all finite words over Σ, that is, if L(A) = Σ∗. The standard algorithm for universality of

finite automata is to first determinize the automaton, and then check for the reachability

of a nonaccepting states.

Determinization P-automaton

Reachability check

Determinization P-automaton

Reachability check

Figure 5.4: Checking Universality of VPA via Standard Method

Step 1: Determinization The first step is to do determinization. As shown in [5],

any nondeterministic VPA can be transformed into an equivalent deterministic VPA. The

key idea of the determinization procedure is to do a subset construction, but postponing

handling push transitions. The push transitions are stored into the stack and simulated

at the time of matching pop transitions. The construction has two components: a set of

summary edges S, that keeps track of what state transitions are possible from a push tran-

sition to the corresponding pop transition, and a set of path edges R, that keeps track of all

possible state reached from initial states. Formally, let M = (Q,Γ, Q0,∆, F) be a nonde-

terministic VPA. We construct an equivalent deterministic VPA Md = (Q′,Γ′, Q′
0,∆

′, F ′)

as follows:

• Q′ = 2Q×Q × 2Q,

• Q′
0 = {(IdQ, Q0)} where IdQ = {(q, q) | q ∈ Q},

• F ′ = {(S,R) | R ∩ F 6= ∅},

• Γ′ = Q′ × Σc.

The transition relation ∆′ = ∆′
i ∪∆′

c ∪∆′
r is given by:

• Internal: For every a ∈ Σi, (S,R)
a−→ (S ′, R′) ∈ ∆′

i where{
S ′ = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S, q′′ a−→ q′ ∈ ∆i}
R′ = {q′ | ∃q ∈ R : q

a−→ q′ ∈ ∆i}

• Push: For every a ∈ Σc, (S,R)
a/+(S,R,a)−−−−−−→ (IdQ, R

′) ∈ ∆′
c where

R′ = {q′ | ∃q ∈ R : q
a/+γ−−−→ q′ ∈ ∆c}

54

• Pop: For every a ∈ Σr,

– if the stack is empty : (S,R)
a/−⊥−−−→ (S ′, R′) ∈ ∆′

r where S ′ = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S, q′′ a/−⊥−−−→ q′ ∈ ∆r}

R′ = {q′ | ∃q ∈ R : q
a/−⊥−−−→ q′ ∈ ∆r}

– otherwise: (S,R)
a/−(S′,R′,a′)−−−−−−−→ (S ′′, R′′) ∈ ∆′

r, where

R′′ =

{
q′

∣∣∣∣∣ ∃q1 ∈ Q, q2 ∈ R : (q1, q2) ∈ S,
q

a′/+γ−−−→ q1 ∈ ∆c, q2
a/−γ−−−→ q′ ∈ ∆r

}
S ′′ = {(q, q′) | ∃q3 ∈ Q : (q, q3) ∈ S ′, (q3, q′) ∈ Update}

Update =

{
(q, q′)

∣∣∣∣∣ ∃q1 ∈ Q, q2 ∈ R : (q1, q2) ∈ S,
q

a′/+γ−−−→ q1 ∈ ∆c, q2
a/−γ−−−→ q′ ∈ ∆r

}

Step 2: Checking Reachability using P-automata Checking reachability config-

urations of determinized VPA can be done by using P-automata technique, which was

presented in Section 2.3. If a non-accepting configuration c = (q, w) (q /∈ F) is found, we

stop and report that the original VPA is not universal. Otherwise, if all reachable con-

figurations of determinized VPA are accepting configurations, we report that the original

VPA is universal. The diagram describes in Figure 5.4 two steps of the standard method.

Solving inclusion problem using standard method Let A and B be two VPAs. We

want to check whether L(A) ⊆ L(B). The standard approach computes the complement

of B, takes its intersection with A, and checks for emptiness (equivalent to reachability

check). It means that L(A) ⊆ L(B)⇐⇒ L(A)∩L(B) = ∅. This costly as computing the

complement necessitates determinization. Here we show how to check inclusion without

explicit determinization.

5.2.2 On-the-fly Methods

Determinization

P-automaton

Reachability check

On-demand generation
Determinization

P-automaton

Reachability check

On-demand generation

Figure 5.5: Checking Universality of VPA via On-the-fly Method

In this subsection we propose an on-the-fly method to check universality of VPAs by

doing determinization and P-automata construction simultaneously.

55

q2

q3q1

q4

q5

q6
⊥

f

q1 ⊥

q1,γ′q2
⊥

⊥

γ′

q3 ⊥
q4

q2,γ’

q6

γ′

γ′

a/γ′

b

c/⊥

a/γ′
b

q5
γ′

a
b

c

a
b

〈q1,⊥〉

〈q2,γ′⊥〉

〈q3,⊥〉

〈q4,⊥〉

〈q5,γ′γ′⊥〉

〈q6,γ′⊥〉

Update determinized VPA
using states + top-of-stack
symbols of frontier

Update P-automaton

P-automatonDeterminized VPA

Reachable Configurations

A rejecting
state added

Stop + No

Figure 5.6: Description of the On-the-fly Method

Simultaneous On-the-fly Determinization and P-Automata Construction To

improve the efficiency, we perform simultaneously on-the-fly determinization and P-

automata construction. There are two interleaving phases in this approach. First, we

determinize VPA step by step (iterations). After each step of determinization, we update

the P-automaton. Then, using the P-automaton, we perform determinization again, and

so on. It is crucial to note that this procedure terminates. This is because the size of

Md is finite, and the P-automaton construction is terminated. However, once a non-

accepting state is added to the P-automaton, we stop and report that the VPA is not

universal. Let Conf(Md) and Non-Accepting-Conf(Md) denote the sets of reachable and

non-accepting configurations of Md, respectively. We have the following theorem as a

criterion for on-the-fly method, and this method is formalized in Algorithm 2.

Theorem 5.6. Let M be a nondeterministic VPA. The automaton M is not universal

iff there exists an non-accepting reachable configuration, i.e., Non-Accepting-Conf(Md) ∩
Conf(Md) 6= ∅.

Example 5.3. We illustrate the on-thy-fly algorithm by an example given in Figure 5.6.

In the example, we assume that a ∈ Σc, b ∈ Σi, and c ∈ Σr. The process of the algorithms

is performed as below:

56

Algorithm 2: The on-the-fly algorithm for checking university of VPA

Data: A nondeterministic VPA M = (Q,Q0,Γ,∆, F)

Result: Universality of M

begin1

Create the initial state of the determinized VPA Md;2

Initiate P-automaton A to present the initial configuration of Md;3

Apost∗ ←− A;4

Create transitions of Md departing from the initial state;5

while the set of new transitions of Md is not empty do6

Update the P-automaton Apost∗ using new transitions of Md;7

if a rejecting state is added to Apost∗ then8

return False;9

Update Md using new transitions of Apost∗ ;10

return True;11

end12

1. At the first time, assume that the initial state q1 of determinized VPA Md is created.

2. Then, the P-automaton A is constructed which includes two states {q1, f} and one

transition q1
⊥−→ f , where f is a unique final state. P-automaton A represents a set

of initial configurations {(q1,⊥)} of Md.

3. Update Md using A. Suppose that Md has new states {q2, q3, q4}; and new transi-

tions {q1
a/+ γ′−−−−→ q2, q1

b−→ q3, q1
c/−⊥−−−→ q4}.

4. Update P-automatonA using new transitions ofMd. A has new states {q2, q3, q4, p(q1,γ′)}
and transitions {q2

γ′−→ p(q1,γ′), p(q1,γ′)
⊥−→ f, q3

⊥−→ f, q4
⊥−→ f}.

5. We again return to update Md using new transitions of A, and so on.

On-the-fly algorithm for checking inclusion of VPA Let A and B be two VPAs.

We want to check whether L(A) ⊆ L(B). This is equivalent to L(A × B) = ∅. The

on-the-fly approach tries to find if there exists at least a word w ∈ L(A) \ L(B). If such

a word w was found, we can conclude that L(A) * L(B). Otherwise, L(A) is a subset of

L(B). To do so, similar to the case of universality checking, we perform simultaneously

on-the-fly determinization for B and P-automata construction for the product VPA A×B.

Once a state (p, q) ∈ (FA × FB is added to the P-automaton, it means that there is a

word w ∈ L(A) \ L(B). We stop and report that L(A) * L(B).

57

5.2.3 Antichain-based Methods

In this subsection, we improve the on-the-fly method to solve the universality and

inclusion problems for nondeterministic VPA. The key ideas of our approach are also

based on antichain technique. However, in our algorithms, the antichain technique was

performed over the set of transitions of the corresponding P-automaton. Where we only

need to keep “minimal” transitions of P-automaton for checking universality and inclu-

sion.

Minimal Determinization

Minimal P-automaton

Reachability check

Reduce search space
Minimal Determinization

Minimal P-automaton

Reachability check

Reduce search space

Figure 5.7: Checking Universality of VPA via Antichain-Based Method

Simultaneous Minimal Determinization and Minimal P-Automata Construc-

tion We begin with the following observations that play an important role in establishing

theoretical background for correctness of our algorithms. For a given nondeterministic

VPA M , let Md be the determinized VPA. We now define an ordering over states and

stack symbols of Md as follows:

Definition 5.7 (Ordering over determinized states and stack symbols).

• Let q′1 = (S1, R1) and q′2 = (S2, R2) be states of Md. We say q′1 ≤ q′2 if S1 ⊆ S2 and

R1 ⊆ R2.

• Let γ′1 = (S1, R1, a) and γ′2 = (S2, R2, a) be stack symbols of Md. We say γ′1 ≤ γ′2 if

S1 ⊆ S2 and R1 ⊆ R2.

With these definitions, we obtain the following lemma:

Lemma 5.7. Let (S1, R1)
a−→ (S ′1, R

′
1) and (S2, R2)

a−→ (S ′2, R
′
2) be internal transitions of

the determinized VPA Md. We have (S ′1, R
′
1) ≤ (S ′2, R

′
2) if (S1, R1) ≤ (S2, R2).

Proof. By the determinization procedure, we have:

• (S1, R1)
a−→ (S ′1, R

′
1) ∈ ∆′

i where{
S ′1 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S1, q

′′ a−→ q′ ∈ ∆i}
R′

1 = {q′ | ∃q ∈ R1 : q
a−→ q′ ∈ ∆i}

58

• (S2, R2)
a−→ (S ′2, R

′
2) ∈ ∆′

i where{
S ′2 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S2, q

′′ a−→ q′ ∈ ∆i}
R′

2 = {q′ | ∃q ∈ R2 : q
a−→ q′ ∈ ∆i}

Thus, it is easy to verify that (S ′1, R
′
1) ≤ (S ′2, R

′
2) if (S1, R1) ≤ (S2, R2).

Similarly, for the cases of push and pop transitions, the next two lemmas hold:

Lemma 5.8. Let (S1, R1)
a/+(S1,R1,a)−−−−−−−→ (IdQ, R

′
1) and (S2, R2)

a/+(S2,R2,a)−−−−−−−→ (IdQ, R
′
2) be

push transitions of the determinized VPA Md. We have (IdQ, R
′
1) ≤ (IdQ, R

′
2) if (S1, R1) ≤

(S2, R2).

Lemma 5.9. Let (S1, R1)
a/−(S′1,R

′
1,a

′)
−−−−−−−−→ (S ′′1 , R

′′
1) and (S2, R2)

a/−(S′2,R
′
2,a

′)
−−−−−−−−→ (S ′′2 , R

′′
2) be pop

transitions of the determinized VPA Md. Assume that (S ′1, R
′
1, a

′) ≤ (S ′2, R
′
2, a

′) and

(S1, R1) ≤ (S2, R2). Then, we have (IdQ, R
′
1) ≤ (IdQ, R

′
2).

We now extend the ordering in Definition 5.7 to define a ordering over configurations

of the determinized VPA Md.

Definition 5.8. Let c1 = (q1, γn · · · γ1⊥) and c2 = (q2, γ
′
n · · · γ′1⊥) be two configurations

of Md. We say (q1, γn · · · γ1⊥) ≤ (q2, γ
′
n · · · γ′1⊥) iff the following conditions hold:

• q1 = (S1, R1) ≤ (S2, R2) = q2, and

• γi ≤ γ′i for all 1 ≤ i ≤ n.

We now obtain a key theorem as a criterion for minimal generation of the P-automaton

for universality solving.

Lemma 5.10 (Key Lemma). Let c1 = (q1, γn · · · γ1⊥) and c2 = (q2, γ
′
n · · · γ′1⊥) be configu-

ration of Md such that (q1, γn · · · γ1⊥) ≤ (q2, γ
′
n · · · γ′1⊥). For any word w = a1 · · · an ∈ Σ∗,

if:

(q1, γn · · · γ1⊥)
w−−−→ (q̄1, γ̄m · · · γ̄1⊥) and (q2, γ

′
n · · · γ′1⊥)

w−−−→ (q̄2, γ̄
′
m · · · γ̄′1⊥)

Then, (q̄1, γ̄n · · · γ̄1⊥) ≤ (q̄2, γ̄
′
m · · · γ̄′1⊥)

Proof. We prove this lemma by induction on the length |w| of w. If |w| = 1, it means

that w = a. The proof immediately follows from Lemma 5.7, Lemma 5.8, or 5.9 wrt. the

type of input symbol a. Now, assume that the lemma holds for the case |w| = n. Again,

using induction hypothesis and Lemmas 5.7, 5.8 or 5.9, it is easy to see that this lemma

also holds for the case |w| = n+ 1. The lemma is proved.

59

Key Observation: Keep Only Minimal Configurations It is crucial to note that,

L(M) 6= Σ∗, iff there exists an non-accepting reachable configuration of Md. Recall

that a configuration ((S,R), σ) is non-accepting if R ∩ F = ∅. Note that if ((S,R), σ) ≤
((S ′, R′), σ′) and R′∩F = ∅, then R∩F = ∅. Based on this observation and Lemma 5.10,

it is sufficient to compute only minimal reachable configurations and check for the exis-

tence of a non-accepting configuration. Formally, let Minimal-Conf(Md) denote the set

of minimal configurations of Md, and let Non-Accepting-Conf(Md) denote the set of non-

accepting configurations of Md. We have the main theorem as below:

Theorem 5.11 (Main Theorem). Let M be a nondeterministic VPA. The automaton

M is not universal iff there exists an non-accepting minimal reachable configuration, i.e.,

Minimal-Conf(Md) ∩ Non-Accepting-Conf(Md) 6= ∅.

Algorithm 3: The antichain-based algorithm for checking university of VPA

Data: A nondeterministic VPA M = (Q,Q0,Γ,∆, F)

Result: Universality of M

begin1

Create the initial state of the minimal determinized VPA Mmd;2

Initiate P-automaton A to present the initial configuration of Mmd;3

Aminpost∗ ←− A;4

Create transitions of Mmd departing from the initial state;5

while the set of new transitions of Mmd is not empty do6

Update the P-automaton Aminpost∗ using new transitions of Mmd;7

if a rejecting state is added to Aminpost∗ then8

return False;9

Update Mmd using new transitions of Aminpost∗ ;10

return True;11

end12

Minimization P-automata Let C0 = {((IdQ, Q0),⊥)} be the set of initial configura-

tions of Md. The set of Minimal-Conf(Md) (represented by Aminpost∗) is computed by mini-

mizing the P-automaton Apost∗ as follows: for two configurations (q′1, γ
′
1σ) and (q′2, γ

′
2σ),

we only need to compare the states and top-of-stack symbols. To do that, we have the

following procedure:

Definition 5.9 (Minimization of P-automata). Aminpost∗ is obtained from Apost∗ by the

following optimization procedure: If (q′1, γ
′
1, p) ∈ Apost∗ and (q′2, γ

′
2, p) ∈ Apost∗ such that

q′1 ≤ q′2 ∧ γ′1 ≤ γ′2, then remove the transition (q′2, γ
′
2, p).

60

pq′1

q′2
γ′2

⊆

⊆ f
γ′1

Minimization P-automaton

σ

pq′1 f
γ′1

σ

Figure 5.8: Minimization of P-automata

Example 5.4. To describe how the antichain-based algorithm work, we revisit Ex-

ample 5.3. Without loss of generality, we assume that in the determinized VPA Md

q1 ⊆ q3, q1 ⊆ q4, and q2 ⊆ q6. With this assumption, the process of antichain-based

method for solving universality problem of VPA is illustrated in Figure 5.9.

Antichain-based algorithm for checking inclusion of VPA Similar to the on-the-

fly algorithm for inclusion checking, the antichain-based approach tries to find if there

exists at least a word w ∈ L(A) \ L(B). If such a word w was found, we conclude that

L(A) * L(B). Otherwise, L(A) is a subset of L(B). Here, different from the on-the-

fly algorithm, we perform simultaneously minimal determinization for B and minimal

P-automata construction for the product VPA A × Bmin, where Bmin is complement of

the minimal determinization of B. Once a state (p, q) ∈ (FA × FBmin
is added to the

P-automaton, it means that there is a word w ∈ L(A) \ L(B). We stop and report that

L(A) * L(B). Otherwise, L(A) ⊆ L(B).

5.3 Implementation and Experiments

To compare the antichain-based algorithm with the standard algorithm, we run our

implementations on randomly generated VPAs. The package is implemented in Java 1.5.0

on Windows XP, and all tests are performed on a PC equipped with 1.50 GHz Intel R©
CoreTM Duo Processor L2300 and 1.5 GB of memory. During experiments, we fix the size

of the input alphabet to |Σc| = |Σr| = |Σi| = 2, the size of the stack alphabet to |Γ| = 3.

We first set parameters of the test set are (i) the density of final states f = |F |
|Q| , and (ii)

the transition density r = ka

|Q| where ka is the number of transitions for each input symbol

a. For instance, r = 3 for 20 states mean 360 transition rules. Timeout is set to 60 seconds

for universality checking. Table 5.1 shows results of three algorithms, ANTICHAIN, ON-

THE-FLY, and STANDARD random VPAs with r = 3 and f = 1. Since the random

generated VPAs are not complete, almost VPAs are detected not to be universal. We ran

tests over 100 instances for each sample point. The results show that ANTICHAIN and

ON-THE-FLY are significantly faster than STANDARD.

61

q2

q3q1

q4

q5

q6
⊥

f

q1 ⊥

q1,γ′q2
⊥

⊥

γ′

q3 ⊥
q4

q2,γ’

q6

γ′

γ′

a/γ′

b

c/⊥

a/γ′
b

q5
γ′

a
b

c

a

〈q1,⊥〉

〈q2,γ′⊥〉

〈q3,⊥〉

〈q4,⊥〉

〈q5,γ′γ′⊥〉

Update P-automaton
with minimization

Minimal P-automatonMinimal Determinized VPA

Minimal Reachable Configurations

q1⊆q3; q1⊆q4

q2 ⊆ q6

Update determinized VPA
using states + top-of-stack
symbols of frontier

A rejecting
state added

Stop + No

Figure 5.9: Description of the Antichain-based Method

To produce randomly generated complete VPAs, we change parameters of the tests

as follows: density of final states f = |F |
|Q| , and the density of transitions r : Q× Σ → N;

r(q, a) depends on not only the input symbol a but also on the state q. This parameter

guarantees that randomly generated VPAs are complete. Therefore, the probability of

being universal increases. We randomly generate a complete and nondeterminitic (for

each state and input) VPA, and further randomly choose final states up to the rate f is

satisfied.

• r(q, a) = 2 for all q ∈ Q and a ∈ Σc,

• r(q, b) = 6 for all q ∈ Q and b ∈ Σr. This is because the return transitions also

depend on the stack symbols, and

• r(q, c) = 2 for all q ∈ Q and c ∈ Σi.

We see that, for instance, with the above parameters, a VPA with 10 states has

200 transitions. To evaluate the performance of algorithms, we first test for randomly

VPAs with 10 states and various density f . Table 5.2 shows results of three algorithms,

ANTICHAIN, ON-THE-FLY, and STANDARD for 10 states with various density of final

62

Table 5.1: checking random VPA with r = 3, f = 1

number of states

ANTICHAIN 10 20 30 40 50 60 70 80

not universal 100 100 98 99 96 98 95 93

1.18 2.52 3.41 4.54 6.27 9.93 9.05 16.32

timeout (60 s) 0 0 2 1 4 2 5 7

total time 118 252 455 510 842 1094 1160 1938

number of states

ON-THE-FLY 10 20 30 40 50 60 70 80

not universal 100 100 98 99 92 84 84 66

1.45 3.58 5.30 7.76 8.31 8.60 9.34 11.98

timeout (60 s) 0 0 2 1 8 16 16 34

total time 145 358 640 829 1245 1683 1744 2831

number of states

STANDARD 10 20 30 40 50 60 70 80

not universal - - - - - - - -

- - - - - - - -

timeout (60 s) 100 100 100 100 100 100 100 100

total time 6000 6000 6000 6000 6000 6000 6000 6000

states f . We ran with 20 samples for each point, setting timeout to 180 seconds. Results

of STANDARD are all timeout. ON-THE-FLY and ANTICHAIN both behave in significantly

better ways than those of STANDARD. For universal VPA cases, we see that ANTICHAIN

outperforms ON-THE-FLY very much. For not universal VPA cases, the performances of

ANTICHAIN and ON-THE-FLY are equivalent.

To evaluate scalability of the algorithms, we set the density of final states f = 0.6 and

test for various sizes of VPAs. The results are given in Table 5.3. Similarly, we see that

ANTICHAIN performance are more efficient than that of ON-THE-FLY.

Similar to the case of universality checking, experimental results for inclusion checking

are summarized in Table 5.4. We ran with 25 samples for each point, setting timeout to

300 seconds. The results show that ANTICHAIN algorithm is again significantly faster

than ON-THE-FLY and STANDARD algorithms.

63

Table 5.2: Universality checking for random VPA with 10 states

density of final states

ANTICHAIN 0.2 0.4 0.6 0.8 1.0

universal 1 13 17 16 14

67.38 69.90 51.67 81.50 87.18

not universal 19 5 0 0 0

0.74 0.79 – – –

timeout (180 s) 0 2 3 4 6

total time 81.51 1227.76 1418.44 2024 2300.52

density of final states

ON-THE-FLY 0.2 0.4 0.6 0.8 1.0

universal 0 0 4 1 0

– – 102.19 166 –

not universal 19 5 0 0 0

0.74 0.75 – – –

timeout (180 s) 1 15 16 19 20

total time 194.08 2703.73 3288.76 3586 3600

density of final states

STANDARD 0.2 0.4 0.6 0.8 1.0

universal – – – – –

– – – – –

not universal – – – – –

– – – – –

timeout (180 s) 20 20 20 20 20

total time 3600 3600 3600 3600 3600

5.4 Related Work

The concept of antichains is firstly applied to the universality / inclusion checking to

finite automata in [77] and extended to tree automata in [14]. The antichain was also

applied to attack the universality / inclusion checking of Buchi automata [24], which

is O(2n log n). Since Buchi automata are not determinizable, they used an alternating

automata technique, and implemented as ALASKA [78].

The known implementation of V PA VPAlib [55] only works for basic operations such

as union, intersection, and determinization. However, in their implementation, deter-

minization is not on-the-fly manner, thus it easily stacks with just few states.

64

Table 5.3: Universality checking for random VPA with r = 0.6

number of states

ANTICHAIN 5 10 15 20 25 30

universal 10 10 4 2 0 0

0.97 85.4 102 90.5 – –

not universal 7 8 13 10 16 9

0.86 0.75 6.64 0.30 1.70 6.45

timeout (180 s) 3 2 3 8 4 11

total time 643 1220 1035 1651 747 2038

number of states

ON-THE-FLY 5 10 15 20 25 30

universal 8 1 1 1 0 0

38 59 23 154 – –

not universal 7 8 13 10 16 9

0.86 0.75 16.61 0.90 2.34 21.80

timeout (180 s) 5 11 6 9 4 11

total time 1211 2045 1319 1864 757 2176

In this chapter we tackled this problem by the antichain idea, and proposed an an-

tichain algorithm for checking universality and inclusion among VPAs. Determinization

of a VPA is re-formulated in terms of finite congruences, and by combining with the P
automata techniques [28, 58]. Experiments show that it is much more efficient than the

standard approach. We stress that our current implementation does not use an sophis-

ticated data structure like BDD. We anticipate that use of BDD might strive for even

greater efficiency.

65

Table 5.4: Checking inclusion with r(q, a) = 2, f = 0.6

size of states

ANTICHAIN [1000− 5] [3000− 5]

included 14 6

60 110

not included 5 13

6.60 40.50

timeout (300 s) 6 6

total time 2677 2987

size of states

ON-THE-FLY [1000− 5] [3000− 5]

included 6 0

54 –

not included 5 10

5.89 37.8

timeout (300 s) 14 15

total time 4554 4878

66

Chapter 6

Timed Extensions of Visibly

Pushdown Automata

Timed automata (TAs) were introduced by Alur and Dill in [2], and have become

a standard modeling formalism for real-time systems. A timed automaton is a finite

automaton augmented with a finite set of real-valued clocks, in which constraints on the

clocks are used to restrict the behaviors of an automaton. The theory of timed automata

allows the solution of certain verification problems for real-time systems [2, 37, 15], e.g.,

reachability and safety properties. These solutions have been implemented in automatic

tools such as UPPAAL 1.

However, the general verification problems (i.e., language inclusion) for timed au-

tomata is undecidable. Therefore, for the verification purpose, one has to work either

with deterministic specifications or with a restricted class of timed automata which has

the required closure properties. One such restricted case is the class of event-clock au-

tomata (ECAs) [3, 25, 26]. The key feature of these automata is that they have a pair

of implicit clocks associated with each input symbol. The event clocks record the time

elapsed since the last occurrence of the associated symbol, as well as the time that will

elapse before the next occurrence of the associated symbol. When an ECA reads a timed

word, clock valuations depend only on the input word itself rather than on the choice of

nondeterministic transitions. Hence, ECAs are determinizable and closed under Boolean

operations.

During the recent years, there has been much extensive research on the inclusion

problem for timed automata [42, 27, 16]. In particular, it was shown that the inclusion

problem L(A) ⊆ L(B), for timed automata A and B, becomes decidable if B has at

most one clock [42]. The key idea of the proof is to encode this inclusion problem as the

reachability problem for well-structured transition systems. However, over infinite timed

words, one clock is enough to make the inclusion problem undecidable [1].

1http://www.uppaal.com/

67

A timed pushdown automaton (TPDA) [13] is a timed automaton augmented with a

pushdown stack. Decision problems for TPDAs such as emptiness is decidable [13]. How-

ever, the inclusion problem for TPDAs is undecidable, since the corresponding problem is

already undecidable for pushdown automata. One, therefore, has to deal with formalism

of less expressive power. One such candidate is the class of visibly pushdown automata

(VPAs) [5], in which the stack pushes and pops are determined explicitly by an input

alphabet. VPAs are closed under all Boolean operations, and the inclusion problem for

VPAs is decidable. Motivated by real-time software verification, Emmi and Majumdar [27]

introduced timed visibly pushdown automata (TVPAs) as the timed extension of VPAs.

However, for TVPAs A and B, the inclusion problem L(A) ⊆ L(B) is undecidable even

when B has exactly one clock [27].

Inspired by the ideas of ECAs [3] and VPAs [5], we introduce the class of event-clock

visibly pushdown automata (ECVPAs). The class of ECVPAs is expressive enough to

specify common context-free real-time properties such as “if p holds when a procedure

is invoked, then the procedure must return within d time units and q must hold at the

return state”. Besides, the class of ECVPAs is closed under all Boolean operations. Our

results are summarized as follows:

1. We show the essence behind the notion of event clocks is that every ECVPA can be

translated into an untimed VPA, which interprets timing constraints symbolically,

and vice-versa. Therefore, the closure properties and the decidability results of

ECVPAs can be reduced to those of VPAs.

2. We use the translation technique to prove that the inclusion problem L(A) ⊆ L(B)

for a TVPA A and an ECVPA B is decidable.

3. We show that class of duration automata (DAs) [65] is a special case of ECVPAs.

Thus, the inclusion problem for DAs is decidable.

TPDA

TVPA

1-TA

TA

ECVPAECADA

Figure 6.1: Relationships between involved classes of TPDAs

68

6.1 Event-Clock Visibly Pushdown Automata

6.1.1 Event clocks

In this subsection we give a brief description for event clocks . Readers are referred

to [3] for more details.

Let R+ and Q+ denote the set of non-negative real numbers and non-negative rational

numbers, respectively. Given a finite alphabet Σ, a timed word w̄ over Σ is a finite sequence

(a0, t0)(a1, t1) · · · (an, tn) of symbols ai ∈ Σ that are paired with nonnegative real numbers

ti ∈ R+ such that the sequence t̄ = t0t1 · · · tn of time-stamps is nondecreasing (i.e.,

ti ≤ ti+1 for all 0 ≤ i < n). We denote the timed word w̄ by the pair (ā, t̄), where ā ∈ Σ∗

is an untimed word over Σ. The set of all finite timed words over Σ is denoted by TΣ∗.

A timed language is a set of timed words.

Definition 6.1 (Event Clocks [3]). For each symbol a ∈ Σ, we use two implicit clocks xa

(event-recording) and ya (event-predicting). Along a timed word, the clock xa measures

the time since the last occurrence of symbol a, and ya measures the time to the next

occurrence of symbol a. If there are no last (resp., next) occurrence of a, the value of xa

(resp., ya) is “undefined”, denoted by ⊥.

Remark 6.1. The notation ⊥ denotes the “undefined” value, and the bottom-of-stack

symbol of visibly pushdown automata (defined in the next subsection).

Let CΣ = {xa|a ∈ Σ} ∪ {ya|a ∈ Σ} be the set of event-recording and event-predicting

clocks. Define R+
⊥ = R+ ∪ {⊥} and Q+

⊥ = Q+ ∪ {⊥}.

Definition 6.2 (Event-clock valuation [3]). For each timed word w̄ = (a0, t0)(a1, t1) · · · (an, tn),
a clock valuation over w̄ is a function νw̄j : CΣ → R+

⊥ which specifies the values of the

clocks (in CΣ) at position j in w̄.

νw̄j (xa) =

{
tj − ti If ∃i < j : ai = a, and ∀k : i < k < j ⇒ ak 6= a

⊥ otherwise

νw̄j (ya) =

{
ti′ − tj If ∃i′ > j : ai′ = a, and ∀l : j < l < i′ ⇒ al 6= a

⊥ otherwise

Figure 6.2, for example, shows the values of νw̄j (j = 0, 1, 2) for the clocks xa and ya

for the timed word w̄ = (a, 2)(a, 3)(a, 6)(b, 7)(b, 10).

Definition 6.3 (Event-clock constraints [3]). 1. The event-clock constraints compare

clock values to Q+
⊥, i.e, to rational constants or to the special value ⊥. The clock

constraints over CΣ are interpreted with respect to the clock-valuation function ν

from CΣ to R+
⊥: the atom ⊥ ≤ ⊥ evaluates to True, and all other comparisons that

involve ⊥ (e.g., ⊥ ≥ 3) evaluate to False.

69

xa

ya

1 2 3

1

0

2

3

⊥

⊥

ν0ϖ

ν1ϖ

ν2ϖ

Figure 6.2: Event-clock valuations of xa and ya for w̄

2. For simplicity, let Φ(CΣ) denote the set of event-clock constraints over CΣ.

3. For the clock-valuation ν and an event-clock constraint ϕ ∈ ΦΣ, we write ν |= ϕ

(resp., ν 2 ϕ) to denote that according to ν the constraint ϕ evaluates to True (resp.,

False).

6.1.2 Event-Clock Visibly Pushdown Automata

A pushdown alphabet is a set Σ = Σc ∪ Σr ∪ Σi that comprises three disjoint finite

alphabets in which Σc is a finite set of calls, Σr is a finite set of returns, and Σi is a finite

set of internal symbols. We formally define event-clock visibly pushdown automata over

the pushdown alphabet Σ as follows:

Definition 6.4. An event-clock visibly pushdown automaton (ECVPA) on finite timed

words over Σ is a tuple M = 〈Q,Σ, Q0,Γ,∆, F 〉, where Q is a finite set of locations,

Q0 ⊆ Q is a finite set of initial locations, Γ is a finite stack alphabet that contains a special

symbol ⊥ (bottom-of-stack symbol), F ⊆ Q is a set of final locations, and ∆ = ∆c∪∆r∪∆i

is the transition relation,

1. ∆c ⊆ Q× Σc × Φ(CΣ)×Q× (Γ\{⊥}) is a push-transition relation

2. ∆r ⊆ Q× Σr × Φ(CΣ)× Γ×Q is a pop-transition relation

3. ∆i ⊆ Q× Σi × Φ(CΣ)×Q is an internal-transition relation.

The intuition behind the transition relation is briefly explained as follows:

• (q, a, ϕ, q′, γ) ∈ ∆c is a push-transition, where on reading a when the clock valuation

satisfies ϕ, the symbol γ is pushed onto the stack and the location changes to q′.

70

• (q, a, ϕ, γ, q′) ∈ ∆r is a pop-transition, where on reading a when the clock valuation

satisfies ϕ, γ is popped from the stack, the location q changes to q′ (if γ =⊥, it is

read but not popped).

• (q, a, ϕ, q′) ∈ ∆i is an internal-transition, where the location, on reading a when

the clock valuation satisfies ϕ, the location changes from q to q′ without stack

operations.

A stack is a nonempty finite sequence from the set St = {w⊥ | w ∈ (Γ \ {⊥})∗}
starting with the top symbol on the left, and ending with the symbol ⊥ on the right. The

empty stack is the one that only contains the symbol ⊥.

Definition 6.5. A configuration of an ECVPA M is a pair (q, σ) where q ∈ Q, and

σ ∈ St. For a timed word w̄ = (a0, t0) · · · (an, tn), a run of M on w̄ is a sequence of

configurations ρ = (q0, σ0) · · · (qn+1, σn+1), where qi ∈ Q, σi ∈ St, q0 ∈ Q0, σ0 =⊥, and

for every 0 ≤ i ≤ n one of the following condition holds:

• Push: If ai is a call symbol, then for some γ ∈ Γ, (qi, ai, ϕi, qi+1, γ) ∈ ∆c, ν
w̄
i |= ϕi,

and σi+1 = γ.σi.

• Pop: If ai is a return symbol, then for some γ ∈ Γ, (qi, ai, ϕi, γ, qi+1) ∈ ∆r, ν
w̄
i |= ϕi,

and either γ ∈ Γ and σi = γ.σi+1, or γ = σi = σi+1 =⊥.

• Internal: If ai is an internal symbol, then (qi, ai, ϕi, qi+1) ∈ ∆i, ν
w̄
i |= ϕi, and

σi+1 = σi.

A run ρ is an accepting run if it ends in a final location. A timed word w̄ is an accepting

word if there is an accepting run of M on w̄. The language of an ECVPA M , denoted by

L(M), is the set of all accepting timed words w̄ of M .

Remark 6.2. An (untimed) visibly pushdown automaton [5] can be seen as an event-clock

visibly pushdown automaton that has no clock constraints on transitions. In the rest of

this paper, we mention a VPA as an ECVPA without Φ(CΣ) component in the transitions.

Note also that a VPA is deterministic if |Q0| = 1 and, for each configuration (q, σ) and a ∈
Σ, there are at most one transition from (q, σ) by a. VPAs are determinizable and closed

under Boolean operations [5]. In particular, for a nondeterministic VPA with n states,

one can construct an equivalent deterministic VPA with O(2n
2
) states and O(2n

2
.|Σc|)

stack symbols. The inclusion problem for VPAs is EXPTIME-complete [5].

We next present some examples of event-clock visibly pushdown automata.

Example 6.1. It is easy to see that an ECA [3] is an ECVPA that has only internal

symbols, i.e, Σc = Σr = ∅. Thus, the class ECAs is a subclass of ECVPAs.

71

q0start q1 q2 q3
a/Z, yc < 50

a/Z, xa < 2

b/Z, xa < 2

b/Z, xb < 2

c/⊥, xb < 2

Figure 6.3: Event-clock visibly pushdown automaton M

Example 6.2. Duration automata (DAs) were studied in [65] for modeling simple component-

based real-time systems. A DA is a finite automaton in which each transition must occur

in an associated time interval. A duration automaton can be viewed as an one-clock timed

automata, where the clock is reset at each transition. The clock valuations of a DA are

also explicitly determined by the input timed word. Therefore, the class of DAs can be

seen as a special subclass of ECAs, and thus DA is a subclass of ECVPAs.

Example 6.3. Let a be a push. Let b, c be pops, and Z be a stack symbol. The ECVPA

M of Figure 6.3 uses two event-recording clocks xa and xb, and an event-predicting clock

yc. The transitions of M are given as follows:

• Push: (q0, a, yc < 50, q1, Z), (q1, a, xa < 2, q1, Z).

• Pop: (q1, b, xa < 2, Z, q2), (q2, b, xb < 2, Z, q2), (q2, c, xb < 2,⊥, q3).

We describe locations of M as nodes of a graph. We adopt the following conventions

to represent edges: for instance, a push-transition (qi, a, φ, qj, Z) is labeled as a/+Z, φ; a

pop-transition (qi, b, φ, Z, qj) is labeled as b/− Z, φ.

The clock constraint yc < 50 that is associated with the edge from q0 to q1 ensures that

c occurs within 50 time units of the first a. The constraint xa < 2 that is associated with

the edge from q1 to q2 makes sure that the first b occurs within 2 time units of the last a.

The automaton M accepts the set of input timed words: L(M) = {(ᾱ, t̄) | ᾱ =

anbnc, n ∈ N+, ti+1 < ti + 2.∀(1 ≤ i ≤ 2n); t2n+1 − t1 < 50}. This timed language,

however, cannot be accepted by any timed automaton [2]. This is because the untimed

part {anbnc | n ∈ N+} is a context-free language.

The next example shows that ECVPA and timed automata are incomparable.

Example 6.4. Consider the timed language:

L = {(an, t̄) | n ≥ 2, tj − ti = 1, for some 0 ≤ i < j < n}
The language L can be accepted by a nondeterministic one-clock timed automaton (1-TA)

A in Figure 6.4. This language, however, cannot be accepted by any ECVPA.

Definition 6.6. An ECVPA M = 〈Q,Σ, Q0,Γ, δ, F 〉, is deterministic if |Q0| ≤ 1 and for

every q ∈ Q, and for every clock valuation ν:

72

s0start s1 s2
a, x := 0

a a

a, x = 1

a

Figure 6.4: One clock timed automaton A

• if (q, a, ϕ1, q1) ∈ ∆i and (q, a, ϕ2, q2) ∈ ∆i, then ν 2 ϕ1 ∧ ϕ2.

• if (q, b, ϕ1, q1, γ1) ∈ ∆c and (q, b, ϕ2, q2, γ2) ∈ ∆c, then ν 2 ϕ1 ∧ ϕ2.

• if (q, c, ϕ1, γ, q1) ∈ ∆r and (q, c, ϕ2, γ, q2) ∈ ∆r, then ν 2 ϕ1 ∧ ϕ2.

The determinism condition ensures that at each step during a run, the choice of the

next transition is uniquely determined by the current location of the ECVPA, the input

word, the current stack content, and the current clock-valuation of the ECVPA along the

input word. It is easy to check that every deterministic ECVPA has at most one run over

any given timed input word.

6.2 Properties of Event-Clock Visibly Pushdown Au-

tomata

6.2.1 Untimed/Timed Translation between ECVPA and VPA

Similar to the case for event clock automata [25], we show in this section that an arbi-

trary ECVPA can be translated into an untimed VPA that interprets timing constraints

symbolically and exhibits the same behaviors, and vice-versa.

In particular, for a given ECVPA M , let B = {r0, r1, ..., rn} be a finite set of constants

appearing in the clock constraints of M . Without loss of generality, let us assume that

0 = r0 < r1 < · · · < rn. We define Intv = {[⊥,⊥]} ∪ {[ri, ri], (ri, ri+1) | 0 ≤ i <

n} ∪ {[rn, rn], (rn,∞)}.

Definition 6.7. An interval-based alphabet over Σ is the set Π = Σ×Intv|CΣ|. We have

|Π| = |Σ| × |Intv||CΣ| = |Σ| × (2rn + 1)|CΣ|.

Elements of an interval alphabet are of the form (a, g) with a ∈ Σ and g : CΣ →
Intv. The component g is called guard , and it is used to represent the timing constraint:∧
x∈CΣ

x ∈ g(x).

73

qstart q1

q2

qstart q1

q2

a, xa < 5

a, 5 ≤ xa < 10

(a,[0,0])

(a,(0,5))

(a,[5,5])

(a,(5,10))

Figure 6.5: Description of untimed translation

Definition 6.8. Define a function tw : Π∗ → 2TΣ∗
where for each α = (a0, g0) · · · (an, gn) ∈

Π∗, we have:

tw(α) = {w̄ | w̄ = (a0, t0) · · · (an, tn),∀x ∈ CΣ,∀i(1 ≤ i ≤ n) : νw̄i (x) ∈ gi(x)}.
tw(α) is the set of timed words that “satisfies” α.

The untimed translation technique is formalized in the next definition:

Definition 6.9 (Untimed Transformation). Let M = 〈Q,Σ, Q0,Γ,∆, F 〉 be an ECVPA.

We define a VPA ut(M) = 〈Q,Π, Q0,Γ,∆
′, F 〉 in which for each transition e of M with

the input symbol a and the clock constraint ϕ, there exists a natural number k such that

e is translated to transitions of ut(M) as follows:

• the interval input symbols are (a, gi) ∈ Π, i = 1 · · · k, and

• ϕ is equivalent to
∨
i=1..k(

∧
x∈CΣ

x ∈ gi(x)).

Example 6.5. Consider a transition e = (q, a, xa < 5, q1) and e′ = (q, a, 5 ≤ xa < 10, q2)

of M . We have Intv = {[0, 0], (0, 5), [5, 5], (5, 10), [10, 10], (10,∞), [⊥,⊥]}. The transition

e will be translated to parallel transitions in ut(M) as below:

(q, (a, [0, 0]), q1), (q, (a, (0, 5)), q1), (q, (a, [5, 5]), q2), (q, (a, (5, 10)), q2).

The untimed translation is described in Figure 6.5. Note that this translation preserves

determinism. Similar to the case for event-clock automata [25], the next lemma holds:

Lemma 6.1. tw(L(ut(M))) = L(M) for all ECVPAs M . Moreover, if M is a determin-

istic ECVPA, then ut(M) is a deterministic VPA.

The reverse of the translation is described in the next definition.

Definition 6.10 (Timed Transformation). Let N = 〈Q,Π, Q0,Γ,∆
′, F 〉 be a VPA. We

define an ECVPA ec(N) = 〈Q,Σ, Q0,Γ,∆, F 〉 such that each transition of N with the

interval input symbol (a, g) is translated to a transition of ec(N) whose input symbol is a

and the clock constraint is ϕ =
∧
x∈CΣ

x ∈ g(x).

74

qstart q1

q2

qstart q1

q2

a, xa = 0

a, 0 < xa < 5

a, xa = 5

a, 5 < xa < 10

(a,[0,0])

(a,(0,5))

(a,[5,5])

(a,(5,10))

Figure 6.6: Description of timed translation

Example 6.6 (Continued from Example 6.5). Now, suppose that we want to translate

the VPA ut(M) in Example 6.5 to an ECVPA. The transitions of ut(M) are translated

back to the following transitions:

(q, a, xa = 0, q1), (q, a, 0 < xa < 5, q1), (q, a, xa = 5, q2), (q, a, 5 < xa < 10, q2).

Observe that this translation also preserves determinism.

For the timed translation, we get the following lemma:

Lemma 6.2. L(ec(N)) = tw(L(N)) for all VPA N . Moreover, if N is deterministic

VPA, then ec(N) is a deterministic ECVPA.

Proof. • For α = (a0, g0) · · · (an, gn) ∈ L(N), let ρ = (q0, σ0) · · · (qn+1, σn+1) be a run

of N on α. If w̄ = (a0, t0) · · · (an, tn) ∈ tw(α), then ρ is also a run of ec(N) on w̄.

Thus, tw(L(N)) ⊆ L(ec(N)).

• Conversely, let w̄ = (a0, t0) · · · (an, tn) ∈ L(ec(N)). There is an accepting run ρ =

(q0, σ0) · · · (qn+1, σn+1) of ec(N) on w̄, qn ∈ F . Based on the timed translation, there

is an untimed word α = (a0, g0) · · · (an, gn) ∈ Π∗ such that w̄ ∈ tw(α), and ρ is also

a run of N on α. Thus, L(ec(N)) ⊆ tw(L(N)).

The next theorem immediately follows from Lemmas 6.1 and 6.2.

Theorem 6.3. L(ec(ut(M))) = L(M) for all ECVPAs M .

6.2.2 Closure Properties and Inclusion Problem

From Theorem 6.3 and the decidability results of VPAs [5], the following theorems

hold:

75

Lemma 6.4 (Determinization). For any nondeterministic ECVPA M , there is a deter-

ministic ECVPA Det(M) such that L(Det(M)) = L(M). Moreover, if M has n locations,

we can construct Det(M) with O(2n
2
) locations and O(2n

2 · |Σc| · (2r)2|Σ|) stack symbols,

where r is the largest constant appearing in the clock constraints of M . The set of clocks

of Det(M) coincides with that of M .

Theorem 6.5 (Closure properties). The class of ECVPAs is closed under union, inter-

section, and complementation.

Theorem 6.6 (Language Inclusion). The inclusion problem for ECVPAs is EXPTIME-

complete.

Proof. Consider two ECVPAs A and B such that each automaton has at most n locations,

let m be the size of the input alphabet. Let c be the largest integer constant that appears

in the clock constraints. To check whether L(A) ⊆ L(B), we first untimed translate B

to a VPA B1, determinize B1 to B2, and then timed translate B2 to an ECVPA B′. The

automaton B′ has 2n
2+n locations. Let M be the product of A and B′. The ECVPA M

has n.2n
2+n locations, and the integer constants that appear in the clock constraints of M

are also bounded by c. Now, we can construct a VPA ut(M), and check for its emptiness.

Since checking emptiness of VPA is cubic time proportional to its size, it follows that

emptiness of ut(M) can be checked in EXPTIME. The proof of hardness is the same as

the corresponding proof for VPA [5].

Remark 6.3. Büchi VPAs are closed under union, intersection, and complementation [5].

By using a similar technique, we also can translate Büchi ECVPA to Büchi VPA, and

vice-versa. Therefore, the result of Theorem 6.6 can be extended to the case of Büchi

ECVPA.

6.3 Related Classes of Timed Pushdown Automata

6.3.1 Timed Visibly Pushdown Automata

Let X = {x1, ..., xn} be a finite set of clocks . Define the set Φ(X) of clock constraints

over X by the grammar:

ϕ ::= > | x ./ c | ¬ϕ | ϕ1 ∧ ϕ2,

where c ∈ Q+, x ∈ X, ./ ∈ {<,≤,≥, >}.
For the set of clocks X, a clock valuation is a function ν : X → R+ which describes the

values of each clock x ∈ X at an instant. For the clock valuation ν and a clock constraint

ϕ, we write ν |= ϕ to denote that ν satisfies the constraint ϕ. Given a set of clocks λ ⊆ X

and a clock valuation ν, let ν ↓ λ be a clock valuation defined as follows:

76

(ν ↓ λ)(x) =

0 when x ∈ λ

ν(x) otherwise
(6.1)

Given a clock valuation ν and a time t ∈ R+, define (ν + t)(x) = ν(x) + t.

Definition 6.11 (Timed Visibly Pushdown Automaton [27]). A timed visibly pushdown

automaton (TVPA) over pushdown alphabet Σ is a tuple M = (Q,Σ, Q0,Γ, X, δ, F),

where Q is a finite set of locations, Q0 ⊆ Q is a finite set of initial locations, Γ is a finite

stack alphabet that contains ⊥, F ⊆ Q is a set of final locations, X is a finite set of clocks,

and δ = δc ∪ δi ∪ δr is the transition relation:

1. δc ⊆ Q× Σc × Φ(X)×Q× (Γ \ {⊥})× 2X is the push-transition relation

2. δr ⊆ Q× Σr × Γ× Φ(X)×Q× 2X is the pop-transition relation

3. δi ⊆ Q× Σi × Φ(X)×Q× 2X is the internal-transition relation.

Let ν be a clock valuation. We briefly explain the intuition behind the transitions of

a TVPA as follows:

• A push-transition (q, a, φ, q′, γ, λ) is a move on the (call) input symbol a from q to q′

where ν satisfies φ, the clock valuation is updated from ν to ν ↓ λ, and γ is pushed

on the stack.

• A pop-transition (q, a, γ, φ, q′, λ) is a move on the (return) input symbol a and stack

symbol γ, from q to q′ where φ is satisfied and ν is updated to ν ↓ λ, and γ is

popped from the stack (if the top of stack is ⊥, then it is read but not popped).

• An internal-transition (q, a, φ, q′, λ) ∈ δ at clock valuation ν is a move on the (in-

ternal) input symbol a from the location q to q′ such that ν |= φ and the resulting

clock valuation ν ′ = ν ↓ λ.

Remark 6.4. There are clock reset conditions λ in the transitions of TVPAs. Thus,

unlike the case of ECVPAs, the clock valuations of TVPAs not only depend on input

timed words but also on transitions of TVPAs.

Definition 6.12. A configuration of a TVPA M is a triple (q, ν, σ), where q ∈ Q, σ ∈ St,
and ν is a clock valuation. Given a timed word w̄ = (a0, t0) · · · (an, tn), a run of M on w̄ is

a sequence of configurations ρ = (q0, ν0, σ0)
(a0, t0)−−−−→ (q1, ν1, σ1) · · ·

(an, tn)−−−−→ (qn+1, νn+1, σn+1),

where q0 ∈ Q0, σ0 = ⊥, and for every 1 ≤ i ≤ n, one of the following conditions holds:

1. Push: (qi, ai, φi, qi+1, γ, λ) ∈ δ, νi |= φi, νi+1 = (νi ↓ λ)+ (ti+1− ti), and σi+1 = γσi

77

2. Pop: (qi, ai, γ, φi, qi+1, λ) ∈ δ, νi |= φi, νi+1 = (νi ↓ λ) + (ti+1 − ti), and γσi+1 = σi

or γ = σi+1 = σi = ⊥,

3. Internal: (qi, ai, φi, qi+1, λ) ∈ δ, νi |= φi, νi+1 = (νi ↓ λ) + (ti+1− ti), and σi+1 = σi

A run ρ is an accepting run if it ends in a final state. A timed word w̄ is accepting

if there is an accepting run of M on w̄. The language L(M) is the set of timed words

accepted by M . It is easy to see that TVPAs is a subclass of timed pushdown automata

(TPDA) [13], and a superclass of timed automata [2]. Indeed, a TVPA is a timed automa-

ton if Σc = Σr = ∅. Unlike ECVPA, TVPA are not determinizable and not closed under

complementation. Moreover, the next theorem was proved by Emmi and Majumdar [27].

Theorem 6.7 ([27, Theorem 3]). The inclusion problem L(A) ⊆ L(B), where A is a

TVPA and B is a TVPA with at least one clock, is undecidable.

6.3.2 Translation from ECVPA to TVPA

As shown in [3], every ECA can be translated into a timed automaton that accepts the

same timed language. There the basic idea of the translation can be described as follows:

Definition 6.13 (Translating event-clocks to original clocks [3]). An event-recording clock

xa can be seen as an original clock that is reset on a transition e if the input symbol of

e is a. For event-predicting clocks, consider a given ECA A and the set of all atomic

event-predicting clock constraints (denoted by ΦA) of the form ya = ⊥ or ya ∼ c, where

∼∈ {≤, <,>,≥}. Define a nondeterministic timed automaton B as follows:

• The states of the target timed automaton B are the pairs (q,Ψ) with q ∈ QA and

Ψ ⊆ ΦA.

• The state (q,Ψ) is an initial state of B iff q is the initial state of A and Ψ does not

contain a constraint of the form ya ∼ c.

• The state (q,Ψ) is a final state of B iff q ∈ FA and Ψ = {ya = ⊥}.

• For each ψ ∈ ΦA, B has a clock zψ.

• The automaton B has an edge from the source state (q,Ψ) to the target state (l′,Ψ′)

with the input symbol a, the clock constraint ϕ, and the reset condition ρ if and only

if the following seven conditions are satisfied. Intuitively, a prediction yb ∼ c, along

a transition in A, on the time difference to the next occurrence of a is replaced in

B by a constraint on the clock z(yb∼c): the clock z(yb∼c) is reset when the prediction

is performed, and its value is checked by the constraint z(yb∼c) ∼ c when the next b

occurs.

78

1. The automaton A has an edge of the form (l, l′, a, χ).

2. The constraint ya = ⊥ does not appear in Ψ.

3. The constraint ϕ is the conjunction of all atomic clock constraints of the form

(z(ya∼c) ∼ c) with (ya ∼ c) ∈ Ψ.

4. For each input symbol b different from a, if a constraint involving yb appears

in Ψ, then it appears in Ψ′ also.

5. Each conjunct of χ appears in Ψ′ also.

6. For each input symbol b and for ∼ equal to > or ≥, the clock z(yb∼c) appears

in the reset condition ρ iff the constraint yb ∼ c is a conjunct of χ.

7. For each input symbol b and for ∼ equal to < or ≤, the clock z(yb∼c) appears

in the reset condition ρ iff the constraint yb ∼ c is a conjunct of χ, and either

b = a or the constraint yb ∼ c does not appear in Ψ.

Then the timed automaton B defines the timed language L(A).

Similarly, by using the above translation of the event clocks to the original clocks, the

next lemma holds:

Lemma 6.8. Every ECVPA can be translated into a TVPA that accepts the same timed

language.

We now arrive at the main theorem of this chapter:

Theorem 6.9 (Language Inclusion). The inclusion problem L(A) ⊆ L(B), where A is a

TVPA and B is an ECVPA, is decidable.

Proof. L(A) ⊆ L(B) ⇐⇒ L(A) ∩ L(B) = ∅. We first determinize B and then compute

its complement B. Second, translate the ECVPA B into a TVPA B′. Note that L(B′) =

L(B). Third, take the intersection of A and B′, and check for emptiness of L(A ∩ B′).

Similar to Theorem 6.6, the complexity of this inclusion checking is EXPTIME-complete.

6.4 Related Work

Ouaknine and Worrell [42] proved that when B has at most one clock, the inclusion

problem L(A) ⊆ L(B) can be encoded as the reachability problem for well-structured

transition systems [31]. Thus, the inclusion problem for timed automata becomes decid-

able when B has at most one clock. However, over infinite timed words, one clock is

enough to make the inclusion problem undecidable [1], since this problem can be reduced

from the space-bounded recurrent-state problem for alternating channel machines.

79

The closest related works is the paper of Emmi and Majumdar [27]. There they

extended the proof technique of [42], and showed that the inclusion problem L(A) ⊆ L(B)

is decidable if A is a TPDA, and B is a TA with at most one clock. However, for TVPAs

A and B, the inclusion problem is undecidable even B has exactly one clock [27]. In this

paper, we have shown that when A is a TVPA and B is an ECVPA, the inclusion problem

L(A) ⊆ L(B) become decidable.

A decidable subclass of real-time logic so-called EventClockTL, which corresponds

to event-clock automata, was presented in [37]. Furthermore, DSouza [25] showed that

the class of event-clock automata admit a logical characterization via a monadic second

order logic interpreted over timed words. The proof technique is based on the untimed

translation, as in Definition 6.9, that transform an event-clock automaton to a finite

automaton.

80

Chapter 7

Conclusion

We are now ready to conclude. We begin with a summary of the work presented before

discussing possible avenues of future research.

7.1 Summary of Contributions

We have considered the inclusion problems for subclasses of PDAs. These problems

can be seen as model checking context-free properties for pushdown models. The main

contributions of the thesis are:

• In Chapter 3, we presented an improvement on the alternate stacking technique

used in Greibach-Friedman’s proof of the language inclusion problem L(A) ⊆ L(B),

where A is a PDA and B is an SPDA. The original construction encodes everything

as stack symbols (in an intricate way), whereas our refinement gives a more direct

product construction, and clarifies how alternate stacking works. For our construc-

tion, a proof of “liveness” is not needed, and the whole correctness proof for the

decision procedure became simpler.

• In Chapter 4, we refuted the claim about the determinizability of 2-OVPAs (2-

VPAs) of Carotenuto et al. [17]. In addition, we have introduced the class of visibly

stack automata (VSAs) and showed that this class of automata is either not deter-

minizable.

• The universality and inclusion problems for VPA were already known to be EX-

PTIME-complete [5], but no implementation for these solutions was available. In

Chapter 5, we have provided new antichain-based algorithms for these problems.

Although the standard approaches (as well as ours) have the same worst case com-

plexity, our prototype implementation outperforms those approaches where deter-

minization is explicit.

81

• In Chapter 6, we introduced the class of ECVPAs by combining the ideas of ECAs [3]

and VPAs [5]. We showed that the class of ECVPAs enjoys good closure properties

and decidability results. We also showed that the inclusion problem L(A) ⊆ L(B),

where A is a TVPA and B is an ECVPA, is decidable. This provides an algorithm for

checking if a TVPA meets a specification that is given as an ECVPA. We hope that

the class of ECVPA will be useful for verification of recursive real-time programs.

7.2 Further Research

We have presented antichain-based algorithms for checking universality and inclusion

of visibly pushdown automata. This work suggests a number of possibilities for future

research.

Implementation with BDD-Based Representations

In our current implementation, the data structures for VPAs are not well optimized.

That is the reason why the running time of our tool is not fast. A BDD (Binary Deci-

sion Diagram) is a graph representing a Boolean function. The BDD representation has

some extremely convenient properties, such as compactness and canonicity, and it allows

efficient manipulation. BDDs have successfully been used in a long range of verification

techniques, e.g., in automata-theoretic tools such as MONA 1 and ALASKA 2. It would be

interesting to manipulate VPAs using BDD technique. We expect that with BDD-based

representation, the running time of our tool will be significantly improved.

Validation of XML Documents

XML is nowadays the de facto standard for electronic data interchange on the Web.

An XML document is a text-based linear encoding of tree-structured data. Markups in

the text in terms of open- and close-tags are used to create a bracketing structure on

the document, and captures the hierarchy of information in the tree. The study of XML

has naturally concentrated on its tree representation; for example, document types are

represented using the parse-trees generated by DTDs and EDTDs. Also, XML query

languages like XPath have modalities like parent and child that refer to the tree edges,

and tree automata (over unranked trees) have been used to model and solve decision

problems for XML (see [44, 40, 10], for example).

Recent works [50, 46, 53] have shown that the class of VPA is a promising and natural

formalism for modeling and validating XML streams. In particular, XML streaming and

validating problems can be reduced to the decision problems of VPAs. However, no

1http://www.brics.dk/mona/
2http://www.antichains.be/alaska/

82

implementations for those algorithms are available. It would be interesting to apply our

prototype tool to a static analysis tool for XML streams. Moreover, Benedikt et al. [10]

recently defined, investigated, and proposed solutions for the XML stream fire-walling

problem. Their underlying model are based on finite automata, thus their techniques can

only handle non-recursive DTDs with respect to XPath specifications. We expect that

their techniques can be extended to deal with the recursive DTDs and wider specifications,

if the models are VPAs instead of finite automata.

83

Bibliography

[1] P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity

results for timed automata via channel machines. Proceedings of the 32nd Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP’05), LNCS

3580, pp. 1089-1101, Springer-Verlag 2005.

[2] A. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:

pp. 183-235, 1994.

[3] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class

of timed automata. Theor. Comp. Sci, 211: pp.253-273, 1999. A preliminary version

appeared in CAV’94, LNCS 818, pp. 1-13, Springer-Verlag 1994.

[4] R. Alur and P. Madhusudan. Decision problems for timed automata: a survey. In

School of Formal Method, LNCS 3185, pp. 1-24, Springer-Verlag 2004.

[5] R. Alur and P. Madhusudan. Visibly pushdown languages. Proceedings of the 36th

ACM Symposium on Theory of Computing (STOC’04), pp. 202-211, ACM Press 2004.

[6] R. Alur, K. Etessami, P. Madhusudan. A temporal logic of nested calls and returns.

Proceedings of the 10th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS’04), LNCS 2988, pp. 467-481, Springer-

Verlag 2004.

[7] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly

pushdown languages. Proceedings of the 32nd International Colloquium on Automata,

Languages, and Programming (ICALP’05), LNCS 3580, pp. 1102-1114, Springer-

Verlag 2005.

[8] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global

program flows. Proceedings of the 33rd Annual ACM SIGPLAN - SIGACT Symposium

on Principles of Programming Languages (POPL’06), pp. 153-165, ACM Press 2006.

[9] J. M. Autebert, J. Berstel, and L. Boasson: Context-free languages and push-down

automata. Handbook of Formal Languages, Springer-Verlag 1997.

84

[10] M. Benedikt, A. Jeffrey, and R. Ley-Wild. Stream firewalling of XML constraints.

Proceedings of the 28th ACM SIGMOD International Conference on Management of

Data (SIGMOD’08), pp. 487-498, ACM Press 2008.

[11] M. Benedikt, W. Fan, and Floris Geerts. XPath satisfiability in the presence of DTDs.

Journal of the ACM. Vol. 55(2), ACM Press 2008.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zue. Bounded Model

Checking. Chapter 3: Advances in Computers, pp. 118-149, Academic Press 2003.

[13] A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of systems

with continuous variables and unbounded discrete data structures. In Hybrid Systems

II, LNCS 999, pp. 64-85, Springer-Verlag 1995.

[14] A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. Vojnar. Antichain-based uni-

versality and inclusion testing over nondeterministic finite tree automata. Proceeding

of the 13th International Conference on Implementation and Application of Automata

(CIAA’08), LNCS 5148, pp. 57-67, Springer-Verlag 2008.

[15] P. Bouyer and F. Laroussinie. Model checking timed automata. In Modeling and

Verification of Real-Time Systems, pp. 111-140. ISTE Ltd. - John Wiley & Sons,

Ltd., 2008.

[16] P. Bouyer, Kim G. Larsen, and N. Markey. Model checking one-clock priced timed

automata. Logical Methods in Computer Science 4, pp. 14-57, 2008.

[17] D. Carotenuto, A. Murano, and A. Peron. 2-Visibly pushdown automata. Proceedings

of the 11th International Conference Developments in Language Theory (DLT’07),

LNCS 4588, pp. 132-144, Springer-Verlag 2007.

[18] D. Caucal. Synchronization of pushdown automata. Proceedings of the 11th Inter-

national Conference Developments in Language Theory (DLT’07), LNCS 4036, pp.

120-132, Springer-Verlag 2006.

[19] H. Comon-Lundh, F. Jacquemard, and N. Perrin. Tree automata with memory, visi-

bility and structural constraints. Proceedings of the 10th International Conference on

Foundations of Software Science and Computation Structure (FoSSaCS’07), LNCS

4423, pp. 168-182, Springer-Verlag 2007.

[20] E. M. Clarke and E. A. Emerson. The design and synthesis of synchronization skele-

tons using temporal logic. Proceedings of the Second Workshop on Logics of Programs,

LNCS 131, pp. 52-71, IBM Watson Research Center, New York, May 1981.

[21] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

85

[22] Z. Dang. Pushown time automata: a binary reachability characterization and safety

verification. Theor. Comp. Sci, 302(1-3): pp. 93-121, 2003.

[23] Z. Dang, T. Bultan, O. H. Ibarra, and R. A. Kemmerer. Past pushdown timed

automata and safety verification. Theor. Comp. Sci, 313(1): pp. 57-71, 2004.

[24] L. Doyen and J. F. Raskin. Improved algorithms for the automata-based approach

to model checking. Proceedings of the 13th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’07), LNCS 4424,

pp. 451-465, Springer-Verlag 2007.

[25] D. D’Souza. A logical characterisation of event clock automata. International Journal

of Foundation for Computer Science, Vol. 14, No. 4, pp. 625-640, 2003.

[26] D. D’Souza and N. Tabareau. On timed automata with input-determined guards. In

FORMATS/FTRTFT’04, LNCS 3253, pp. 68-83, Springer-Verlag 2004.

[27] M. Emmi and R. Majumdar. Decision problems for the verification of real-time soft-

ware. Proceedings of the 9th International Workshop on Hybrid Systems : Computa-

tion and Control (HSCC’06), LNCS 3927, pp. 200-211, Springer-Verlag 2006.

[28] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model

checking pushdown systems. Proceedings of the 12th International Conference on

Computer Aided Verification (CAV 2000), LNCS 1855, pp. 232-247, Springer-Verlag

2000.

[29] J. Esparza, A. Kucera, and S. S. Schwoon. Model checking LTL with regular valua-

tions for pushdown systems. Information and Computation, 186(2), pp.355-376, 2003.

[30] A. Finkel. B. Willems, and P. Wolper. A direct symbolic approach to model checking

pushdown systems. Proceedings of the 2nd International Workshop on Verification of

Infinite State Systems (Infinity’97), ENTCS, Vol. 9, 1997.

[31] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!.

Theor. Comp. Sci, 256(1-2), pp. 63-92, 2001.

[32] E. P. Friedman and S. Greibach. Superdeterministic PDAs. The method of accepting

does affect decision problems. Journal of Systems and Computer Science, 19(3), pp.

79-117, 1979.

[33] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-

cation of linear temporal logic. Proceedings of the 15th International Symposium on

Protocol Specification, Testing, and Verification (PSTV95), pp. 3-18, Chapman-Hall,

1995.

86

[34] S. Greibach and E. P. Friedman. Subperdeterministic PDAs: A Subcase with a de-

cidable inclusion problem. Journal of the ACM, 27(4), pp. 675-700, 1980.

[35] S. Ginsburg, S. Greibach, and M. Harrison. One-way stack automata. Journal of the

ACM, 14(2), pp. 381-418, 1967.

[36] D. Harel and D. Raz. Deciding mmptiness for stack automata on infinite trees. In-

formation and Computation, 113(2), pp. 278-299, 1994.

[37] T. A. Henzinger, J. Raskin, and P. Schobbens. The regular real-time languages.

In Proceedings of the 25th International Colloquium on Automata, Languages and

Programming (ICALP’98), LNCS 1443, pp. 580-598, Springer-Verlag 1998.

[38] G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison-

Wesley Professional, 2003.

[39] H. B. Hunt. On the complexity of finite, pushdown, and stack automata. Mathemat-

ical Systems Theory, Vol. 10, 1976.

[40] D. Olteanu. Evaluation of XPath Queries against XML streams. PhD Thesis, Insti-

tute for Informatics, Ludwig Maximilian University of Munich, 2004.

[41] M. Ogawa, N. V. Tang, and N. Hirokawa. Antichains for visibly pushdown automata.

Submitted to an International Conference.

[42] J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:

Closing a decidability gap. Proceedings of the 19th IEEE Symposium Logic in Com-

puter Science (LICS’04), pp. 54-63, IEEE Computer Society 2004.

[43] R. McNaughton. Parenthesis grammars. Journal of the ACM, 14(3): 490-500, 1967.

[44] F. Neven. Automata, logic, and XML. Proceedings of the 11th International Con-

ference on Computer Science Logic (CSL’02), LNCS 2471, pp. 2-26, Springer-Verlag

2002.

[45] D. Nowotka and J. Srba. Height-deterministic pushdown automata. Proceedings of

the 32nd International Symposium on Mathematical Foundations of Computer Science

(MFCS’07), LNCS 4708, pp. 125-134, Springer-Verlag 2007.

[46] V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown automata for

streaming XML. Proceedings of the 16th International World Wide Web Conference

(WWW’07), pp. 1053-1062, ACM Press 2007.

[47] O. Kupferman, N. Piterman, and M. Vardi. Pushdown specifications. Proceedings

of the 9th International Conference on Logic for Programming, Artificial Intelligence,

and Reasoning (LPAR’02), LNCS 2514, pp. 262-277, Springer-Verlag 2002.

87

[48] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.

Proceedings of the ACM TOCL’01, 2(3): 408-429, 2001.

[49] O. Kupferman. Avoiding Determinization. Proceedings of the 21st IEEE Symposium

Logic in Computer Science (LICS’06), pp. 243-254, IEEE Computer Society 2006.

[50] C. Pitcher. Visibly pushdown expression effects for XML stream processing. Proceed-

ings of the Workshop on Programming Language Technologies for XML (PLAN-X’05),

pp. 5-19, 2005.

[51] N. Piterman and M. Vardi. Micro-macro stack systems: A new frontier of elementary

decidability for sequential systems. Proceedings of the 18th IEEE Symposium Logic

in Computer Science (LICS’03), pp.381-390, IEEE Computer Society 2003.

[52] C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. Proceedings of

the 24th International Conference on Foundations of Software Technology and The-

oretical Computer Science (FSTTCS’04), LNCS 3328, pp. 408-420, Springer-Verlag

2004.

[53] P. Madhusudan and M. Viswanathan. Query automata for nested words. Under sub-

mission.

[54] Y. Minamide and A. Tozawa. XML validation for context-rree grammars. Proceedings

of the 4th ASIAN Symposium on Programming Languages and Systems (APLAS’06),

LNCS 4279, pp. 357-373, Springer-Verlag 2006.

[55] D. H. Nguyen and M. Sudholt. VPA-based aspects: better support for AOP over

protocols. Proceedings of the 4th IEEE International Conference on Software Engi-

neering and Formal Methods (SEFM’06), pp.167-176, IEEE Computer Society 2006.

[56] A. Pnueli. The temporal logic of programs. Proceedings of the 18th IEEE Symposium

on Foundations of Computer Science (FOCS’77), pp. 46-57, IEEE Computer Society

1977.

[57] J. Raskin and P. Schobbens. State clock logic: a decidable real-time logic. In Hybrid

and Real-time Systems, LNCS 1201, pp. 33-47, Springer-Verlag 1997.

[58] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their

application to interprocedural dataflow analysis. Science of Computer Programming,

Vol. 58, pp. 206-263, 2005.

[59] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Symposium on Programming, LNCS 137, pp. 337-351, 1982.

88

[60] S. Safra. On the complexity of ω-automata. Proceedings of the 29th IEEE Symposium

on Foundations of Computer Science (FOCS’88), pp. 319-327, IEEE Computer Society

1988.

[61] G. Sénizergues. L(A) = L(B)? A simplified decidability proof. Theore. Comp. Sci,

281(2), pp. 555-608, 2002.

[62] A. Sistla, E. M. Clarke, N. Francez, and Y. Gurevich. Can message buffers be ax-

iomatized in linear temporal logic. Information and Control, Vol. 63(1-2), pp. 88-112,

1984.

[63] C. Stirling. Deciding DPDA equivalence is primitive recursive. Proceedings of the 29th

International Colloquium on Automata, Languages and Programming (ICALP’02),

LNCS 2380, pp. 821-832, Springer-Verlag 2002.

[64] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-

structions. Proceedings of the 12th International Conference on Logic for Program-

ming, Artificial Intelligence, and Reasoning (LPAR’05), LNCS 3835, pp. 396-411,

Springer-Verlag 2005.

[65] N. V. Tang, D. V. Hung, and M. Ogawa. Modeling urgency in component-based

real-time systems. In Advances in Computer Sciences (ASIAN’06), LNCS 4435, pp.

248-255, Springer-Verlag 2007.

[66] N. V. Tang and M. Ogawa. Alternate stacking revisited: Inclusion problem of su-

perdeterministic pushdown automata. IPSJ Transactions on Programming, PRO 37,

Vol. 1(1), pp. 1-11, June 2008.

[67] N. V. Tang and M. Ogawa. Event-clock visibly pushdown automata. Proceedings

of the 35th International Conference on Current Trends in Theory and Practice of

Computer Science (SOFSEM’09), LNCS 5404, pp. 558-569, Springer-Verlag 2009.

[68] N. V. Tang and M. Ogawa. Determinization for extensions of VPAs Seems Difficult.

Submitted to an International Journal.

[69] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive

languages. Proceedings of the 22nd IEEE Symposium on Logic in Computer Science

(LICS’07), pp. 161-170, IEEE Computer Society 2007.

[70] A. Tozawa and Y. Minamide. Complexity results on balanced context-free languages.

Proceedings of the 10th International Conference on Foundations of Software Sci-

ence and Computational Structures (FoSSaCS’07), LNCS 4423, pp. 346-360, Springer-

Verlag 2007.

89

[71] Alan M. Turing. On computable numbers, with an application to the Entscheidung-

problem. Proc. London Math. Society, 2(42), pp. 230-265, 1936.

[72] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-

putation. Addition-Wesley, 1979.

[73] L. G. Valiant. The equivalence problem for finite-turn pushdown automata. Infor-

mation and Control, Vol. 25: 123-133, 1974.

[74] L. G. Valiant. Decision procedures for families of deterministic pushdown automata.

PhD Thesis. University of Warwick, 1973.

[75] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram verification. Proceedings of the 1st IEEE Symposium Logic in Computer Science

(LICS’86), pp. 332-344, IEEE Computer Society 1986.

[76] I. Yaki, Y. Takata, and H. Seki. A static analysis using tree automata for XML access

control. Proceedings of the 3rd International Symposium on Automated Technology for

Verification and Analysis (ATVA’05), LNCS 3707, pp. 234-247, Springer-Verlag 2005.

[77] M. De Wulf, L. Doyen, T. A. Henzinger, and J. F. Raskin. Antichains: A new

algorithm for checking universality of finite automata. Proceedings of the 18th In-

ternational Conference on Computer Aided Verification (CAV’06), LNCS 4144, pp.

17-30, Springer-Verlag 2006.

[78] M. De Wulf, L. Doyen, J. F. Raskin, and N. Maquet. Alaska: Antichains of logic, au-

tomata and symbolic Kripke structures analysis. Proceedings of the 6th International

Symposium on Automated Technology for Verification and Analysis (ATVA’08), LNCS

5311, pp. 240-245, Springer-Verlag 2008.

90

Publications

1. Nguyen Van Tang and Mizuhito Ogawa. Event-Clock Visibly Pushdown Automata.

In the Proceedings of the 35th International Conference on Current Trends in Theory

and Practice of Computer Science (SOFSEM’09), Špindlerüv Mlýn, Czech Republic.

LNCS 5404, pp. 558-569, Springer-Verlag, 2009.

2. Nguyen Van Tang and Mizuhito Ogawa. An Improvement on Decision Procedure for

Inclusion Problem of Superdeterministic Pushdown Automata. IPSJ Transactions

on Programming, Vol. 1(1), pp. 36-46, June 2008.

3. Koichi Kobayashi, Nguyen Van Tang, and Kunihiko Hiraishi. Precomputation

Based Approximate Algorithm for Model Predictive Control of Hybrid Systems. In

the Proceedings of the 23rd International Technical Conference on Circuits/Systems,

Computers and Communications (ITC-CSCC’08), pp. 913-916, July 2008.

4. Nguyen Van Tang, Dang Van Hung, and Mizuhito Ogawa. Modeling Urgency

in Component-Based Real-time Systems. In the Proceedings of the 11th Annual

Asian Computing Science Conference (ASIAN’06), LNCS 4435, pp. 249-256, Tokyo,

Japan, 2006.

5. Mizuhito Ogawa, Nguyen Van Tang, and Nao Hirokawa. Antichains for Visibly

Pushdown Automata. Under submission.

6. Nguyen Van Tang and Mizuhito Ogawa. Determinization for Extensions of VPA

Seems Difficult. Under submission.

91

Index

Γ∗, 11

ε-rule, 10

ε-rules, 12

ε-states, 12

ε-transition, 11

“undefined”, 66

2-OVPA, 39

2-VPA, 37

2-VPL, 38

2-pushdown alphabet, 37

2-visibly pushdown automaton, 37

on-the-fly, 45

superdeterministic languages, 19

a, 48

accessible, 11

alternate stacking technique, 20

antichain, 51

antichain-based algorithms, 52

blocking mode, 10

bottom-of-stack, 32

call, 32

call-matched, 34

cardinality, 10

clock valuation, 73

clocks, 73

complete, 48

configurations, 11

context-free grammars, 19

context-free properties, 4

delay, 11

density of final states, 60

density of transitions, 60

down, 40

DPDA, 11

Duration automata, 69

Dyck sets, 19

ECVPA, 67

empty word, 10

event clocks, 66

event-clock constraints, 66

event-clock visibly pushdown automaton, 67

event-predicting, 66

event-recording, 66

finite automaton, 45

finite delay, 11

finite-turn, 19

forward antichain algorithm, 49

generalized parenthesis languages, 19

guard, 70

head(w), 10

height deterministic, 34

height-deterministic pushdown automata, 42

initial antichain, 49

internal, 10, 32, 40

internal-transition, 74

interval-based alphabet, 70

Intv, 70

k-MVPAs, 6, 31

lattice, 48

92

length, 10

live, 5

mode, 10

Model checking, 2

model checking problem, 2

n-step computation, 11

non-accepting, 58

nonsingular, 20

normalized, 12

on-the-fly algorithms, 52

one-counter, 19

one-increasing, 19

one-step computation, 11

ordered 2-VPA, 39

parenthesis languages, 19

path edges, 52

pop, 10, 40

pop-transition, 74

push, 10, 40

push-transition, 74

pushdown alphabet, 67

pushdown automata, 3

pushdown automaton , 10

reading mode, 11

real-time, 11

regular hedge grammar, 30

regular properties, 4

return, 32

return-matched, 34

RPDA, 11

size, 10

SPDAs, 18

St, 11

stack height, 11

stacking computation, 11

stacks, 32

summaries, 36

summary edges, 52

superdeterministic, 18

synchronized communication, 37

synchronous, 34

time-stamps, 66

timed automaton, 75

timed language, 66

timed pushdown automata, 75

timed visibly pushdown automaton, 74

TPDA, 75

TVPA, 74

universality and inclusion checking, 45

universality problem, 46, 52

untimed translation, 71

untimed word, 66

up, 40

visibly pushdown automata, 4, 16

visibly pushdown automaton, 32

visibly pushdown language, 33

visibly stack automaton, 40

VSA, 40

well-matched, 33, 34

XML-grammar, 30

zero-step computation, 11

93

	Abstract
	Acknowledgements
	Introduction
	Model Checking
	Inclusion Problems and Model Checking
	Contributions

	Pushdown Automata
	Definition of Pushdown Automata
	Properties of Pushdown Automata
	Deciding Emptiness of PDAs
	Applications to Pushdown Model Checking

	Superdeterministic Pushdown Automata
	Superdeterministic Pushdown Automata
	Alternate Stacking Technique
	Simulating Pushdown Automata
	An Illustrating Example

	Soundness and Completeness
	Soundness
	Completeness
	The Inclusion Problem

	Related Work

	Visibly Pushdown Automata and Its Extensions
	Visibly Pushdown Automata
	Definition of Visibly Pushdown Automata
	Determinization
	Closure Properties and Decision Problems

	Language Extensions of VPA Are Difficult
	2-Visibly Pushdown Automata
	Visibly Stack Automata

	Related Work

	Checking Universality and Inclusion of Visibly Pushdown Automata
	Checking Universality and Inclusion of Finite Automata
	Standard Methods
	Antichain Methods

	Checking Universality and Inclusion of Visibly Pushdown Automata
	Standard Methods
	On-the-fly Methods
	Antichain-based Methods

	Implementation and Experiments
	Related Work

	Timed Extensions of Visibly Pushdown Automata
	Event-Clock Visibly Pushdown Automata
	Event clocks
	Event-Clock Visibly Pushdown Automata

	Properties of Event-Clock Visibly Pushdown Automata
	Untimed/Timed Translation between ECVPA and VPA
	Closure Properties and Inclusion Problem

	Related Classes of Timed Pushdown Automata
	Timed Visibly Pushdown Automata
	Translation from ECVPA to TVPA

	Related Work

	Conclusion
	Summary of Contributions
	Further Research

